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Layman’s summary 
Cells become cancerous via the accumulation of alterations that either change the sequence of DNA 

(genetic mutations) or that affect the regulation of gene expression without changing the underlying 

DNA sequence (epigenetic mutations). These epigenetic alterations can consist of the addition or 

removal of methyl groups to the DNA/RNA sequence (DNA/RNA methylation), the addition or 

removal of chemical groups to the proteins around which DNA is wrapped (histone modifications), 

or interactions with RNA molecules that are not translated into proteins but have a regulatory effect 

(non-coding RNAs). 

As epigenetic modifications do not modify the DNA sequence, we rely on experimental procedures 

(chemical conversions, antibody binding, or enzymatic cleaving) to alter the sequenced DNA to 

indicate the presence or absence of the epigenetic modification of interest. Methods that study 

epigenetic modifications at a single-cell level allow us to appreciate the diversity in the epigenetic 

landscapes of a cell population. Single-cell epigenomic methods do not only directly target 

epigenetic modifications, but also study their effects on how accessible to the transcription 

machinery DNA sequences are, and how the DNA is organized within the cell. On top of that, some 

methods allow us to simultaneously study epigenetic modifications and their consequences on gene 

expression (at the RNA or protein level). 

Single-cell epigenomic methods can provide vital information on the role of epigenetics in cancer 

development that would be missed by traditional bulk methods, as they can be used to identify 

subpopulations of cells with distinct epigenetic landscapes within the same tumor. This is essential 

to study the role of epigenetics across different cancer (sub)types in carcinogenesis, drug resistance, 

and progression. On top of that, single-cell methods can be used to capture the epigenomic 

landscape of circulating tumor cells found in the blood of cancer patients. Studies focused on 

circulating tumor cells could clarify the epigenetic mechanisms behind cancer metastasis, as well as 

help to develop new minimally invasive diagnostic methods. 

Overall, the newly developed single-cell epigenomics provides new opportunities for innovative 

research into the epigenetic mechanism behind cancer. This can lead to further innovations in cancer 

diagnosis, prognosis, and treatment. 



Abstract 
Epigenetic alterations are reversible modifications that alter the way gene expression is regulated 

without changing the underlying DNA sequence. They play a key role in both healthy development, 

as well as in diseases like cancer. During the last decade, we have seen the development of novel 

methods to study the different layers of the epigenome (DNA methylation, histone modifications, 

non-coding RNAs, chromatin accessibility, and chromatin architecture) at a single-cell level. These 

methods provide a unique opportunity to study the impact of epigenetics in the development of 

intra-tumor heterogeneity and its effects on cancer development, drug resistance, and progression 

towards metastasis. In this review, we provide an overview of how epigenetic modifications regulate 

gene expression and the currently existing single-cell epigenomic methods, as well as an explanation 

on how these methods can be used to expand our current knowledge on the role of epigenetics in 

cancer. 



Abbreviations 
TME  – Tumor micro-environment 

m5C   –  5-methylcytosine 

5hmC   –  5-hydroxymethylcytosine 

5fC   –  5-formylcytosine 

5acC   –  5-carboxylcytosine 

m6A   –  N6-methyladenosine 

MBD   –   Methyl-binding domain protein 

DNMT   –   DNA methyltransferase 

TET   – Ten-eleven translocation methyl-cytosine dioxygenases 

PTM  – Post-translational modification 

HAT  – Histone acetyltransferases 

HDAC  – Histone deacetylases 

HMT  – Histone methyltransferase 

HMD  – Histone demethylase 

ncRNAs – Non-coding RNAs 

sncRNAs – Small non-coding RNAs (<200 nucleotides) 

lncRNAs – Long non-coding RNAs (>200 nucleotides) 

miRNAs – Micro non-coding RNAs (<20 nucleotides) 

circRNAs – Circular non-coding RNAs 

FACS  – Fluorescence-activated cell sorting 

BS  – Bisulfite conversion 

Dam   – Deoxyadenosine methylase 

CTC  – Circulating tumor cell 

PC  – Prostate cancer 

NSCLC  – Non-small cell lung cancer 

ALL  – Acute lymphoid leukemia 

MRT  – Malignant rhabdoid tumors 

pRCC  – Papillary renal carcinoma 



Introduction 
Cancer is a disease that arises due to the accumulation of genetic and epigenetic alterations. Genetic 

alterations cause permanent modifications in DNA. In contrast, epigenetic alterations are reversible 

modifications that alter the way gene expression is regulated without changing the underlying DNA 

sequence. Genetic changes are widely accepted to lead to cancer development by directly inducing 

mutations in the DNA sequence of oncogenes and tumor-suppressor genes. However, not all tumors 

contain genetic drivers that could induce malignant processes. Instead, epigenetic reprogramming 

was recently designated as one of the determinant mechanisms that mediate the acquisition of 

cancer hallmarks1. 

While both genetic and epigenetic alterations can be caused by aging and environmental exposures, 

their relative weight in cancer development is highly tissue-dependent2. For example, epigenetic 

alterations have shown a higher impact than genetic mutations on the risk for gastric cancer3,4. 

Furthermore, epigenetic modifications have been proposed to play a central role in the development 

of certain childhood cancers5, like pediatric leukemia6 and medulloblastoma7. Therefore, the study 

of the cancer epigenome has the potential to clarify the carcinogenesis mechanisms of certain 

cancer types that cannot be solely explained by genetic alterations. 

During the last 15 years, advances in genomic, transcriptomic, and proteomic techniques have 

allowed us to dramatically increase our knowledge on the complexity of the epigenome and its role 

in development8. Conventional methods to study epigenomics estimate the abundance of 

epigenetic marks at a population level from bulk measurements. However, these methods do not 

consider epigenetic diversity at a single-cell level. Single-cell approaches are essential for cancer 

research, due to the high levels of tumor heterogeneity, the influence of the tumor micro-

environment (TME), and the epigenetic diversity resulting from tumor evolution, among other 

factors9. 

While single-cell genomic and transcriptomic methods are more widely used, in the last years we 

have seen a surge in new single-cell methods to study epigenomics. Recent advances in the fields of 

molecular biology, microfluidics, imaging, and sequencing technologies now offer new and exciting 

possibilities for studying the cancer epigenome at a single-cell level10. In this review, we aim to (1) 

describe the epigenetic mechanisms that regulate gene expression, (2) explain how the latest single-

cell methods can be used to study the cell epigenome, and (3) describe the known effects of 

epigenetic modifications in cancer development, as well as current opportunities in this field for 

single-cell approaches. 



1. Epigenetic modifications that regulate gene expression 
Epigenetic pathways regulate gene expression without causing permanent changes in the DNA 

sequence. These pathways are naturally involved in development, by controlling the expression of 

different genes. However, alterations in these epigenetic pathways can lead to pathological 

processes such as cancer. In this section, we aim to describe gene expression can be regulated by 

three main epigenetic processes: DNA/RNA methylation, histone modifications, and non-coding 

RNAs8 (Fig. 1). While here we will be describing these epigenetic pathways individually, they can 

interact and coordinate to regulate gene expression in a precise manner. 

Figure 1: Epigenetic mechanisms that regulate gene expression. (A) Methylation, the most studied epigenetic 

mechanism, happens in DNA and RNA via the action of DNA methyltransferases (DNMTs). The opposite process, 

demethylation, happens via the action of ten-eleven translocation methyl-cytosine dioxygenases (TETs). (B) Non-coding 

RNAs (ncRNAs) can be divided into two broad categories: short non-coding RNAs (snRNAs, <200 nucleotides) and long 

non-coding RNAs (lncRNAs, >200 nucleotides). A subtype of lncRNAs are circular RNAs (circRNAs), which have been linked 

to several diseases.  (C) Three of the most studied histone modifications. Histones are acetylated by histone 

acetyltransferases (HATs) and demethylated by histone deacetylases (HDACs). Histone phosphorylation is carried out by 

kinases, and phosphatases mediate histone dephosphorylation. Histones are methylated by histone methyltransferases 

(HMTs) and demethylated by histone demethylases (HDMs). 



1.1 DNA and RNA methylation 

The best characterized epigenetic modification is DNA methylation, which happens via the addition 

of a methyl group to the 5-carbon of cytosines, forming 5-methylcytosine (5mC)11. This induces gene 

silencing by preventing transcription factors from accessing DNA positions, or by recruiting methyl-

binding domain proteins (MBDs), which can lead to further histone modififcations8. DNA 

methylation is carried out by the action of three DNA methyltransferases (DNMTs): DNMT1, 

DNMT3a, and DNMT3b8,11. While DNMT1 is the DNMT with the highest catalytic activity during 

replication and is responsible for “maintaining” the DNA methylation status, DNMT3a and DNMT3b 

act as de novo DNMTs12. Although DNMT3a and DNMT3b have been suspected to be partially 

redundant, knockout studies have shown they have distinct essential functions13. Enzymatic studies 

have shown that these functional differences are due to the different substrate preferences of 

DNMT3a and DNMT3b14. DNMT3a is essential in establishing methylation patterns during 

gametogenesis, while DNMT3b plays a more dominant role in early embryonic development8. 

In contrast, DNA demethylation “recovers” genes silenced by DNMTs. DNA demethylation is carried 

out by ten-eleven translocation methyl-cytosine dioxygenases (TETs) like TET1, TET2, and TET3. 

These enzymes can turn m5C into 5-hydroxymethylcytosine (5hmC), or turn 5-hmC into 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC). DNA demethylation and oxidized 5mC forms 

(5hmC, 5fC, and 5caC) are involved in several developmental stages, like pre-implantation, germ cell 

development, pluripotency, and differentiation15. 

While here we will focus on DNA methylation, RNA can also be methylated. The most studied form 

of RNA methylation is the methylation of 6-carbon of adenosine, forming N6-methyladenosine 

(m6A). This RNA modification is commonly enriched near the stop codon of genes, as well as 3’-UTR 

and within internal long exons, and affects almost every aspect of RNA processing such as RNA 

transcription, degradation, splicing, and translation8,16. 

1.2 Histone post-translational modifications 

DNA is wrapped around histone octamers called nucleosomes, which are composed of a tetramer 

of two H2A and two H2B, flanked by dimers of H3 and H4. Each histone contains a globular C-

terminal domain and an extended N-terminal tail, which can be subjected to post-translational 

modifications (PTMs)8. Several distinct histone PTMs regulate gene expression, but in this review we 

will focus on histone acetylation, methylation, and phosphorylation. 

The most studied histone PTM is histone acetylation. Adding an acetyl group to the histone removes 

its positive charge, loosening up the tight chromatin regulation and enabling the access of 

transcription factors. Histone acetylation is mediated by histone acetyltransferases (HATs), while the 

removal of acetyl groups, ie. histone deacetylation, is mediated by histone deacetylases (HDACs)17. 

Phosphorylation happens on the serine, threonine, and tyrosine residues of histones. Histone 

phosphorylation sites can broadly be divided into two categories: (1) those that play a role in 

transcriptional regulation and (2) those that play a role in chromatin condensation. Adding a 

phosphate group to a histone confers it with a negative charge, opening up the chromatin 

conformation. This is carried out by kinases, while the removal of the phosphate groups is performed 

by phosphatases18. Histone phosphorylation has been found to play a role in mitosis, apoptosis, DNA 



repair, replication, and transcription8. Several assays take advantage of this, such as the γH2AX-based 

assays, which rely on the detection of the phosphorylated form of H2AX histone, a variant of histone 

H2A, as a DNA damage biomarker19. 

Lysine methylation happens in histones on the arginine, lysine, and histidine residues. While histone 

acetylation and phosphorylation can change the histone’s electric charge, methylation doesn’t. 

Instead, it directly affects the recruitment and binding of regulatory proteins. Histone methylation 

is carried out by histone methyltransferases (HMTs), while histone demethylases (HDMs) mediate 

histone demethylation18. 

Other existing histone PTMs not described here include ubiquitylation, sumoylation, and ADP 

ribosylation, among others18,20. Furthermore, mutations directly on histone genes like can lead to 

the development of pathologies like cancer21. 

1.3 Non-coding RNAs 

A large portion (98%) of the genome is never translated into proteins22, but can be transcribed into 

non-coding RNAs (ncRNAs). These ncRNAs can be divided into two broad categories based on their 

size, distinguishing between “small” non-coding RNAs (sncRNAs) and large non-coding RNAs 

(lncRNAs). sncRNAs are highly conserved across species and take part in transcriptional and post-

transcriptional gene silencing. One of the most studied sncRNAs are micro RNAs (miRNAs), which 

are smaller than 20 nucleotides. In humans, miRNAs regulate the expression of 60% of protein-

coding genes8. 

In contrast, lncRNAs are less conserved across species and have a more varied mechanism of action8. 

They can influence target sites both in the nucleus and the cytoplasm and can act as regulators, 

enhancers, sponges for other ncRNAs, molecular scaffolding, etc. A subset of lncRNAs are circular 

RNAs (circRNAs). Both lncRNAs and circDNAs can directly bind to miRNAs and act as miRNA sponges, 

interfering with miRNA-mediated gene silencing23. 



2. Single-cell methods to study epigenomics 
In general, single-cell methods offer several advantages over traditional bulk methods, as bulk 

methods are unable to detect cell-to-cell variability and require more starting material. Single-cell 

methods are very useful when the starting material is limited and valuable, and therefore not 

suitable for bulk approaches. Furthermore, single-cell approaches are ideal for subpopulation 

studies, as they allow for the characterization of rare cell populations that would be typically missed 

by bulk methods. When studying epigenetic regulation, single-cell methods allow us to study the 

different epigenetic landscapes present in heterogeneous cell populations. Furthermore, single-cell 

multi-omic approaches allow the study of interactions between the different layers of the 

epigenome. When combined with transcriptomic data, they can be used to link epigenetic 

characteristics to specific phenotypes24. 

However, single-cell epigenomic methods also provide disadvantages compared to studies in bulk. 

While in single-cell genomics and transcriptomics we can directly study sequencing data, epigenomic 

methods rely on chemical conversions, antibody binding, and enzymatic cleaving to translate 

epigenetic information into sequencing data. In addition, data analysis procedures for epigenetic 

data are less established than that for genomic and transcriptomic data. There is a lack of guidelines 

to choose what methods might be more suitable for what kind of studies and what kind of analyses 

might be more appropriate. On top of that, single-cell epigenomic methods are more labor intensive, 

have a higher cost, and require more complex analysis, which can lead to misinterpretation of results 

and wrong conclusions24. 

2.1 Tagging of single cells 

Single-cell epigenomic methods require to individually sequence cells. There are three main 

categories of methods to isolate or tag single cells. The first category requires to physically isolate 

and compartmentalize single cells. The most popular way of doing this is via Fluorescence Activated 

Cells Sorting (FACS), which allows to separate individual cells in a highly specific manner and with 

high throughput. However, the cells need to be dissociated into suspension before sorting,  and a 

large amount of starting material is required25. Another method for individual cell isolation and 

compartmentalization is manual cell picking or micromanipulation, which allows to isolate cells from 

intact live tissue at the cost of lower throughput26. Other possible single-cell isolation techniques 

are MACS, LCM, and microfluidics25. All these techniques require a substantial infrastructural 

investment and skilled operators for the machinery. Furthermore, the physical isolation of single 

cells can result in a lot of noise due to single-cell amplification bias. 

The second category of methods is droplet barcoding. This approach relies on microfluidics 

equipment to encapsulate single cells into droplets together with barcoding oligonucleotide primers, 

lysis reagents, and other needed compounds. After lysis, barcodes are attached to the extracted 

DNA/RNA fragments so there is a unique sample barcode per cell. Afterwards, material from all cells 

is pooled and sequenced, and the barcodes in the resulting reads can be used to identify sequencing 

material from individual cells27,28. Compared to the physical isolation and compartmentalization of 

cells, this method allows for a smaller single-cell amplification bias, lower cost, and higher 

throughput29. 



The final category is combinatorial barcoding of single nuclei. These methods rely on tagging the 

nuclei with a combination of barcodes to dramatically increase the throughput. A significant 

advantage of this method is that nuclei can be isolated from preserved tissue samples and samples 

that are difficult to dissociate30, allowing the study of otherwise inaccessible samples. While this 

method hasn’t been widely applied yet, in the last couple of years pre-existing single-cell 

epigenomics methods have been adapted for combinatorial barcoding to increase throughput31,32 

The most suitable method for tagging single cells should be picked based on the nature of the cells 

being isolated, the desired scale of the experiment, and the budget allocated for cell tagging. Physical 

cell isolation via FACS can be used to select specific cell populations based on antibody-binding, the 

presence of transgenic fluorescent constructs, or even cell characteristics such as size and 

granularity33. This makes it ideal for the study of specific cell populations in transgenic animal 

models. However, this method requires a large amount of starting material. In contrast, droplet-

based methods reduce the single-cell amplification bias, increases the throughput, and have a lower 

cost per cell. Nonetheless, the number of cells studied is limited by the number of unique barcodes 

available. Overall, this method can be used when the starting material is rare and too scarce for 

physical cell isolation. Combinatorial barcoding allows for the dramatic increase of throughput, as 

well as the study of tissues and cells that cannot be suspended. It is therefore the best method for 

tagging single cells from solid tumors that are not easily dissociated. However, it should be noted 

that an increase in the number of cells studied results in an increase in the cost of sequencing. One 

of the main limitations of most single-cell tagging methods is that they require significant 

investments in infrastructure. 

2.2 Existing single-cell methods for the different epigenomic layers 

During the last two decades, several single-cell methods to study epigenomics have been developed. 

Some of these methods focus on one epigenomic layer (DNA methylation, histone PTMs, ncRNAs, 

chromatin accessibility, or chromatin architecture), while some others try to study several layers at 

the same time and/or other omic layers (transcriptomics, genomics). For a brief overview of the 

advantages and disadvantages of some mono-omic single-cell epigenomic methods, see Table 1. 



Target Method Pro Con 

Methylation 

scBS-seq34 Less starting material than BS-free 
methods 

Misses C>T mutations, 
Low mapping 

scRRBS35,36 High resolution at CpG islands, Low 
cost 

Misses C>T mutations, 
Only CpG islands,  
Low mapping 

sciMET32 Increase read alignment,  
Higher throughput (combinatorial 
indexing) 

Misses C>T mutations, 
Low coverage per cell 

scPBAT37 Repeat-specialized approach, Lower 
cost, 
No amplification bias 

Misses C>T mutations, 
Targeted approach, 
Adaptor-ligand bias 

scCGI-seq38 BS-free,  
High coverage,  
Accurate profile CpG islands 

Requires more starting material,  
No non-CpG data 

Histone PTMs 

Drop-ChIP39 High throughput Background noise from nonspecific 
antibody pulldown, 
Low number reads per cell,  
Large amount starting material needed 

scDamID40 + 
EpiDamID41 

Doesn’t rely on antibody binding Only suitable for disease models (not 
patient samples),  
Limited by GATC motif 

scChIC-seq42 High number reads per cell Low throughput 

scCut&Tag43 Cost-effective,  
High throughput 

Repetitive reads,  
Open chromatin bias (Tn5) 

COBATCH44 High throughput,  
High number reads,  
Low background 

Unsuitable for detecting repressive marks,  
Open chromatin bias (Tn5) 

ACT-seq45 High throughput,  
Simple & straightforward protocol 

Low unique reads,  
Open chromatin bias (Tn5) 

scChIL-seq46 Low background Time-consuming & complex workflow,  
Open chromatin bias (Tn5) 

ncRNAs 

scRNA-seq47  Only sequence polyadenylated RNA 

MATQ-seq48 Sequences both polyadenylated and 
non- polyadenylated RNA, 
Transcriptome-wide coverage 

No detection of mature miRNAs 

Smart-seq-total49 Sequences both polyadenylated and 
non- polyadenylated RNA, 
Transcriptome-wide coverage, 
Detect both lncRNAs and sncRNAs 

Loss of information about  polyadenylation 
status,  
Misses circRNAs 

VASA-seq50 Sequences both polyadenylated and 
non- polyadenylated RNA, 
Transcriptome-wide coverage, 
Scalable throughput, 
Detect both lncRNAs and sncRNAs 

Loss of information about  polyadenylation 
status 

Chromatin 
accessibility 

ScATAC-seq51 Straight-forward and quick protocol,  
High coverage per cell 

Sequence bias,  
Low throughput 

sciATAC-seq52,53 High throughput Low coverage per cell 

scDNase-seq54 High coverage per cell Sequence cleavage bias,  
Depends on enzymatic efficiency, Low 
mapping efficiency & throughput 

scMNase-seq55 No sequence cleavage bias Indirect approach,  
Depends on enzymatic efficiency, 
Background noise due to non-specific 
binding 

Chromatin 
architecture 

scHi-C56 High coverage per cell Low throughput 

sciHi-C31 High throughput (combinatorial 
indexing) 

Low coverage per cell 



Table 1: Comparative overview of mono-omic single-cell epigenomic methods. This table expands on previous 

comparisons made by Mehrmohamadi et al (2021)29. 

DNA methylation 

DNA methylation is one of the best characterized epigenetic layers. As such, several different 

approaches have been developed to study it. 

Bisulfite conversion (BS) is the basis of many single-cell DNA methylation assays, like scBS-seq 

(single-cell bisulfite sequencing)34. BS converts all unmethylated cytosines into uracil via 

deamination. After fragmentation, the fragments are tagged with Illumina primers, amplified, 

indexed, and sequenced. However, traditional BS-based methods cannot distinguish between 5mC 

and 5hmC, which requires more specialized methods. Furthermore, the deamination of 

unmethylated cytosines into uracil reduces the complexity of the sequence, complicating read 

alignment, which and can lead to missing individual SNPs, as we cannot distinguish between 

nucleotide changes resulting from BS and those resulting from C>T mutations29. This needs to be 

considered when researching the methylome of cancer patients, as C>T mutations are characteristic 

in mutational signatures from temozolomide-treated patients or those with defective DNA mismatch 

repair mechanisms57. On top of that, scBS-seq is a costly method and has a bias for CpG sites29. Sc-

RRBS (single-cell reduced representation bisulfite sequencing)35,36 combines BS with restriction 

enzymes to produce sequence-specific fragmentation. This method allows the study of methylation 

specifically at CpG sites, especially CpG islands, which are more likely to be representative of the 

overall methylome. However, it still misses a large portion of CpG sites and does not cover non-CpG 

islands, like those containing enhancers. Furthermore, it has a very low mapping efficiency (~50%). 

As read alignment is a big issue in BS-based methods, sciMET32 tries to improve it by using 

transposomes (transposase-adaptor complexes) with adaptors depleted from cytosines, so they are 

not affected by BS. This method uses combinatorial indexing to increase the throughput of the assay. 

Still, assessing methylation in repetitive regions is challenging, which lead to the development of 

scPBAT37, which uses post-BS random priming and primer extension to effectively target methylation 

in repetitive regions. 

To avoid BS, the BS-free approach scCGI-seq was developed38. This method relies on the comparison 

of sequencing data from untreated cells and cells treated with methylation-sensitive restriction 

enzymes to identify methylated CpG islands. However, this method requires a larger amount of 

starting material, as each sample will need to be divided between a test and methylation control 

subsample. 

The choice of single-cell methylation assay should be based on the specific aim of the study. For 

genome-wide methylation studies, either scBS-seq or sciMET are good approaches, depending on 

the desired throughput and coverage per cell. ScRRBS is an alternative for a lower-cost method. If 

repetitive regions are the focus of the study, scPBAT offers better performance than other methods. 

If there is abundant starting material and we want to avoid BS, a BS-free approach like scCGI-seq can 

be used. 

Histone PTMs 

Three main approaches are used to study histone PTMs: immunoprecipitation-based, DamID-based, 

and cleavage-based. Drop-ChIP39 is a single-cell method that combines droplet barcoding with 



classical chromatin immunoprecipitation (ChIP). Antibodies specifically bind to the histone PTM of 

interest, and the subsequent pulldown of the chromatin regions attached to these antibodies allows 

to separate regions harboring specific histone PTMs. 

DamID-based technology relies on the fusion of E. coli deoxyadenosine methylase (Dam) and a 

protein of interest (ID). Subsequently, Dam methylates DNA on the adenine residues in GATC 

sequences close to the binding site of the protein of interest58. It should be noted that this approach 

is limited by the occurrence of GATC sequences near the protein of interest. While the original 

DamID approach does not allow for the study of histone PTMs, the recently developed EpiDamID41 

extends its use to detect histone PTMs. Already existing single-cell DamID-based methods like 

scDamID40, can be combined with EpiDamID to study histone PTMs at a single-cell level. 

Cleavage-based methods make use of antibodies to target a specific DNA-bound protein. The cells 

then undergo specific enzymatic treatments to cut the DNA bound to the protein of interest, 

releasing short DNA fragments. At bulk level, two main methods use this approach: Cut&Run59 and 

Cut&Tag60. Cut&Run uses Mnase-pA as a cleaving enzyme and has yet to be adapted for single-cell 

histone profiling, although a Cut&Run approach was recently developed to study transcription 

factors binding at a single cell level61. However, scChIC-seq42 uses a similar approach to study histone 

PTMs at a single-cell level. On the other hand, Cut&Tag60 uses a pA-Tn5 fusion protein loaded with 

sequencing adapters to cleave the DNA and has been recently adapted for single-cell use via droplet 

barcoding as scCut&Tag43. Before this adaption, other methods like CoBATCH44, ACT-seq45, and 

scChIL-seq46 used a Cut&Tag-like strategy for single-cell histone PTM profiling. However, methods 

reliant on Tn5 can introduce biases via non-specific cleaving to open chromatin. 

The choice of a method to study histone PTMs at a single cell level should be made according to the 

nature of the cells, the amount of starting material, and the histone PTM of interest. While 

immunoprecipitation- and cleavage-based methods rely on the existence of commercial antibodies 

that target the protein of interest, DamID-based methods do not. Therefore, they are more suited 

for the study of rare histone PTMs for which there are no specific antibodies available. However, 

EpiDamID requires the system studied to express the Dam-fusion protein construct. Consequently, 

this method is suitable to study histone PTMs in animal models and cell lines, but not in patient 

samples41. To study patient samples, immunoprecipitation- and cleavage-based methods should be 

used instead. All these methods only allow to study one histone PTM at a time and rely on data 

integration approaches to study interactions between different histone PTMs. In the future, the 

development of methods allowing for multiple histone PTM profiling at the same time should 

provide us with essential information about interactions between histone modifications within the 

same cell in a more direct manner. 

Non-coding RNAs 

ncRNAs can be detected at the single-cell level using traditional scRNA-seq47, however, this method 

only captures short (~400-600 base pairs) sequences adjacent to the poly(A) tail of the RNA 

molecule, ignoring more distant sequences and non-polyadenylated RNA molecules. As a 

consequence, the fraction of ncRNAs lacking poly(A) tails will be ignored50. In the last 5 years, some 

single-cell methods that allow to sequence both polyadenylated and non-polyadenylated RNA have 

been developed, increasing the sensitivity of ncRNA detection. MATQ-seq48 uses random primers to 



sequence both polyadenylated and non-polyadenylated transcripts. Smart-seq-total49 adds a poly(A) 

tail to all transcripts before reverse transcription and uses the MMLV reverse transcriptase to convert 

the full RNA sequence into cDNA. VASA-seq50 also adds poly(A) tails to all transcripts before reverse 

transcription. Both Smart-seq-total and VASA-seq can detect a broad spectrum of ncRNAs, VASA-seq 

is more sensitive and detects a larger number of lncRNAs50. 

Other methods that can be used to capture ncRNAs are qRT-PCR and microarrays. However, qRT-

PCR is labor-intensive and requires a targeted approach, while microarrays rely on transcriptomic 

probes and can contain noise due to low abundant transcripts47. 

Chromatin accessibility 

The level of compaction of chromatin of a region, also known as chromatin accessibility, is the result 

of the interplay between the different elements of the epigenome. The study of changes in 

chromatin accessibility can be used to identify regulatory regions that may play a role in 

development and disease62. The most popular method for measuring chromatin accessibility at 

single-cell level is scATAC-seq, which uses Tn5 to insert sequencing adapters in open chromatin 

regions after isolating and tagging single cells51. An improved version of scATAC-seq, sciATAC-seq, 

was developed to combine scATAC-seq with combinatorial barcoding52,53. 

Other single-cell methods for assaying chromatin accessibility are scDNase-seq54 and scMNase-

seq55. scDNase-seq uses digestion with DNase to allow the sequencing of accessible chromatin 

regions54. In scMNase-seq, MNase cleaves DNA regions not protected by nucleosomes, indirectly 

allowing for the measurement of open chromatin and the position of nucleosomes55. However, 

these methods have more complicated workflows than Tn5-based methods. 

Chromatin architecture 

The three-dimensional organization of the DNA in the cell nucleus is determined by epigenetic marks 

and can provide essential information when studying development and disease, as specific spatial 

nuclear domains regulate gene expression. Several methods based on chromatin conformation 

capture have been developed to study chromatin architecture at a single-cell level by cross-linking 

and ligating chromosomal regions that physically interact29. The first of these methods was scHiC, 

which allows for the detection of simultaneous chromatin contacts at single-cell level56. A recently 

published version of scHi-C, sciHi-C31, improves the throughput of traditional scHi-C by combining it 

with combinatorial barcoding. 

Multi-omic / multi-modal methods 

Most of the above-described methods only allow studying one layer of epigenetic alterations at a 

time. As each method requires specific chemical conversions, antibody binding, or enzymatic 

cleaving, it is not possible to use two different approaches on the same cell. If two different 

approaches were to be used on the same cell, the corresponding reactions might interact and 

interfere with each other, making the results not reliable. However, several methods have been 

developed specifically to study several epigenomic layers at once. scNOME63 (Nucleosome 

Occupancy and Methylome Sequencing) allows for the joint study of methylation, chromatin 

accessibility, and nucleosome phasing at a single cell level. Furthermore, there are two methods to 

study jointly methylome and chromatin conformation: methyl-HiC64 and sn-m3C-seq65. 



There are also methods to simultaneously obtain information about epigenetic markings and 

genomic, transcriptomic, or proteomic data. Obtaining both epigenetic and gene expression data 

from the same cell can provide very valuable phenotypic information on the consequences of 

epigenetic alterations. The first single-cell method combining epigenomic and transcriptomic data 

was scM&T-seq66, which allowed for joint methylome and transcriptome profiling. An alternative 

would be smart-RRBS67, a method combining RRBS and smart-seq to provide both methylation and 

gene expression data. scDam&T-seq68 is a method developed to study both DNA-protein contacts 

and gene expression. If combined with EpiDamID, it can be used to study histone PTMs and their 

effect on gene expression41. Phenotypic information can also be obtained from proteomic data, as 

shown by scCut&Tag-Pro69, which allows the joint study of histone PTMs and surface proteins. 

Furthermore, there are methods to jointly study methylation and genetic modifications, like scCOOL-

seq70 and epi-gSCAR71. scTrio-seq72 was developed to allow the joint study of the DNA methylome, 

transcriptome, and genome. 

2.3 Data analysis 

Analysis of single-cell data is more complicated than bulk data analysis due to data sparsity and high 

levels of background noise. It is even more difficult to analyze single-cell epigenomic data, as there 

is a lack of established pipelines when compared to single-cell genomics or transcriptomics. On top 

of that, missing data is a big problem for data integration approaches, as the missing data might 

follow different patterns within the same cell73. 

Data pre-processing and clustering 

Before analyzing the epigenetic characteristics of each cell, sequencing data pre-processing is 

necessary to identify individual cells. The DNA barcodes introduced during the single-cell tagging 

steps are here used to allocate reads to individual cells. After filtering low-quality cells according to 

the read depth and the signal-to-noise ratio, a quality check is performed both in bulk and individual 

cells. The remaining reads can then be converted to a read count matrix, which can be used to select 

subsets of cells according to their features. While dimensionality reduction is difficult in single-cell 

data due to its high dimensionality and the sparsity of the data, it can be done via approaches like 

latent semantic indexing, spectral embedding, and topic modeling. Data clustering via algorithms 

like k-means clustering or Louvain can be used to identify cell subpopulations, which can be 

visualized using tSNE or UMAP. This step is essential to remove low-quality and doublet cells73. 

Existing pipelines 

The strategy required to analyze the sequencing data depends on the nature of the epigenetic 

features of interest. While there are no unified guidelines for the analysis of single-cell epigenomic 

data, several different tools have been developed. Some tools, like EpyScanPy74, are designed to 

analyze several omics data types (methylation and scATAC-seq data). However, most tools are only 

designed to analyze one type of epigenomic data. 

Pipelines like methylpy75 and Methylstar76 have been developed to analyze methylation data from 

single-cell BS-based methods. Analysis tools for BS-based approaches map the BS-converted 

sequences to a reference genome and determine cytosine methylation levels based on single 

nucleotide changes. As BS-based methods produce reads with low mappability, specific read 



mapping tools like Bismark and BS Seeker are needed36. When using these tools to compare 

methylation levels across cells, we can distinguish between consistently sites, consistently 

unmethylated sites, and sites that are differentially methylated across cells32. In contrast, data from 

the BS-free method scCGI-seq requires the comparison of sequencing data from control and test 

samples to determine methylated and unmethylated sites38. 

From the bioinformatics point of view, the study of histone PTMs relies on read clustering to identify 

sequencing peaks that indicate the presence of the histone PTM of interest. Some of the published 

histone PTM profiling methods include data analysis scripts41,43. Data integration approaches are 

especially important when studying histone PTMs, as current methods only allow to study one 

histone PTM at a time. 

Similarly, bioinformatics tools to assess chromatin accessibility from single-cell data rely on the 

identification of peaks of reads to detect highly accessible regions62. Currently, there are several 

bioinformatics tools available for the analysis of scATAC-seq data, like Scasat77, snapATAC78, and 

scATAC-pro79, among others80. On top of that, scitools81 was developed explicitly for the analysis of 

sciATAC-seq data. 

Pipelines like Higashi82 have been developed to data generated by scHi-C-based methods to study 

interactions between chromatin regions. Data analysis of HiC-based methods relies on abnormal 

mapping from paired-end sequencing data to identify chromatin contacts. Individual reads from the 

same pair map to seemingly distant and unrelated regions of the genome when there is contact 

between the two regions83. 

ncRNAs can be identified from RNA-seq data by either sequence homology with known ncRNAs, or 

by possessing common ncRNA features like RNA motifs and trinucleotide frequences84,85. 

Data Integration 

Data integration is one of the main challenges of single-cell data analysis. With the development of 

multi-omic methods, there is a need to develop computational methods to integrate data from 

different omic levels in the same cell (intra-cell integration)73. The latest tools that can perform this 

kind of data integration are WVN analysis86 and totalVI87, among others. On top of that, as it is not 

possible to study all the different omic layers in a single cell due to cost and experimental limitations, 

it is necessary to develop tools that allow the integration of different omic layers between different 

cells of the same type (inter-cell integration)73. Tools that allow inter-cell data integration include 

Seurat v388 and GLUE89. 



3. Opportunities and applications in cancer research 
During their progression towards neoplasticity and malignancy, cells acquire certain functional 

capabilities, commonly known as the hallmarks of cancer. Recently, Hanahan proposed that some 

enabling characteristics, like non-mutational epigenetic reprogramming, allow for the acquisition of 

these hallmark capabilities1. Widely used bulk epigenomic methods provide a snapshot of the overall 

epigenetic landscape of the processed tumor tissue, but fail to accurately account for cell-to-cell 

variability. Instead, single-cell methods are key to identifying cell subpopulations responsible for 

carcinogenesis, drug resistance, and progression towards metastasis. 

3.1 Applications of single-cell methods in cancer epigenomics 

Single-cell methods provide a unique opportunity to study intra-tumor heterogeneity and rare 

subpopulations (like circulating tumor cells and cancer stem cells) present in cancer, which would be 

missed by traditional bulk approaches1. Intra-tumor heterogeneity refers to the different 

subpopulations of cells that have distinct characteristics within the same tumor, and it has been 

shown to play a key role in the development of drug resistance and recurrence. Intra-tumor 

heterogeneity has been proposed to be caused by (1) heterogeneity in the genetic landscape of the 

tumor cells, as a result of mutation accumulation; (2) heterogeneity in the non-genetic mechanisms, 

like epigenetic marking, that regulate gene expression and (3) heterogeneity in the TME surrounding 

different parts of the tumor2 (Fig. 2). Single-cell epigenomic studies allow for the characterization of 

subpopulations of cells present in the tumor and can provide a look into the epigenetic nature of 

intra-tumor heterogeneity. 

Single-cell methods are not only useful to study tumors and their micro-environment but they can 

also be used to study circulating tumor cells (CTCs). CTCs are cells that enter peripheral blood from 

the primary tumor, and can potentially seed metastases. Thus, their characterization is essential to 

understand how cancer metastasize91. CTCs are proposed to have an epigenetic landscape distinct 

from that of primary tumors, as shown in a recent study by Zhao et al (2021) focusing on CTCs 

derived from lung cancer92.  CTC-centric cancer epigenomic research also appears to be valuable in 

the search for minimally-invasive diagnostic tools, for example via the identification of characteristic 

epigenetic patterns in cancer cells from blood samples91. 



Figure 2: Mechanisms driving tumor heterogeneity. A driver mutation (genetic or epigenetic) in a healthy cell can initiate 

its transformation into a cancer cell, becoming the cell of origin of the subsequent tumor. The cancerous cell clonally 

expands, making the tumor grow. Throughout this clonal expansion, further genetic and epigenetic alterations in 

individual cells, as well as the changing TME, can result in the existence of subpopulations of cells with distinct 

characteristics. This results in the development of a heterogeneous tumor, ie. a tumor containing distinct cell 

subpopulations with different genetic and epigenetic landscapes in the same tumor. 

3.2 The role of epigenetics across cancer types 

Both genetic and epigenetic alterations jointly contribute to the development of cancer. While 

mutations in genes involved in epigenetic regulation result in changes in the epigenetic landscape, 

the deregulated expression of mutated genes via epigenetic mechanisms can modulate the 

consequences of these mutations. However, the relative level of impact of genetic and epigenetic 

alterations has been shown to vary across cancer (sub)types93. The following overview presents 

some cancer types characterized by high-impact epigenetic alterations. Depending on the cancer 

type, epigenetic alterations can affect the carcinogenesis process, progression towards metastasis, 

or response to treatment. 

While most of the single-cell epigenomic methods are quite novel and have yet to be used to study 

cancer development, epigenetic studies at bulk level and single-cell transcriptomic studies already 

provide some insight into what types of cancer would benefit from single-cell epigenetic approaches. 



Renal cancer 

Genetic mutations are rare in sporadic renal cell carcinoma (RCC). RCC cases that do have genetic 

mutations present mostly alterations in the VHL and MET genes. In contrast, epigenetic mutations 

are commonly found and thought to be responsible for intra-tumor heterogeneity in these cancers94. 

This makes the recently developed single-cell epigenomic methods essential to study renal intra-

tumor heterogeneity. A recent scATAC-seq analysis by Wang et al (2022) has shown that the 

epigenomic landscape of renal cells can be used to determine the cells of origin of different subtypes 

of papillary renal carcinoma (pRCC)95. The different pRCC subtypes according to the cell of origin 

presented distinct molecular characteristics, carcinogenic processes, and clinical behavior. However, 

while this method allowed the identification of differentially accessible regions, it did not identify 

the specific epigenetic alterations responsible for the change in chromatin accessibility. Another 

recently published study identified three histone acetylation signatures across hepatocellular 

carcinoma patients that could be correlated with different survival prognosis96. Single-cell 

approaches focusing on histone modifications, like the previously described scCut&Tag method, 

could be used to determine whether histone acetylation patterns are global, or whether any cell 

subpopulations are responsible for this difference in prognosis (Fig. 3). This line of research could 

provide us with better diagnostic and prognostic strategies than the currently available. 

Figure 3: Example workflow of how single-cell methods could be used to study the epigenetic mechanisms behind 

tumor heterogeneity in renal cancer. Epigenetic alterations are common in kidney tumors and, in particular, general 

levels of H3K4 methylation (H3K4me1, H3K4me2, and H3K4me3) have been shown to decrease in clear cell renal cell 

carcinoma as the tumor progresses towards metastasis97. In this diagram, we show how the previously described 



scCut&Tag method could be used to identify different subpopulations of cells from patient-derived material according to 

their H3K4 methylation profiles. This approach would allow us to assess whether this loss of H3K4 methylation happens 

tumor-wide, or whether there are specific subpopulations of cells with loss of histone methylation that are responsible 

for the progression of the disease. 

Rhabdoid tumors 

Malignant rhabdoid tumors (MRT) are childhood cancers that can arise in any soft tissue, although 

they tend to be found in either the kidney, the brain, or in both at the same time. MRT has a very 

clear genetic driver event: biallelic mutations in SMARCB1 or SMARCA4, two chromatin remodeling 

genes. While this is the only known genetic driver, previous studies have shown that there can be 

variation at a transcriptomic, epigenomic and phenotypic level among MRTs98. In fact, MRT cases 

can be classified into one of three subgroups according to their global gene expression, DNA 

methylation, and H3K27ac profiles99,100. While there have been no studies focusing directly on the 

epigenetic landscape of heterogeneous MRTs at a single-cell level, single-cell transcriptomic studies 

have revealed the existence of epigenetically driven subpopulations of cells within the same 

tumor101. Epigenetic characterization of these subpopulations might allow the identification of novel 

targets for treatment, as well as prognostic markers. 

Pediatric brain tumors 

Epigenetic deregulation is one of the main hallmarks of pediatric brain tumors. Single-cell RNA 

studies have shown that distinct transcriptional signatures and epigenetic modifications seem to 

drive malignant transformation across several brain tumors102. While adult brain tumors have 

specific genetic profiles that can be used for diagnostics and prognosis, these are absent in a large 

number of pediatric brain tumors. However, it has been theorized that epigenetic signatures are 

present in both adult and pediatric brain cancers103. Previous studies have shown that indeed, DNA 

methylation data can be used to classify brain cancer subtypes104,105 and determine the tissue of 

origin of the primary tumor of brain metastases106. Histone PTMs also play a role in the development 

of brain tumors. Studies have reported genetic alterations in genes that regulate histone acetylation 

in medulloblastoma, ependymoma, and diffuse intrinsic pontine glioma. Consequently, several 

studies propose HDAC inhibitors as a therapeutic approach for brain cancers107. However, these 

studies focus on global epigenetic landscapes, and epigenetic diversity within the same pediatric 

brain tumor remains to be studied. 

Leukemia 

Acute lymphoid leukemia (ALL) is one of the most common pediatric cancer types and has subtypes 

with distinct gene expression profiles. While the exact cause of pediatric leukemias is unknown, they 

arise through the acquisition of a combination of structural DNA rearrangements, DNA copy number 

alterations, and nucleotide mutations. Due to this heterogeneity, epigenetic signatures have been 

proposed as a way to differentiate leukemia subtypes at the time of diagnosis. T-cell ALLs in 

particular have a highly characteristic DNA methylation signature with local hypermethylation 

without global hypomethylation108, and histone PTMs also play a role in leukemogenesis109 and have 

prognostic value110. However, there is a lack of single-cell studies focusing on epigenetic 

heterogeneity within leukemias. These studies are essential to properly assess the accuracy of 

methods that rely on epigenetic patterns as diagnostic or prognostic markers. 



Melanoma 

Malignant melanoma is known to be resistant to most existing therapies111. The cutaneous subtype 

of melanoma is responsible for approximately 90% of skin cancer-related mortality. While most 

cutaneous melanomas have clear epigenetic mutations (activating mutations in either the BRAF or 

NRAS genes)112, the development of drug resistance seems to stem from mainly non-genetic factors. 

As such, DNA methylation signatures have been used to predict patient survival and response to 

immune checkpoint inhibitors111. Furthermore, mutations in genes responsible for histone 

acetylation (SIRT6) have been identified as the basis for resistance to treatment with MAPK 

inhibitors113 (Fig. 4). Single-cell epigenetic methods can be used before treatment to detect 

subpopulations of cells with alterations that serve as indicators of future treatment resistance, and 

subsequently decide the appropriate course of treatment. On top of that, the identification of 

epigenetic targets among treatment-resistant subpopulations might be the key to developing 

effective treatments for cutaneous melanoma. 



 

Figure 4: Epigenetic basis of drug resistance in cutaneous melanoma. (A) SIRT6, an HDAC, regulates resistance to MAPK 

inhibitors (MAPKi) in cutaneous melanoma. Haploinsufficiency of the SIRT6 gene causes the acetylation of H3K56 in the 

promoter of the IGFBP2 gene. The open chromatin structure at the IGFBP2 promoter leads to an increase in IGFBP2 

expression. This activates IGF-IR receptors, resulting in the activation of downstream AKT signaling, making the cell 

resistant to MAPKi treatment113. (B) Tumor heterogeneity enables the development of drug resistance. In a 



heterogeneous tumor, a subpopulation of cells can become resistant to treatment. This subpopulation of cells will be 

selected for during several rounds of treatment. Eventually, the tumor will become fully treatment-resistant. 

Lung cancer 

Similarly, the epigenetic mechanisms behind non-small cell lung cancer (NSCLC) are of particular 

interest, as it represents ~85% of all lung cancer cases but only approximately half of those cases 

present targetable genetic mutations. However, as the genetic and epigenetic mechanisms seem to 

target the same cancer drivers, drugs that modulate epigenetic pathways have been proposed as 

therapeutic alternatives114. The activity of HDAC KMT9 is crucial for lung cancer proliferation, and its 

depletion has been proposed as a therapeutic strategy for NSCLC115. Nonetheless, further studies 

are needed to determine the exact role of KMT9-mediated histone acetylation in this type of cancer. 

On top of that, a recent scRNA study by Aissa et al (2021) indicates the presence of distinct cell 

subpopulations with different drug tolerance levels within the same NSCLC cell line116. While this 

study reflected epigenetic changes by looking into the differential expression of genes, the study did 

not detail the exact epigenetic landscapes of the cell subpopulations. 

Breast cancer 

Triple-negative breast cancer is known to be a very heterogeneous cancer type with poor prognosis. 

Epigenetic modifications seem to play a role in the development of drug resistance in breast cancer. 

Mutations in the gene encoding HDM KDM5 have been shown to lead to the development of 

resistance to anti-estrogen treatments117. A recent study showed that H3K27me3 depletion is key 

for the development of fluorouracil resistance in triple-negative breast cancer118. H3K27me3 

prevents the transcription of genes that cells seem to need to survive the treatment, like FOXQ1. 

When cells were treated with a KM6A and KDM6B inhibitor, which depletes H3K27me3, the number 

of cells able to survive fluorouracil treatment reduced considerably. Other histone PTMs might also 

be responsible for the silencing of treatment-survival genes. The epigenetic characterization of cell 

subpopulations responsible for the development of drug resistance would allow to determine 

whether targeting epigenetic regulators is a viable therapeutic strategy to improve traditional 

treatment efficiency in triple-negative breast cancer. 

Prostate cancer 

The progression of prostate cancer (PC) seems to involve very complex epigenetic pathways. 

Differential DNA methylation is critical for PC progression, as DNA hypermethylation has been shown 

to arise at the early stages of PC development, while DNA hypomethylation happens later as cancer 

progresses and occurs most frequently in metastatic lesions119.  H3K27me3 is also an important 

event for prostate carcinogenesis and tumor progression, as it is enriched in tumor-suppressor genes 

and genes involved in further epigenetic regulation (eg. FBXO11, MSH6, and ING3). This mark is 

theorized to repress the expression of these genes, mediating cancer progression120. Single-cell 

studies can be used to identify and characterize the specific cell subpopulations responsible for the 

progression towards metastasis. 

Furthermore, some specific lncRNAs are known to be upregulated in PC tissues and be involved in 

the development of treatment resistance121. Combined testing for expression of ncRNAs and levels 

of PSA in blood was shown to be a better PC diagnostic biomarker than PSA alone122. Single-cell and 



cell-free RNA studies comparing ncRNAs present in blood and CTCs could be used to further validate 

the accuracy of this approach. 

Other cancers 

Alterations within the epigenetic landscape have been implicated in other types of cancer, like 

thyroid cancer123, HPV-related cervical cancer124, gastric cancer125, and colorectal cancer126. As such, 

these cancers might likewise benefit from further research into their epigenetic mechanisms at a 

single-cell level. 

3.3 Clinical impact of research in cancer epigenetics 

Biomarkers 

Epigenetic biomarkers provide several advantages compared to genetic biomarkers, as they can 

provide information about the function of genes in specific cell types, the environment and the 

lifestyle of the patient. Epigenetic biomarkers might also be a good target for minimally invasive 

diagnostic methods, mostly due to their stability and detectability in biological fluids127. Epigenetic 

biomarkers could also be used as prognosis biomarkers for immunotherapy, as exhausted T-cells 

show a distinct epigenomic landscape128. 

As DNA methylation is the most studied epigenetic modification, several methylation-based 

biomarkers have been proposed for diagnostic and prognosis in certain cancer types. For example, 

DNA methylation marks have been proposed as biomarkers for renal clear cell carcinoma diagnostic 

from urine samples129. In the case of brain cancers, high-precision classifiers based on the 

methylation patterns can determine the type of brain tumor, as well as the tissue of origin of brain 

metastases104.   

Therapy 

Alterations in the epigenetic landscape of cells have been shown to heavily correlate to resistance 

to anti-cancer treatment130. In the last couple of decades, we have seen the rise of research to 

develop “epidrugs”, ie. drugs that target epigenetic pathways. 

There are currently two classes of FDA-approved epidrugs: DNMT inhibitors and HDAC inhibitors. 

DNMT inhibitors can be divided into two classes: (1) cytosine analogs like azacytidine and decitabine, 

which disturb methylation and induce the DNMTs degradation; and (2) non-nucleotide analog 

inhibitors like disulfiram, that prevent the DNMT binding to the target molecule. HDAC inhibitors like 

vorinostat rectify the aberrant protein acetylation status, reactivating tumor-suppressor genes. 

Other epidrug classes like bromodomain and extra-terminal inhibitors, and HMTs/HDMTs inhibitors 

are currently also in development23. 

These drugs have the potential not only to treat cancers with exclusively epigenetic drivers but also 

to help prevent the development of drug resistance in other types of cancers when combined with 

traditional chemotherapies23. 



Discussion 
In recent years, we have seen the rise of single-cell methods to study several layers of the cell 

epigenome (methylation, histone PTMs, ncRNAs, chromatin accessibility, and chromatin 

remodeling). Until now, most of the research on the cancer epigenome has been done through bulk-

based methods117. However, the newly developed single-cell epigenomic methods should allow us 

to properly assess the diversity of the cancer epigenome. Furthermore, single-cell multi-omic 

methods will allow us to study the interactions between the different layers of the epigenome, as 

well as phenotypic consequences at the RNA/protein level. 

Single-cell epigenomic methods can be used to identify cell subpopulations according to their 

epigenetic landscape, accurately assessing tumor heterogeneity. These methods could be used to 

identify the epigenetic characteristics of the cell of origin of cancers with potential epigenetic drivers 

(renal tumors95, pediatric brain tumors102, leukemias131, MRT100), and to identify the epigenetic 

mechanisms behind the development of drug resistance (melanoma112, lung cancer116, breast 

cancer118) or progression/metastasis of tumors (PC119). Single-cell methods can also be used to 

profile the epigenetic characteristics of CTCs91, leading to an improved understanding of the 

mechanisms behind metastasis and the development of minimally invasive diagnostic methods. 

While methylation is the most studied epigenetic layer in cancer research, single-omic studies on 

other epigenetic layers or multi-omic approaches are essential to properly understand the cancer 

epigenome. 

The direct application of single-cell-based epigenomic methods to diagnostics is currently impossible 

due to the high cost of these methods (investment in infrastructure and sequencing costs), and the 

lack of standard single-cell epigenomic data analysis guidelines24. However, single-cell studies can 

still provide us with novel information about the epigenetic mechanisms behind cancers. Hopefully, 

during the next couple of years, we will see a reduction in the cost of single-cell methods and the 

establishment of data analysis pipelines that will allow a more widespread application of single-cell 

epigenomic methods in cancer research and the day-to-day clinic. 
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