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Abstract

Knowledge Graphs are useful for representing information by using a collection of facts. If

temporal information is added to a Knowledge Graph, it is expanded into a Temporal Knowl-

edge Graph. Pre-trained Language Models are trained with large datasets and could act as a

Knowledge Graph if they learn enough in the pre-training stage. Although studies have been

done in the past to understand if pre-trained Language Models can act as Knowledge Graphs, to

the best of our knowledge, there is still no study about whether they can be used for Temporal

Knowledge Graph expansion. This thesis uses cloze statements to understand if state-of-the-art

pre-trained Language Models can be used for expanding a Knowledge Graph into a Temporal

Knowledge Graph. In order to do this, several templates have been created to transform facts

in a Knowledge Graph into cloze statements to study the performance, robustness and ability

to reason of 5 of the most important pre-trained Language Models. The results revealed that,

at the moment, pre-trained Language Models are not reliable enough to be used for expanding

a Knowledge Graph into a Temporal Knowledge Graph.

Key Words: Knowledge Graph; Temporal Knowledge Graph; Natural Language Process-

ing; Language Models; Template; Cloze statements.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a theoretically motivated range of computational

techniques for analyzing and representing naturally occurring texts at one or more levels of lin-

guistic analysis to achieve human-like language processing for a range of tasks or applications,

as explained by Liddy (2001). In other words, NLP combines linguistics and machine learning

(ML) to give the ability to understand human language to a computer program. At the moment,

there exist several language models (LMs) that can do different tasks. Some examples of the

most common NLP tasks are sentence classification (Kowsari, Jafari Meimandi, Heidarysafa,

Mendu, Barnes, and Brown (2019)), generating text content (Iqbal and Qureshi (2020)), ex-

tracting an answer from a text (Abacha and Zweigenbaum (2015)), and translating text from

one language to another (Zhang and Zong (2015)).

A way to represent the knowledge behind language is with a knowledge graph (KG). KGs

consist of facts that represent some information. Facts are composed of entities, relationships,

and semantic descriptions, and KGs can be represented as networks containing all these items.

They are a structured representation of facts. Entities (e.g. Albert Einstein) can be both

real-world objects and abstract concepts, and the relation between them is represented by the

relationships of the fact (i.e. edges of the network). Both entities and relationships have types

and properties with a defined meaning represented by the semantic descriptions. All this infor-

mation that creates a fact can be seen as a triple in the form of (head, relation, tail), i.e. (h,

r, t) or (subject, predicate, object). An example of a factual triple that expresses knowledge is

(Albert Einstein, WinnerOf, Nobel Prize). The result of a graph representation of knowledge is

a directed network where the nodes are the entities, and the edges are the relationships between

them (Ji, Pan, Cambria, Marttinen, and Yu (2022)).

Ji, Pan, Cambria, Marttinen, and Yu (2022) also explain that triples representing a fact can

be extended to a quadruple by adding temporal information. In this case, the triplet (h, r, t) is

converted to a quadruple in the form of (h, r, t, T), where T represents the temporal information

of when the fact happened. The temporal information can be a single time (for instance, a year)

but also a period of time. In this case, the temporal information of the quadruple contains

the period’s start and end. Weikum et al. (2020) specify that, since the real world evolves and
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CHAPTER 1. INTRODUCTION

changes over time, its information also changes. Therefore, temporal knowledge graphs (TKGs)

must include and consider this evolution. Adding this temporal information to a KG is the KG

expansion to a TKG.

There are several studies about whether the existing pre-trained LMs can act as a KG, but

there is no agreement about the answer. For instance, in Petroni, Rocktäschel, Lewis, Bakhtin,

Wu, Miller, and Riedel (2019) research, they found that there exist some pre-trained models,

such as BERT (Devlin et al. (2018)), that can act as a KG. As they state, since the pretraining

process of these models is done with a large amount of data, they can learn (i.e. store) the

knowledge present in this data. They also explain that LMs have many advantages over the

KGs, such as no need for human supervision to train, they don’t need any schema engineering,

or they are easy to expand. This last advantage can be done by querying “fillin-the-blank” cloze

statements (Taylor (1953)), using Masked Language Models (MLMs). These models receive a

sentence with blank (i.e. masked) words which they have to predict. For example, they receive

the sentence ”Paris is the capital of [MASK].” and they have the predict the masked word

[MASK], in this case, France.

This thesis tries to give more insights into the uncertainty about whether pre-trained LMs

can act as KG. More specifically, the main goal of this work is to check whether pre-trained LMs

are robust to expand KGs to TKGs by using cloze statements.

To be able to do that, this work aims to combine KGs and NLP models to check the State-

of-the-art methods’ performance with temporal facts. More specifically, three research questions

are proposed:

1. What is the performance of the existing NLP pre-trained models on temporal cloze state-

ments?

2. Are NLP pre-trained models able to reason about time?

3. Are NLP pre-trained models robust?

The TKG containing Wikipedia information (Wikidata12k) is used to answer the questions

defined above.

2



Chapter 2

Related Work

Some research about the topic regarding this thesis has been already done. In this section,

an overview of it is described.

Whether pre-trained LMs can act as a KG has been studied in recent years. However, there

is not a complete agreement on the answer. Petroni, Rocktäschel, Lewis, Bakhtin, Wu, Miller,

and Riedel (2019) report in their study that the BERT model can recall factual knowledge with

no need of fine-tuning, but just by using a prompt to retrieve it, such as ”Einstein was born in

” to query the place of birth of Einstein. While Petroni, Rocktäschel, Lewis, Bakhtin, Wu,

Miller, and Riedel (2019) created the prompts manually, Jiang, Xu, Araki, and Neubig (2019)

created a method to automatically generate different prompts. The fact that the BERT model

can contain factual knowledge means that no changes in the model need to be made to achieve a

good performance. Therefore, the model’s parameters already contain enough knowledge, being

an unsupervised process. However, Cao, Lin, Han, Sun, Yan, Liao, Xue, and Xu (2021) question

the origin of the decent performance in Petroni, Rocktäschel, Lewis, Bakhtin, Wu, Miller, and

Riedel (2019) results. They studied whether MLMs could be reliable knowledge graphs. They

found out that the predictions were prompt-biased, meaning that they correlate with the prompt

and not with the subject (i.e. entity). Despite these two studies, among others, are related to

the topic of this thesis, none of them studies if pre-trained LMs can be used for KG expansion

to TKG.

Saxena, Chakrabarti, and Talukdar (2021) also checked the performance of pre-trained LMs

on TKGs. They presented the largest Temporal KGQA dataset at that moment and proposed a

transformer-based solution that increased by 120% the accuracy of the best method previously

existing. However, they used question answering for their study and not cloze statements, which

is the method used in this thesis.

Finally, Qin, Gupta, Upadhyay, He, Choi, and Faruqui (2021) studied whether pre-trained

LMs could reason. They found out that even the models with the best performance were far

from human performance. Their qualitative error analyses could also conclude that the mod-
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CHAPTER 2. RELATED WORK

els fail to reason over the context. Despite Qin, Gupta, Upadhyay, He, Choi, and Faruqui

(2021) investigating a similar topic as the one I am investigating in this thesis, they checked the

ability of the pre-trained LMs to reason with temporal information in dialogs by checking the

context of the dialog itself, but not about time intervals on cloze statements, as I do in this work.

Although there exist several studies related to the topic addressed in this work, none of

them contributes in the same way as this one, which is checking how reliable are pre-trained

LMs to be used for a KG expansion to a TKG.
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Chapter 3

Data Preparation

3.1 Dataset

The primary dataset used for the analysis is the train set of Wikidata12k (Jain, Rathi,

Mausam, and Chakrabarti (2020)). This dataset contains information from Wikipedia in a

KG format. Specifically, it is a TKG since it has a time interval associated with each triple. It

contains 12544 unique entities and 24 relations id creating a total of 32497 different observations.

These observations can be differentiated into four types of events depending on the time period.

Some observations are considered a time event or time instant (i.e. Year Event). Those are the

observations that have the same start and end date. There are 14099 quadruples in this subset.

In the second and third types, there are observations with only the start date or the period’s end

date, considered an open time interval. It can be a right open or left open interval, depending

on which year (start or end) is null. The left open interval subset (start year is null) contains

1273 quadruples, and the right open interval one (end year is null) is 4089. The fourth type of

quadruples is the one that consists of a closed time interval, having different (and not null) start

and end dates. In this last subset, there are 13036 quadruples. This information can be found

in the table 3.1.

Subset Amount of quadruples

Closed Interval 13036
Left Open Interval 1273
Right Open Interval 4089
Year Event 14099

Table 3.1: Subsets of Wikidata12k.

3.2 Data Cleaning

Dates attributes in the Wikidata12k train dataset are given in the format YYYY-##-##.

Hence, a conversion of both start and end date is done to a YYYY format, since to answer

the first research question proposed (checking pre-trained LMs performance on temporal cloze

statements), these years need to be masked to be able to predict them afterwards.

5



3.3. DATASET SPLIT CHAPTER 3. DATA PREPARATION

Another step that needs to be done before running the models is deleting the quadruples

with anomalies. These can be quadruples with the end year lower than the start year or those

without entities’ descriptions. As explained in later sections of this thesis, quadruples can

be expressed in natural language format. Templates are used to do this process. Templates

are sentences in a natural language format that allows expressing the information of a single

quadruple in different ways but still having the same meaning. They can also be called prompts.

Some of these templates are created by adding context to them. This is done by adding the

description of the head and tail of the quadruple in the sentence. However, some entities do not

have a description in the Wikidata database. Since one of the analyses of this study consists

in checking if there are differences between the templates proposed, the quadruples containing

entities without description are deleted to avoid having biased results.

3.3 Dataset Split

The performance of the different models and templates is checked among the four data

types in Wikidata12k (Closed Interval, Left Open Interval, Right Open Interval, Year Event).

After cleaning the data, the size of each of these subsets can be seen in the table 3.2.

Subset Amount of Amount of
quadruples templates

Closed Interval 12276 36 (8)
Left Open Interval 1214 16
Right Open Interval 3681 16
Year Event 11728 8

Table 3.2: Subsets of Wikidata12k after preprocessing. In the Closed Interval subset, the value inside
the parenthesis indicates the amount of duration templates.

6



Chapter 4

Methods

4.1 Models

A Transformer is a ML model used for NLP tasks presented by Vaswani, Shazeer, Parmar,

Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017). It uses the self-attention mechanism,

which allows the model inputs to interact with each other and discover which input the model

should pay more attention to. This type of model has an encoder-decoder architecture. In this

architecture, the first stage is the encoder. It receives the input of the model (i.e. a sequence

of words) and outputs a numerical representation for each word. In this stage, all the words in

the sequence affect every word using the previously mentioned self-attention mechanism. The

encoder outputs are sent to the second stage of the process, the decoder. The decoder receives

the words’ numeric representation from the encoder but also the start of the sequence word. The

difference in this stage is that the decoder uses a masked self-attention mechanism. Therefore,

not all words are affected by every word in the initial sentence, but only by the ones before it.

That is, the decoder uses the output from the encoder and the start of the sequence word to

predict the first word. Afterwards, it does the same process to predict the second word but also

uses the first word predicted as an input.

All the pre-trained LMs used in this work are variants of the BERT model, introduced by

Devlin, Chang, Lee, and Toutanova (2018). BERT stands for Bidirectional Encoder Represen-

tations from Transformers. The BERT model is transformer-based, and it is pre-trained in a

self-supervised way, meaning with no human actions taken for labelling the texts but with an

automatic process to generate inputs and labels for the texts. Moreover, the BERT model is

specifically pre-trained with the MLM objective. It randomly masks 15% of the input tokens

and then tries to predict the token id based on the context. As the name indicates, it is a

bidirectional encoder since it uses the token’s left and the right context to predict it, allowing

pre-train a deep bidirectional Transformer. This method differs from the left-to-right LM pre-

training, which only uses the previous context of the word (left part of the sentence) to predict

it. The BERT model is also pre-trained with the next sentence prediction (NSP) objective.

7



4.2. KNOWLEDGE GRAPH TO TEXTUAL DATA CHAPTER 4. METHODS

Five different models are used in this thesis. The first of them is the BERT base model

cased. This model is case-sensitive. For example, it can understand that english and English

are different words. That is the main difference between the second model used, the BERT

base model uncased, which does not differentiate between uppercase or lowercase letters and

lowercase all the words before tokenizing them. The third model considered for the analysis

is the DistilBERT model uncased (Sanh, Debut, Chaumond, and Wolf (2019)). This model is

a distilled version of the BERT model and is smaller, cheaper, faster and lighter. Specifically,

it reduces by 40% the size of the BERT model, and it is 60% faster, but it still achieves 97%

of BERT performance. The DistilBERT model uses the compression technique of Knowledge

distillation, which, as defined by Bucila, Caruana, and Niculescu-Mizil (2006), allows a student

and more compact model (DistilBERT) to reproduce the behaviour of a larger model, that is, the

teacher (BERT). Finally, this model is also uncased, so it is not case-sensitive. Another model

used is the RoBERTa base model (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer,

and Stoyanov (2019)). The name of this model comes from Robustly optimized BERT approach.

As it indicates, it is a more robust and optimized approach of the BERT model by modifying

the pre-training process and leading to better end-task performance. All these first four models

mentioned are trained in two large datasets. One is the dataset containing all the information

from Wikipedia, and the second is the Book Corpus, which contains texts from books. The last

model used is the XLM-RoBERTa model (Conneau, Khandelwal, Goyal, Chaudhary, Wenzek,

Guzmán, Grave, Ott, Zettlemoyer, and Stoyanov (2019)). It is a multilingual version of the

RoBERTa model, and it is pre-trained with data containing 100 languages. The dataset used

to pre-train the XLM-RoBERTa model is Common Crawl, which gathers information from the

Internet.

4.2 Knowledge Graph to Textual Data

The NLP models described need text in natural language format to feed them to retrieve a

prediction for the masked word. Therefore, a transformation process must be done to convert the

TKG information into natural language sentences. Since the Wikidata12k dataset is given with a

number for entities and relations instead of the original id, two files that convert these numbers

to the ids are needed for the entities and relations, respectively. The next step to building

sentences in natural language format is to have the label and description of each entity and

relation. This is done with SPARQL. This tool can retrieve both the label and the description

of each entity and relation from the Wikidata database. These labels and descriptions help

create different types of templates with the same quadruple information. Multiple templates are

also helpful for further analyses, such as understanding if NLP models work better when they

have more context or if they understand better a specific way of creating a sentence, among

others.

8



4.3. TEMPLATES CREATION CHAPTER 4. METHODS

4.3 Templates Creation

The quadruple (h, r, t, T) of a TKG contains the head, relation, tail and temporal in-

formation of a fact. These items can be modified to create different types of templates (i.e.

prompts) using the same quadruple. With entities (head and tail), the label or both the label

and the description can be used in the construction of natural language sentences in order to

give more context to it. With the relation, the raw label of the relation can be used, but also

a more human version. That is, using the correct verbal tense in each situation, adding the

correct articles etc. Finally, for the temporal part of the quadruple, different versions can be

created with the same meaning. An example of these different versions can be ”since [MASK]

until [MASK]”, ”from the year [MASK] to the year [MASK]”, or ”between the years [MASK]

and [MASK]” for the Closed Interval subset. Moreover, duration templates are created for the

Closed Interval subset to answer one of the main research questions. This is done to understand

if NLP models can reason. In this case, the models will have to predict the number of years

inside the interval (masked) instead of its start and end years. Again, different templates can

be created expressing the same information. When retrieving the masked years, the models give

them as an output with a numeric format (e.g. 1925 ). However, for a simple number as the

interval duration, the models can retrieve the prediction either in a numeric format (e.g. 8) or in

a text format (e.g. eight). For this situation, both formats are accepted, and a predicted value

is considered correct if it is in number or text format. This procedure of searching the prompt

with better outcomes is called prompt engineering (Reynolds and McDonell (2021)).

Combining each element’s versions in a quadruple gives several templates for every fact in

each of the subsets of Wikidata12k. Specifically, for the Closed Interval, there are 36 different

possible templates for predicting the start and end years of the interval, as well as eight more for

predicting the duration of each interval. In the case of the Left Open Interval and Right Open

Interval subsets, both of them have 16 possible templates. Finally, the Year Event one contains

8 templates, as shown in table 3.2.

4.4 Templates Selection

Additionally to all the aforementioned templates that can be applied to every quadruple

in each subset, five models are run on all of them. This leads to very high computational costs

and time. Due to the lack of computational power and resources, a reduction in the number

of templates is needed. To do so, six templates are selected (for the Closed Interval, also two

templates for the duration) for each of the four subsets. To do this filtering process without

including any bias, a set of 100 observations is randomly selected for each subset. For these

sets, all templates created are run for the five models proposed, and the six best performing in

each set are selected. Once the filtering process is done, the five models can be rerun with all

the observations in each subset. In this case, for the six final templates. Table 4.1 shows the

structure of the selected templates for all the subsets.
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Subset Templates

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “from the year” [MASK] “to the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “from the year” [MASK] “to the year”

Closed Interval [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “between” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “between” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “between the years” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “from” [MASK] “to” [MASK]

Closed Interval [HEAD][RAW RELATION][TAIL] ”for” [MASK] ”years”
Duration [HEAD][TEMPLATE RELATION][TAIL] ”for” [MASK] ”years”

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] ”since”/“until” [MASK]
[HEAD] [RAW RELATION][TAIL] ”since”/“until” [MASK]

Open Interval [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “starting from the year”/“finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “starting from the year”/“finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “since the year”/“until the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] ”since”/“until” [MASK]

[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “in” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “in the year” [MASK]

Year Event [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “in” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “in the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “in the year” [MASK]
[HEAD][RAW RELATION][TAIL] “in” [MASK]

Table 4.1: Best 6 templates for each subset. For the Open Interval subset, the first version of the temporal
part of the sentence (e.g. ”since”) is for the templates of the Right Open Interval. The Left Open Interval
has the same templates using the second version of the temporal part of the sentence (e.g. ”until”).

4.5 Performance and Robustness Measures

4.5.1 Performance

The accuracy measure is used to check how well each pre-trained LM works on predicting

temporal cloze statements. In this case, accuracy is calculated as the percentage of correct

predictions. The formula of the accuracy measure is given in equation 4.1.

Accuracy =
TotalCorrectPredictions

TotalNumberOfPredictions
· 100 (4.1)

All the models used can retrieve not just one predicted value but many. These prediction

values are given sorted by a score that the model gives to each prediction to consider less or

more probable that prediction to be correct. Hence, more than one predicted value is used to

calculate several accuracy measures for each prediction. Four accuracy measures are used: top1,

top3, top5 and top10. For each of them, the prediction for an observation is considered a correct

prediction (equation 4.2) if the observed value is in the first k predictions values depending on

the measure used.

CPk =

#Obs∑
i=1

V ali,k (4.2)

where Vali ,k is a binary value being true if the observed value is in the top k prediction values of

the prediction. The 4 aforementioned accuracy measures are calculated with the formula shown

in the equation 4.3, with k being 1, 3, 5 and 10.

Accuracy =
CPk

TotalNumberOfPredictions
· 100 (4.3)

For the Left Open, Right Open intervals and Year Event subsets, the process is to mask

the year in the sentence and retrieve if the prediction is correct or not. However, with the

10
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quadruples in the Closed Interval, the masking and evaluation processes can be done in multiple

ways. First of all, the start and end year of the interval can be masked together or separately.

Masking them together means that the model has as an input one natural language sentence

with the start year and the end year of the interval masked, and it retrieves two predictions

simultaneously, one for each masked year. The other option is to mask them separately. In

this case, the model has two natural language sentences as inputs. First, it receives a sentence

with the start year of the interval masked and predicts it. After it, it does the same with a

sentence with the end year masked. When masking separately, the LM has more context and,

therefore, more information for the masked word since the year that is not predicted remains

unmasked and known for the model. For the evaluation process, there are several ways to assess

the performance of a model. The different prediction accuracy measures can be calculated for

only the start year of the interval, the end year, or the start and end year at the same time. For

the third option, a prediction is only considered correct when both start and end year predictions

are correct.

4.5.2 Robustness

To check a model’s robustness, the randomness of its predictions is calculated. To do so, the

standard deviation measure is used. For every observation prediction, the standard deviation of

the ten retrieved guesses for the prediction is calculated. This is represented by equation 4.4.

Note that in some cases, the prediction retrieved by the model can be a regular word instead

of a year/number. For the standard deviation calculation, only the years or numbers are used.

The next step is to average the different standard deviations from the predictions of each model

(equation 4.5).

Stdi =

√∑
(X − µ)2

N
(4.4)

Where Stdi is the standard deviation for one prediction, X are the ten different predicted

values retrieved for the prediction, µ is the mean of these ten values, and N is 10.

Std =

∑
Stdi

TotalNumberOfPredictions
(4.5)

4.6 Framework

The process described in this chapter can be seen in the figure 4.1. It shows how the source

of information is a TKG and how, from this information, several templates are created after

converting the available information to a natural language format. After masking the years in

these templates, they are filtered, and these filtered ones are passed by the pre-trained LMs

proposed. After, the performance is evaluated.

11
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Figure. 4.1: Process Framework.
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Chapter 5

Empirical Evaluation

5.1 Computational Cost

As aforementioned, the best six templates (2 for the duration templates) were filtered out

of the total amount of templates for each subset shown in table 3.2 to deal with computational

costs issues. After this selection, the run times for each model and subset are shown in the table

5.1. The Open Interval subset includes both the left and right open intervals. They were run

together and split afterwards for the analysis.

Year Open Closed Interval Closed Interval Closed Interval Closed Interval
Event Interval Masked Together Masked Start Year Masked End Year Duration

DistilBERT base uncased 56m 3s 45m 18s 19m 20s 54m 18s 55m 3s 13m 52s
BERT base cased 1h 30m 32s 1h 13m 7s 31m 11s 1h 29m 11s 1h 29m 52s 20m 45s
BERT base uncased 1h 30m 4s 1h 15m 43s 31m 1h 28m 54s 1h 29m 31s 20m 38s
RoBERTa 1h 49m 9s 1h 38m 1s 38m 40s 1h 45m 38s 1h 48m 17s 25m 59s
XLM-RoBERTa 4h 25m 58s 3h 54m 51s 1h 53m 2s 4h 21m 3s 4h 23m 22s 1h 8m 32s

Amount of observations 11728 4895 12276 12276 12276 12276

Table 5.1: Run time to predict for each model and subset.

For each subset, every model predicted the masked years for six templates (2 for the duration

templates), resulting in 30 different predictions for every observation in the subset. As it can be

seen in the table 5.1, the model that took longer is the XLM-RoBERTa.

5.2 Closed Interval Results

For the closed interval subset, the analysis is divided into two parts. First, the results of

predicting the years of the interval are studied. After, the results predicting the duration of the

interval are analyzed too.

5.2.1 Years Prediction

When comparing the two masking methods (together or separate), from the results shown

in the table 5.2, it can be seen that masking the interval’s start year and the end year separately

gives better results in all the predictions than masking them together. This can be because
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the models have more information when predicting with the years masked separately since they

have the end year as a context when predicting the start year and the other way around.

Start&End Year Start Year End Year

Masked Together 11.26% 23.43% 34.92%

Masked Separate 56.93% 65.88% 76.04%

Table 5.2: Average accuracy top10 of predicting both start and end year correctly, only the start year
correctly, and only the end year correctly. The results are shown for the prediction done masking both
start and end year of the interval together or separately.

The average performance of all the models and templates proposed reaches 76.04% accuracy

top10 for the prediction of the end year of the interval when masking separately. With both

masking methods, the highest accuracy values are when predicting the end year of the interval,

while it decreases for predicting the start year of it. The lowest values are for predicting both

the start and end year of the interval since a correct prediction means that both years of the

interval are predicted correctly. To simplify all the analyses and explanations, from now on, when

referring to the Closed Interval subset results, I am going to refer to the results of predicting

both the start and end year of the interval masked separately.

5.2.2 Duration Prediction

In the Closed Interval subset, the models were also run to predict the duration of each

interval, with the two templates filtered from all the duration templates proposed. The average

accuracy top10, in this case, is also one of the highest, specifically, 54.17%.

5.2.3 Comparison

The interval duration’s predictions using the duration templates and the predictions of the

intervals’ start and end years are the ones with the best performance. In the table 5.3, all the

accuracy measures average values can be seen. These results show that the behaviour for both

predicting methods is very similar, being the duration templates better for the accuracy top1

and top3. At the same time, the predictions of the start and the end year of the interval have

better performance for the accuracy top10. For the accuracy top1, the duration templates have

the best performance out of all the subsets studied, with a value of 5.86%.

Accuracy top1 Accuracy top3 Accuracy top5 Accuracy top10

Pred. Start&End Year 3.30% 14.47% 29.49% 56.93%
Pred. Duration Templates 5.86% 18.13% 29.80% 54.17%

Table 5.3: Average accuracies when predicting Start&End year masked separately and when predicting
the interval duration with the duration templates.

Besides the overall average results, an analysis comparing which observations groups have

the best performance per each predicting method has been done to understand if both methods

predicted the same type of observations well or not. The results are shown in the figure 5.1.

The average accuracy per interval duration has been studied. Additionally, the performance for

the decade when each fact happens has been analyzed too. 10161 observations have an interval
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length of 10 years or lower, representing 82.7% out of the total amount of quadruples in the

subset. From these 10161 observations, 95% are from the 1900s on. It can be seen that the

shortest intervals (2 years, e.g. [1995-1996]) and the 2000s decade have the greatest amount of

data.

Figure. 5.1: The first row of figures shows the average top10 accuracy per the interval duration, per
interval duration up to 10 years, and per decade of those intervals up to 10 years when predicting
Start&End years masked separately. The second row shows the same information when predicting the
duration of the interval with the duration templates. The black line indicates the amount of observations
in each bar.

As figure 5.1 shows, there are some similarities but also several differences in which kind of

quadruples have better results between interval duration predictions and the predictions of the

start and the end year of each interval. In the graphs of the first column of the figure, it can be

seen that in both cases, the observations with shorter intervals have the best performance. It

decreases until the interval reaches 40 years, where it increases again. However, when predicting

the start and the end year of the intervals, the accuracy decreases faster than the interval du-

ration predictions. Also, after reaching the interval duration of 40 years, the accuracy increases

again in several interval lengths when predicting the start and end year. In the interval duration

predictions, there is only a peak in the 50 years length. Additionally, the graphs show that

both methods have high accuracy values for the five years intervals when looking at the shorter

intervals (second column in figure 5.1). However, the shape of the start and the end years of

the intervals predictions accuracy top10 increases until the five-year interval and then decreases.

At the same time, in the interval duration predictions, the performance for the ten-year length

interval is also one of the highest.

On the other hand, the behaviour for both methods is also similar when checking which

decade has better performance. In both cases, the average accuracy decreases until the 1930s

and increases again after that decade. However, the increased slope of the interval duration

predictions is flatter than when predicting the limiting years of the interval. Another difference

is that the accuracy for the 1900s decade is the highest when predicting the interval duration.
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5.3 Open Interval Results

The Open Interval subsets have, in general, a worse performance than the Closed Interval

one. In this case, they reach an accuracy top10 value of 22%, as table 5.4 shows.

Accuracy top1 Accuracy top3 Accuracy top5 Accuracy top10

Left Open Interval 4.31% 10.33% 14.82% 22.59%
Right Open Interval 2.39% 7.57% 11.73% 22.06%

Table 5.4: Average accuracies for right and left open interval subsets.

In the Open Interval subsets, there exist some differences between the Left Open and the

Right Open Interval subsets. The Left Open interval subset is slightly better than the Right

Open in all four accuracy measures. Moreover, regarding the average top1 accuracy, the Left

Open Interval is the subset with the second-best results, behind the duration interval predictions.

In the figure 5.2, the distribution of the performance and the amount of data per decade can

be seen for both the Left and Right Open Interval subsets. In terms of number of observations

per decade, the shape is similar to the other subsets, increasing significantly in the last decades.

However, in the Right Open Interval, there are two peaks in the 1920s and the 1960s. The

majority of the quadruples in these decades have the relation of ”located in the administrative

territorial entity”. The leading cause of these two peaks is the creation of new departments

in France during these two decades (3 and four departments respectively). These different

departments were also divided into multiple communes or municipalities inside them. Therefore,

several quadruples of the dataset, which are communes of these French departments, have their

start date in the 1920s and 1960s.

Figure. 5.2: Average accuracy top10 represented by the bars and number of observations represented
by the black line per decade for Left and Right Open Interval subsets.

On the other hand, in terms of average top10 accuracy per decade, the shape for both

subsets is similar, but with higher values for the Left Open Interval one. Also, in this subset,

the performance for the 1910s is much better than the Right Open Interval one. While in the

Right Open Interval subset, the decade with the best accuracy is the 2000s, in the Left Open

one, it is the 1990s.
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5.4 Year Event Results

The accuracy values of the Year Event subset are very similar to the Right Open Interval

subset. In terms of accuracy, it is one of the worst out of all the subsets studied, as seen in table

5.5.

Figure. 5.3: Average accuracy top10 (bars) and
number of observations per decade (black line) for
Year Event subset.

Accuracy top1 2.14%

Accuracy top3 6.89%

Accuracy top5 11.30%

Accuracy top10 22.12%

Table 5.5: Average accuracies for Year Event subset.

The decades with the best performances are the 2000s and 2010s, but with accuracy values

lower than the Closed Interval subset. Again, the highest peak of number of observations is

close to the present, specifically in the 2000s.

5.5 Models

Until now, the overall results for each subset studied have been presented. However, a

more detailed analysis has been done to understand which are the best models and if there

exist differences between them among all the subsets. In this section, this deeper analysis is

presented. This analysis is divided into two parts, one studying the accuracy performance of

the models and another one analyzing their robustness.

5.5.1 Accuracy Performance

Regarding the accuracy performance, there are differences between the different subsets in

general terms, as aforementioned, and between the models. These results can be seen in the

table 5.6. Differences exist in the accuracy values within the subsets among the five models used

and within each model among all the subsets.

Closed Closed Interval Right Open Left Open Year
Interval Duration Interval Interval Event

DistilBERT base uncased 67.81% 54.95% 29.80% 28.76% 26.26%
BERT base cased 68.78% 51.12% 19.08% 16.32% 22.15%
BERT base uncased 40.23% 35.08% 22.70% 25.34% 16.91%
RoBERTa 39.05% 58.94% 23.01% 30.56% 27.13%
XLM-RoBERTa 68.78% 70.76% 15.72% 11.94% 18.13%

Table 5.6: Average top10 accuracy for every model and subset. For the closed interval subset, the results
are from predicting Start&End years of the interval masking them separately.

As table 5.6 shows, the XLM-RoBERTa model has a high performance for the Closed In-

terval subset predictions, having around 70% accuracy top10 for both intervals duration and
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the start and end years of the interval predictions. In the predictions of the start and end years

of the interval, the DistilBERT base uncased and BERT base cased models also have similar

accuracy values as the XLM-RoBERTa. In contrast, XLM-RoBERTa is clearly the model with

the best performance for the duration predictions.

For the Open Interval subsets, the XLM-RoBERTa model is the worst. In this case, the

DistilBERT base uncased is also one of the best for the Left Open and Right Open Interval sub-

sets, with 28.76% and 29.8% accuracy values, respectively. For the Left Open Interval subset,

the RoBERTa model has the best performance with 30.56% of accuracy.

Finally, for the Year Event subset, the behaviour of the models in terms of accuracy per-

formance is similar to the Open Interval subsets. In this case, DistilBERT base uncased and

RoBERTa models are also the best, with 26.26% and 27.13% top10 accuracy values, respectively.

In general, as aforementioned, there are significant differences in the performance of each

model between the subsets and the five models within the subsets. Within the same subset, the

best model can have around twice or three times the accuracy as the worst one, as happens in the

Closed Interval Duration or the Left Open Interval subsets, respectively. Within models, there

are clear differences too. For instance, the XLM-RoBERTa model has the best performance in

some subsets but the worst in others.

5.5.2 Robustness

The robustness of the models has been analyzed too. More specifically, it is analyzed in

two ways. The first one is the overall robustness of the models. As explained in the previous

section, in general, the models are not robust since their levels of accuracy differ a lot from one

subset to another. However, some models with very different performance behaviours, such as

the XLM-RoBERTa, but others that, even if their accuracy values differ among subsets, are

one of the models with the best performance in all the subsets studied, such as the DistilBERT

base uncased model. The second way to study the robustness of the models has been checking

the randomness of the predictions. As explained previously, since the first ten guesses were

retrieved for each prediction, the standard deviation of each prediction is calculated. Then, all

the standard deviations of an observation predictions are averaged. These values are shown in

the table 5.7.

Closed Closed Interval Right Open Left Open Year
Interval Duration Interval Interval Event

DistilBERT base uncased 9.06 9.17 38.60 50.60 9.39
BERT base cased 10.08 6.99 70.32 26.2 9.31
BERT base uncased 11.39 9.18 32.25 32.95 9.62
RoBERTa 17.98 7.54 18.99 23.19 8.81
XLM-RoBERTa 12.68 7.33 42.31 42.16 8.02

Table 5.7: Average standard deviation in years of all the predictions per observation for every model and
subset. For the closed interval subset, the results are from predicting Start&End years of the interval
masking them separately.
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As it can be seen, the Interval Duration predictions are the ones with the lowest standard

deviation in all models, followed by the Year Event subset. In the Interval Duration predictions,

XLM-RoBERTa was the model with the best accuracy performance and is the second one with

the lowest standard deviation, with 7.33 years. The most robust model for this subset is the

BERT base cased with a standard deviation among its predictions of 6.99 years. In the Year

Event subset, the results show no significant difference among the models, being all of them

robust, since the minimum average standard deviation in the predictions is 8.02 years for the

XLM-RoBERTa model and the maximum is 9.62 years for the BERT base uncased. On the

other hand, the Open Interval subsets have worse results in terms of standard deviation in the

predictions. In this case, the most robust model is the RoBERTa, having an average standard

deviation of 18.99 and 23.19 years for the Right Open Interval and the Left Open Interval sub-

sets, respectively.

The accuracy performance and robustness can also be analyzed together in a more detailed

way. That is, check the standard deviation values for each accuracy interval. This analysis is

helpful to understand if the different models studied guess the correct answer randomly or not.

If the model guesses the correct answer not randomly, the observations with high accuracy are

expected to have lower standard deviation values. This would mean that the model guessed the

correct answer in a not random way since all the guesses are closer to each other. On the other

hand, the correct answer is expected to be guessed randomly if the standard deviation of the high

accuracy interval is also high. This would mean that the model tried several options very differ-

ent from each other and, more randomly or luckily, guessed the correct one. This study has been

done per each model and subset, and the results are shown in the figures 5.4, 5.5, 5.6, 5.7 and 5.8.

As mentioned previously in this chapter, it can be seen that the average standard deviation

values for the Closed Interval, the Interval Duration, and the Year Event subsets are lower than

the Open Interval ones. However, in the figures 5.4, 5.5, 5.6, 5.7 and 5.8. can be seen in a more

detailed way which models work better and their standard deviation levels behaviour for the

high accuracy values intervals. For instance, in the Closed Interval subset, the best model in

terms of accuracy is the XLM-RoBERTa, as shown in the table 5.6, but in terms of standard

deviation, it is the second worse (table 5.7). However, when looking at the graphs for this subset

in figure 5.4, it can be seen that this bad overall standard deviation value is due to a high value

in the lowest accuracy interval, and how in the highest accuracy interval, the average standard

deviation value is the lowest one. This indicates that this model works well since the highest

accuracy interval is the one with more observations (high accuracy). When the model predicts

correctly, the standard deviation is the lowest. Therefore, when this model predicts correctly, it

is not randomly.

In the Interval Duration subset, the behaviour of the average standard deviation per accu-

racy interval is similar among the five models. The best model in the highest accuracy interval

is the DistilBERT base uncased. However, the model with more percentage of data in the high-

est accuracy interval is the XLM-RoBERTa, and the average standard deviation values in that
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interval are not far from the DistilBERT base uncased ones.

For the Year Event subset, the average standard deviation values for all the accuracy levels

among all the models are low. This means that in this subset, the models, even if they do not

have great accuracy values, their predictions are close to each other. Thus, the models predict

consistently close values for all the predictions. However, these low average standard deviation

values can also be explained by the fact that in this subset, some of the templates used can lead

to predicted values being regular words instead of years with more probability. For example,

with the template [HEAD][RAW RELATION][TAIL] “in” [MASK], it is possible that some of

the retrieved predictions from the models are a place instead of a year. This means that the

predicted values being years can be less in amount; therefore, the number of years to calculate

the standard deviation is also lower. This situation can also happens for some templates of the

Closed Interval subset.

Finally, the Open Interval ones are the subsets in which all models work the worst in terms

of randomness. One of the best models in terms of accuracy for the Left Open Interval and

Right Open Interval subsets is the DistilBERT base uncased, as seen in table 5.6. However,

in terms of standard deviation, they have bad performance in both subsets, meaning that the

predictions of this model in these subsets are more random than in the others. The other model

with good accuracy performance in this subsets is the RoBERTa. In terms of standard deviation,

it improves the values of the DistilBERT base uncased, but they are still far from the values in

other subsets.

Figure. 5.4: Each plot shows the average standard deviation per top10 accuracy interval (represented
by the blue bars) and the percentage of data each accuracy interval contains (represented by the black
line) per each model in the Closed Interval subset.
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Figure. 5.5: Each plot shows the average standard deviation per top10 accuracy interval (represented
by the blue bars) and the percentage of data each accuracy interval contains (represented by the black
line) per each model in the Closed Interval Duration subset.

Figure. 5.6: Each plot shows the average standard deviation per top10 accuracy interval (represented
by the blue bars) and the percentage of data each accuracy interval contains (represented by the black
line) per each model in the Right Open Interval subset.
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Figure. 5.7: Each plot shows the average standard deviation per top10 accuracy interval (represented
by the blue bars) and the percentage of data each accuracy interval contains (represented by the black
line) per each model in the Left Open Interval subset.

Figure. 5.8: Each plot shows the average standard deviation per top10 accuracy interval (represented
by the blue bars) and the percentage of data each accuracy interval contains (represented by the black
line) per each model in the Year Event subset.
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5.6 Templates

Another analysis done in this thesis is related to the templates used. This analysis can be

helpful in understanding if the context is important for the models to have better predictions.

Also, to know if any specific method of creating the temporal part of the templates works better.

Finally, it is useful to check if using the correct verbal tense and articles used in the sentence

makes a difference for the models when predicting their answers.

Creating context for the templates is done by adding the description of the head and tail

of the quadruple in the sentence. The context seems to be important for the models. The

importance of context seems to vary depending on the subset. In the Closed Interval and Left

Open Interval subsets, the best results are given by the templates with the context in them. More

specifically, in the first of these two subsets, all of the six final subsets (the six best templates

filtered out of the total) have context. For the Left Open Interval subset, 4 out of the six best

filtered templates have context, and they are also the 4 with the best accuracy out of the 6. In

the table 5.8, the best template for each subset can be seen as well as its accuracy top10.

Templates Accuracy

Closed Interval [HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “between” [MASK] “and” [MASK] 63.22%
Closed Interval Duration [HEAD][TEMPLATE RELATION][TAIL] ”for” [MASK] ”years” 59.64%
Right Open Interval [HEAD][TEMPLATE RELATION][TAIL] “since” [MASK] 24.44%
Left Open Interval [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “finishing in the year” [MASK] 41.94%
Year Event [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “in the year” [MASK] 27.67%

Table 5.8: Best template per each subset in terms of accuracy top10. The accuracy top10 is averaged
from all the models using each template.

On the other hand, the context doesn’t seem to be necessary for the Interval Duration tem-

plates since none of the final filtered 2 with the best performance have context in them. Also,

for the Right Open Interval subset, even if 4 out of the best templates have context in them,

the 2 with the best performance are without context. For the Year Event subset, the context

templates have better general results.

Regarding which temporal part of the template creation method is better, there seems to

be a clear method for each subset. For the Closed Interval one, ”between [MASK] and [MASK]”

is the one used for the template with the best results, but also for the third-best one. For the

Duration Interval subset, the ”for [MASK] years” is the one used for the two final filtered tem-

plates. The Right Open Interval subset has similar results for all the filtered templates. However

”since” is the method used for 3 of the final six templates. For the Left Open Interval one, even

if the ”until [MASK]” method is also used for 3 out of the six filtered templates, ”finishing in

the year [MASK]” is the one used for the best template and the difference from the second-best

template is considerable, having 41.94% of accuracy for the best one and 26.08% for the second

one. Moreover, also 2 out of the final six selected templates use this method. Finally, for the

Year Event subset, the method using ”in the year [MASK]” is the one with the best results,

being used in the first three templates with the highest accuracy values.

On the other hand, when analyzing the relation part of the template, where the correct ver-
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bal tense and the correct usage of articles are used in some templates, and just the raw relation

for the others (with no article nor usage of the correct verbal tense), no significant differences

can be seen. In this case, there are the templates using the template for the relations and the

ones using the raw relations are mixed in the ranking.

Although all aforementioned characteristics of the template creation process are important,

the final performance is given by the combination of them.

5.7 Reasoning

One of the purposes of this thesis is to understand if the language models used are able

to reason. The duration templates were created to check whether they are able or not. Since

the duration templates are created from a closed interval (with a start date and an end date),

if the models can predict the number of years in the interval (which is the masked word in the

duration templates), then it can be assumed that the pre-trained LMs can reason about time.

As mentioned in the previous sections, the Interval Duration predictions are one of the best in

terms of accuracy and robustness. This could mean that they can reason. However, not all the

models have the same results. XLM-RoBERTa is the best model regarding the duration subset,

and BERT base uncased is the worst. When looking at the two duration templates used, their

results show no significant differences.

Overall, it can be said that XLM-RoBERTa is good at reasoning while BERT base uncased

is not. With the others models used, it can not be concluded with certainty that they can reason.
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Discussion

In this thesis, it has been demonstrated that State-of-the-art pre-trained models for NLP

can have acceptable results when predicting years under certain circumstances (e.g. predicting

years of a closed interval masking them separately), but that a KG expansion using cloze state-

ments by leveraging LM is still not reliable.

It is also worth mentioning the main limitations in the process of this thesis. The main

drawback found in the process is the computational cost. Since the computational power avail-

able was limited, not all the models could be tried with all the dataset observations for all the

templates proposed, but only for a 100 observations set for each subset of it. Also, the number

of templates proposed was limited by this situation. With more powerful resources, more ex-

periments could have been tried, and, therefore, more insights could have been learned.

It is worth mentioning the challenge that the time supposed. The tight time available to do

the thesis (two months) is an aspect to consider. This fact limited some analyses, such as trying

to understand whether the pre-trained LMs analyzed can reason or not or their robustness. An

investigation was done for the two research questions related to these topics, although, with

more time, a deeper analysis could have been done.

Moreover, it is also important to note the ethical issues the existing pre-trained LMs can

carry with them. Specifically, all five pre-trained LMs used in this thesis were trained on

Wikipedia, Common Crawl, or a dataset containing data from books. A consequence of this

can be that, even if the datasets contain large amounts of data and the LMs perform well in

general, the models can be biased. For instance, although Wikipedia has a lot of information,

the information is not even since there is more information available regarding some topics than

others. Therefore the models learning from this data can be not representative equally for ev-

eryone and everything. Common Crawl retrieves information from the Internet, but even if the

amount of data it gathers is enormous, this data can be already biased from the source since

everyone can put information on the Internet. The same happens with books. That means the

models trained with these databases can have biased predictions since they are already biased
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from the pre-training stage. We could all agree that since the information in the datasets used

for pre-training the LMs is not entirely objective, they can contain fake news and misleading

information. Thus, the models are also learning this information. Another issue that can arise

regarding ethical concerns is the amount of data from each topic. Again, since everyone can

participate from the information on the Internet, the topics covered in it can differ significantly

regarding the amount of information available. This can lead to non-representative models and

models biased towards the minorities in society. To conclude, in our society, there exist racism,

sexism and many other important problems that the datasets used to pre-train the LMs can also

capture. With this in mind, it would not be surprising that these LMs could reproduce these

behaviours. Therefore, it is essential to keep in mind all of these ethical aspects when using

these methods and think about whether they fit well the application that we want to give them

or not because they can be beneficial, but also they could be dangerous at the same time.

On the other hand, in new projects with goals similar to this one, some things could be done

to expand the findings. First of all, with more computational power available, more templates

can be proposed by doing prompt engineering, and a bigger set of data could be selected to

filter them. However, in a perfect scenario, all the templates proposed would be run for all the

models, and no filtering process would be needed. Another further analysis that could be done

to improve the reasoning insights is to make link predictions. That is, predicting the relation

of a quadruple, given the head, tail, and temporal information. Related to this, the robustness

analysis could also be improved in future works by making link predictions for several years

(with the correct and wrong ones). For the robustness analysis, another interesting idea is to

check the scores of the predictions retrieved by the models. A threshold could be set to under-

stand how many predictions are over the threshold and, therefore, check the models’ robustness.

Moreover, a deeper analysis regarding the templates results could be done.

In a more general scope, further analysis to dig more into the ethical issues mentioned and

the potential bias LMs can have could be done.
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Chapter 7

Conclusions

The main aim of this thesis was to answer the three research questions proposed to be able

to learn if pre-trained LMs can act as a KG and, therefore, be used for a KG expansion. In this

chapter, the main insights are gathered and exposed.

The first research question aimed to know the performance of the existing pre-trained LMs

on temporal cloze statements. The several analysis completed in this work showed that some of

these models have acceptable results in predicting the years of an interval and its duration, with

some models having around 70% of top10 accuracy. In contrast, the performance when predict-

ing the years of an open interval or the year of an event is much lower, reaching a maximum

of 30% top10 accuracy for the best model. Regarding which model is the best one in terms of

accuracy, XLM-RoBERTa is the best for predicting the start and end year of an interval and its

duration, while the RoBERTa and DistilBERT base uncased are the best ones when predicting

the years of the open intervals and the event years. Also, DistilBERT is one of the models with

the best results in all the subsets studied.

Another important insight found is that models’ performance increases substantially when

masking the years separately for the closed intervals. This can be explained due to the fact that,

when masking separately, the models know the year that remains unmasked. Thus, it has more

information.

An analysis was done to explore whether LMs can reason or not to answer the second re-

search question. From this analysis, it can be concluded that, based on the models and methods

used in this thesis, XLM-RoBERTa is the model that can reason the best, and BERT base

uncased is the worse. Regarding the other models studied, it can not be assured that they are

good at reasoning.

Finally, investigating the robustness of the pre-trained LMs is another aim this thesis had

to answer the third research question. The findings were that the models as a general concept

are not robust since they have different behaviour between and within them. However, when

27



CHAPTER 7. CONCLUSIONS

checking the robustness of each one of them with the randomness of their predictions, it was

found that XLM-RoBERTa, DistilBERT base uncased, and the BERT base cased can be con-

sidered a robust model for predicting the years of an interval, and the XLM-RoBERTa also for

predicting an interval’s duration.

From all the results gathered, it can be concluded that, for the time being, pre-trained LMs

are not reliable enough to be used for an expansion from KG to a TKG.

28



Bibliography

Asma Ben Abacha and Pierre Zweigenbaum. Means: A medical question-answering system com-

bining nlp techniques and semantic web technologies. Information processing & management,

51(5):570–594, 2015.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Tina

Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceedings

of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 535–541. ACM, 2006. doi: 10.

1145/1150402.1150464.

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingyong Yan, Meng Liao, Tong Xue, and Jin Xu.

Knowledgeable or educated guess? revisiting language models as knowledge bases. CoRR,

abs/2106.09231, 2021. URL https://arxiv.org/abs/2106.09231.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,

Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-

supervised cross-lingual representation learning at scale. CoRR, abs/1911.02116, 2019. URL

http://arxiv.org/abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

URL http://arxiv.org/abs/1810.04805.

Touseef Iqbal and Shaima Qureshi. The survey: Text generation models in deep learning.

Journal of King Saud University-Computer and Information Sciences, 2020.

Prachi Jain, Sushant Rathi, Mausam, and Soumen Chakrabarti. Temporal knowledge base

completion: New algorithms and evaluation protocols. CoRR, abs/2005.05035, 2020. URL

https://arxiv.org/abs/2005.05035.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowl-

edge graphs: Representation, acquisition, and applications. IEEE Transactions on Neural

Networks and Learning Systems, 33(2):494–514, feb 2022. doi: 10.1109/tnnls.2021.3070843.

URL https://doi.org/10.1109%2Ftnnls.2021.3070843.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what language

models know? CoRR, abs/1911.12543, 2019. URL http://arxiv.org/abs/1911.12543.

29

https://arxiv.org/abs/2106.09231
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.05035
https://doi.org/10.1109%2Ftnnls.2021.3070843
http://arxiv.org/abs/1911.12543


BIBLIOGRAPHY BIBLIOGRAPHY

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes,

and Donald Brown. Text classification algorithms: A survey. Information, 10(4), 2019. ISSN

2078-2489. doi: 10.3390/info10040150. URL https://www.mdpi.com/2078-2489/10/4/150.

Elizabeth D Liddy. Natural language processing. 2001.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT

pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.

11692.
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Subset Templates

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “from the year” [MASK] “to the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “from the year” [MASK] “to the year” [MASK]
[HEAD][RAW RELATION][TAIL] “from the year” [MASK] “to the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “from the year” [MASK] “to the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “since” [MASK] “until” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “since” [MASK] “until” [MASK]
[HEAD][RAW RELATION][TAIL] “since” [MASK] “until” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “since” [MASK] “until” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “from” [MASK] “to” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “from” [MASK] “to” [MASK]
[HEAD][RAW RELATION][TAIL] “from” [MASK] “to” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “from” [MASK] “to” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “between the years” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “between the years” [MASK] “and” [MASK]
[HEAD][RAW RELATION][TAIL] “between the years” [MASK] “and” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “between the years” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “between the year” [MASK] “and the year” [MASK]

Closed Interval [HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “between the year” [MASK] “and the year” [MASK]
[HEAD][RAW RELATION][TAIL] “between the year” [MASK] “and the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “between the year” [MASK] “and the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “between” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “between” [MASK] “and” [MASK]
[HEAD][RAW RELATION][TAIL] “between” [MASK] “and” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “between” [MASK] “and” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “since the year” [MASK] “until the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “since the year” [MASK] “until the year” [MASK]
[HEAD][RAW RELATION][TAIL] “since the year” [MASK] “until the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “since the year” [MASK] “until the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “starting from the year” [MASK] “and finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “starting from the year” [MASK] “and finishing in the year” [MASK]
[HEAD][RAW RELATION][TAIL] “starting from the year” [MASK] “and finishing in the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “starting from the year” [MASK] “and finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “starting from” [MASK] “and finishing in” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “starting from” [MASK] “and finishing in” [MASK]
[HEAD][RAW RELATION][TAIL] “starting from” [MASK] “and finishing in” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “starting from” [MASK] “and finishing in” [MASK]

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “for” [MASK] “years”
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “for” [MASK] “years”
[HEAD][RAW RELATION][TAIL] “for” [MASK] “years”

Closed Interval [HEAD][TEMPLATE RELATION][TAIL] “for” [MASK] “years”
Duration [HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “during” [MASK] “years”

[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “during” [MASK] “years”
[HEAD][RAW RELATION][TAIL] “during” [MASK] “years”
[HEAD][TEMPLATE RELATION][TAIL] “during” [MASK] “years”

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “since”/”until” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “since”/”until” [MASK]
[HEAD][RAW RELATION][TAIL] “since”/”until” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “since”/”until” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “since the year”/”until the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “since the year”/”until the year” [MASK]
[HEAD][RAW RELATION][TAIL] “since the year”/”until the year” [MASK]

Open Interval [HEAD][TEMPLATE RELATION][TAIL] “since the year”/”until the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “starting from the year”/”finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “starting from the year”/”finishing in the year” [MASK]
[HEAD][RAW RELATION][TAIL] “starting from the year”/”finishing in the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “starting from the year”/”finishing in the year” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “starting from”/”finishing in” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “starting from”/”finishing in” [MASK]
[HEAD][RAW RELATION][TAIL] “starting from”/”finishing in” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “starting from”/”finishing in” [MASK]

[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “in” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “in” [MASK]
[HEAD][RAW RELATION][TAIL] “in” [MASK]

Year Event [HEAD][TEMPLATE RELATION][TAIL] “in” [MASK]
[HEAD][DESCRIPTION HEAD][RAW RELATION][TAIL][DESCRIPTION TAIL] “in the year” [MASK]
[HEAD][DESCRIPTION HEAD][TEMPLATE RELATION][TAIL][DESCRIPTION TAIL] “in the year” [MASK]
[HEAD][RAW RELATION][TAIL] “in the year” [MASK]
[HEAD][TEMPLATE RELATION][TAIL] “in the year” [MASK]

Table 1: All templates proposed for each subset. For the Open Interval subset, the first version of the
temporal part of the sentence (e.g. ”since”) is for the templates of the Right Open Interval. The Left
Open Interval has the same templates using the second version of the temporal part of the sentence (e.g.
”until”).
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Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 13.59% 35.46% 61.06% 86.16%
BERT base cased 12.78% 32.97% 52.70% 77.56%
BERT base uncased 11.59% 24.24% 38.31% 62.99%
RoBERTa 12.22% 29.14% 47.28% 74.36%
XLM-RoBERTa 17.19% 43.47% 60.02% 79.13%

Table 2: The four accuracy measures calculated per model for predicting the end year of the Closed
Interval subset masking separately.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 11.92% 28.09% 45.45% 74.34%
BERT base cased 12.38% 34.44% 53.57% 80.74%
BERT base uncased 9.20% 22.18% 33.04% 54.25%
RoBERTa 7.09% 17.11% 26.58% 44.37%
XLM-RoBERTa 11.39% 30.07% 49.82% 75.67%

Table 3: The four accuracy measures calculated per model for predicting the start year of the Closed
Interval subset masking separately.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 3.21% 15.97% 33.36% 67.81%
BERT base cased 4.35% 17.43% 36.72% 68.78%
BERT base uncased 2.99% 10.80% 19.99% 40.23%
RoBERTa 2.77% 10.52% 19.78% 39.05%
XLM-RoBERTa 3.17% 17.61% 37.57% 68.78%

Table 4: The four accuracy measures calculated per model for predicting both the start and end years of
the Closed Interval subset masking separately.
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Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 4.95% 10.68% 15.83% 27.71%
BERT base cased 5.51% 13.59% 20.75% 36.03%
BERT base uncased 6.15% 14.19% 20.77% 34.34%
RoBERTa 7.37% 15.25% 22.62% 39.58%
XLM-RoBERTa 6.69% 13.98% 20.76% 36.97%

Table 5: The four accuracy measures calculated per model for predicting the end year of the Closed
Interval subset masking together.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 4.29% 9.78% 13.94% 21.52%
BERT base cased 5.32% 10.44% 15.30% 25.86%
BERT base uncased 4.07% 8.86% 12.84% 21.89%
RoBERTa 3.59% 7.66% 11.56% 20.82%
XLM-RoBERTa 4.76% 10.78% 15.52% 27.04%

Table 6: The four accuracy measures calculated per model for predicting the start year of the Closed
Interval subset masking together.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 1.12% 3.27% 5.25% 11.24%
BERT base cased 1.23% 2.97% 5.19% 13.20%
BERT base uncased 0.99% 2.99% 4.98% 10.94%
RoBERTa 1.07% 2.05% 3.28% 9.04%
XLM-RoBERTa 0.74% 1.96% 3.92% 11.88%

Table 7: The four accuracy measures calculated per model for predicting both the start and end years of
the Closed Interval subset masking together.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 5.64% 13.29% 22.19% 54.95%
BERT base cased 3.29% 11.44% 22.05% 51.12%
BERT base uncased 6.78% 14.52% 21.36% 35.08%
RoBERTa 5.28% 22.95% 35.48% 58.94%
XLM-RoBERTa 8.31% 28.43% 47.92% 70.76%

Table 8: The four accuracy measures calculated per model for predicting the duration of the Closed
Interval subset.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 3.53% 10.93% 16.29% 29.80%
BERT base cased 1.49% 6.01% 9.83% 19.08%
BERT base uncased 2.67% 7.48% 12.18% 22.70%
RoBERTa 2.87% 8.09% 12.17% 23.01%
XLM-RoBERTa 1.41% 5.31% 8.18% 15.72%

Table 9: The four accuracy measures calculated per model for predicting year of the Right Open Interval
subset.
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Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 8.40% 17.90% 22.65% 28.76%
BERT base cased 1.12% 3.32% 5.48% 16.32%
BERT base uncased 4.01% 9.71% 16.58% 25.34%
RoBERTa 4.69% 13.78% 20.76% 30.56%
XLM-RoBERTa 3.25% 6.95% 8.62% 11.94%

Table 10: The four accuracy measures calculated per model for predicting year of the Left Open Interval
subset.

Acc top1 Acc top3 Acc top5 Acc top10

DistilBERT base uncased 3.34% 9.73% 14.83% 26.26%
BERT base cased 1.78% 6.51% 11.18% 22.15%
BERT base uncased 1.48% 5.12% 8.69% 16.91%
RoBERTa 3.29% 8.82% 13.72% 27.13%
XLM-RoBERTa 0.82% 4.26% 8.06% 18.13%

Table 11: The four accuracy measures calculated per model for predicting year of the Event Year subset.
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