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Abstract

An outlier is a point that deviates significantly from the pattern that has been formed from

the majority of the data points. The presence of outliers can exacerbate statistical results which

leads to misrepresented relationships between different data and faulty conclusions based on

them. This is an urgent issue in a data driven world and people in the data sector are following

harsh and tedious procedures to deal with that. In the present article, an half automated tool

for outlier detection returning a single score for a structured dataset is proposed with minimal

human intervention. This tool can either be used in a python environment or directly in a

python script.

Key Words: Outlier detection tool, Autoencoder, ngrams, Isolation Forest, Lightweight

Online detection of anomalies
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Chapter 1

Introduction

In the past 20 years, there has been a prodigious increase in available data, particularly in

the big data section as measured by bibliometric analysis by Raban and Gordon (2020) , which

in turn increases the already high demand for data scientists to make use of this data to benefit

whoever is in need. One way to moderate the need for data scientists is to aid the existing ones

to work more efficiently. Data scientists spend about 60% of their working time on cleaning and

organizing datasets and 19% of it on collecting datasets according to Maqsood et al. (2017).

Thus, it is safe to assume that by automating the process of evaluating a dataset in terms of

their anomaly will benefit data scientists as they will not waste time on organising datasets

which would eventually proven to be too anomalous for the intended use such as prediction

making. Furthermore, anomaly detection is crucial to increase cyber security as it can be used

to detect cyber intrusions that are likely to cause significant damage to various objects ranging

from databases Sallam et al. (2016) even to the power grid itself Sallam et al. (2016).

The purpose of this paper to propose a tool which can assign an anomaly score to any given

structured dataset without supervision from user apart from importing some initial parameters

regarding the nature of the dataset as well as the preferred method of detecting outliers. The

only needed inputs are the path of the dataset of interest, the method that will be used for outlier

detection, a threshold which determines the cut-off point between an inlier and an outlier and a

function to aggregate the individual scores of rows or attributes to calculate the overall score of

the dataset. Parameters for the nature of the dataset are asked to determine further parameters

needed for the method of detection such as number of epochs, number of layers and neurons per

layer, activation function in hidden layer, batch size and number of estimators. Furthermore, the

available methods for the outlier detection are the Ngrams, the Autoencoder(AE), the Isolation

Forest(IF) and the Lightweight online detection of anomalies(LODA). The first one is used for

string type data while the other three algorithms are used for numeric type of data.

However, before delving deeper into the tool, it would be wise to elaborate on what is con-

sidered an outlier. An outlier is a value or set of values which deviates significantly from the

pattern formed by the majority of the values. As explained in detail by D. and Sasidhar Babu

(2016), there are 3 types of outliers, global, contextual and collective outliers. Global are the

outliers with an extremely high or low value in comparison to the rest of the values, contextual

outlier is a data point whose value is in accordance with the rest points, yet it is in the wrong
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CHAPTER 1. INTRODUCTION

context. For instance, a temperature value of 30 degrees Celsius is not extreme for the summer,

however it is an contextual outlier if such a temperature is noticed in the winter. Last but not

least, a collective outlier is a set of points which on their own have ’normal’ values, though if

observed collectively they deviate from the pattern. For example, even though it is normal for

one of your neighbors to be moving out on a day as people do this quite often, it is considered

a collective outlier if the whole neighborhood moves out on the same exact day. There are

numerous types of anomalies as mentioned by Foorthuis (2021), but in this article mostly ad-

dressed with 3 main types of outliers and some types of anomalies such as the multidimensional

numerical anomaly, where multiple quantitative attributes participate in an anomaly with each

of them having values that comply with the general pattern, though when combined together

those attributes create a data point that deviates significantly from the combined pattern. For

example, if you let ’acceptable’ values for height and weight of the general population be 160cm

to 190cm and 60kg to 90kg respectively and a data point has values of 185cm and 65kg, it is an

outlier. Although, those values are in the range of ’acceptable’ values, this data point deviates

significantly from the pattern that is formed because of the rest of the data points, thus it should

be labelled as an outlier.

This article proceeds as follows. Chapter 2 discusses the work that has already been done,

chapter 3 explains the fundamental characteristics of the outlier detection methods as well as

3 different approaches to quantify and measure the anomaly of a dataset, chapter 4 discusses

the performance of the tool in two different datasets, chapter 5 concludes the key points of this

article and proposes some steps that can examined in future research and chapter 6 discuss the

results that have been found and the reasons behind the performance of the tool.
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Chapter 2

Related work

Ngrams is a contiguous sequence of n items from a given sample and can be utilized to

identify outliers in a dataset. Regarding the this method numerous variations exist such as

constructing a model of normality and label as an outlier what does not coincides with it.

However, as mentioned by Li et al. (2003) these methods suffer from the limitation of high false

positive rate which was addressed in the same paper by identifying the critical parameters and

optimizing them to reduce the false positive rate. Later on, classification of the data points

is done which is essentially a discrimination between inliers and outliers N-grams is learned.

Zak et al. (2017) provided evidence that byte n-grams can learn from the code sections of a

binary as well as made a comparison between assembly and byte n-grams with byte n-grams

demonstrating higher discriminative ability. The outlier detection method works with a moving

window of n characters length and slides on the values of an attribute counting the times each

gram occurs. In case the input is a pair or triplet of attributes, the values of the attributes are

concatenated, and the algorithm search the Ngrams that have some character from the one value

and some of the other value. This way it is ensured, that the information of the combination

of the attributes is taken into consideration. After the results are gathered, the grams with

unexpected low frequency are labelled as the outliers as described in algorithm 1. This type of

algorithm due to its adaptability can be used on any data type whether it is float, integer or

string as all of those types can be casted easily into a string type. Ngrams is useful in attributes

such as telephone numbers, where specific values are expected and can not be treated as normal

integer values. For example, in telephone numbers there is always a plus sign followed by a 2

or 3 digit code indicating the country this number was purchased. In this kind of attributes

the digit code have a finite number of combinations which will occur numerous times in a big

enough dataset, hence if an ngram occurs way less times than the rest of them then it’s probably

a mistake and can be labelled as an outlier.

The literature acknowledges various ways to distinguish between different manifestations of

anomalies. Foorthuis (2021) makes a distinction between attributes to quantitative, qualitative

and mixed attributes as well as univariate and multivariate cardinality of relationship. Sakurada

and Yairi (2014) proposes the use of non linear dimensionality reduction with autoencoders as

a better performance tool for anomaly detection than linear and kernel PCA and is tested

it on both artificial and real data presenting that autoencoders understand the normal state
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CHAPTER 2. RELATED WORK

Algorithm 1 Ngrams training and classification

Input: data samples {xi}ni=1, threshold th
Output: A list of outliers
initialize outliers;
initialize Ngrams;
for j ← 1 to n do

add ngram to Ngrams;
end for
k = length(Ngrams);
f̂ = 1

k

∑
(fi)

k
i=1;

for j ← 1 to k do
if fj < f̂ then

add ngrami to outliers;
end if

end for
return outliers;

effectively and respond to anomalous input in a different way. They shown that autoencoders

can decrease work load by omitting complex computaions that other algorithms need. Later on,

Zhou and Paffenroth (2017) extended anomaly detection with autoencoders further by achieving

elimination of outliers and noise without access to any clean training data as often it is not

available. In order to do that different methods for handling missing data are tested on different

outlier detection algorithms such as LODA and IF.

The Autoencoder algorithm is a deep fully connected neural network whose fundamental

notion is predicting its own input. In more detail, this network’s input layer consists of as many

neurons as the attributes of the dataset and the input values are the values of the attributes of one

of the row of the dataset (data point). Then, in the hidden layers, neurons are fewer consecutively

in each layer up to a certain number of neurons which is called bottleneck. The output of the

bottleneck provides a reduced representation of the data point. What happens through this

process is that information of the data point is compressed up to a certain point which is

determined by the bottleneck and then the information is decompressed through a symmetric

but opposite process. In this symmetric and opposite process, layers have progressively more

neurons until the output layer has the same number of neurons as the input layer. This process

can be thought of as decompressing the information progressively in each layer. A deep network

similar to an autoencoder network can be seen in figure 2.1, where xi is the input values of

the i attributes and the x′i is the predicted by the network value. Then a loss function, such

as the mean squared error, is used to measure the difference between input and output and

after the proper training value of the loss function is minimized. The loss function indicates the

anomaly score of the data point and the aggregation over all the data points is the anomaly

score of the dataset. The loss function is expected to take low values in the majority of neurons,

whereas for the outliers the difference will be higher as the network is trained to predict the

input under the assumption that the percentage of the outliers is low, thus the predictions

always follow the pattern of the normal values. If the difference between input and output

exceeds the threshold then that data point is assigned as an outlier. The autoencoder is a

straight-forward solution for outlier detection as it is usually used for dimensionality reduction
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Figure. 2.1: The autoencoder architecture. The two neurons in the middle hidden layer is the
bottleneck of the network.

Figure. 2.2: Two dimensional normal distribution of data points with (µ1, σ1, µ2, σ2) =
(0, 2.5, 0, 2.5) (left plot), the anomaly score assigned to these points by the IF algorithm where
lighter colors indicate lower anomaly score (right plot).

of multidimensional data because the number of neurons in the hidden layers are significantly

fewer than the input which means that can be viewe as a reduced representation of the data as

mentioned by Aggarwal (2016). The reason behind autoencoders yielding good results is that

through the dimensionality reduction the information is compressed and patterns are learned

while through the opposite process of decompression the learned patterns are tested to recreate

the input.

Finally, the autoencoder suffers from two main limitations which are common for most of

the outliers detection methods. Firstly, it can work only on numerical values and secondly if

the percentage of the outliers is the dataset is high it can not yield good results. Unfortunately,

these problems are inherent to the model and can’t be dealt.

Another outlier detection method, that does not require a deep network to be trainied is

the Isolation Forest. Nine years after the first sight of anomaly detection by isolation of outliers

by Liu et al. (2008) an improved method was proposed by Xu et al. (2017), which is based on
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the idea of selective integration with the precision as the criterion and the simulated annealing

algorithm is used to select the tree with the highest abnormality detection. Meanwhile, the

efficiency of the algorithm is increased as the excess detection precision is avoided with minor

change in the Isolation Forest. As proposed by Liu et al. (2008) IF works fundamentally different

to Autoencoder and Ngrams. The basic principle is that instead of measuring the difference

between predicted and true value, it projects all the values of a pair/triplets of attributes into

a feature space where each attribute is represented as one dimension. Then, in each iteration a

random dimension is chosen and a split on it occurs at a random spot between the minimum

and the maximum of the values in the respective dimension. This random split in a random

dimensions reoccurs until in each hyper cuboid at most one point is contained, thus every point

is isolated from the rest of the points or the upper limit of iterations is reached. A binary tree

is created where in each split the random value is the threshold and if the data points exceed

this threshold, they are assigned to the right of the leaf, otherwise to the left of it. In the end,

the depth that each point has reached is measured (number of needed splits to isolate the point

is counted) and the lower the depth in the tree (number of splits), the more likely it is for the

point to be an outlier. Then, the whole process is repeated multiple times so many binary trees

are created. At this point, the training process is completed and each new point going through

the this algorithm goes in each trained tree separately and based on the number of splits in all

the trees an anomaly score is assigned to the data point. In the case, there is only one attribute

to be examined for anomalies the first step of picking a random dimension in the feature space

is omitted as it is an one dimensional space. This method suffers from a significant limitation

which is the introduced bias by the method itself as mentioned by Hariri et al. (2021). This can

be easier interpreted by an example. Let a normal 2 dimensional Gaussian distribution of data

points and the anomaly score as given by the Isolation Forest algorithm as seen in 2.2. What

stands out from the anomaly score plot is that there are four rectangles around the circle which

have assigned lower anomaly score than their direct neighbors even though there are not data

points at these areas. Hence, if a test point is in those rectangles it might be assigned as an

inlier even though it would not be one. This kind of bias is inherent to the algorithm as each

split at a random value is essentially a straight line at a given point and can be noticed even

with more than one normal distribution with more biased rectangles being formed as seen in

2.3.

Algorithm 2 IF’s training routine for k dimensions.

Input: data samples X,number of trees t
initialize Forest;
for i← 1 to t do

while points not isolated or steps < limit do
dim← random(k);
split← min(dim) + random(range(dim));

end while
iT ree← binary tree based on splits;
Forest← Forest ∪ iT ree;

end for
return Forest;
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Figure. 2.3: Two two-dimensional normal distributions of data points with (µ1, σ1, µ2, σ2)1 =
(0, 2.5, 10, 2.5) (top-left cluster) and (µ3, σ3, µ4, σ4)2 = (10, 2.5, 0, 2.5) (bottom-right cluster)
(left plot), the anomaly score assigned to these points by the IF algorithm where lighter colors
indicate lower anomaly score (right plot).

Zemicheal and Dietterich (2019) followed a different approach using LODA to address the

issue of streaming weather data which may be faulty due to a dysfunction in the weather sensors

and proposed some strategies to handle missing values in anomaly detection. Although, this is

useful as missing values occur in most of the data sets, no proposals had been done to increase

the performance of LODA in its core, which was done 2 years prior to that by Saarinen (2017),

who, initially, handled special cases by adding a weight to different data points so all data

points do not affect the result equally as well as testing the limits of the method when data is

not pre-processed and proposed different techniques to set the threshold of determining if the

anomaly score is high enough for the point to be labelled as an outlier. LODA is an ensemble

of one-dimensional histograms which are weak learners, though a collection of them seem to

yield satisfactory results. Briefly described this algorithm initially selects each data point of

the dataset iteratively and selects a random subset of attributes which consists of the reverse

square root of the number of attributes of the initial dataset, which according to Li (2007) can

preserve the euclidean distances between points in the projected space and the input space.

Then, based on the chosen attributes it creates/updates the histogram about the probability

density of occurrence of values in each dimension separately as seen in algorithm 3. LODA

determines if a new data point is an outlier or not depending on the loglikelihood of all the

values of the data point co-occurring simultaneously according to the histograms that have been

created in the training process as described in algorithm 4. The word online in the name of

the method means that the model is trained continuously on new incoming data and adapts to

incoming traffic further and further.

After the building of histograms is completed, for each incoming data point the negative

loglikehood of the combination of values is measured, which means that the less likely a tu-

ple is, the higher the anomaly score will be and if the score exceeds a threshold, the tuple is

labelled as an outlier. The most obvious flaw of this method is that it works under the assump-

tion that probability distributions on different attributes are independent, whereas that does
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Algorithm 3 Loda’s training (update) routine.

Input: data samples {xi}ni=1

Output: histograms {h1, ..., hn}, projection vectors {wi}ki=1 initialize projection vectors with[
d−

1
2

]
non zero elements; initialize histograms {h1, ..., hn}ki=1;

for j ← 1 to n do
for i← 1 to k do

zi = xTj wi;
update histogram hi by zi;

end for
end for
return {h1, ..., hn}ki=1 and {wi}ki=1;

Algorithm 4 Loda’s classification routine on sample x.

Input: sample x, set of histograms {h1, ..., hn}ki=1 and projection vectors {wi}ki=1;
Output: anomaly value f(x);
for i← 1 to k do

zi = xTj wi;
obtain p̂i = p̂i(zi) from hi;

end for
return f(x) = − 1

k

∑k
i=1 log (p̂i(zi));

not stand true in practice (Pevný (2016)). However, LODA can still deliver very good results,

which may happen for similar reasons as those in naive Bayes classifiers theoretically studied by

(Zhang (2004)), which give conditions that cancel out the effects of conditional dependencies. A

secondary drawback of this method is that it works only with numerical values as IF and autoen-

coder. The LODA algorithm is explained in great detail, complemented by the mathematical

background in the original paper (Pevný (2016))
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Chapter 3

Measuring the anomalies

The goal of this tool, as aforementioned, is to ease the process of looking for outliers for data

scientist, thus ideally the user should input the dataset and receive an anomaly score of each

tuple which later on can be aggregated to an overall score for the dataset. Then, data scientists

can determine whether the dataset would be appropriate for the intended use omitting countless

hours spent to wrangle the dataset. In this context, the first step for the user is to provide

a valid dataset to the algorithm as well as some parameters which will be discussed in detail

later. The next step that occurs is the anomaly detection in each attribute individually and/or

in pairs and/or triplets of attributes based on the selected algorithm by the user. Finally, the

anomalies are gathered on each tuple and an anomaly score is calculated for each tuple based

on the method selected by the user.

3.1 Quantifying the anomaly row-wise

The four aforementioned methods are used to identify the anomalies in the dataset, yet

identifying anomalous cells in a dataset is only the first step. Now, the issue of ranking the tuples

in anomaly needs to be addressed. For the ranking of the tuples, there are two alternatives,

count of occurrence and pagerank. Those two alternatives are different ways to rank the tuples

in terms of their anomaly, though this is inadequate as no overall score for the dataset is derived.

To attain this, the tuples with highest scores are labelled as outliers and the overall score is the

ratio of outlying tuples over the total number of tuples in the dataset.

3.1.1 Count of occurrence

For this method, I go through all the anomalous values iteratively in single, pairs and

triplets of anomalies and select a subset where this anomalous value occur in the same attribute

as in the initial anomaly. Then, in this subset all the anomalies where the anomalous value

occur are counted and assigned as a temporary score for all the tuples of the subset. By the

time, that all the anomalous values are checked each tuple has a score based on the number

of anomalous values in it as well as the number of anomalies this anomalous value takes part

it. According to this method, pairs of attributes anomalies are heavier weighted than single

9
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Algorithm 5 Count anomalies in row-wise ranking

for anomalous value do
select subset with the value in A
for row in subset do

if subset[A] = value then
line score += 1

end if
end for

end for

Algorithm 6 Page rank algorithm.

Input: nodes {ni}n1 , edges e,timesteps t
Output: Probability of random walker stepping on each node at timestep t

initialize Scores
π(0) ← ( 1n ,

1
n , ...,

1
n);

R← β · P + (1− β) · v · eT ;
while i < t or reaches convergence do

π(i+1) ← R · π(i);
end while
return π(i)

anomalies and triplets of attributes than pairs of attributes. This can be explained by the fact

that this iterative method goes through all the anomalous values of a pair, meaning that some

anomalies are counted twice, once for each value occurring in the pair of attributes. For an easier

interpretation, an extreme example can be pictured of two tuples of 4 attributes in total where

one has 4 single outliers and the other one 4 outliers where in all of them one of the attributes

takes part it. Both have four outliers in total, where the first one has extreme values in terms

of the corresponding range of values whereas in the second tuple the values are not extremely

high or low, yet they deviate from the formed pattern of the corresponding combination of

attributes. In this occasion the second tuple will achieve a higher anomaly score due to one

attribute occurring in all the anomalies, thus all the attributes will be counted twice.

One could argue that this statistical measure is too näıve and, therefore, may not yield

good results. A more sophisticated alternative to avoid this statistical metric is the Pagerank

algorithm. Before delving deeper into it though, it should be mentioned that is more computa-

tionally intensive as a network must be built.

3.1.2 PageRank Algorithm

For this method of ranking, initially a graph needs to be created. The nodes of the graph is

the unique anomalous values of each attribute and the edges connect the anomalous value that

occur in the same tuple.

The PageRank algorithm consists of two fundamental entities, initial distribution and tran-

sition matrix, and using just these entities it assigns a score to each node, hereto anomalous

value, indicating how likely it is to occur. This algorithm can be though as a random walker

who starts from a random node and in each timestep walks to a random yet connected to the

10
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current node. The higher the score of a node the more likely it is for the walker to move to this

node. The initial distribution π(t) is a vector of n values, where n is the number of nodes and

t is the timestep, which are all equal to 1/n, indicating that in the beginning all the anomalies

are equally probable for the walker to step on so that bias is avoided. The transition matrix (P)

is a square and positive matrix, n× n, where every aij in P is given by the relation 3.1.

aij =
∑
j

aij
dj

, (3.1)

where dj is the outdegree of the node. In other words, this means that each node share it’s

score equally to all the nodes that is linked with. In the next timestep π(t+1) can be calculated

by the formula: π(t+1) = P · π(t). The π(t) shows the probability of the random walker to be

on each node. From this formula we can see that π(t) is an eigenvector of the matrix P as

π(t) = P ·π(t) and the eigenvalue of it is 1. Generally, it would be mandatory to compute all the

eigenvectors to find the one describing the graph correctly which would make the process even

more computationally intense. However, according to the Frobenius-Perron theorem (reference)

there is a unique positive eigenvector for such matrices and in this case is the vector π must

be positive (all the consisting elements are probabilities) thus it is the dominant vector with

eigenvalue of 1. The algorithm is terminated when it converges to a value according to the power

method algorithm (reference). However, there are two issues with convergence in graphs, the

first one is the case that the walker reaches a point where can move to one node and back, which

is also known as the spider trap problem and the second one is reaching a node which has no out

links, which is known as a dead end. To solve these two problems, teleportation is introduced to

algorithm which is nothing more than an extra term to alternate slightly the transition matrix in

a way that is each timestep there is a slight probability of teleporting the walker to a completely

random node. The notion of teleportation can be mathematically expressed as in 3.2

R = β · P + (1− β) · v · eT

v = (1, 1, 1, ..., 1)T

eT =

(
1

n
,
1

n
,
1

n
, ...,

1

n

) (3.2)

, where β is the probability of a normal step for the walker and 1 − β is the probability of

teleporting to a random node, v is a vector of ones and e a vector of 1/n, both with length of n.

The product of this algorithm is a score for each node of the graph indicating how likely

is for the walker to step on it as explained in algorithm 6 with the help of equation 3.1 and

3.2, which means how anomalous each value is as values which connects to more anomalous

values are more anomalous themselves. Then, the anomaly score of each tuple is the sum of the

PageRank score of the anomalous value that are contained in the tuple.

As mentioned above, the PageRank algorithm yields goods results for directed graphs, but

there are a some instances of it being used in undirected graphs in literature (Abbassi and

Mirrokni (2007)), (Andersen et al. (2006)), (Iván and Grolmusz (2011)), (Perra and Fortu-

nato (2008)) and according to (Grolmusz (2015)) it can be used in undirected graphs and the

PageRank score is proportional to the degree distribution of the graph.

11
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3.1.3 Ngrams ranking of anomaly

Both of the aforementioned methods require a specific attribute to be anomalous in order

to return a proper result. However, this is not the case in the Ngrams, where an outlier is not

the cell of an attribute but a part of a string type of data, which is problematic if one wants

to utilize those methods, thus a different approach should be used to come up with a score

of anomaly for each row. The method followed in this paper is to assign a score to each row

based on then number of labelled anomalous n-grams. In detail, the score of each row is the

sum of scores for single, pairs and triplets of attributes, which are derived by simply counting

the number of labelled anomalous n-grams in the corresponding row. The labelled anomalous

n-grams are those which occur fewer times than a percentage of the average (which is set by the

user, default is 0.5). Finally, a threshold is set to return the percentage of the most anomalous

rows based on the anomaly score of each row, e.g a threshold of 0.2 would return the 20% of

highest anomaly score rows.

3.2 Quantifying the anomaly attribute-wise

3.2.1 Quantifying with AE, IF, LODA

Another way to derive an overall score for the dataset is to quantify the anomaly per

attribute and then aggregate the scores of the attributes to calculate the overall score.

Initially, the anomalies in each row are identified for the whole dataset based on one of

the available algorithms. Afterwards, a score is assigned to each attribute based on the number

of times an anomaly occurs containing a value of this attribute. At this point, each attribute

has a score assigned to it, though this number is not indicative of anomaly of the attribute in

comparison to the rest of the dataset. Therefore, normalization is needed in the scores so they

are comparable. The normalization factor is the number of the anomalies an attribute would

potentially participate in if every value of it was an outlier, which is given by the formula 3.3.

nfactor = n · (1 + (m− 1) + (m− 1) · (m− 2)) = n · (1 + (m− 1)2), (3.3)

where n is the number of rows and m is the number of attributes of the dataset. The first factor

is about the attribute participating in a single outlier, the second one is about participating in

an anomalous pair and the third one about a triplet.

Since all the attributes are assigned with a normalized score, hence they are comparable,

the overall score of the dataframe can be attained by aggregating the attribute scores, e.g. by

calculating the mean of the scores. Even though, different functions can be used to aggregate

the scores such as median of the scores, hereto the mean of them is primarily used.

3.2.2 Quantifying with Ngrams

Similarly to row-wise quantifying of anomaly a different approach is used in Ngrams al-

gorithm due to the different nature of outlier detection. Initially, a score is assigned to each
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attribute which is derived by the number of labelled outlying Ngrams that occur in a value of

the corresponding attribute. However, this score is not comparable between different attributes

as the number of maximum potential anomalous Ngrams in an attribute is strongly correlated

with the length of the string type data. Thus, each attribute score is devided by the potential

maximum number of anomalous ngrams in it. This upper limit is calculated with formula 3.5,

which is derived by summing 3.4 .

nfactorsingle =

#rows∑
i

(length(value)− n+ 1)i,

nfactorpair =

#rows∑
i

(length(value1 + value2)− n+ 1)i,

nfactortriplet =

#rows∑
i

(length(value1 + value2 + value3)− n+ 1)i,

(3.4)

where n is the length of the Ngram and length(valuei) is the number of characters in the cell

of an attribute.

nfactor = nfactorsingle + nfactorpair + nfactortriplet =

=

#rows∑
i

(length(value)− n+ 1)i +

#rows∑
i

(length(value1 + value2)− n+ 1)i+

+

#rows∑
i

(length(value1 + value2 + value3)− n+ 1)i.

(3.5)

At this point, each attribute has a normalized anomaly score assigned to itself, so anomaly

in attributes now can be compared and an overall score can be calculated for a dataset by

aggregating the attribute scores by any aggregating function, though in this paper the mean is

used primarily.

At this point, the tool has in its arsenal 4 different approaches to detect the anomalous

points and 3 ways to rank the attributes or tuples of the dataset based on the anomaly score

and can return an overall anomaly score for the dataset. However, the performance of some

of the detection methods strongly depends on the inputted hyper parameters while initializing

the method, thus fine tuning of those parameters is needed in different situations so the overall

performance of the tool is optimized.

3.3 Process of the tool

As it has already been mentioned, this is the first tool that gives the opportunity of having

four different approaches while combining it with three methods to rank the anomaly in the

dataset and return a single score. To ease the process of familiarizing with the tool, in this

section all the option are explained.

In figure 3.1, there is the over view of tool. Initially, the user needs to input the dataset
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Figure. 3.1: Overview of the outlier detection tool.

and based on the size of the dataset the corresponding hyper-parameters are set based on

the configuration file. Consequently, the user needs to choose one of the available detection

methods (Ngrams, Autoencoder, Isolation Forest, LODA) and determine the training split for

the methods that need training or the size of the Ngrams and the threshold for outliers in

the Ngrams. This threshold is the percentage of deviance from the mean frequency of all the

ngrams up to which is considered acceptable. Afterwards, ranking of the anomalies needs to be

done, which can be achieved in two ways, row-wise and attribute-wise. At this point, one more

threshold is needed, which indicates the elements that will be considered as outliers depending

on the ranking score.

In row-wise ranking, the PageRank algorithm can be utilized or a simple count of the anoma-

lies each anomalous value occurs in and based on the anomalies each tuples contains (summed

anomalies each anomalous value participates in the corresponding row), they are ranked in terms

of anomaly. The summary of the simple count of the anomalies in each tuple can be read in

the form of pseudo code in algorithm 5. The Ngrams method follows a different approach of

ranking as it is based on counting the number of anomalous Ngrams that occur in each row. In

attribute-wise ranking for all the methods except from the Ngrams, the number a value of each

attribute participates in an outlier is counted for each attribute separately and these scores are

normalized by a factor as described in formula 3.3. For the Ngrams method, the score of each

attribute is measured as the ratio of anomalous Ngrams over the potential maximum Ngrams.

Finally, the overall score for the row-wise and attribute-wise is the percentage of anomalous rows

over all the rows and the aggregated attribute scores, which can be aggregated by the mean or

the median.
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Chapter 4

Implementation and Installation

4.1 API for the created library

This tool can be used directly from the python terminal. Although, this can be useful

on its own, it would be also practical if it could be included in any script for individual use,

hence a library has been created to enable users to use it more conveniently. This library can

be imported by using import outlier_detection_library as od and contains to classes, the

Detector and the Ranker.

Detector objects just need one parameter to be determined for them to be initialized, which

is the method parameter indicating which detection method will be followed to determine which

data points are outliers and its default value is LODA as it is a fast and accurate method.

Detector objects give the option to the user to import data from a local file using the path of it

with the get_data method, which is an improved of the read_csv and read_excel offered by

pandas as it tackles some of the limitations of the aforementioned methods such as the reverse

slash (Windows users) and also can read both .csv and .xlsx files. The second method of these

objects is the detect method which needs a few parameters to be set such as the dataset of

interest, the train_split parameter (ratio of dataset used for training), con parameter (ratio of

outliers in the dataset) which can take values between 0 and 0.5, n parameter which determines

the length of the grams in case Ngrams method is used for detection and, finally, the th parameter

which set the limit of acceptable deviance from the mean frequency in Ngrams for a point to not

be labelled as an outlier. The default values for these parameters are 0.5, 0.1, 3, 0.3 respectively.

The Ranker objects need more parameters to be initialized, which are method, att_ranking,

PageRank and the threshold parameter. The method parameter is the same as the one in the

Detector objects, the att_ranking parameter determines whether the ranking of the dataset

will be executed in the rows or in the columns of the dataset and it is a binary parameter, where

0 means that the ranking occurs in the rows whereas 1 means that the ranking occurs in the

columns. The PageRank parameter is binary as well, where 0 means the the count method which

is explained in 3.1.1 and 1 that the PageRank algorithm is initialized. The final parameter is

the threshold parameter which sets the lower limit of the interval of anomaly scores which will

be labelled as outliers. For example, let the threshold parameter be 0.1, and the range of the
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anomaly scores in a conjectural dataset be [100− 1000], then data points with score greater than

1000− 0.1 · 900 will be labelled as outliers. The default values for these parameters are loda, 0,

0, 0.1 respectively. The Ranker objects offer the rank method which needs three parameters to

function properly, which are a dataframe with the predicted outliers in the same format as the

one provided by detect method of Detector objects, the dataset of interest and the function

parameter which indicates the aggregating function to be used to get the overall score of the

dataset based on the scores of either rows or columns of the dataset. The available values for

this parameter is mean and median and the default one is mean.

4.2 Overview of the tool

This tool is composed of three components. The most crucial component of the tool is the

outlier detection tool, which based on the given dataset as well as the instructions by the user can

make predictions about which values of the dataset deviate significantly enough to be considered

outliers. Consequently, the ranking component based on the outliers of each row ranks the rows

from the most to the least anomalous and returns to the user those with the highest anomaly

score. Finally, the last component of the tool is the parser, which essentially the user who

imports the path of the dataset. At this point, it should be mentioned that a configuration file

is used before the detection component is initialized to import the hyper parameters needed for

it to work.

4.3 Installation

4.3.1 Hyper-parameter tuning

The two algorithms that need to be tuned are the Autoencoder and the Isolation Forest.

The hyper-parameters for the former algorithm that are tuned are the number of epochs that

that the model is trained, the activation function that is used in the hidden layers, the number

of the hidden layers, the number of neurons per hidden layer and the batch size. The hyper-

parameter tuning is done with grid search cross validation, which means that a 4 dimensional

grid (number of hidden layers and neurons in them are compressed into one dimension) is created

with the values of interest for each dimension and then for each combination of parameters cross-

validation occurs. For both datasets and all the settings, a 90% split is used for training and the

rest 10% is used for validation. Cross-validation is repeated 3 times so the tuning is statistically

more robust. Last but not least, the metric for calculating the score of each set of parameters

is the accuracy, which is defined as the acc = (TP + TN)/(TP + FP + TN + FN), where TP,

TN is true positive, true negative respectively.

The search grid of the autoencoder method consists of 4 dimensions. The first one is the

batch size which can be 32, 64 or 128, the second one is the number of epochs which can be 20, 50

or 100, the third one is the number of hidden layers and the number of neurons in each of those

layers. This can be attained by importing a list of n elements, where n is the number of hidden

layers and each element is an integer which represents the number of neurons in the layer and
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the available option on the grid are [64,32,16,1,16,32,64],[32,16,1,16,32] and [4,1,4]. The choice

of the number of layers and neurons is the one that determines whether the model will over- or

underfit in the training data, thus the three given option having gradually decreasing complexity

both in number of layers and neurons per layer. The fourth dimension is the activation function

of the hidden layers which can be either ’relu’ or ’tanh’. In short, the ’relu’ function returns 0 if

the input is lower than a specified threshold (usually 0) and linear with gradient of 1 for inputs

greater that the threshold. The ’tanh’ function returns the value of the hyperbolic tangent of

the input. Both of them are used to ensure that the the output of a hidden layer will not be

linear, thus more complex patterns can be detected. The search grid of the Isolation Forest

method consists of just 1 dimension which is the number of the binary trees and the values of

it for the fine-tuning is 50,100,200 and 400.

Before diving into the fine-tuning of those two methods, it should be mentioned that both

methods depend on a hyper parameter called contamination which affect significantly the results

of these algorithms as it determines the threshold, which if exceeded a point is labelled as an

outlier. This parameter should be set based on the percentage of outliers in the dataset, which

requires the user to know it in advance, which in most cases is a fault assumption. Thus, in the

hyper parameter tuning, even though the contamination percentage of both datasets is known,

this parameter will remain is the default values which is 0.1 as in real-world situation even if

the user can change it, it would be a rough estimation instead of the actual value.

Autoencoder fine-tuning

For the Vertebral dataset, which is a small dataset containing real-world data the optimal

hyper-parameters are 20 epochs of training, batch size of 128 inputs per batch, ’tanh’ as the

activation function in hidden layers and a network which consists of 7 layers with 64 neurons

in the first hidden layer which are step-wise halved and a bottleneck of 1 neuron (bottleneck is

explained later one).

For mulcross dataset, which is a vast dataset containing synthetic data the optimal hyper-

parameters are 100 epochs of training, batch size of 32 inputs per batch, ’relu’ as the activation

function in hidden layers and a network which consists of 5 hidden layers with 32 neurons in the

first hidden layer which are step-wise halved and a bottleneck of 1 neuron as it can be seen in

table 4.1.

A second fine-tuning has been done and the results are slightly different for the autoencoder

as for the mulcross dataset the batch size is reduced to 32, but more interestingly the complexity

of the model increased as the hidden layers are 7 with the first one containing 64 neurons while

the activation function in the hidden layers remained the same. In the Vertebral dataset even

though there were changes in the parameters such as reduced hidden layers, only 5 with the

first one containing 32 neurons, and different activation function, ’relu’ is picked this time, the

complexity of the model is not significantly altered as a more complex activation function is

chosen, yet the reduced hidden layers compensate for this increase in complexity. The batch

size for the latter dataset remained steady and the number of epochs for both dataset, which

indicates that the slight deviation between the two runs may be due to the inherent randomness
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a/a Autoencoder
Batch size Epochs Hidden function Neurons/ Layers Avg time

Mulcross 32 100 relu [ 32, 16, 1, 16, 32] 46028s
Vertebral 64 20 tanh [ 64, 32, 16, 1, 16, 32, 64] 265s

Table 4.1: Fine-tuning for Autoencoder algorithm.

a/a Isolation Forest

Estimators Average time
Mulcross 50 250s
Vertebral 400 7s

Table 4.2: Fine tuning for Isolation Forest algorithm.

of the autoencoder.

Isolation Forest fine-tuning

For the Isolation Forest the hyper parameter tuning is remarkably simpler. There is only

one parameter that needs to be fine tuned, which is the number of the estimators which are

used to determine the number of the binary trees which will be trained in the ensemble.

The results of the fine-tuning of the Isolation Forest model are the following: for the exten-

sive mulcross synthetic dataset only 50 binary trees are enough to yield the best possible results

out of all the available options. On the other hand, the small dataset with real-world data needs

the maximum of the available numbers of estimators which is 400 binary trees as it can be seen

in table 4.2.
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Chapter 5

Experimental evaluation

The proposed algorithm is tested on two different datasets. There are two reasons for this

testing, the first one is that, obviously, performance tests are needed to evaluate the algorithm

and the second one is that they are some hyper-parameters in some algorithms that are initialized

which need to be tuned.

5.1 Data

Those two datasets are the Vertebral dataset and the Mulcross dataset. The former

dataset is found on the machine learning repository (https://archive-beta.ics.uci.edu/ml/

datasets/vertebral+column) Barreto (2011) and it consists of 240 instances and 6 attributes.

Each instance refers to a different patient and the patient is represented by six biomechanical at-

tributes which are pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius

and grade of spondylolisthesis, though the units of these measurements are not given by the

creators. The latter is found OpenML https://www.openml.org/search?type=data&sort=

runs&id=40897&status=active. The Mulcross dataset consists of 262144 rows and 5 columns,

one of which is the label of outlier or not. What is interesting about this dataset is that it is

generated from a synthetic data generator Mulcross, which basically generates a multi-variate

normal distribution with a user specified number of anomaly clusters. The details of this specific

dataset can be found in Liu et al. (2012), but in short the ratio of anomalies to total number of

points is 10%, the dimensions are set to 4 and the distance factor, indicates the distance between

the center of normal cluster and the centers of anomaly clusters, is set to 2. Since, this dataset

consists of synthetic data, no information is given regarding the attributes apart from the fact

that all of them have numeric values.

The reasons behind the selection of these datasets may be quite obvious, yet they need to

be mentioned. Initially, having a dataset with real data and one with synthetic data gives the

opportunity to make a comparison of performance of the algorithms between real-world and

synthetic data. Furthermore, both of the datasets have single digit number of attributes which

is helpful as limit computational power is available. Even a negligible increase in the number

of attributes, will exponentially increase the complexity of the problem as a model needs to be
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Table 5.1: Accuracy, precision and recall of all methods on Vertebral dataset with the threshold
set to 0.3.

Detecting method Ngrams AE AE IF IF LODA LODA

Ranking method - Count Pagerank Count Pagerank Count Pagerank

Accuracy 0.85 0.87 0.70 0.825 0.57 0.85 0.79

Precision 0.125 0 0.004 0 0.06 0 0

Recall 0.003 0 0.007 0 0.16 0 0

trained for all the possible combinations of attributes separately and then make predictions. For

example, an increase from 6 to 7 attributes would increase the possible combinations of single

attribute, pairs of attributes and triplets of attributes by 22, which means that 22 more models

need to be trained, which translates to an immense increase in computational load.

A similarity that both of these datasets share, is that each of their tuple comes labelled as

an inlier or outlier in the attribute ’label’ and ’class’, respectively. This attribute is excluded in

the process of outlier detection and retrieving the anomaly score of the dataset, though it is used

later to evaluate the performance of different algorithms. Also, the same datasets can be used

to tune the hyper-parameters of some of the algorithms and conclude which hyper-parameters

work best for real-world and synthetic data.

5.2 Quality of the results

In this work, the evaluation of the results of the tool will be done on the Vertebral dataset

only, for reasons explained later on in detail. All the points of the dataset will be labelled either

as inliers or outliers and the metrics used for evaluation are accuracy, precision and recall, which

are given by pr = TP/(TP+FP ) and Re = TP/(TP+FN) respectively for precision and recall,

where TP is true positive and TN is true negative. Also, the threshold is set for the test at 0.3.

The accuracy formula is given in 4.3.1 section. Precision indicates the percentage of accurately

labelling a data point as an outlier out of all the actual outliers, whereas recall indicates the

percentage of truly outlying points detected by a method as outliers. According to table 5.1,

the accuracy of all the detecting methods is quite high, whereas the precision and recall metrics

are almost always below 10%. The high accuracy of all the algorithms can explained by the fact

that inliers, which is the majority of the data points, are mostly correctly labelled though the

detection methods face a difficulty with identifying points that deviate from the pattern, hence

the low precision which peaks at 0.125 using the Ngram method. Additionally, even for the

points labbeled as outliers the percentage of them actually being outliers is quite low with the

IF in combination with the Pagerank algorithm to rank the rows of the dataset reaching a peak

of 0.16. Another important point is that both ranking methods in combination with LODA

have 0 precision and recall. These mediocre results can be explained by the low threshold that

has been set. Therefore, an analysis about the threshold value should be done to determine the

results each method yield for this specific dataset.

Through the threshold value analysis, some conclusions can be drawn regarding the two

different ranking methods. For the figures 5.1, 5.2, 5.3 only the metrics for the AE method
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Figure. 5.1: Accuracy of the Autoencoder method and the Ngrams method against the thresh-
old value.

Figure. 5.2: Precision of the Autoencoder method and the Ngrams method against the thresh-
old value.

Figure. 5.3: Recall of the Autoencoder method and the Ngrams method against the threshold
value.
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are shown since the metrics for all the methods demonstrated similar behaviour in the same

range of values and it would just make the graph more challenging to interpret. Initially, for

all the ranking methods the accuracy seems to reduce as the threshold value increases, and for

the Ngrams method it seems that for threshold values greater than 0.7 it plummeted below 0.2.

Also, regarding the accuracy the count of occurrence method yields approximately 20% better

results that the Pagerank algorithm. Similar behaviour can be seen in the precision, where the

count of occurrence yields up to 3 times better precision than Pagerank algorithm when the

threshold value is set to 0.4. However, in figure 5.3 can be seen that the Pagerank algorithm

yields consistently better results, which can be up to twice as good as the count of occurrence

method for high threshold values such as 0.9. In the same figure, it is outstanding that the

Ngrams method can reach recall of 1 and it even converges to that value for values of threshold

greater than 0.7.

5.3 Limitations

Even tough this tool yields satisfactory results, it still suffers from a few limitations. Initially,

LODA is the fastest and scales more efficiently in big data than the four methods and yields as

good if not better results as the rest of them, though it should not be forgotten that it functions

under the assumption that the attributes are independent which in most cases does not stand

true. Thus, a test for correlation between the attributes should be run before using this method.

Another limitation of the tool is that ranking by the PageRank algorithm is a slow process.

Specifically, when it was used with the AE on a system with an AMD Ryzen 3900X and 16GB

of RAM running Windows for the detection and evaluation of the mulcross dataset (approx.

250000 instances), the detection of the outliers with AE, which is a relatively slow method as

a deep network needs to be trained, took marginally longer than an hour and the ranking with

the PageRank algorithm after 17 hours of running was not complete yet.

5.4 Performance

The performance of the tool is discussed in the following part, in terms of time needed to

execute the whole process as well as scalability. The aforementioned system setup is used for

the evaluation of the performance. All algorithm were used on the Vertebral dataset separately

and, then, all the ranking methods were tested as well. In table 5.2 the run time of each method

for detecting and ranking can be seen. The ranking process for the Ngrams method is almost

instantaneous as it took only 0.001 seconds but is not stated table 5.2 as it does not follow

any of these two tanking methods. According to this table, the method utilizing Ngrams is

significantly the slowest one, and is followed by the AE which is approximately 4 times faster.

The remaining two methods, are quite faster than AE which IF being done after 17.07 seconds

and LODA after just 1.1 second. These results, are expected as IF and LODA, do not need a

network to be build hence the reduced run time. Also, LODA was expected to be the fastest one

of them all as it is used for streaming high volume weather data as aforementioned. On the other

hand, what is remarkable is the run time of Ngrams as no training is needed and the process of
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Table 5.2: Run time of different detecting and ranking methods measured in seconds.

Detecting/Ranking Ngrams Autoencoder Isolation Forest LODA

Detection 206.37 51.01 17.07 1.1

Count of occurences - 1.25 2.46 1.25

PageRank algorithm - 9.18 26.51 7.95

tokenizing and calculating some statistical metrics is fairly fast. Furthermore, according to the

table 5.2 PageRank algorithm, as expected, is more computationally intensive and according to

this performance test is on average 8.13 times slower than the count of occurrences.

As aforementioned, the PageRank algorithm was not completed after 17 hours of running.

This can be explained by the fact that the dataset consists of approximately a million values,

thus the number of single as well as pairs and triplets of outliers are numerous which leads to

an extensive networks as each outliers is represented as a vertex in the network. As a result,

this network maybe is not even possible to be created due to shortage of RAM memory and the

process was stuck at a certain point. Therefore, the results and quality of results of the Mulcross

dataset have not been mentioned in this work.

If one takes into consideration the time needed to run a single AE network looking at table

4.1and the volume of data, which is approximately 903 times larger in the Mulcross dataset than

in the Vertebral dataset, it can be deduced that the AE scales sublinearly with the volume of

data as it needed only 173.7 more time to complete a single network in the Mulcross than in the

Vertebral datset. Again, the sublinear scaling of the algorithm holds true for these two datasets

with the specific underlying complexity of the data. Also, it should be taken into consideration

that more neurons and layers were initialized in the less extended dataset as well as fewer epochs

were needed in the training process, which are two factors that counter act each other in the

time complexity of the model, so minor deviation due to those two factors is expected.

Moreover, IF is outstandingly faster than AE in both datasets, approximately 200 times in

the Mulcross and 40 times in the Vertebral dataset faster than AE and it even scales better than

AE as it needs only 35 more time for an increase in volume of data of 903. The difference in

speed of these two algorithms can be explained by the different approach they follow to detect

outliers as selecting random value and splitting a dimensions is simpler and faster for the cpu

than solving differential equations which is needed for the backpropagation of error in training

process of deep networks.

5.5 Discussion

Due to the computational load restriction conclusion can all be drawn from the hyper-

parameter tuning of the algorithms. Since the fine-tuning give quite different optimal parameters

for the two datasets, it can be deduced that the models need to be tuned based on the different

nature of the datasets. In detail, small datasets such as the Vertebral dataset with 6 attributes

only and 240 instances are benefited more by larger batch size as the highest available number of

batch size was chosen and more complex deep networks as the best performing one was the one
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with 7 layers where the most complex layer had 64 neurons. It counter intuitive that, although,

high complexity in the structure of the network is chosen, the number of epochs is the lowest

available which indicates that overfitting would occur for a higher number of epochs. Finally,

the activation function that is used is the not so advanced ’tanh’ function and, apparently, the

’vanishing gradient problem’, as proposed by Hochreiter (1998), does not appear in so small

datasets. It should be mentioned that even though fine-tuning is properly done, the number of

neurons and layers of the networks is strongly correlated with the underlying complexity of the

data, meaning that number of neurons and layers may variate according to the complexity of the

data. On the other hand, in the artificial mulcross dataset, which is strikingly more extended,

the lowest available batch size is selected and a simpler structure of network with only 5 layers

with the first one having 32 neurons is chosen. However, 100 epochs are needed for the loss

(error) to converge. The activation function is the ’relu’ function. Another point that should be

mentioned is that the set of 3 hidden layers with only 4 neurons and the bottleneck of 1 neuron

is too simple to detect any pattern in the data, even for the synthetic dataset which was build

based on a multi-variate normal distribution generator. Those results can be seen in table 4.1

as well as the average time of running a model in the hyper parameter tuning.

For the IF algorithm the difference in the number of estimators for the two datasets may

be explained by the fact that due to the shortage in training data in the Vertebral dataset more

estimators are needed to reduce bias in the predictions, whereas for the artificial dataset where

plenty of data is available for the training process a simpler model with fewer estimators is the

optimal option for detecting outliers.
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Conclusion

6.1 Key Points

To sum it up, this outlier detection tool is quite useful in the hands of data scientists as

it can save a lot of valuable time by yielding good results regarding the number of outliers in

a given dataset as the methods of detection initialized in it have been proved to successfully

detect anomalies. Furthermore, the anomaly score can be calculated either by rows or by

attributes giving the option to the user to determine whether some data points are anomalous

to be taken into consideration in the analysis or a whole attribute could may cause more harm

than good in the analysis. To accomplish that, three different approaches are offered to rank

the tuples/attributes of the dataset depending on the preference of user as well as the chosen

method of detection. To be even more efficient, the output of this tool is a single overall score

of the dataset based on the parameters that were selected, yet the most anomalous data points

are outputted as well in case the user wants to further examine those outliers. Finally, this

tool can be executed through the python terminal so one can have an expeditious result and an

independent library has been created to ensure that anyone can import and further process the

output of it. However, it should not be forgotten that this tool expects a dataset containing no

missing values or error values (e.g. -100K for temperature in case the sensor fails) as it would

either return an error or try to learn a pattern based on the error values. Therefore, appropriate

pre-process of the dataset is needed prior to the usage of the tool.

In this work there is no evaluation of the outlier detection tool on real-world data and

comparison between the result produced by all the algorithms in terms of accuracy, precision

and recall. The primary reason behind this deficiency of this work is the limitation of the

computational power as datasets containing real world data usually have hundreds of thousands

of instances with numerous attributes, usually more than ten, which make it infeasible for a

typical desktop computer to run so complex algorithms such as AE or PageRank algorithm on

so many instances. Furthermore, the ideal comparison would be to run the Ngrams method

with one of the remaining methods each time and measure the average accuracy, precision and

recall in each run. This should be done because usually datasets contain both string type and

float or integer type of data. After the three runs the accuracy, precision and recall as well as

the time of each run can be compared to determine which combination of methods can yield
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the best results for the chosen dataset. Later on, the same process could be executed but for

datasets with different properties, different volume of data or synthetic data so conclusions could

be drawn for which algorithms are more efficient for each type of dataset.

6.2 Future work

As mentioned previously, the results fine-tuning of the algorithms seem to deviate slightly

from run to run, which couldn’t be further examined due to limited computational power. Hence,

it would be interesting to see the results of fine-tuning with more available options for all the

parameters as well as more datasets to make the comparison of their characteristics even more

unambiguous. For instance, two datasets can be used with same type of data (synthetic/ real-

world) and different size, and similarly with just different type of data as well as different size

in the same type of data to examine the scalability of the tool. Furthermore, as explained in

Chapter 3.1.3 the Isolation Forest algorithm has some inherent bias, which may be addressed

by manually increasing the anomaly score in the rectangles surrounding the anomalous area.

26



Bibliography

Zeinab Abbassi and Vahab S. Mirrokni. A recommender system based on local random walks and

spectral methods. In Haizheng Zhang, Myra Spiliopoulou, Bamshad Mobasher, C. Lee Giles,

Andrew McCallum, Olfa Nasraoui, Jaideep Srivastava, and John Yen, editors, Advances in

Web Mining and Web Usage Analysis, 9th International Workshop on Knowledge Discovery on

the Web, WebKDD 2007, and 1st International Workshop on Social Networks Analysis, SNA-

KDD 2007, San Jose, CA, USA, August 12-15, 2007. Revised Papers, volume 5439 of Lecture

Notes in Computer Science, pages 139–153. Springer, 2007. doi: 10.1007/978-3-642-00528-2\
8. URL https://doi.org/10.1007/978-3-642-00528-2_8.

Charu C. Aggarwal. Outlier Analysis. Springer Publishing Company, Incorporated, 2nd edition,

2016. ISBN 3319475770.

Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using pagerank

vectors. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006),

21-24 October 2006, Berkeley, California, USA, Proceedings, pages 475–486. IEEE Computer

Society, 2006. doi: 10.1109/FOCS.2006.44. URL https://doi.org/10.1109/FOCS.2006.44.

Ajalmar Barreto, Guilherme Neto. Vertebral Column. UCI Machine Learning Repository, 2011.

Divya D. and Dr Sasidhar Babu. Methods to detect different types of outliers. pages 23–28, 03

2016. doi: 10.1109/SAPIENCE.2016.7684114.

Ralph Foorthuis. On the nature and types of anomalies: a review of deviations in data. Int.

J. Data Sci. Anal., 12(4):297–331, 2021. doi: 10.1007/s41060-021-00265-1. URL https:

//doi.org/10.1007/s41060-021-00265-1.

Vince Grolmusz. A note on the pagerank of undirected graphs. Inf. Process. Lett., 115(6-8):633–

634, 2015. doi: 10.1016/j.ipl.2015.02.015. URL https://doi.org/10.1016/j.ipl.2015.02.

015.

Sahand Hariri, Matias Carrasco Kind, and Robert J. Brunner. Extended isolation forest. IEEE

Trans. Knowl. Data Eng., 33(4):1479–1489, 2021. doi: 10.1109/TKDE.2019.2947676. URL

https://doi.org/10.1109/TKDE.2019.2947676.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 6(2):107–116, 1998. doi:

10.1142/S0218488598000094. URL https://doi.org/10.1142/S0218488598000094.

27

https://doi.org/10.1007/978-3-642-00528-2_8
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1007/s41060-021-00265-1
https://doi.org/10.1007/s41060-021-00265-1
https://doi.org/10.1016/j.ipl.2015.02.015
https://doi.org/10.1016/j.ipl.2015.02.015
https://doi.org/10.1109/TKDE.2019.2947676
https://doi.org/10.1142/S0218488598000094


BIBLIOGRAPHY BIBLIOGRAPHY
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