
Utrecht University

Master thesis

Parallelization strategies for
random path generation

Author: Supervisor:
Atze Schipper Dr. Mathieu Gravey
5991781

Second reader:
Drs. Kor de Jong

14 ECTS
Master Applied Data Science

July 1, 2022

Abstract

Geostatistical sequential simulations are becoming larger and larger.
In recent time, many parts of the simulation process have been par-
allelized to accommodate this growth. One part of the process that
has not yet been parallelized, but at some point inevitably will
have to be, is the calculation of the random path. In this paper,
multiple methods of parallelization of the random path generation
are presented. The most efficient one will completely parallelize
this process and will require no communication between computers
about the random path. All methods have been implemented to
make analysis of quality of randomness possible.

i

Contents

1 Introduction 2

2 Background 4
2.1 Measure of randomness . 5

3 Methods 6
3.1 Non-parallelized (baseline) . 6
3.2 Only margins non-parallelized (random order) 6
3.3 Only margins non-parallelized (sequential order) 6

3.3.1 Further parallelization . 7
3.4 parity consistent margins . 8
3.5 Shared seed . 9
3.6 Metric . 10

4 Results 12

5 Discussion 14
5.1 Methods . 14
5.2 Metric . 15

6 Conclusion 17

References 18

Appendix 20

1

1. Introduction

Geostatistics is a subdomain of statistics focusing on statistics in spatial context.
It provides a way to quantify uncertainty over spatially distributed variables. It
was originally developed to estimate ore reserves in the ground (Krige, 1951; Sichel,
1952), but nowadays is applied in a wide range of applications; ranging from hydro-
geology (Kitanidis, 1997) to agriculture (Buttafuoco and Lucà, 2016) for example.
An early geostatistical method is called Kriging (Krige, 1951) and was developed
to interpolate unknown spatial values. One of the drawbacks of such an estimation
method however, is that each estimated value is the most likely value according
to the known values (Gómez-Hernández and Srivastava, 2021). This leads to an
underestimation of the variance of the underlying random function. To overcome
this, simulation methods such as sequential indicator simulation (SIS) (Journel et
al., 1998) and sequential Gaussian simulation (SGS) (Deutsch, Journel, et al., 1992)
have been developed. These type of methods provide a distribution of values instead
of only a single optimal estimation, by implying spatial relations between pairs of
points in the form of covariance functions. These sequential simulation methods
are used to generate realizations of a random field by discretizing the field into a
simulation grid. Then for each point in the grid, an outcome of the random variable
is computed based on previously computed points and potential locally available in-
formation (Mariethoz, 2010). Theoretically, all previously computed points should
be used in the simulation of a new point. However, this would mean too heavy of
a computational burden as simulation grids become larger. For that reason usually
only a limited neighborhood of the point is used when simulating them. The order
in which the points of the simulation grid are computed is pre-arranged in the form
of a path. This path is assumed to be optimal when it is completely random. In
that way, it does not introduce constant bias between different realizations of the
simulation (Nussbaumer et al., 2018). A successor to these sequential simulation
methods, is is multiple-point statistics (MPS) (Guardiano and Srivastava, 1993),
another sequential simulation method. This method relies on the usage of a train-
ing image, from which information is used to simulate the rest of the simulation
grid. In early versions of MPS, the entire training image had to be scanned for
each simulated point (Guardiano and Srivastava, 1993. This method was too com-
putationally expensive to be used (Mariethoz et al., 2010) and improvements have
been made since, for example by (Strebelle, 2002), who proposed storing the infor-
mation of the training image in a search tree. This however caused problems with
excessive memory usage (Mariethoz et al., 2010). More improvements in efficiency
have been made among others by (Straubhaar et al., 2011), who proposed using lists
instead of trees, and (Mariethoz et al., 2010), who came up with the direct sampling
method. These improvements of MPS allowed for parallelization of the simulation

2

CHAPTER 1. INTRODUCTION

process on shared-memory machines, making larger simulations possible. However,
even with these improvements, further parallelization remained necessary to keep
up with growing simulation grids and increasingly complex spatial models. Mari-
ethoz came up with a taxonomy of three levels of parallelization: realization-level,
path-level and node-level. The aforementioned parallelization was on node-level,
where multiple processors can work together to simulate a single node (point in the
simulation grid). Path-level parallelization is the division of the simulation grid into
multiple sections, each to be simulated by a different processor. How this can be
achieved is described in (Mariethoz, 2010). The last level of parallelization on real-
ization level is the easiest one to achieve, and boils down to having each complete
simulation done by a different processor (for example Mariethoz et al., 2009). Paral-
lelization can be done either on shared-memory systems, or on clusters of computers
where each processor has its own dedicated memory. The problem of shared-memory
systems is that they are expensive and limited in amount of memory or number of
processors, so often clusters of computers are used. The drawback of these clusters
without shared memory is that communication can only be done by sending and
receiving messages. This is very slow compared to the speed of the processors and
often communication forms the bottleneck in computation time (Mariethoz, 2010).

Currently, path-level parallelization methods (e.g. Mariethoz, 2010; Peredo et
al., 2018), only parallelize the simulation of the nodes. They still rely on a single
computer generating the random path. This becomes a problem as simulations keep
growing in size and complexity, the generation of the random path becomes then
a non-negligible part of the simulation process. In this paper, multiple methods of
(partial and complete) parallelization of path generation are being proposed. Such
parallelizations can easily be approximated, but those approximations will always
be biased. All methods described here that completely parallelize the process are
completely unbiased, except for one method that partially parallelizes. Paralleliza-
tion of the path generation process will improve the total process of simulation in
two ways. Primarily, parallelization of the path generation will reduce (or with
some methods proposed here even completely eliminate) the need for communica-
tion between computational units about the random path. Secondly, parallelization
will reduce the computational time that is needed for the path generation. It also
provides a solution for large-scale simulations for which the memory of a single com-
puter is insufficiently large to contain the entire random path. With parallelization
of the random path, the size of the random path as limiting factor for the scale of
the simulation will be extended and even larger simulations will be possible. The
above has led to the following research question:

“How to optimally generate a large random path for geostatistical simulations on a
distributed memory system efficiently.”

To answer this question, the rest of this paper is structured as follows: section 2
will introduce a background on random paths in general and metrics that can be
used to measure the quality of random paths. Section 3 describes five methods
of random path generation, ranging from completely un-parallelized to completely
parallelized. The different methods are then compared using the metric in section 4,
and the strengths and weaknesses of each method will be summed up in section 5.
The paper will finally end with conclusions in section 6.

3

2. Background

A path is a vector of the same size as the simulation grid, indicating the order in
which the algorithm visits all the locations (points) in the simulation grid. There
is thus a one-to-one correspondence from all elements of the path to all locations
(nodes) in the simulation grid. A random path is a permutation of all the locations
in the simulation grid. There cannot be any ambiguity as to which point is to be
simulated first for points in each others neighborhood.

To create a random path for a simulation grid that is to be simulated in parallel
by multiple computers, first the simulation grid needs to be split into different
sections. Each section belonging to a different computer. This may be done in
different ways, in this paper it was chosen to divide the simulation grid in vertical
slices. See figure 2.1 for an example. The columns are numbered c0 to c14 to ease
referencing. In this figure, a simulation grid is drawn. The total length of the path
is from here on referenced as n. The number of computers used in the simulation is
defined as k. The random path is split in multiple subpaths, each of length s. Each
subpath will be simulated by a single computer. The margins are the areas of the
paths where the elements have elements of the path of the adjacent computer in
their neighborhood, and generally are less than 10% the size of s. The margins can
be at maximum be 1

3
of the size of the subpath. The length of the margin is defined

as m. The subpath of the middle computer ranges from column 5-9. The margins
in columns 4 and 10 are the neighboring margins of the middle computer, and the
margins in columns 5 and 9 are its own margins.

As there cannot be any ambiguity as to which point is to be simulated first, this
is especially relevant for points with a neighborhood that lies in different sections.
This specific situation only arises for points that are located in margins. If we take
a look at the middle computer of figure 2.1, we can see that inevitably duplicates
occur between the nodes in the outer margins and the nodes of the path between
the inner margins. As these elements are not in each others neighborhood, this is
of no consequence, and it is arbitrary which point gets simulated first.

The Durstenfeld algorithm (Durstenfeld, 1964) is the basis of all path generation
algorithms of this paper. It is used to shuffle a sequence, and is an improvement over
an earlier shuffle algorithm by Fisher and Yates (Fisher and Yates, 1953), reducing
its time complexity from Opn log nq to Opnq. The space needed by the improved
algorithm is halved. The pseudocode of the Durstenfeld algorithm can be found in
algorithm 1.

4

CHAPTER 2. BACKGROUND

Figure 2.1: A random path, with k “ 3, n “ 75, s “ 25, m “ 5 and the margins drawn in
blue.

Algorithm 1 Durstenfeld shuffle

To shuffle an array a of n elements (indices 0..n-1):

1: for i from n - 1 downto 1 do
2: j Ð random integer such that 0 ď j ď i
3: exchange a[j] and a[i]

2.1 Measure of randomness

Because a single random path is a single realization of a stochastical process, mul-
tiple realizations are needed to gauge the quality of randomness for a given method
producing random paths. With a perfect method generating the random path, all
paths are equiprobable and therefore no pattern can be distinguished between the
different realizations. This allows for valid assesment of the output. There are dif-
ferent ways of measuring the quality of randomness of a set of random paths, some
of which are more suitable than others. One measure could for example be to use
the average, using the following equation with m as the number of locations and n
as the number of iterations:

distance “

l“m
ÿ

l“1

p
|
ři“n

i“1 |

n
q (2.1)

The problem with this measure is that it fails to detect patterns such as even
numbers only being in even locations and vice versa. Therefore it is not suitable
to be used here. The measure used here compares the distance between each path-
value in each location to the theoretical fraction of a value in a location. More on
this can be found in section 3.6.

5

3. Methods

3.1 Non-parallelized (baseline)

This completely non-parallelized way of path generation will function as a baseline
method to compare the other methods to. See algorithm 2 for the pseudocode. A
single computer calculates a path of length n (with n “ k ¨s), and then splits up the
path into subpaths for the computers to use. Both the time and space complexity
of this method is Opk ¨ sq. It could occur that there are duplicates in neighboring
margins from two different computers, but this poses no problem as the order from
the original path of length n can be used to resolve ambiguity regarding the order
in those margins.

Algorithm 2 Non parallelized path generation

1: Shuffle an array of length n using the Durstenfeld algorithm
2: Split this array into k equal parts
3: Send each computer its subpath & neighboring margins

3.2 Only margins non-parallelized (random order)

This method is a first step in the complete parallelization of the path calculation by
only computing the margins beforehand by a single computer. This is an operation
of Op2 ¨ k ¨ mq. All computers then get sent their own and neighboring margins,
and can in parallel compute the rest of the subpaths. This is done according to
algorithm 3, in Opsq.The filling in of the margins happens in a random order, to
guarantee no introduction of bias from the order of filling in the margins. How this
filling in happens is further described in algorithm 4.

3.3 Only margins non-parallelized (sequential order)

This method is a slight variation to the method described in section 3.2. In this
method, a single computer calculates the margins in sequential order instead of in
random order, with a complexity of Op2 ¨ k ¨ mq. See algorithm 5. The margins of
all computers are being filled in a sequential order, beginning at the margins of the
first computer and ending at the margins of the last computer. See figure 3.1 for an
example. Depicted are the margins of 10 computers, with m “ 2. the number of

6

CHAPTER 3. METHODS

Algorithm 3 Permutation supplementor

1: marginValues Ð []
2: for all values in the front margin do
3: Add to marginValues

4: for all values in the back margin do
5: Add to marginValues

6: Populate all empty locations with the remaining values that are not in margin-
Values

7: Shuffle the area between the margins using algorithm 1

Algorithm 4 Only margins non-parallelized (random order)

1: for all margins do
2: create a set a of all allowed values for that margin

3: while not all margins completely filled do
4: Randomly pick an empty location in some margin
5: Randomly draw a value v from the available values of that margin
6: Remove v from a of that margin and from both neighboring margins

7: Send each computer its own and neighboring margins
8: Each computer calculates the rest of its subpath using algorithm 3

the computer to which the margin belongs is written underneath each margin. Note
that the outer margins of the first and last computer have been omitted, as those
computers have no adjacent computers on those sides. The algorithm its next step in
the figure is drawing values for the right margin of computer number three. One can
see that there are no duplicate values between adjacent margins, or within a margin
itself. When all margins are calculated, the margins get sent to the computers (a
memory transfer of Op4mq). The computers can then in parallel calculate the rest
of the subpath, just as with the previous method.

3.3.1 Further parallelization

The process of calculating the margins may be parallelized by dividing the margins
that need to be calculated between a number of computers, to decrease calculation
time. The computers that calculate the margins only need to communicate the val-
ues of the margins that are adjacent to margins that are calculated by a different
computer. This implies that there is some optimal value for the number of com-
puters that is being used to calculate the margins. If this value is too large, the
increased need for communication between computers about adjacent margins will
lead to a larger run time compared to a single computer calculating all the margins.
Calculating the margins with two computers require splitting the margins once. The
number of splits is defined as c. The complexity for the calculation of the margins
with this parallelization strategy is Op1

c
p2 ¨k ¨mqq, but with an added cost of Opc ¨mq

of memory transfer.

7

CHAPTER 3. METHODS

Figure 3.1: Sequential filling of margins.

Algorithm 5 Permutate margins in sequential order

1: for each margin from left to right do
2: Draw a new random value for each empty location in the current margin
3: if that value is already present in the previous or current margin, redraw

4:

5: Send each computer its margins & neighboring margins
6: Each computer calculates the rest of its subpath using algorithm 3

3.4 parity consistent margins

This method of path calculation is done completely in parallel, without any commu-
nication between the computers about the subpath. Each computer only needs to
receive their neighboring margins from the respective computers, meaning a memory
transfer of Op2mq. An extra constraint for the margins is added: in the left margin
may only be values of even parity, and vice versa for the right margin. If this is the
case, the margins are parity consistent. This automatically ensures that there are no
duplicates in neighboring margins. The cost of this method however, is that not all
values have an equal probability for all locations in the path (all even numbers have
a probability of 0 to end up in the right margin, and vice versa). This means that
there is some information on points repartition, and the process is not completely
random. Whether this poses a problem will be further discussed in section 5.1.

See algorithm 6 for the pseudocode, and figure 3.3 for a visualization of the
algorithm. Before algorithm 6 is ran, first the computer creates a subpath using
algorithm 1. The figure should be interpreted as follows. The 7 and 17 from the left
margin are being swapped with the 18 and 6 of the right margin. Upon finishing the
right margin, the 21 remains as last odd number in the left margin. That value is
then being swapped with a random number of even parity from the rest of the path.

Figure 3.2: Parity consistent margins

8

CHAPTER 3. METHODS

Figure 3.3: A visualization of the parity consistent margins algorithm.

The complete time complexity of this method is Ops ` 2mq: Opsq for the initial
shuffling of the subpath, and Op2mq for making the inner margins parity consistent.

Algorithm 6 Parity consistent margins

1: for all elements in the left margin do
2: if an element is odd then
3: Swap with the first even element in the right margin

4: if one of the margins is finished before the other margin then
5: Swap the remaining values of wrong parity with values of correct parity from

the rest of the path

3.5 Shared seed

The last method is the only method done completely in parallel, without need for
any communication about margins or any other part of the path. A visualization
of the algorithm can be found in figure 3.4. For the pseudocode see algorithm 7.
The computers that will together simulate the simulation grid are each numbered
consecutively with a natural number. This number doubles as identification number
of the computer, as well as the seed that the computer uses in the randomization
process. We focus on computer k, with neighboring computers k ´ 1 and k ` 1. In
the first part of the figure the starting state is depicted, with no path yet calculated.
In the second part, computer k uses the seed k ´ 1 to calculate the right side (with
a size of 2m) of the path of k ´ 1, which is also the left side of the path of k. In the
third part, computer k uses its own seed to calculate a permutation of length 2m
from the original sequence s, which will be the right side of the path. Then finally
in the fourth part of the figure, the rest of the subpath is created. This is done
by removing the values from the inner margins from a sequence with the length of
s, and shuffling that sequence. At this point, computer k has a complete subpath
and both adjacent margins and needs no further information to proceed. computer
k ` 1 can likewise use the seed k to calculate the margins that k and k ` 1 share; et
cetera. This algorithm runs with a time complexity of Ops` 2mq. A variant on this
method would be one where the right margin is sent instead of computed locally.

Observe that, because the subpath is calculated using two different seeds, du-
plicates are possible between the parts that were calculated with a different seed.

9

CHAPTER 3. METHODS

Figure 3.4: Completely parallelized path generation with shared seed.

This is different compared to all the other methods, as now duplicates within the
same subpath are possible as well. This however does not pose a problem, as those
duplicates can only occur between the two inner margins. These values are by def-
inition not in each others neighborhood, and therefore their mutual order is of no
consequence for the outcome of the simulation.

Algorithm 7 Random path generation with shared seed

1: For the two left margins: get a sequence of length s and shuffle a part of length
2m using seed k ´ 1

2: For the two right margins: get a sequence of length s and shuffle a part of length
2m using seed k

3: Get a sequence of length s and remove the values that are already in both the
inner margins

4: Shuffle this sequence and use it for the part of the path between the margins

3.6 Metric

To measure the quality of randomness of some method providing a random path,
the algorithm described in algorithm 8 is used. Recall from section 2.1 that multiple
realizations of a random path are needed to measure the quality of randomness.

10

CHAPTER 3. METHODS

That number of realizations is expressed in the number of iterations that the al-
gorithm runs for. The algorithm starts by filling the countArray, a square array
that is the Cartesian product of all possible values and locations. It then calcu-
lates the Euclidean distance of each value x location pair to the theoretical fraction
(1
length of random path

), and adds all those up to get the total distance. With a perfect

randomization method and the total distance as a function of iterations (i):

lim
iÑ8

fpiq “ 0 (3.1)

The shortcomings of this metric will be discussed in section 5.2.

Algorithm 8 Total distance to mean

1: countArray Ð square array of the same length as the random path
2: for i “ 0 to maximum number of iterations do
3: randomPath Ð a random path provided by some method
4: for j “ 0 to length of random Path do
5: value Ð randomPath[j]
6: countArray[value, j]++

7:

8: distSum = 0
9: theoreticalFraction = 1 / length of random path

10: for i “ 0 to length of random path do
11: for j “ 0 to length of random path do
12: fraction = countArray[i,j] / iterations
13: distance = (fraction - theoreticalFraction)2

14: distSum += distance

15: return
?
distSum

11

4. Results

To assess the quality of randomness of the paths provided by the different methods,
all methods have been implemented to make testing possible. The implementation
was done in the programming language C# and a reference to the implementation
can be found in the appendix. All the plots show the application of the metric
as described in section 3.6, with the total distance to the mean plotted against
the number of iterations. Recall from the same section that a perfect randomization
method shows a decreasing plot that tends to 0 as the number of iterations increases.
Both plots are generated with s “ 100, m “ 10, k “ 10 and with 1000 as maximum
number of iterations, unless specified otherwise.

The results of the application of the metric onto the method described in sec-
tion 3.2 and section 3.3 can be found in figure 4.1, together with the baseline method
for reference. For the method filling the margins in random order, different ratios
of length of margin versus length of subpath have been plotted. There is no observ-
able difference in trend between the plots for the different ratios. The figure also
shows the plot for the method filling in the margins in sequential order instead of
random order. Again, no difference in trend is present, indicating that the quality
of randomness as it can be measured by the metric used here is equivalent for these
methods. It can thus be concluded that filling the margins beforehand in sequential
order is to be preferred over filling them in random order, as the technique is sim-
pler and opportunities for further parallelization are possible with sequential-order
filling.

Figure 4.2 plots the method with parity consistent margins against baseline. The
plot visualized the fact that the method performs worse the as the proportion of m
to s increases. As we have seen in section 3.4, all elements have a probability of zero
for some locations in the simulation grid. As m increases relative to s, the number
of locations where this is true increases as well, influencing the performance of the
method negatively.

The method with the shared seed is only different from the baseline method in
the fact that the randomized permutation of length s is shifted right for the length
of 2m. This has no influence on performance as measured by this metric.

12

CHAPTER 4. RESULTS

Figure 4.1: Results for sequential and random order filling of margins with different values
of m, against baseline (the right figure is a zoomed in version).

Figure 4.2: Results for methods with parity consistent margins against baseline, with
different values for m (the right figure is a zoomed in version).

13

5. Discussion

5.1 Methods

Table 5.1 provides an overview of the different methods, with respect to time- and
memory transfer complexity. The method of filling in margins in random order
has been left out of this summary, as it has no advantages over filling margins in
sequential order. Recall that s is the length of the subpath (including 2 margins),
k is the number of computers used in parallelization and m is the length of the
margin. The number of splits in the parallelization of sequentially computed margins
is defined as c. Note that the big O notation can be simplified in some parts of the
table, but this has been omitted to make comparisons possible between Op4mq and
Op2mq for example.

Non-parallelized
time complexity

Parallelized time
complexity

Memory transfer

Baseline Opk ¨ sq 0 Opk ¨ sq

Sequential margins Op2 ¨ k ¨ mq Opsq Op2 ¨ k ¨ mq

Sequential margins
parallelized

1
c

p2 ¨ k ¨ mq Opsq Op4mq ` Opc ¨ mq

Parity consistent
margins

0 Ops ` 2mq Op2mq

shared seed 0 Ops ` 2mq 0
shared seed with

sent margin
0 Opsq Op2mq

Table 5.1: A comparison of the different methods of random path calculation.

One can see that preparing the margins beforehand by a single computer and
allowing the calculations of the subpaths to be parallelized as is done in the se-
quential margins method already greatly improves performance over the baseline
(completely non-parallelized) method. Note that there is also an improvement in
space complexity, as it is not necessary anymore to have the entire random path n
in the memory of a single computer. Note that for the parallelization of the com-
putation of the margins in this method, an additional memory transfer is required
between the computers calculating the margins beforehand. This is needed for the
pair of adjacent margins between the sets of margins that are being calculated by
different computers. This means that memory transfer costs go up the more paral-
lelization of the margin calculation occurs. This implies that there is some optimal
number of c, where the balance between time won by parallelization and lost by
memory transfer is optimal. The method of parity consistent margins completely
removes the need for non-parallelized computation, but introduces some bias in the
random path. The amount of bias depends on the size of m relative to s, as we
have seen in section 4. Whether this is acceptable or not (or for what value of m)

14

CHAPTER 5. DISCUSSION

should be further researched. The method with the shared seed is the most efficient
in parallelizing a random path completely without bias, requiring no unparallelized
computation and being the only method without need for memory transfer. The
variation on this method where the left margins are received instead of calculated
by the computer itself is a trade off between calculation time and memory transfer
time. Whether this is approach is superior depends on different variables; such as
memory transfer speed, computation speed, relative size of m to s et cetera. Finding
the preferred method will require real world testing.

An important factor in efficiency of the parallelization of random path generation
is the chosen size of the neighborhood for the nodes. It affects the efficiency of the
parallelization methods that are described in this paper in two ways, as the size of the
neighborhood directly determines m. The efficiency of parallelization is negatively
correlated to the size of m relative to the size of s, as having relatively small margins
means less memory transfer is needed for most methods. Another advantage of
having a relative small size of m, is that the maximum value for k increases. As m
cannot be larger than 1

3
of s, m is the deciding factor in the maximum number of

subpaths and thus computers used. Note that all the methods that are described in
this paper assume a 2-dimensional simulation grid. Future research could include
methods to extend path-generation parallelization methods to handle 3-dimensional
simulation grids.

5.2 Metric

The metric that has been used in this research is no perfect measure of randomness,
which is in any case impossible to achieve with a single metric. This metric tests
relations between locations and values of the path, by counting the fraction of times
that some value in the path is in some location of the simulation grid. What it
therefore fails to detect are relations between values in the path. If for example the
first and last value of the path would always occur next to each other in a random
part of the simulation grid, the metric used here would not be able to detect this.
This poses a problem, as the question of the relative order between points is just
as relevant as the question of whether some location is biased to being simulated
earlier in the simulation. After all, the most relevant problem during simulation of
some point for all the points in its neighborhood is whether they should be simulated
before or after the point in question. Future research could include different metrics,
that could overcome these limitations.

An interesting observation that has been done during this research was when
experimenting with the distance metric used by algorithm 8. Throughout the paper
Euclidian distance has been used. When substituting this for Manhattan distance,
‘bumps’ appear between ranges of iterations that are exactly the size of the path
that is to be randomized. See figure 5.1 for an example. The plot here is exactly
the same plot as the baseline plot in figure 4.1, barring the distance metric. For
this effect to happen, the length of the randomly permutated sequence must be
sufficiently large. With a length of 10 the effect is not visible, with lengths over 100
the effect starts to become clearly visible.

15

CHAPTER 5. DISCUSSION

Figure 5.1: Manhattan distance instead of Euclidian distance used as distance metric.

16

6. Conclusion

In this paper, multiple methods for parallelization of random path generation for se-
quential geostatistical simulations have been proposed. The method with the shared
seed is the largest improvement over the completely un-parallelized method, requir-
ing no un-parallelized computing time. It also completely eliminates the need for
any memory transfer between computers. A variation on it exchanges some com-
puting time for an increase in memory transfer. From the above can be concluded
that the method with the shared seed (or possibly its variation) would be a valid
answer to the research question as posed in section 1. Future research could include
generalization of these findings to 3-dimensional simulation grids and utilization of
different metrics.

17

References

Buttafuoco, G., & Lucà, F. (2016). The contribution of geostatistics to precision
agriculture. Ann. Agric. Crop Sci, 1 (2), 1–2.

Deutsch, C. V., Journel, A. G. et al. (1992). Geostatistical software library and
user’s guide. Oxford University Press, 8 (91), 0–1.

Durstenfeld, R. (1964). Algorithm 235: Random permutation. Communications of
the ACM, 7 (7), 420.

Fisher, R. A., & Yates, F. (1953). Statistical tables for biological, agricultural and
medical research. Hafner Publishing Company.

Gómez-Hernández, J. J., & Srivastava, R. M. (2021). One step at a time: The origins
of sequential simulation and beyond. Mathematical Geosciences, 53 (2), 193–
209.

Guardiano, F. B., & Srivastava, R. M. (1993). Multivariate geostatistics: Beyond
bivariate moments. Geostatistics troia’92 (pp. 133–144). Springer.

Journel, A., Gundeso, R., Gringarten, E., & Yao, T. (1998). Stochastic modelling of
a fluvial reservoir: A comparative review of algorithms. Journal of Petroleum
Science and Engineering, 21 (1-2), 95–121.

Kitanidis, P. K. (1997). Introduction to geostatistics: Applications in hydrogeology.
Cambridge university press.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems
on the witwatersrand. Journal of the Southern African Institute of Mining
and Metallurgy, 52 (6), 119–139.

Mariethoz, G. (2010). A general parallelization strategy for random path based
geostatistical simulation methods. Computers & Geosciences, 36 (7), 953–
958.

Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The direct sampling method to
perform multiple-point geostatistical simulations. Water Resources Research,
46 (11).

Mariethoz, G., Renard, P., Cornaton, F., & Jaquet, O. (2009). Truncated plurigaus-
sian simulations to characterize aquifer heterogeneity. Groundwater, 47 (1),
13–24.

Nussbaumer, R., Mariethoz, G., Gloaguen, E., & Holliger, K. (2018). Which path to
choose in sequential gaussian simulation. Mathematical Geosciences, 50 (1),
97–120.

Peredo, O. F., Baeza, D., Ortiz, J. M., & Herrero, J. R. (2018). A path-level exact
parallelization strategy for sequential simulation. Computers & Geosciences,
110, 10–22.

Sichel, H. S. (1952). New methods in the statistical evaluation of mine sampling
data. Lond Inst Min Metall Trans, 61, 261–288.

18

REFERENCES

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., & Besson, O. (2011). An
improved parallel multiple-point algorithm using a list approach. Mathemat-
ical Geosciences, 43 (3), 305–328.

Strebelle, S. (2002). Conditional simulation of complex geological structures using
multiple-point statistics. Mathematical geology, 34 (1), 1–21.

19

Appendix

Implementations of all algorithms described in pseudocode in this paper are available
at the following location: https://github.com/Schipper5/Random-Path-thesis.

20

