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Abstract 

Population growth and continuing urbanization have become major threats in the 
ongoing climate crisis, as more than half of the earth’s population lives in cities. 
Floor sealant and densification processes lead to transformations in the urban 

microclimate. The appearance of the so-called urban heat island (UHI) effect, when 
temperatures tendentially stay higher within areas of sealed surfaces than around 

less built-up areas, is increasing. During summer months, when daily temperatures 
rise above 30°C and simultaneously heat periods occur, another phenomenon is 

likely to happen. So-called tropical nights are very warm nights, when temperatures 
stay above 20°C. The link of both phenomena has not been targeted in research 
yet, as nighttime UHI studies are relatively rare. Accordingly, comparatively little is 

known about heat mitigation measures to target heat islands during tropical nights. 
However, increasing the amount of vegetation in urban areas has a significant 

positive impact on UHI in general. The InVEST urban cooling model is an option to 
show the influence of green cover in relation to a city’s cooling capacity. A heat 
mitigation index is calculated by use of several parameters, such as land use/land 

cover, evapotranspiration, building intensity or the distance from cooling islands 
like parks. Based on that, scenarios can be developed by simply modifying the input 

land cover map, which sheds light on temperature reduction by vegetation in urban 
areas.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 

Table of Contents 

1 Introduction .......................................................................................... 6 

1.1 Problem statement ........................................................................... 6 

1.2 Scientific relevance ........................................................................... 7 

1.3 Research area .................................................................................. 8 

2 Theoretical background ......................................................................... 10 

2.1 Urban configurations and urban microclimate ...................................... 10 

2.2 Urban heat island effect ................................................................... 10 

2.3 Land Surface Temperature ............................................................... 12 

2.3.1 Indicators of LST ....................................................................... 12 

2.4 Urban heat island mitigation measures ............................................... 13 

2.4.1 Green Infrastructure .................................................................. 13 

3 Research Questions and objectives ......................................................... 14 

3.1 Main Objective ............................................................................... 14 

3.2 Research Questions ........................................................................ 14 

4 Methodology ....................................................................................... 15 

4.1 Overview ...................................................................................... 15 

4.2 Thermal data acquisition .................................................................. 16 

4.3 Filtering by tropical nights ................................................................ 17 

4.4 Image processing ........................................................................... 18 

4.4.1 ECOSTRESS LST product ............................................................ 19 

4.5 Image sharpening .......................................................................... 19 

4.6 In Situ validation ............................................................................ 21 

4.7 Scope definition of hot spots ............................................................ 22 

4.8 InVEST urban cooling model ............................................................. 22 

4.8.1 Generation of greening scenarios ................................................. 23 

4.8.2 Evapotranspiration .................................................................... 25 

4.8.3 Biophysical table ....................................................................... 26 

4.8.4 Crop coefficient ......................................................................... 26 

4.8.5 Green area ............................................................................... 27 

4.8.6 Building intensity ...................................................................... 27 



5 

 

4.8.7 Further model inputs ................................................................. 29 

4.9 Alteration of InVEST model inputs ..................................................... 31 

5 Results ............................................................................................... 32 

5.1 Nighttime urban heat islands ............................................................ 32 

5.1.1 Image sharpening ..................................................................... 33 

5.1.2 In situ measurements validation .................................................. 34 

5.1.3 UHI hot spot identification .......................................................... 36 

5.2 Scenario analysis ............................................................................ 38 

5.2.1 Parameter sensitivity ................................................................. 40 

6 Conclusion .......................................................................................... 42 

7 Discussion .......................................................................................... 44 

8 Literature ........................................................................................... 46 

9 Appendices ......................................................................................... 50 

9.1 Appendix A: Matlab script to read ECOSTRESS data, preprocess it and write 

it to a file .............................................................................................. 50 

9.2 Appendix B: Matlab image sharpening script ....................................... 51 

9.3 Appendix C: LST map with exclusion of low-quality pixels ..................... 53 

9.4 Appendix D: Sharpened 30m LST image ............................................. 54 

9.5 Appendix E: Table with Validation outcomes ....................................... 55 

 

 

 

 

 

 

 

 

 

 



6 

 

1 INTRODUCTION 

In the past decades, global climate change has moved increasingly into focus, given 

the fact that global mean surface temperature has risen since the 20th century. 

Urbanization contributes to a significantly extent to global warming, considering 

that more than 50% of the human population lives in cities. Both population growth 

and urbanization have caused the worldwide observed phenomenon of Urban Heat 

Islands (UHI) (Kaplan et al., 2018; Zhou et al., 2018). 

Urban heat and cool islands are common phenomena in urban areas when 

temperatures tend to be higher around sealed surfaces than within less built-up 

areas due to heat storage. It describes the difference in air temperature between 

high-tempered urban areas and low-tempered rural areas. The causes of this 

phenomenon are mainly urbanization, structural changes of land surface and 

industrialization (Tyrallová et al., 2018). The re-use of large brownfield sites as well 

as densification of the urban structures without additional measures intensify the 

UHI effect. Both urban residents and tourists are affected by Urban Heat Islands, 

but especially people who have to spend much time in open space, health-impaired 

and elderly people suffer from it. Besides minor consequences such as the reduction 

of activity due to heat, heat waves cause a great number of deaths each year 

(Czachs et al., 2013). 

One suitable option to reduce UHI effects is the preservation and expansion of 

green spaces. Besides cooling the actual space, they can also influence the 

surrounding area, which is called the urban green space cooling effect (Aram et al., 

2019). Aram et al. (2019; p.26) distinguishes 5 categories to reduce UHI effects: 

“(1) the use of vegetation cover like trees, (2) shrubs and lawns at different scales, 

(3) the stack night ventilation, (4) the use of waterbodies, and (5) the use of 

materials with high albedo rating for pavement and other ground surfaces”. The 

effectiveness of green space in mitigating UHI effects is already proven through 

measurements and computer simulation. A broad variety of literature is available 

that focuses on different shapes and scales. (Aram et al., 2019). 

1.1 PROBLEM STATEMENT 
Heat days and heat periods in Vienna and other European cities have increased in 

the past decades (Czachs et al., 2013). Whereas heat days refer to days with a 

maximum temperature of at least 30°C, heat periods describe leastwise three 

consecutive days of temperatures of 30°C or above. For the latter one the mean 

maximum temperature must reach 30°C over the whole period, but must not fall 

below 25°C (Kyselý et al., 2000). With the rise of daily maximum temperatures, the 

occurrence of very warm nights is increasing too. These so called “tropical nights”, 

when temperature stays above 20°C, are impacting people’s well-being and 

mortality more significantly than maximum daily temperatures (Czachs et al., 

2013). Figure 1 shows the increase of tropical nights in Vienna over the past 

decades with a significant rise since the 1990s. While the purple line indicates the 
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annual number of tropical nights, the black line illustrates the moving average of 30 

years.  

 

Figure 1: Number of tropical nights in Vienna over the past decades (IBO – Österreichisches Institut für Baubiologie 
und -ökologie, 2021) 

The number of hot days in Vienna during the period of 1961 to 2010 rose from an 

average of 9,6 to 15,2 days. Simultaneously, some climate models forecast an 

increase of summer days, when temperature reaches 25°C or more, of 30 to 50 

percent for the end of this century which can lead to the rise of the Urban Heat 

Islands (UHI) effect (Czachs et al., 2013).  

Literature on urban climate has shown the significance of nocturnal UHI 

phenomenon. During the nighttime, the effects of UHI are more apparent, due to 

lower cooling capacity of urban construction materials. The negative impacts on 

people’s health tend to aggravate especially at night during extreme events such as 

heat waves. Despite these facts, the study of nocturnal UHIs is still poorly 

developed, by cause of structural problems such as the availability of land surface 

and air temperature data for the nighttime (Roca & Arellano, 2020). 

1.2 SCIENTIFIC RELEVANCE 
In the past few decades, advancements of remote sensing as well as progress of 

spatial science have significantly increased the number and quality of surface urban 

heat island (SUHI) studies, which are the centerpiece of urban heat island (UHI) 

literature. SUHI represents the difference of land surface temperature (LST) in 

urban relativity to adjacent non-urban surfaces and is usually measured by the use 

of satellite LST data (Zhou et al., 2018).  

The city of Vienna has started taking interest in the issue of urban heat islands 

more than 20 years ago. Since then, basic studies and active information gathering 

have been conducted, as well as strategy plans have been developed supported by 

Vienna’s Department of Environmental Protection MA22. The initiatives included 

preparing climate studies, preparing a climate assessment and climate function 

map acquired from thermal imaging, and implementing measures such as green 
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space networks, green roofs, living walls and rainwater management (Czachs et al., 

2013).  

Even though, the government of Vienna has been proactive to target the problem 

of heat stress within the city, the above-mentioned initiative dates already back to 

2014. Vuckovic et al. (2019) states that unplanned transformation of existing urban 

areas causes increasingly inhomogeneity in cities, with more impermeable (sealed) 

than permeable (vegetative) cover. This process is problematic from a climatic and 

thermal point of view, but also impacts the perception of urban areas as favorable 

living environment.  

Furthermore, the conducted study of the city of Vienna focuses only on in-situ 

measurements and computer modeling to forecast urban heat islands, but does not 
include remote sensing data. Arellano and Roca (2021) mention the same lack of 

remote sensing approaches for nocturnal UHI, as the obtainment of them is 
primarily following two traditional methods, which is either the extrapolation of data 
from weather stations, or the calculation of air temperatures trough urban 

transects. 

1.3 RESEARCH AREA 
The research area compasses the capital of Austria, Vienna, which is situated in the 

northeastern corner of Austria, between the foothills of the Alps and the 

Carpathians (Encyclopædia Britannica, 2021). Alongside the Danube, Europe’s 

second longest river, Vienna covers an area of 41 487ha (Encyclopædia Britannica, 

2021 & Magistrat der Stadt Wien, 2021). The altitude of Vienna ranges from its 

lowest point of 151m to 543m at its highest point.  

 

Figure 2: Location of Vienna 
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Climatological, Vienna is influenced by two climates, which are oceanic from the 

west and continental from the east. Winters are relatively mild compared to other 

parts of Austria. This shows in less rainfall and longer dry periods (Magistrat der 

Stadt Wien, 2021). 

Vienna has been rated the city with the highest worldwide quality of living by 

Mercer a several times in the past years. Its current population comprises 1,92 

million inhabitants which is steadily growing (STATISTICS AUSTRIA, 2021 & 

ISOCARP Institute, 2021). Within the period of the years 2013 till 2017 the 

Viennese population increased on average by around 30 000 inhabitants per year, 

causing the annual need for about 10 000 new apartments. Therefore, densification 

in new settlement areas requires the need of a clear understanding of the current 

and future microclimatic situation in built-up areas. An analysis of Vienna’s land use 

found, that about half of the city area can be considered green, such as parks, 

agricultural lands and urban forests. However, the locations of the green areas are 

not evenly distributed. While inner districts possess 2% to 15% green space, the 

western districts come with up to 70% green coverage, due to their hilly 

topography and forested areas (ISOCARP Institute, 2021). 
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2 THEORETICAL BACKGROUND 

2.1 URBAN CONFIGURATIONS AND URBAN MICROCLIMATE 
In the past decades, population growth in urban areas has continuously increased. 

As a result, urban areas are facing high building densities, which, again, impact the 

urban microclimate (Allegrini et al., 2015). Thereby, urban heat islands have 

become one of the urban climatology problems. Drastic reduction of green areas to 

built-up areas is seen as one of the main causes of UHI, whereas trees and 

vegetation play a vital role for mitigation strategies (Buyadi et al., 2013). Kong et 

al. (2014) found that in areas with a higher percentage of forest-vegetation a 

greater cooling effect can be experienced. Moreover, an increase of 10% in forest-

vegetation causes a decrease of approximately 0.83°C in surface temperature. 

Urban configuration can impact the local thermal environment due to altering 

energy balances. However, the urban heat island effect can be intensified by both 

urban sprawling and compact urban development (Yue et al., 2019). Unplanned 

transformation of existing urban areas leads to increasingly inhomogeneity with 

more impermeable (sealed) than permeable (vegetative) cover. Not only climatic 

and thermal issues arise with it, but also the overall perception of urban areas as 

favorable living environments is becoming challenged. More informed planning 

strategies are indispensable to allow for environmentally friendly urban 

development and mitigation of negative phenomena associated with global 

urbanization. Urban densification has emerged as a promising strategy. 

Nevertheless, the potential of urban densification to counteract negative 

implications of urbanization lacks scientific investigation and documentation 

(Vuckovic et al., 2019).  

2.2 URBAN HEAT ISLAND EFFECT 
Mesoscale factors are the main determinants of a city’s climate. However, local and 

micro-scale factors, such as topography, different characteristics of the urban 

structure, surface of roofs, vegetation or anthropogenic heat among others, can 

impact the regional climate on urban level. Comparing the climate of urban areas to 

those of a rural nature, there are substantial differences (Arellano & Roca, 2021). 

“The urban heat island effect (UHI) describes the influence of urban surfaces on the 

temperature patterns of urban areas as opposed to surrounding areas.“ (Arellano & 

Roca, 2021; p.15) 

Accordingly, urban heat islands are urban areas that are significantly warmer than 

its rural surroundings, due to human activities and artificial infrastructures. 

Opposed to rural areas with high coverage of grass, crops, shrubs or forest, urban 

areas tend to be dominated by paved grounds. Vegetation contributes to cool the 

air, whereas asphalt and concrete absorb heat and thus lead to rising temperatures. 

In addition, narrow streets and buildings trap heat by reducing air flow. Urban 
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traffic and the heating of buildings also add to the occurrence of UHI (Copernicus 

Europe’s Eyes on Earth, 2022). As indicated in figure 3, vegetation cover absorbs 

less heat, while using evapotranspiration for cooling. In urban spaces surfaces 

absorb more heat, but has less cooling from evaporation and plant transpiration 

due to the lack of vegetation. 

 

Figure 3: Schematic representation of the urban heat island effect (DOZR Inc., 2021; 
https://dozr.com/blog/urban-heat-island) 

Artificial materials, primarily asphalt and concrete are the main causes of the 

occurrence of UHI. Due to the greater thermal inertia of the materials used in urban 

areas, the UHI effect becomes more distinct during the night. At nighttime heat 

accumulates in urban materials, especially during heat waves, by reason of the low 

cooling capacity of urban construction materials (Arellano & Roca, 2021). Sobstyl et 

al. (2018) describe two factors that dominate nighttime UHI. One reason is the 

ability of materials to store solar radiation during the day, while the other one is the 

rate at which this energy is released at night. Anthropogenic heat may cause 

additional energy but does not play a major role during nighttime.  

As a result of the microclimate increased by the UHI, the demand for energy to 

enable the cooling of building increases, which fortifies the generation of power, 

and moreover, leads to an increased amount of greenhouse gases emission and 

decline of climate (Nuruzzaman, 2015). According to Akbari et al. (2001) the 

increase of temperature of 1°C results in the rise of electricity demand of 

approximately 2-4%. On the other hand, if UHI mitigation measures are taken, 

20% of energy used for air conditioning can be saved in order to reduce the UHI 

effect. (Nuruzzaman, 2015). 

Intensive studies to understand the UHI effect have been conducted and lead to the 

classification of two broad categories, which are “air” or “atmospheric” and 

“surface” UHIs. While air UHIs relate to UHI effects in the canopy (CLHI) or 
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boundary (BLHI) layer, surface UHIs (SUHI) represent the radiative temperature 

difference between urban and non-urban surfaces. SUHIs are mainly derived from 

satellite thermal remote sensing data and allow for various spatial and temporal 

scales (Zhou et al., 2018).  

2.3 LAND SURFACE TEMPERATURE 
“Land Surface Temperature (LST) is the radiative skin temperature of the land 

derived from infrared radiation” (ESA, 2000-2021). “Skin” temperature relates to 

the temperature of the top surface when in bare soil conditions, as well as to the 

effective emitting temperature viewed from the top of a canopy. To put this 

definition in a rather simplified manner, LST refers to how hot the surface of the 

Earth would feel to the touch in a designated location. Surface can be various 

things from a satellite’s point of view, such as snow and ice, the grass on a lawn, 

the roof of a house or the leaves in the canopy of a forest. However, LST cannot be 

equalized with the air temperature that is shown in daily weather reports (ESA, 

2000-2021). Nevertheless, LST is a vital parameter for many fields of interest like 

surface energy and water balance, climatology, meteorology, ecology, agriculture, 

environment, and hydrology. In these fields it provides a substantial understanding 

of a wide range of applications involving surface heat islands and urban climate 

studies among many others (Sekerteking & Bonafoni, 2020).  

Remote sensing analysis for SUHI detection is considered a promising technique 

which is suitable for large urban areas at a given time. Images are acquired from 

satellites and aircraft equipped with sensors that capture the short and long 

wavelength radiation energy reflected from the earth’s surface. The essential 

spectral band for this kind of analysis ranges from 0.1 lm to 100 lm (Bahi et al., 

2020). The obtainment of LST of different permeable and impervious materials is a 

complicated procedure (Bahi et al., 2020; Sekertekin & Bonafoni, 2020). 

Considering a sparsely vegetated area, the calculated LST will comprise the surface 

temperature of vegetation and soil combined. LST accuracy is mainly influenced by 

surface parameters (emissivity and geometry), sensor parameters (spectral range 

and viewing angle), and atmospheric effects. To obtain LST from Thermal Infrared 

(TIR) data, accurate estimation of Land Surface Emissivity (LSE) and atmospheric 

parameters is indispensable (Sekertekin & Bonafoni, 2020). 

2.3.1 Indicators of LST 

The most common used indicator to describe a surface urban heat island is the 

difference of urban and rural surface temperatures. However, several other 

indicators exist and have been used to quantify surface urban heat islands in 

various studies (Schwarz et al., 2011). For the classical approach, the 

differentiation between “urban” and “rural” needs to be analyzed which remains a 

bit of a challenge. The conceptual model of Lowry (1977) defines rural areas as 

parts of a city region that are not impacted by the urban heat island, which makes 

the differentiation between urban and rural areas a result of the urban heat island 

analysis. However, definitions of remote sensing studies are often based on land 
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cover. A variety of methods are used to delineate the “urban core” versus the “rural 

part” (Schwarz et al., 2011), such as “pixels around urban and rural weather 

stations […]; pixels with high imperviousness versus a buffer lying 15 to 20 km 

away from low imperviousness areas […]; and areas with the highest LST versus 

areas with rural land cover” (Schwarz et al., 2011; p.3176). Moreover, further 

indicators have been developed, for example the difference of urban versus water, 

the hot island area, the shape properties of a fitted three-dimensional Gaussian bell 

and the magnitude of the LST.  

2.4 URBAN HEAT ISLAND MITIGATION MEASURES 
The phenomenon of UHI exists in almost every big city (Nuruzzaman, 2015). 

Yamamoto (2006) claims that the elimination of the UHI effect is not feasible, but 

the key issue is how to best mitigate it (Nuruzzaman, 2015). Numerous works have 

shown a strong relation between sustainability and climate change based on the 

interaction of the urban ecosystems and the global climate system. Hence, many 

sustainable practices have been adopted as solutions to tackle UHI and keep a 

balanced living environment, while also contributing in temperature mitigation and 

providing sufficient energy (Sahnoune & Benhassine, 2017). Among various 

strategies to reduce urban heat, raising the amount of vegetation is considered one 

of the most effective ways to conquer UHI (Nuruzzaman, 2015).  

2.4.1 Green Infrastructure 

Greening urban areas comes with a lot of advantages. Vegetation regulates the 

microclimate through evapotranspiration from plant foliage and shading of the 

surfaces. In addition, it positively influences human thermal comfort (Balany et al., 

2020). The benefits of so-called green infrastructure (GI) for urban microclimates, 

however, varies by size, location and types of vegetation. Benedict & McMahon 

(2012; p.1) defines GI as “an interconnected network of natural areas and other 

open spaces that conserves natural ecosystem values and functions, sustains clean 

air and water, and provides a wide array of benefits to people and wildlife.” GI 

includes both natural and designed greening, including parks and street trees, as 

well as green roofs, gardens and green laneways (Balany et al., 2020). The urban 

green infrastructure (UGI) as a multifunctional network provides multiple ecological 

benefits by providing ecosystem services, but also by contributing to human well-

being (Ring et al., 2021). 
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3 RESEARCH QUESTIONS AND OBJECTIVES 

3.1 MAIN OBJECTIVE 
The main objective of this thesis is the evaluation of urban greening scenarios for 

urban heat island mitigation during tropical nights. Thus, this thesis aims to show 

urban greening scenarios which could help to mitigate extreme heat during 

nighttime. The focus point will be on the nocturnal heat hot spots of Vienna, which 

need to be identified and mapped first. For the hotspot area the status quo of the 

current green share and its heat mitigation potential will be evaluated. Thereafter, 

generated greening scenarios are supposed to shed light to the mitigation of heat in 

Vienna. The whole research will be executed in consecutively order, as the research 

questions are based on each other.  

3.2 RESEARCH QUESTIONS 
The main research question persists of two minor research questions, which are all 

listed below. Moreover, research questions 1 and 2 are further divided into sub-

questions. 

How can different greening scenarios to mitigate urban heat islands 

during tropical nights in Vienna be evaluated? 

 

- R1: Where are the urban heat islands of tropical nights in Vienna? 

o Which thermal data are most suitable for nighttime UHI detection in 

Vienna? 

o How can Vienna’s detected urban heat islands be validated? 

o How can the temperature hotspots be defined area wise in Vienna? 

 

- R2: How can greening measures to mitigate urban heat islands during 

tropical nights in Vienna be mapped in different scenarios? 

o What is the current green share in the most significant tropical night’s 

temperature hot spot in Vienna? 

o How sensitive is the change of land cover to land surface temperature 

in Vienna? 
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4 METHODOLOGY 

4.1 OVERVIEW 
The conceptual model in Figure 4 gives an overview of the basic methodological 

steps. The coloring refers to different research questions that are tackled, which 

subdivides this research into 2 main execution sections. 

 

Figure 4: Workflow diagram 
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To begin with, research question 1, colored in red in the workflow diagram, required 

intense literature study before focusing on the analysis part. It deals with the 

calculation of urban heat islands by the use of land surface temperature. Since the 

use of LST ECOSTRESS data was decided by both literature study and the 

consultation of an expert, the actual LST calculation is not part of this thesis. 

Instead, image sharpening was executed to gain higher spatial resolution and thus 

more detailed information about nighttime UHI. Validating the resulting LST map 

was an intermediate step to assure the data reliability for the further proceeding. 

After the identification of UHI hot spots in Vienna, the area, where the greening 

scenarios would be applied in a later step, was to be determined in relation with the 

LST outcomes. Thereafter, a land use/land cover map of the designated area served 

as base for the scenario analysis. Different greening scenarios were generated by 

increasing the green share. Both the land cover map and the modified land cover 

maps for each scenario were needed as main model input for the InVEST urban 

cooling model. Further data had to be gathered and preprocessed to meet the 

model data input requirements. By running the model, heat mitigation index rasters 

were produced, which were evaluated in order to answer the overall research 

question. By also changing model parameters, the sensitivity of the urban cooling 

model was evaluated.  

4.2 THERMAL DATA ACQUISITION 
Finding appropriate remote sensing data with relatively high spatial resolution and 

availability at nighttime was very challenging, especially when looking for freely 

available imagery. However, a lot of research and the guidance of an expert led to 

the choice of NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment on 

Space Station (ECOSTRESS). ECOSTRESS was launched in June 2018 and provides 

thermal imagery in cities at 70 x 70m resolution. The acquisition time varies, which 

enables to have data for different times of the day, every 3-5 days on average over 

most of the globe (Shi et al., 2021). The instrument contains a multispectral 

whiskbroom scanner with five spectral bands in the TIR between 8 and 12.5 µm 

and an additional band at 1.6 µm for geolocation and cloud detection (Hulley at al., 

2019 & Silvestri et al., 2020). ECOSTRESS offers a number of higher level products, 

such as LST data, cloud mask or emissivity. Some key imaging characteristics make 

ECOSTRESS uniquely suitable for observing the urban environment. Besides, the 

high resolution of 70mx70m which is approximately the size of a football field, the 

inclined, precessing ISS orbit allows for samples of temperatures and heat stress at 

different times of a day. Moreover, the five thermal bands on ECOSTRESS enable 

the implementation of multispectral temperature/emissivity separation approaches 

like the TES algorithm (Hulley et al., 2019). ECOSTRESS thermal data can be freely 

downloaded from the data portal of the United States Geological Survey (USGS), 

called Earth Explorer in HDF5 format, or ordered at the data portal Application of 

Extracting and Exploring analysis Ready Samples (AppEEARS) as geotiff.  
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4.3 FILTERING BY TROPICAL NIGHTS  
In order to focus on heat islands during tropical nights in this thesis, information on 

the exact dates of tropical nights in Vienna was needed prior to download the 

suitable remote sensing data. Knowing that remote sensing data will not be 

available for any designated night, as well as tropical nights occur only on several 

nights during summer months, chances to find a match of both would be higher 

when including at least three summer periods. The information of tropical night 

dates was delivered by the “Zentralanstalt für Meteorologie und Geodynamik” 

(ZAMG) which provides meteorological and geophysical services for Austria. The 

provided information included minimum temperature measurements for seven 

different weather locations in Vienna, starting at January 1st 2019 until December 

31st 2021. The temperature measurements were taken in 2m height from ground 

and show the temperature minimum from the day before 7pm until 7pm CET. The 

map below shows the exact locations of the weather stations, which are distributed 

over the city of Vienna.  

 

Figure 5: Location of weather station with provided minimum temperature measurements 

To obtain the dates for tropical nights, the first step was to filter the dates when the 

minimum temperature value reached 20°C or more. As temperature measurements 

vary slightly among the seven weather stations, dates were rated sufficient for a 

tropical night when one of the locations showed a value of 20°C or more. The 

filtering led to 87 dates when a tropical night occurred at least at one of the 

weather stations. The next step was to check the availability of ECOSTRESS 

thermal data for these 87 dates. In case of a match, an acquisition time during 

nighttime was another requirement. As the coldest time of a tropical night is usually 

before sunrise, the boundaries were set from midnight to 7am. This step was 

carried out manually in Earth Explorer, where ECOSTRESS data can be viewed 

before download. Since images are taken at universal time (UTC), two hours had to 

be added for Central European Summer Time (CEST). Further criteria to be kept in 
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mind were the avoidance of cloud cover and the covering of the whole study area 

on one thermal image. The exclusion of cloud cover can be set directly in the 

filtering options of Earth Explorer. Accordingly, the filtering resulted in 15 dates 

with available data and simultaneously the occurrence of a tropical night based on 

at least one weather station as shown in table 1, where temperature minimums of 

20°C or more are marked in red.  

  HOHE WARTE 
INNERE 
STADT 

STAMMERS-
DORF 

JUBILÄUMS-
WARTE 

MARIABRUNN UNTERLAA DONAUFELD 

Date tmin [°C] tmin [°C] tmin [°C] tmin [°C] tmin [°C] tmin [°C] tmin [°C] 

27.06.2019 23,2 25,9 21,6 24,2 19,0 22,5 23,1 

01.07.2019 19,9 22,6 18,3 18,5 17,6 20,3 19,7 

26.08.2019 18,3 20,1 17,8 18,4 16,0 18,0 18,6 

28.08.2019 19,6 21,6 18,8 18,9 18,0 19,3 20,1 

29.08.2019 19,1 21,3 17,6 19,6 15,8 18,4 19,2 

28.06.2020 19,1 21,3 18,0 18,8 16,9 18,7 19,4 

05.07.2020 18,8 20,2 18,0 15,7 12,2 17,2 18,3 

06.07.2020 18,8 21,1 18,0 18,1 15,4 18,9 19,5 

10.07.2020 16,6 19,7 14,9 20,4 14,4 17,1 17,1 

22.08.2020 18,4 21,0 17,2 18,9 16,3 18,8 19,1 

22.06.2021 20,0 22,4 18,2 18,9 18,3 19,7 20,3 

23.06.2021 21,5 22,1 21,0 18,8 19,8 20,7 21,7 

28.06.2021 17,8 21,1 16,5 19,0 14,3 18,9 18,4 

07.07.2021 21,6 22,2 20,6 19,0 20,4 21,3 22,3 

08.07.2021 19,1 20,5 18,4 16,8 17,6 19,3 19,8 
Table 1: Temperature minimum ≥20°C at seven weather stations in Vienna; source: ZAMG 

Eventually, the image from July 7th 2021 was chosen, as it shows a clear sky in the 

preview of Earth Explorer and 6 out of 7 weather stations measured a tropical night 

then. The data was downloaded from the data archive Earth Explorer in Hierarchical 

Data Format (HDF). Even though, this data format comes with an additional 

preprocessing step, the download was quicker than at the AppEEARS data portal. 

And moreover, it came with an additional raster layer, showing low quality pixels 

for exclusion. 

4.4 IMAGE PROCESSING 
The first part of the image processing was conducted in Matlab, in order to open the 

downloaded HDF5 file, which is not supported in ArcGIS. The whole Matlab script is 

added in Appendix A. After reading the file, low quality pixels were extracted from 

the data. This step is applied to ensure that error pixels and pixels cloud-

contaminated pixels were excluded. As mentioned before, the HDF5 file came with 

additional data, namely quality flag (QF) and quality control (QC) data which were 

used to show and remove unreasonably low LST values (Chung et al., 2020). The 

next step, that was applied in Matlab, was the cropping to the study area, as the 
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downloaded raster layer covers a much bigger area. And finally a raster in geotiff 

format was produced and written to a file. 

The last image processing step encompassed the transformation from raw data to 

temperature values in degree Celsius, since ECOSTRESS offers already calculated 

LST data. This step was done with the formula below in ArcGIS, where C is the 

Celsius temperature and DN (digital number) represents the value of the raw LST 

data. The latter is multiplied with the scale factor minus 273,15 to get Celsius from 

Kelvin (Chung et al., 2020). 

C = DN ∗ 0.02 − 273.15 

4.4.1  ECOSTRESS LST product 

LST and spectral emissivity are the two primary Level-2 products of ECOSTRESS 

that are generated by ECOSTRESS TIR data. The emitted surface radiance from the 

Earth’s surface is dependent on both LST and emissivity and thus presents quite a 

difficulty. Even with well-known atmospheric properties (water vapor and air 

temperature) LST and emissivity retrieval from multispectral measurements is still 

a non-deterministic process. This is because the total number of measurements (N 

bands) is always less than the number of unknown variables (emissivity in N bands 

+ LST). Hence, temperature and emissivity separation approaches will never be 

perfectly done, and errors may occur. To overcome this gap, ECOSTRESS Level-2 

products use a non-deterministic approach, where spectral variations in the 

retrieved emissivity can be related to surface composition and cover, in addition to 

the retrieval of surface temperature. The so-called Temperature Emissivity 

Separation (TES) algorithm is a hybrid algorithm that capitalized on the strengths 

of previous algorithms to retrieve temperature and a full emissivity spectrum 

(Hook, 2011). 

4.5 IMAGE SHARPENING 
Satellite-derived LST retrieved from thermal infrared (TIR) tend to have a coarser 

spatial resolution than surface reflectance data collected from shortwave bands on 

the same instrument (Xue et al., 2020). Moreover, thermal imagery either comes 

with high temporal resolution but low spatial resolution or at a higher spatial 

resolution but a low revisit time. To bridge this gap, attempts have been made to 

downscale low spatial resolution thermal images for further use and applications. 

Besides temperature unmixing methods, thermal sharpening is a widely used 

approach. Sharpening methods for thermal imagery are based on a correlation 

between thermal images and auxiliary data like NDVI, emissivity, albedo, digital 

elevation model or NDMI (Huryna et al., 2019).  Satellite TIR resolutions may 

resolve the scales of urban-rural LST differences, but it is not sufficient to resolve 

most urban features, like roads and buildings, to study microclimates and human 

comfort in urban areas  

Visible and near Infrared (VNIR) data come generally with a higher resolution than 

TIR as a consequence of their shorter wavelength. First attempts for image 
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sharpening leveraged higher resolution VNIR data by relating LST to the normalized 

difference vegetative index (NDVI). Further methods make use of a simplified 

fractional vegetation cover, emissivity or topographic variations, but they all come 

with disadvantages for urban areas. In urban areas, solar reflectance (albedo) has 

found to be another determinant of LST. Especially within unshaded land classes, 

albedo correlates well with LST (Dominguez et al., 2011). Dominguez et al. (2011) 

suggest an approach called high-resolution urban thermal sharpening method 

(HUTS), which takes into account NDVI and albedo from the VNIR channels.  

In this thesis the HUTS method was applied to the coarse LST data. The idea was to 

increase the spatial resolution from 70m to 30m by the use of a Landsat surface 

reflectance image. The whole process was based on a tutorial published by Hello 

World Labs, which is a network of world-class experts in software development, 

environmental data, sensor hardware and behavior-change design (helloworlde, 

2022). The image sharpening was conducted using Matlab (see Appendix B). Before 

applying several calculation steps in Matlab, a matching image to the ECOSTRESS 

LST had to be found. Since Landsat has a revisit time of 16 days and the image 

needed to be cloud-free, it was very unlikely to find an image of the same day and 

year. Regarding this, a Landsat 8 image from July 20th 2021 turned out to be the 

best choice. For the calculations of NDVI and albedo, only band 2 (Blue), band 4 

(Red), band 5 (NIR), band 6 (SWIR 1) and band 7 (SWIR 2) were needed.  

NDVI is the most common used vegetation index (Rasul, 2018). It calculates the 

balance between the energy obtained and emitted by objects on earth (Hashim et 

al, 2019). Being ratio-based, it uses only two bands, to recognize healthy flora and 

green biomass differences, as seen in the equation below. NDVI values cover a 

range between -1.0 and +1.0, whereas high NDVI values of about 0.6 to 0.9 are 

related to dense vegetation. Inanimate objects like bare soil or build up areas come 

with a low value on the other side of the scale (Rasul, 2018). 

NDVI = (band5 – band4)/(band5 + band4) 

 

Albedo = ((0.356*band2) + (0.130*band4) + (0.373*band5) + (0.085*band6) + 
(0.072*band7) -0.0018)/1.016; 

 

The factors which are multiplied with each band are specific multiplicative rescaling 

factors from the metadata. The divisor is the sum of all band-specific multiplicative 

rescaling factors from the metadata.  

The next step for the image sharpening in Matlab was resizing the produced NDVI 

raster and albedo raster to the extent of the ECOSTRESS image. Thereafter, the 

fitting coefficients to model low-resolution LST with albedo and NDVI were specified 

and applied for training (Hulley, n.d.). Only low-resolution surface temperature is 

available for training the relationship between surface temperature vs. NDVI and 
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albedo, when applying sharpening techniques to satellite data (Dominguez et al., 

2011).   

For this thesis the suggested coefficients from the tutorial were adopted, as they 

were suggested to be used for ECOSTRESS LST. In the next step, the difference 

between the observed ECOSTRESS LST and the calculated low-resolution fit was 

calculated, which was used as input in the further step. The subsequent part was 

targeted to smooth the image by building matrices that computed running sums. 

While one matrix was designated to smooth along the rows, another was created to 

smooth along the columns. The smoothing was applied over 2x2 pixels. Not-a-

number (NaN) pixels were set to zero to not cause any distortions in the running 

sums. For each 2x2 element the number of NaN pixels had to be counted and 

excluded from the division values for calculating means. Finally, the actual image 

sharpening was conducted by first specifying the high-resolution sharpening LST fit 

and then resizing the smoothened image with the nearest neighbor algorithm. The 

calculated, sharpened LST image was directly written to a file (Hulley, n.d.). 

4.6 IN SITU VALIDATION  
When using satellite image-based surface temperature data for heat island studies 

in urban areas with complex spatial characteristics, essential factors that influence 

surface temperatures must be considered comprehensively. These factors comprise 

the coverage texture type, the color of the surface layer, sky view factors, street 

geometry, traffic loads and other anthropogenic activities. To allow for diagnosing 

UHIs more accurately and preparing appropriate relief plans, it is indispensable to 

validate the accuracy of satellite image surface temperature data by comparing it to 

in situ surface temperature data (Song & Park, 2014). These so-called temperature-

based (T-based) methods are rather simple compared to radiance based (R-based) 

methods and therefore widely used to validate remotely sensed LST products at 

homogeneous stations. As urban areas are heterogeneous in topography, physical 

structures or land use, to name a few, averaging of the LST temperature over a 

larger buffer zone may drown out the physical noise that can influence the air 

temperature at a specific point (White-Newsome et al., 2013). White-Newsome et 

al. (2013) found that correlations between LST and in situ measurements were 

stronger at larger buffer radii, such as 500m or 800m.  

In situ surface temperature data was delivered again from ZAMG, which provided a 

link to their data hub, where hourly temperature data for each day of the past few 

years are accessible. However, the temperature data encompassed only 

measurements for seven different weather stations, like shown in figure 5. Since 

this was insufficient to prove the accuracy of the used LST ECOSTRESS image, the 

decision was made to use a bigger extent (~160km x 120km) of the downloaded 

LST ECOSTRESS tile, which resulted in 43 ground stations to be available for 

comparison, as indicated in figure 6. The downloaded dataset came with twofold 

measurements, air temperature measured at a height of 5cm and air temperature 

measured 2m above ground. Both values were compared to the LST raster layer. As 
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suggested by White-Newsome et al. (2013), buffer zones of 500m and 800m were 

calculated around each weather station location. Mean raster values were then 

calculated with zonal statistics in ArcGIS, which were to be compared with the in 

situ measurements.  

 

Figure 6: Weather station locations that provided in situ measurements for validation 

4.7 SCOPE DEFINITION OF HOT SPOTS 
Since the target of this master thesis is the heat hot spot area of the previous land 

surface temperature calculation, this hot spot area had to be defined first to 

proceed with the next steps. Mean temperature values were calculated for all 

districts of Vienna, as well as mean temperature values for Vienna’s census districts 

to have more detailed information on certain neighborhoods. Based on the 

outcomes, which are indicated in chapter 5, the district “Josefstadt” was chosen to 

be the focus area for the scenario modelling.  

4.8 INVEST URBAN COOLING MODEL 
One of the most advocated strategies to mitigate urban heat, is the increase of 

urban green space, especially the urban tree canopy. However, the impacts of the 

urban tree canopy on air temperature indicate a complex spatial behavior that 

remains poorly understood. The cooling effect of urban green areas has been widely 

reported, while the relationship between their size and their cooling capacity is 

nonlinear. Thus, little is known about the overall spatial configuration of green 

spaces in connection with heat mitigation, which makes urban green infrastructure 

planning quite a challenge (Bosch et al., 2021). 

Bosch et al., (2021) introduces a new approach to address the above-mentioned 

shortcomings. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) 

is a software suite that models the links between nature and the well-being of 

humans. Overall, it has been widely used to indicate the potential of natural 
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infrastructure investments with different scopes. Some new tools of InVEST focus 

on urban areas, addressing urban cooling to reduce the urban heat island effect 

among others. What makes it an appealing instrument is, that InVEST urban tools 

are free, open-source, and modular, which enables users to choose which services 

to include in the analysis. The tools are designed to combine spatial information 

about natural infrastructure’s benefits with resilience research and practice (Hamel 

et al., 2021). 

The tool used in this research is the InVEST urban cooling model, a method that 

aims to evaluate the heat mitigation potential of altering the abundance and spatial 

configuration of the urban tree canopy cover. There are two main steps in this 

method. First, synthetic scenarios are generated by rising the tree canopy cover 

where the urban fabric permits it. Thereafter, the spatial distribution of air 

temperature of each scenario is estimated with the inVEST urban cooling model. 

The original model simulates urban heat mitigation based on three biophysical 

processes, which are shade, evapotranspiration and albedo (Bosch et al., 2021). 

However, there is another method designated for nighttime heat mitigation, which 

is based on building intensity instead of shade and albedo. Since this thesis focuses 

on tropical night UHI, the nighttime approach was chosen.  

The heat mitigation index indicates the ability for an area to regulate temperature. 

Areas with a high heat mitigation index will be more resilient to the higher 

temperatures derived from UHI. This index is especially beneficial to urban planners 

to promote heat mitigation initiatives, such as white roofs and green spaces, to 

low-score heat mitigation areas. The understanding of factors that influence the 

cooling capacity the most, will improve future efforts to target the UHI effect and 

build community resilience (ArcGIS StoryMaps, n.d.). 

4.8.1 Generation of greening scenarios 

One of the requirements for the InVEST urban cooling model was a land use/land 

cover (LULC) raster layer, which also served as basis for the generation of greening 

scenarios. A LULC shapefile from 2018 was downloaded from Copernicus’ Urban 

Atlas which provides reliable, inter-comparable, high-resolution land use and land 

cover data for 788 urban areas with more than 50 000 inhabitants within the 

European continent. Urban Atlas originated as a joint initiative in the frame of the 

EU Copernicus program (Copernicus Europe’s eyes on Earth, 2022). 

 

Table 2: Used datasets for the land cover maps 

Dataset Year Source Description Data type

AT001L3_WIEN_UA2012 2018 Urban Atlas - Copernicus Programme Land use layer for Vienna shapefile

BEZIRKSGRENZEOGDPolygon 2020 Open data Österreich - Stadt Wien District boundaries of Vienna shapefile
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Figure 7: Land cover and land cover scenarios for Josefstadt 

The derived LULC map from the Urban Atlas is indicated in figure 7 in the top left 

corner. It served as the basis for the scenario modelling. The idea was to modify 

the shapefile manually in ArcGIS by simply changing polygons with the attribute 

“Continuous urban fabric” or “Industrial, commercial, public, military and private 

units” to “Green urban areas”.  

“Continuous urban fabric” describes areas with more than 80% building density, 

while “Discontinuous dense urban fabric” ranges between 50% and 80%. The latter 

is assigned when urban structures and transport networks associated with 

vegetated areas and bare surfaces are available and they occupy significant 

surfaces in a spatial pattern. Other features like buildings, roads and artificially 

surfaced areas concern 50% to 80% land coverage (Copernicus Europe’s eyes on 

Earth, 2022). Since these areas come with a certain proportion of green share, they 

were not converted to green areas in the greening scenarios. In contrast, 
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“Industrial, commercial, public, military and private units” was used for the 

generation of greening scenarios. Even though the actual percentage of vegetated 

areas remains unknown for this class, it is described as an area mostly occupied by 

buildings, other built-up structures and artificial surfaces. Unlike “Continuous urban 

fabric” this class is assigned for land units that are under industrial or commercial 

use or serve for public service facilities (Copernicus Europe’s eyes on Earth, 2022).  

To evaluate the sensitivity of the InVEST urban cooling model, three greening 

scenarios were generated. 10%, 20% and 30% increase of green cover was chosen 

to be mapped in scenarios, to make temperature change apparent. Even though it 

seems very unlikely for Josefstadt to rise its vegetated area by 30%, the idea was 

to simply show the impact of enhanced vegetation in dense urban areas. 

To make sure that green land cover is increased by the designated percentage, the 

land cover classes of Josefstadt’s land cover map were summed up and its 

percentages calculated. This led to an increase of approximately 15,64ha for 10%, 

meaning that polygons with the attributes “Continuous urban fabric” or “Industrial, 

commercial, public, military and private units” needed to be converted to “Urban 

green areas” until the 15,64ha gain was reached. For the further two scenarios, a 

20% and a 30% increase, equaling 31,28ha and 46,92ha was conducted, as 

indicated in figure 6.  

4.8.2 Evapotranspiration 

Evapotranspiration (ET) measures the amount of water that vaporizes from land 

into the air over a certain period of time. It contains the sum of both evaporation 

and transpiration. The former describes the process whereby liquid water is 

converted to water vapour and removed from the evaporating surface. Evaporation 

occurs from a variety of surfaces, like lakes, rivers, pavements, soils and wet 

vegetation. Transpiration on the other hand comprises the vaporization of liquid 

water contained in plant tissues and the vapour removal to the atmosphere. 

Evapotranspiration as the combination of both processes is typically expressed as a 

depth of water in millimeters per unit time, like mm/month or mm/year (InVEST 

documentation, 2022). Urban areas, with expansive impervious surfaces, have 

generally more runoff than their rural counterparts. As the runoff water drains 

quickly, in the long run, less surface water remains available for evapotranspiration, 

which affects the urban surface energy balance (Taha, 1997). Qiu et al. (2013) 

even proposed that vegetation evapotranspiration has great potential to reduce 

urban and global temperatures, and that vegetation and urban agricultural ET can 

reduce urban temperatures by 0.5 to 4.0°C (Qiu et al., 2013). 

For this research evapotranspiration input data were retrieved from ECOSTRESS 

satellite data. Similar to land surface temperature, which was used in an earlier 

step, an evapotranspiration raster can be downloaded freely via Earth Explorer or 

AppEEARS as a fully calculated data product for numerous days a month. 

Evapotranspiration imagery comes with the same spectral resolution as LST, which 

is 70m. In fact, evapotranspiration, which is produced as Level-3 latent heat flux 
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data product, is generated from land surface temperature and emissivity, combined 

with ancillary surface and atmospheric data (Fischer et al., 2020).  

 

Table 3: Used datasets for evapotranspiration 

4.8.3 Biophysical table 

A biophysical table in CSV format was needed as further InVEST model input. The 

documentation of the InVEST urban cooling model specified requirements for this 

table. Besides the linkage to the LULC map of the designated area by indicating 

each LULC code, three attributes needed to be indicated for each LULC class. A crop 

coefficient had to be assigned to each LULC class, as well as the indication of green 

area or non-green area. And finally, the building intensity for each LULC class had 

to be determined.  

4.8.4 Crop coefficient 

The crop coefficient Kc incorporates crop attributes and averaged effects of 

evaporation from the soil. For most planning and management purposes and for 

most hydrologic water balance studies, average crop coefficients are adequate 

(Allen et al., 1998).  

Liu & Shen (2018) and Kuriata-Potasznik & Szymczyk (2016) suggest a crop 

coefficient of 1.04 and 1.05 respectively for grassland during mid-season of its 

growth. For trees that typically grow in Viennese parks, like beeches, maple trees 

or lime trees, such crop coefficients were not found in literature. In addition, 

comparable trees were lacking too. Accordingly, the used crop coefficient for the 

LULC class “Green urban area” was adopted from the suggested grassland values 

found in literature. 

For non-vegetated LULC the InVEST documentation suggests approximations of Kc, 

which are based on Allen et al. (1998). Even though these values may not be fully 

accurate, the impact on model results should be minimal, unless the LULC 

represents a significant portion of the watershed (InVEST documentation, 2022). 

Since the 8th district of Vienna appears relatively homogenous with relatively little 

LULC classes, only the Kc value for built areas was relevant from the non-vegetated 

exceptions to be estimated. According to InVEST documentation (2022), kc can be 

determined with the following formula. 

Kc = f*0.1 + (1-f)*0.6 

Variable f is the fraction of impervious cover in the area. For built areas, 

evapotranspiration from pervious areas is assumed to be nearly 60% of reference 

evapotranspiration. However, evaporation from impervious surface is assumed at 

10% of PET (InVEST documentation, 2022). 

Dataset Year Source Description Data type

BEZIRKSGRENZEOGDPolygon 2020 Open data Österreich - Stadt Wien District boundaries of Vienna shapefile

ECO3ETPTJPL.001_EVAPOTRANSPIRATION 

_PT_JPL_ETdaily_doy2021188040608_aid000
2021 AppEEARS data portal

Evapotranspiration raster for 

Vienna region
geotiff
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4.8.5 Green area 

Another part of the biophysical table inputs is the indication of each LULC class 

whether to be considered a green area or not. Non-green areas got the value 0, 

while green areas are referred to with a 1. This attribute is relevant as green areas 

larger than 2 hectares have an additional cooling effect (InVEST documentation, 

2022). 

4.8.6 Building intensity 

To complete the biophysical table as input for the InVEST urban cooling model, the 

building intensity for each LULC class had to be determined. The building intensity 

describes the ratio of building floor area to the footprint area (The Natural Capital 

Project, 2022). In literature, this ratio is known as Floor Area Ratio (FAR), an 

essential measure of the capital-land ratio in urban areas (Barr & Cohen, 2014). As 

indicated in Figure 8, it is calculated by multiplying the building area with the 

number of floors and dividing that by the total area. To receive a representative 

FAR value for each LULC class, FAR was actually calculated for the 8th district of 

Vienna. The idea was to determine mean values for each LULC class to be used in 

the biophysical table.  

 

Figure 7: Illustration of Floor Area Ratio (Liveup Homes, 2020; https://liveup.in/blogs/floor-area-ratio-
far-explained/) 

For the calculations several datasets were retrieved. The geodata viewer of the city 

of Vienna was used to obtain several shapefiles with the building footprints, which 

also provided area and height information of each building. The height information 

of each building area was received through arial imagery. Hence, it doesn’t align 

with the building height according to the Viennese building code (Stadt Wien, 

2022).  
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Table 4: Used datasets for building intensity 

Since the dataset showed all building surfaces with different heights as separate 

polygons and causing very small polygons withing buildings, all related building 

areas were merged in ArcGIS with the dissolve function. The challenge then was to 

get suitable height information when merging related areas. Looking at the original 

dataset, the heights of the smallest polygons tended to either show really high or 

extremely low heights (e.g. portals). Accordingly, the mean height value was 

chosen for the merged areas.   

To calculate FAR, the number of floors was needed, which led to another estimation 

in this process, as only the total height of the buildings was known. Josefstadt is 

predominated by buildings from the so called “Gründerzeit” between 1848 and 

1918, leading to floor heights between 3,20m and 4m. Since the heights of ceilings 

between the floors comprise around 40cm (Psenner, 2014), a total floor height of 

about 4m was estimated. Hence, the total building height of each building was 

divided by 4 to get the approximate number of floors for each building. 

Another dataset was needed for the total plot area, which was found at the data 

portal of the Federal Office of Metrology and Surveying (BEV). It provided land 

register information for big parts of Austria and was clipped in a first step to the 

extent of Josefstadt.  

Accordingly, the two datasets with the register information and the building area 

information needed to be joined to finalize the FAR calculation. This step was 

conducted with a spatial join in ArcGIS (see figure 12), where one object is joined 

to one other object, since related buildings were already merged to multipart 

features. Since streets and very small cadaster polygons led to false output data, 

those data were excluded from the dataset. After the FAR calculation, a random 

manually check on the data was made, leading to the exclusion of some extreme 

values. Further validation of the output was not part of the scope of this thesis.  

Dataset Year Source Description Data type

main.CP_CadastralParcel 2021 Federal Office of Metrology and Surveying Land register for Austria shapefile

101081_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

102081_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

103081_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

103082_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

103083_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

102083_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

101083_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

101082_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

102082_bkm 2019-2021 Geodatenviewer der Stadtvermessung Wien

building footprint for each 

map tile with height 

information

shapefile
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Figure 8: From left to right (1) building footprints with height information; (2) land register parcels; (3) 
spatially joined datasets with calculated FAR, where darker colors mark higher values 

Calculating mean values for each LULC class from the calculated FAR layer was one 

of the last steps for completing the biophysical table inputs. This part was simply 

conducted in ArcGIS by selecting a particular LULC class, clipping the FAR layer to 

this extent and using the summarized statistics function to determine the mean. 

This step was applied for all LULC classes except for the class “Other roads and 

associated lands” which contains mostly streets, pavement and parking lots within 

the area of Josefstadt, but no buildings. Accordingly, a FAR value of 1 was assumed 

for this category, as it covers mostly sealed areas.   

As the biophysical table for the InVEST urban cooling model input required a 

normalized value for each LULC class, the dataset was normalized to a range 

between 1 and 0 with the equation below. Xmin and Xmax mark the lowest and 

highest value within the data distribution. 

Xnorm = (X – Xmin)/(Xmax – Xmin) 

The complete biophysical table is indicated in figure 12, where lucode 1 to 5 

represent the different LULC classes in the order of the maps in figure 7. Lucode 0 

represents background or noise values of the LULC raster.  

 

Table 5: Biophysical table as InVEST model input 

4.8.7 Further model inputs 

Finally, a few further model inputs for the InVEST urban cooling model were 

needed, which are shown in figure 10. “Baseline air temperature” refers to a 

reference air temperature value in degree Celsius from an area where the urban 

heat island effect is not observed. As LST was mapped for a scene including areas 

lucode kc green_area building_intensity

0 0 0 0

1 0.15 0 1

2 0.425 0 0.62

3 0.104 1 0

4 0.15 0 0.95

5 0.15 0 0.28
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around Vienna, the lowest value, namely 15,6°C, was chosen as model input, 

assuming that this value represents surface temperature for unsealed area without 

the impact of the UHI effect.  

For the “Magnitude of the UHI effect”, another model input, the absolute difference 

from the baseline air temperature to the highest observed LST value was used, 

which lead to an input of 7°C. 

Moreover, “Air Temperature Maximum Blending Distance” had to be determined. 

This parameter indicates the radius over which to average air temperatures to 

account for air mixing (InVEST documentation, 2022). The InVEST documentation 

(2022) recommends a value of 500m to 600m, as some testing in pilot cities in the 

USA and Europe suggested.  

Finally, the “Green Area Maximum Cooling Distance” was needed as further InVEST 

urban cooling model input. It describes the distance over which green areas larger 

than 2 hectares have a cooling effect (InVEST documentation). Again, the 

recommended value of 450m was chosen.  

Another model requirement was the use of a projected coordinate system and not a 

geographic one, like WGS84. For this analysis MGI Austria Lambert was chosen, 

which is a conformal conic projection commonly used in Austria.   

 

Figure 9: InVEST urban cooling model with examplary data inputs for scenario 3 
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4.9 ALTERATION OF INVEST MODEL INPUTS 
The sensitiveness of the urban cooling model to different model inputs was 

evaluated by the alteration of several input parameters. While the different 

scenarios with the modified LULC inputs could already give information about the 

sensitivity of the model to green cover change, it was still intended to look at 

further model inputs and their impact for the outcomes.  

Regarding the inVEST urban cooling model inputs, 4 parameters were chosen to be 

altered, which are listed in table 6. The table illustrates the model requirements 

with their initial model inputs and the modified values. The modification of some 

values of the biophysical table would not have been constructive, as these values 

are bound to each LULC class and changing them would only result in false model 

predictions.  

 

Table 6: Table with altered parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model input Initial input value Modified values

Baseline air temperature 15.6°C 18°C

UHI magnitude 7°C 9°C

Air Temperature maximum blending distance 600m 200m, 1000m

Green area maximum cooling distance 450m 300m, 600m
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5 RESULTS 

This chapter shows all the outcomes of the performed analysis in order to answer 

the main objective and the research questions. The results will be presented in 

chronological order accoring to the order of the research questions and the order of 

the conducted research.  

5.1 NIGHTTIME URBAN HEAT ISLANDS 
The first result targets the outcomes of research question one regarding the 

detection of urban heat islands during tropical nights in Vienna. A map with land 

surface temperature information was produced for July 7th 2021, as shown in figure 

11. The temperature values were classified into 5 classes with 1°C difference to the 

next adjoining class based on the distribution of the histogram. The classification 

was done to make it more apparent where to draw the line between tropical night’s 

temperature of 20°C or more and temperatures below 20°C.  

 

Figure 10: LST map of Vienna  

On the first sight, the inner districts of Vienna show higher temperature values than 

the suburban with temperature values up to 21,5°C and higher. Especially the 

districts 1, 8 and 9 only seem to have temperature values above 20,5 degrees and 
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don’t show any zones with lower temperatures. However, it has to be kept in mind 

that the spatial resolution of this map is 70m, and there may be overseen small 

cooling islands too. Another urban heat island hot spot appears in “Floridsdorf”,  the 

21st district of Vienna, situated across the Danube River. However, only the 

southern part of Floridsdorf shows very high surface temperatures above 21,5 

degrees Celsius, whereas its northern part features lower temperature values. In 

the bordering 22nd district a curved form is displayed rather clearly with high 

surface temperature. This is a branch of the Danube River, called the “Alte Donau”. 

Since it is not connected to the Danube River anymore and considered still waters, 

it can reach very warm water temperatures of 30°C and even more during 

summertime. Accordingly, this water body appears as one of the surface 

temperature hot spots in this analysis, unlike the actual Danube River, which is 

separating the 21st and 22nd districts from the rest of Vienna and causes rather low 

temperatures. Another distinctive appearance encompasses the western part of 

Vienna, with an abrupt transition to relatively cold nighttime temperatures.  In this 

area, temperatures reach values equal or less than 19,5°C overall, whereas some 

areas show values below 18,5°C. The Vienna Woods streche over the Western parts 

of Vienna, covering this extensive cooling island within Vienna. Another peculiar 

cool spot within the city of Vienna, emerges in the 11th district. This urban cooling 

island during a tropical night is mostly covered by greenhouses and cultivated 

surfaces, which may have a positive impact on the surface temperature. 

The histogram in figure 12 shows the distribution of the temperature values. The 

mean is marked with 19,72°C. Even though there are extreme values with a 

temperature minimum of 15,63°C and a temperature maximum of 24,37°C, most 

temperature values occur around the mean.  

 

Figure 11: Distribution of the LST values, statistics 

5.1.1 Image sharpening 

Image sharpening was performed for the LST image in figure 11 in order to get 

more detailed information, especially for the hot spot areas. However, the analysis 

did not perform well and produced a pixelated image with apparently a lot of 

outliers, indicating either very high or very low values. The image is attached in 

Appendix D. Some elements were pretty clear on the output raster like the Danube 

River or cultivated areas in the outer districts. The cell size of the calculated LST 
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raster was definitely minimized, but a detailed look reveals that the cells are 

rectangles and not 30x30m cells.  

The HUTS methodology was suggested for ECOSTRESS LST to be sharpened with 

Landsat spectral reflectance. Thus, an error in the script seems rather unlikely. 

Probably, there has been an error in the input data or the calculations of either 

albedo or NDVI. 

Dominguez et al. (2011) states that shaded areas with small surface temperature 

appear to have a small reflectance as well, which can cause scatter in the surface 

temperature fit, as the expected relationship between reflectance and surface 

temperature is not preserved at shaded surfaces. So, it is possible that there may 

be an error due to shaded surfaces in the albedo raster.  

Since image sharpening was not specified in one of the research questions for this 

thesis, but rather performed to enhance readability of the LST map, no further 

improvements were made to ensure a good result. Time and the scope of the thesis 

did not allow for further research here. Therefore, the localization of the most 

significant urban heat islands in Vienna during a tropical night had to be based on 

the LST map with 70m spatial resolution. 

5.1.2 In situ measurements validation 

The validation was performed for the LST ECOSTRESS product, to ensure that the 

downloaded thermal image is reliable and accurate. As explained in the 

methodology section of this thesis, buffer zones of 500m and 800m around the 

weather stations were made, to compare LST mean values with the ground 

measurements. The whole table, showing the raw outcomes of the validation 

analysis, is attached in Appendix E, while the results for Vienna are exemplified in 

figure 17. The overall outcome shows a mean absolute temperature difference of 

4,1°C between the station measurements and the LST mean from the 500m buffer. 

Even though, Vienna had only 7 measure points, this values just deviates by 1°C.  

Station 
number 

Station 
measurements 

T1 [°C] 

LST mean 
Buffer 

500m LST1 
[°C] 

Absolute 
difference 

T1 - LST1 [°C] 

 

 

5802 20,8 18,4 2,4  

5805 23,4 19,8 3,6  

5904 24,0 20,8 3,2  

5917 24,0 20,3 3,7  

4115 23,4 19,8 3,6  

5925 23,7 21,3 2,4  

5935 24,6 21,0 3,6  

Mean 23,4 20,2 3,2  

Table 7: Ground measurements in relation to LST means for buffered areas in Vienna 
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Indicated in figure 13 are the absolute temperature differences between the ground 

measurements of the 43 weather stations and the means of ECOSTRESS land 

surface temperature product buffered for 500m around the weather stations. Each 

number on the x-axis refers to one weather station where the ground 

measurements derived. The temperature difference between the two dimensions 

appears comparatively homogeneous overall. Only very few stations seem to have 

measured much higher or much lower temperatures than observed at the LST 

raster.  

 

Figure 12: Diagram showing absolute temperature differences between ground measurements and 
land surface temperature 

According to the outcomes of the validation analysis with ground measurements, 

the ECOSTRESS land surface temperature tends to be collectively lower than the 

night temperatures measured at 43 weather stations in 2m height.  

 

Figure 13: Scatter plot of ground measurements and land surface temperature 
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With reference to the scatter plot in figure 14, there seems to be a slightly positive 

linear correlation between land surface temperature and the station measurements. 

R-squared (R²) shows a value of 0,53, which indicates a moderate positive 

correlation. 

5.1.3 UHI hot spot identification 

Defining the scope of the urban heat island hot spots during a tropical night in 

Vienna was necessary for further proceeding in this thesis. Since the image 

sharpening did not turn out as expected, this analysis was entirely based on land 

surface temperature data with 70m spatial resolution. The LST map of figure 11, 

gave a first impression of heat and cooling islands of Vienna during a tropical night.  

 

Figure 14: Mean land surface temperature for the districts of Vienna 

By calculating mean values for all districts of Vienna, the light was shed to rather 

large entities of Vienna. However, the map in figure 15 makes the differences 

between the districts very apparent and significant. Again, the mean values were 

classified to enhance the comparability of the map. Just as in the LST map from 

figure 11, the inner districts stand out with the highest mean LST values with 

average means over 21°C. But besides districts 1,8 and 9, further districts join the 

hot spot area of the highest land surface temperature. In contrast to that, the 

western districts, where the Vienna Woods are situated, show once more the lowest 

mean temperatures. The 21st district in the north, which contained one of the urban 
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heat island hot spot areas, has an overall mean temperature of 20,5°C to 21°C 

since the district appeared to have contradictory values from north to south.  

A more detailed mean land surface temperature map is shown in figure 16 below, 

where the census districts were used as entities for calculation. The location of the 

UHI hot spot areas appear similar to the LST map. Although, the inner districts 1, 8 

and 9 show very high mean temperature values of more than 21°C, the 21st district 

indicates the highest mean values for at least 3 census districts with a mean 

surface temperature above 21,5°C. A few local heat hot spots can be found in the 

16th district or the 5th district, whereas other districts like the 15th or the 10th show 

an urban cooling island within the city. Temperatures in the 2nd district appear to be 

very unevenly distributed from north to south, which was not as apparent on the 

LST map. The lower temperatures in the south-eastern corner of district 2 may be 

explained by a large closed green space called “Prater”.  

 

Figure 16: Mean land surface temperature for the census districts of Vienna 

Comparing different entities for Vienna concerning the UHI hot spots, a choice had 

to be made between one of the inner districts or part of the 21st district. Since 

census districts seemed to be too small to base the upcoming scenario analysis on, 

the idea was to select one district as focus area. The 21st district seemed too 

inhomogeneous to choose for further analysis, whereas districts 1, 8 and 9 had 
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almost identical mean values. Eventually, the 8th district, “Josefstadt” was chosen 

as focus area, as this district has the lowest green cover rate in the entire city. Only 

3% of its land cover are green urban areas (see figure 17). The district is 

predominated by “continuous urban fabric” with sealed coverage of more than 

80%, followed by “other roads and associated land”, which is mainly based on 

streets, pavements and parking lots. Overall, Josefstadt seems to have great 

potential for improvement regarding urban greening.  

 

Figure 17: Graph with land cover proportions of Josefstadt 

5.2 SCENARIO ANALYSIS 
The scenario analysis was targeted to evaluate different greening scenarios for the 

focus area Josefstadt and answer the overall main objective. An urban cooling index 

was calculated by use of the InVEST urban cooling model. This index indicates the 

cooling capacity of an area, which describes the ability of regulating temperature. 

Figure 18 shows the model outcomes for the actual spatial configuration of 

Josefstadt, labeled as “status quo” in the left top corner, as well as the outcomes 

for each scenario. For better comparison the pixel values were classified into 10 

classes for index values between 1 and 0. Low pixel values indicate low mitigation 

potential, whereas high pixel values indicate an excellent cooling capacity of the 

covered area.  

Josefstadt status quo appears to have an extremely low cooling capacity, with large 

parts showing a heat mitigation potential value of less than 0,1. Streets seem to 

have surprisingly high values that are only excelled by 6 areas with outstanding 

high cooling capacity and that refer to parks, when comparing to the land cover 

map of figure 8. There seems no difference between industrial areas and dense 

urban fabric regarding cooling capacity within Josefstadt. The area of discontinuous 

urban fabric also catches the eye as only zone with a moderate urban cooling index 

value. The strong connection between urban green space and cooling capacity is 

51%
39%

6%

3% 1%

Land cover share of Josefstadt [%] 

Continuous urban fabric (S.L. :
> 80%)

Other roads and associated
land
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public, military and private
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already visible in the first map. When increasing the green cover by 10%, it can be 

observed that the overall cooling capacity within dense urban fabric and industrial 

areas was increased. The lowest cooling index values are between 0,1 and 0,2.  

 

Figure 18: Urban heat mitigation index for Josefstadt, calculated for different scenarios 

20% green coverage enhancement, as indicated in scenario 2, leads to more 

significant changes already. While the urban green areas itself remain with the 

highest urban cooling capacity, the increased green cover has moderate cooling 

effects on the whole district, with minimum values of 0,3. The streets are not 

affected by the bordering green areas. The last scenario, with a 30% green cover 

increase, has entirely converted the 8th district of Vienna to a region with a rather 

high heat mitigation potential. 

Having a closer look at the distribution of pixel values (see figure 19), scenario 2 

was investigated as an example. Cooling capacity values are distributed in three 

main groups on the scale from 0 to 1. Most pixel values show relatively low values 

between 0,2 and 0,3, followed by another pixel group with the value 1 and a third 

one around the value of 0,7. The mean value of the distribution is not expressive.  
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Figure 19: Distribution of pixel values of scenario 2 

5.2.1 Parameter sensitivity  

Since scenario 2 shows the cooling effect of urban green space in the most visible 

way, this scenario was chosen to test the sensitivity of several input parameters of 

the InVEST urban cooling model. As the model inputs can be modified very easily 

and the model runs rather quickly, numerous input parameters were changed. 

It turned out, that changing the UHI magnitude by 2°C or the baseline air 

temperature by 3°C led to the exact same result. Bigger changes did not seem 

reasonable, as an UHI magnitude of 15°C for example, is a rather unlikely 

assumption for Vienna. The same applies for the baseline air temperature value. 

Modifying the air temperature maximum blending distance to either 200m or 

1000m ended as well in the same output raster as with the initial 600m as InVEST 

urban cooling model input. Even though it was suggested in the model 

documentation that air temperature maximum blending distance may be used as a 

calibration parameter, it seems that the model is not sensitive at all to this 

parameter when applied on the 8th district of Vienna. Zero sensitiveness is seen for 

the earlier mentioned parameters UHI magnitude and baseline air temperature.  

The indication of maximum cooling distance as model input was modified twofold. 

With an initial cooling distance of 450m, as suggested in the InVEST 

documentation, the parameter was both transformed to 300m and 600m for 

scenario 2. Figure 20 shows the urban cooling index output maps with modified 

input cooling distances. It can be observed that there are slight changes in these 

maps. However, only two classes seem to have changed, which are the ranges 0,2-

0,3 and 0,3-0,4. By increasing the green area maximum cooling distance, the 

cooling capacity is increasing too. When reducing the maximum distance 
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parameter, the cooling capacity is also declining. This indicates a linear relationship 

between the green area maximum cooling distance and the cooling capacity.  

 

Figure 15: Green area maximum cooling distance modification outcomes 
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6 CONCLUSION 

The main objective of this research was the evaluation of greening scenarios to 

mitigate urban heat islands during tropical nights. To conclude the findings of this 

research regarding the answering of the main objective, all research questions and 

its sub-questions will be examined in the following. 

R1: Where are the urban heat islands of tropical nights in Vienna? 

o Which thermal data are most suitable for nighttime UHI detection in Vienna? 

o How can Vienna’s detected urban heat islands be validated? 

o How can the temperature hotspots be defined area wise in Vienna? 

 

Nighttime urban heat islands are still an underrepresented research area due to the 

lack of nighttime temperature data. As ground measurements are generally hard to 

receive concerning the lack of a large crowd of measurements that allow the 

prediction of urban heat islands, thermal remote sensing data seem to be an easier 

accessible option. However, TIR data usually come with a coarser spatial resolution 

than spectral reflectance remote sensing data. Another challenge is the availability 

of nighttime data. ECOSTRESS, which launched in 2018, seems to fill this gap for 

certain areas around the globe. Due to its acquisition time of 3-5 days at different 

times during day and night and a moderate spatial resolution of 70m, these thermal 

data seem to be an excellent option for urban heat island purposes in general. 

Another benefit of ECOSTRESS are ready-to-use, fully calculated LST products, 

which allow for quicker UHI estimations. 

From the validation analysis it can be concluded, that in situ temperature 

measurements tend to be a few degrees higher than land surface temperature 

derived from ECOSTRESS satellite data. Although, only 43 ground measurements 

were used to validate the ECOSTRESS thermal image, the absolute temperature 

difference was comparatively homogeneous for all measure points.  

Moreover, validation results may differ when including more ground measurements 

for the designated urban area of interest. As in situ temperature data are relatively 

limited for this purpose, these data might be best collected directly in the field for 

the study of interest. For the scope of this thesis the expenditure of work was not 

commensurate to undertake this step, but it might be of interest for further 

research. 

The evaluation of the land surface temperature map was decisive for the definition 

of a focus area. In fact, the idea was to target the scenario analysis on the most 

significant urban heat island area. Mean values for Vienna’s districts and census 

areas were calculated that indicated three districts with a very high UHI effect 

during a tropical night. The limited green cover proportion of the 8th district 
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Josefstadt, which is the lowest within the whole city, made it an interesting choice 

for the scenario analysis with a lot of potential for change.   

 

R2: How can greening measures to mitigate urban heat islands during tropical 

nights in Vienna be mapped in different scenarios? 

o What is the current green share in the most significant tropical night’s 

temperature hot spot in Vienna? 

o How sensitive is the change of land cover to land surface temperature in 

Vienna? 

 

The generation of greening scenarios was based on the actual land use/land cover 

of Josefstadt. The first sub-question was already examined in the process of the 

UHI hot spot definition, as three districts had equally high land surface temperature 

values. Therefore, Josefstadt’s low green share rate served as crucial factor for this 

decision. 

The second sub-question was targeted by use of the InVEST urban cooling model, 

which calculates an urban cooling index to evaluate the nighttime heat mitigation 

potential. By altering the spatial configuration of the urban land cover, model 

estimates can shed some light on the effects of green cover increase as instruments 

for urban heat mitigation. Three different scenarios were generated with 10%, 20% 

and 30% of green cover in Josefstadt. Despite being rather unrealistic modifications 

for urban planning in Vienna, the scenarios were created to emphasize the strong 

impact of urban green areas to nighttime urban heat reduction. With regard to the 

InVESt model outcomes, a strong correlation of urban green cover and cooling 

capacity was assumed, just by visually comparing land cover and the resulting 

cooling capacity.  

Eventually, the urban cooling model was tested in reference to altered model 

inputs. It was found that the InVEST urban cooling model is not sensitive at all to 

the change of 3 parameters. Changes at the baseline air temperature, the UHI 

magnitude and the air temperature maximum blending distance had zero effect on 

the output data of the InVEST urban cooling model, when applying it on the 8th 

district of Vienna. It is possible though, that these model inputs may have a more 

significant impact on a larger study area or an area with different land use/land 

cover conditions. An observable effect regarding model sensitivity was detected by 

modifying the green area maximum cooling distance.  
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7 DISCUSSION 

This section of the thesis illustrates the outcomes of the analysis in regards of 

further research, improvements and limitations.  

Room for improvement can definitely be seen at the validation of the land surface 

temperature with in situ measurements. The inclusion of more ground 

measurements could enhance the reliability of the examined LST product. Due to 

lack of available in situ temperature measurements, the spatial extent of the 

validation was expanded. However, when focusing on urban heat islands, a higher 

number of reference data for the urban area would have been beneficial to support 

the use of LST as a proxy for urban heat.  

In addition, when directly validating LST products of low spatial resolutions with in 

situ measurements, T-based methods tend to lack reliability. Since LST can vary by 

approximately 10K over a few meters in a heterogeneous surface, the assessment 

of the spatial representativeness of station observations at a given spatial 

resolution is inevitable to reliably validate remotely sensed LSTs (Yu et al., 2017). 

“The term “spatial representativeness” refers to measurements of the degree to 

which ground-based observations can resolve the surrounding LST by extending to 

the satellite footprint.” (Yu et al., 2017; p.24). Even though there are several 

approaches to measure the spatial representativeness for station observations, 

these are mostly used for satellite-albedo, evapotranspiration, and leaf area index 

(LAI) products. Few assessments exist for station LST observations, which fortifies 

the uncertainty of the validation of LST products and hinders the application of in 

situ measurements (Yu et al., 2017). Accordingly, there is still room for 

improvement by taking into account the spatial representativeness of the ground 

measurements.  

The image sharpening to receive more accurate land surface temperature data 

brought no result. The source of error could not be found either and requires 

further research. There may be an error in the calculated albedo due to shading. 

Using another algorithm to sharpen the ECOSTRESS image may be an alternative 

option. The used HUTS algorithm dates back to 2011 already. There may be better 

performing methods by now. Since ECOSTRESS LST have not been targeted much 

in literature yet, future studies could focus on image sharpening techniques for 

ECOSTRESS land surface temperature in urban areas.  

The outputs of the InVEST urban cooling model confirmed the correlation of urban 

green spaces to heat mitigation. For the latter, an urban cooling index was 

calculated as proxy for the temperature reduction. The urban cooling model is a 

rather new instrument to predict cooling capacities in urban cities on basis of land 

cover changes. The model turned out to be an easily applicable tool for heat 

mitigation studies. It is well documented with additional sample data to adapt the 

model inputs. The required technical know-how is mainly based on GIS software for 

the preprocessing of data inputs. Despite being easy to handle, the gathering and 
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preprocessing of data to fit the model requirements, can be time-consuming. 

Nevertheless, the InVEST urban cooling model is definitely suitable for further UHI 

studies in order to support urban greening. Generally, it can be an instrument for 

urban planners to quantify the effects of vegetation in cities all over the world. For 

further studies, it may be of interest to investigate urban heat islands on a different 

scale. Whereas, within this thesis, the urban cooling model was only run for one 

district. There may be differences when running it for the whole city of Vienna. 

Since evapotranspiration was one of the model requirements, cities in other climatic 

zones may show diverse model outputs. Until now, there are not many publications 

with results of the urban cooling model, which leaves room for improvement for 

further studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

8 LITERATURE 

Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and 

improve air quality in urban areas. Solar energy, 70(3), 295-310. 

Allegrini, J., Dorer, V., & Carmeliet, J. (2015). Influence of morphologies on the microclimate in urban 

neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics, 144, 108-117. 

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for 

computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), 

D05109. 

Aram, F., García, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in 

cities. Heliyon, 5(4), e01339.  

ArcGIS StoryMaps (n.d.). Applying the InVEST Model. Retrieved on 24-05-2022 from: 

https://storymaps.arcgis.com/stories/55c6a84db09749fd98f00600e8a1fc3e 

Arellano, B., & Roca, J. (2021). Remote sensing and night time urban heat island. ISPRS-International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 15-22. 

Bahi, H., Mastouri, H., & Radoine, H. (2020). Review of methods for retrieving urban heat 

islands. Materials Today: Proceedings, 27, 3004-3009. 

Balany, F., Ng, A. W., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green infrastructure as an 

urban heat island mitigation strategy—a review. Water, 12(12), 3577. 

Barr, J., & Cohen, J. P. (2014). The floor area ratio gradient: New York City, 1890–2009. Regional 

Science and Urban Economics, 48, 110-119. 

Benedict, M. A., & McMahon, E. T. (2012). Green infrastructure: linking landscapes and communities. 

Island press. 

Boori, M. S., Balzter, H., Choudhary, K., Kovelskiy, V., & Vozenilek, V. (2015). A comparison of land 

surface temperature, derived from AMSR-2, Landsat and ASTER satellite data. Journal of Geography 

and Geology, 7(3), 61. 

Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Jaligot, R., Chenal, J., & Joost, S. (2021). 

Evaluating urban greening scenarios for urban heat mitigation: a spatially explicit approach. Royal 

Society open science, 8(12), 202174. 

Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2013). Green spaces growth impact on the urban 

microclimate. Procedia-Social and Behavioral Sciences, 105, 547-557. 

Chung, J., Lee, Y., Jang, W., Lee, S., & Kim, S. (2020). Correlation analysis between air temperature 

and MODIS land surface temperature and prediction of air temperature using TensorFlow long short-

term memory for the period of occurrence of cold and heat waves. Remote Sensing, 12(19), 3231. 

Copernicus Europe’s eyes on Earth (2022). Demonstrating heat stress in European cities. Retrieved on 

23-01-2022 from: https://climate.copernicus.eu/demonstrating-heat-stress-european-cities 

Czachs, C., Reinwald, F., Damyanovic, D., Brandenburg, C., Gantner, B., Allex, B., ... & Liebl, U. 

(2013). Urban Heat Islands–Strategy Plan Vienna. In PLANNING TIMES–You better Keep Planning or 

You get in Deep Water, for the Cities they are A-Changin'. Proceedings of 18th International 

Conference on Urban Planning, Regional Development and Information Society (pp. 1037-1044). 

CORP–Compentence Center of Urban and Regional Planning. 

Dominguez, A., Kleissl, J., Luvall, J. C., & Rickman, D. L. (2011). High-resolution urban thermal 

sharpener (HUTS). Remote Sensing of Environment, 115(7), 1772-1780. 



47 

 

Encyclopædia Britannica (2021). Vienna. Retrieved on 09-04-2021 from: 

https://www.britannica.com/place/Vienna/Evolution-of-the-modern-city 

ESA (2000-2021). Land Surface Temperature. Retrieved on 05-03-2021 from: 

https://sentinel.esa.int/web/sentinel/userguides/sentinel3slstr/overview/geophysicalmeasurements/la

ndsurfacetemperature#:~:text=Land%20Surface%20Temperature%20(LST)%20is,land%20derived%

20from%20infrared%20radiation.&text=LST%20is%20not%20the%20same,in%20the%20daily%20w

eather%20report.  

Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse‐Nicholson, K., ... & Hook, S. 

(2020). ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the 

international space station. Water Resources Research, 56(4), e2019WR026058. 

Hamel, P., Guerry, A. D., Polasky, S., Han, B., Douglass, J. A., Hamann, M., ... & Daily, G. C. (2021). 

Mapping the benefits of nature in cities with the InVEST software. npj Urban Sustainability, 1(1), 1-9. 

Hashim, H., Abd Latif, Z., & Adnan, N. A. (2019). Urban vegetation classification with NDVI threshold 

value method with very high resolution (VHR) Pleiades imagery. The International Archives of 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 237-240. 

Helloworlde (2022). What we do. Retrieved on 11-05-2022 from: http://helloworlde.com/ 

Hook, S. J. (2011). HyspIRI Level-2 Thermal Infrared (TIR) land surface temperature and emissivity 

algorithm theoretical basis document. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics 

and Space Administration, 2011. 

Hulley (n.d.). Sharpen ECOSTRESS 70m land surface temperature to 30m resolution using Landsat 8 

Surface Reflectance Data. Retrieved on 15-02-2022 from: 

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Furbancanopy.s3-us-west-

2.amazonaws.com%2FImageSharpening_Matlab.docx&wdOrigin=BROWSELINK 

Hulley, G., Shivers, S., Wetherley, E., & Cudd, R. (2019). New ECOSTRESS and MODIS land surface 

temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, 

California. Remote Sensing, 11(18), 2136. 

Huryna, H., Cohen, Y., Karnieli, A., Panov, N., Kustas, W. P., & Agam, N. (2019). Evaluation of 

TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual 

imagery. Remote Sensing, 11(19), 2304. 

IBO – Österreichisches Institut für Baubiologie und -ökologie (2021). Wiener Tropennächte. 

Hitzeschutzmaßnahmen für den privaten Wohnbereich. Retrieved on 29-11-2021 from: 

https://www.ibo.at/wissensverbreitung/ibomagazin-online/ibo-magazin-artikel/data/wiener-

tropennaechte 

ISOCARP Institute (2021). Towards Climate Resilient Planning in Vienna: From Models to Climate 

Services. Retrieved on 09-04-2021 from: https://www.isocarp-institute.org/wp-

content/uploads/2020/08/Review14_Towards-climate-resilient-Planning-in-Vienna.pdf 

Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban heat island analysis using the landsat 8 satellite 

data: A case study in Skopje, Macedonia. In Multidisciplinary Digital Publishing Institute 

Proceedings (Vol. 2, No. 7, p. 358). 

Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern of greenspace 

on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 

35-47. 

Kuriata-Potasznik, A. B., & Szymczyk, S. (2016). Variability of the water availability in a river lake 

system–A case study of Lake Symsar. Journal of Water and Land Development. 



48 

 

Kyselý, J., Kalvová, J. & Květoň, V. Heat Waves in the South Moravian Region During the Period 1961-

1995. Studia Geophysica et Geodaetica 44, 57–72 (2000). https://doi.org/10.1023/A:1022009924435 

Li, Z. L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., ... & Yan, G. (2013). Land surface 

emissivity retrieval from satellite data. International Journal of Remote Sensing, 34(9-10), 3084-3127. 

Liu, X., & Shen, Y. (2018). Quantification of the impacts of climate change and human agricultural 

activities on oasis water requirements in an arid region: a case study of the Heihe River basin, 

China. Earth System Dynamics, 9(1), 211-225. 

Liveup Homes (2020). What Is Floor Area Ratio (FAR) And Why It’s Important. Retrieved on 14-05-

2022 from: https://liveup.in/blogs/floor-area-ratio-far-explained/ 

Lowry, W. P. (1977). Empirical estimation of urban effects on climate: a problem analysis. Journal of 

Applied Meteorology, 16(2), 129–135. 

Magistrat der Stadt Wien (2021). Wetter – Statistiken. Retrieved on 09-04-2021 from: 

https://www.wien.gv.at/statistik/wetter/  

Nuruzzaman, M. (2015). Urban heat island: causes, effects and mitigation measures-a 

review. International Journal of Environmental Monitoring and Analysis, 3(2), 67-73. 

Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. (2017). Online global land surface 

temperature estimation from Landsat. Remote sensing, 9(12), 1208. 

Psenner, A. (2014). Das Wiener Gründerzeit-Parterre-Eine analytische Bestandsaufnahme. Pilotstudie-

Abschlussbericht. Available online at https://publik. tuwien. ac. at/files/PubDat_240533. pdf. 

Qiu, G. Y., LI, H. Y., Zhang, Q. T., Wan, C. H. E. N., Liang, X. J., & Li, X. Z. (2013). Effects of 

evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of 

Integrative Agriculture, 12(8), 1307-1315. 

Rasul, A. (2018). Using Landsat 8 images along with Google Earth Engine for investigation the location 

of the crashed aircrafts. 

Ring, Z., Damyanovic, D., & Reinwald, F. (2021). Green and open space factor Vienna: A steering and 

evaluation tool for urban green infrastructure. Urban Forestry & Urban Greening, 62, 127131. 

Roca, J., & Arellano, B. (2020, May). Measuring night-time urban heat island. Still a pending issue. 

In EGU General Assembly Conference Abstracts (p. 19577). 

Sahnoune, S., & Benhassine, N. (2017). Quantifying the impact of green-roofs on urban heat island 

mitigation. International Journal of Environmental Science and Development, 8(2), 116. 

Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring indicators for quantifying surface urban 

heat islands of European cities with MODIS land surface temperatures. Remote Sensing of 

Environment, 115(12), 3175-3186. 

Sekertekin, A., & Bonafoni, S. (2020). Sensitivity Analysis and Validation of Daytime and Nighttime 

Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity 

Models. Remote Sensing, 12(17), 2776. 

Shi, H., Xian, G., Auch, R., Gallo, K., & Zhou, Q. (2021). Urban Heat Island and its regional impacts 

using remotely sensed thermal data—A review of recent developments and methodology. Land, 10(8), 

867. 

Silvestri, M., Romaniello, V., Hook, S., Musacchio, M., Teggi, S., & Buongiorno, M. F. (2020). First 

comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over 

Italian volcanic and geothermal areas. Remote Sensing, 12(1), 184. 



49 

 

Sobstyl, J. M., Emig, T., Qomi, M. A., Ulm, F. J., & Pellenq, R. M. (2018). Role of city texture in urban 

heat islands at nighttime. Physical review letters, 120(10), 108701. 

Song, B., & Park, K. (2014). Validation of ASTER surface temperature data with in situ measurements 

to evaluate heat islands in complex urban areas. Advances in Meteorology, 2014. 

Stadt Wien (2022). Baukörpermodell (LOD1.4) -Produktinformation. Retrieved on 03-05-2022 from: 

https://www.wien.gv.at/stadtentwicklung/stadtvermessung/geodaten/bkm/produkt.html 

STATISTICS AUSTRIA (2021). Retrieved on 09-04-2021 from: 

file:///C:/Users/Schule/Downloads/bevoelkerungszahl_oesterreichs_stieg_auf_mehr_als_893_mio._zu

_jahresbeginn.pdf 

Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic 

heat. Energy and buildings, 25(2), 99-103. 

The Natural Capital Project, 2022. InVEST documentation. Retrieved on 03.05.2022 from: 

https://invest-userguide.readthedocs.io/en/latest/urban_cooling_model.html#data-needs 

Tyrallová, L., Schernthanner, H., & Tamm, J. (2018) Fernerkundliche Detektion und 

Dauerbeobachtung urbaner Hitze-und Kälteinseln. 

Vuckovic, M., Loibl, W., Tötzer, T., & Stollnberger, R. (2019). Potential of urban densification to 

mitigate the effects of heat island in Vienna, Austria. Environments, 6(7), 82. 

White-Newsome, J. L., Brines, S. J., Brown, D. G., Dvonch, J. T., Gronlund, C. J., Zhang, K., ... & 

O’Neill, M. S. (2013). Validating satellite-derived land surface temperature with in situ measurements: 

A public health perspective. Environmental health perspectives, 121(8), 925-931. 

Xue, J., Anderson, M. C., Gao, F., Hain, C., Sun, L., Yang, Y., ... & Schull, M. (2020). Sharpening 

ECOSTRESS and VIIRS land surface temperature using harmonized Landsat-Sentinel surface 

reflectances. Remote Sensing of Environment, 251, 112055. 

Yamamoto, Y. (2006). Measures to mitigate urban heat islands. NISTEP Science & Technology 

Foresight Center. 

Yu, W., Ma, M., Li, Z., Tan, J., & Wu, A. (2017). New scheme for validating remote-sensing land 

surface temperature products with station observations. Remote Sensing, 9(12), 1210. 

Yue, W., Liu, X., Zhou, Y., & Liu, Y. (2019). Impacts of urban configuration on urban heat island: An 

empirical study in China mega-cities. Science of the Total Environment, 671, 1036-1046. 

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., … Sobrino, J. (2018). Satellite 

Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote 

Sensing, 11(1), 48. doi:10.3390/rs11010048 

 

 

 

 

 

 

 

 



50 

 

9 APPENDICES 

9.1 APPENDIX A: MATLAB SCRIPT TO READ ECOSTRESS DATA, 

PREPROCESS IT AND WRITE IT TO A FILE 
This script is primarily based on a publication of NASA’s ECOSTRESS homepage,  

retrieved on 13-02-2022 from: https://ecostress.jpl.nasa.gov/faq 

%read H5 file ECOSTRESS LST 
ECO_LST1 = 
hdf5read('ECOSTRESS_L2_LSTE_17018_010_20210707T040608_0601_01.h5','/SDS/LST','V71Dime
nsions',true); 
ECO_LST1 = double(ECO_LST1).*0.02; %scale factor 
 
%read quality control data, exclude poor quality pixels 
QC = 
hdf5read('ECOSTRESS_L2_LSTE_17018_010_20210707T040608_0601_01.h5','/SDS/QC','V71Dimen
sions',true); 
test1 = bitget(QC,1); 
test2 = bitget(QC,2); 
QCtestgood = (test1==0 & test2==0);  %Best quality 
ECO_LST1(~QCtestgood) = nan;  
 
%Limits of study area 
Lat_eco = 
double(hdf5read('ECOSTRESS_L1B_GEO_17018_010_20210707T040608_0601_01.h5','/Geolocatio
n/latitude','V71Dimensions',true)); 
Lon_eco = 
double(hdf5read('ECOSTRESS_L1B_GEO_17018_010_20210707T040608_0601_01.h5','/Geolocatio
n/longitude','V71Dimensions',true)); 
minlat = 48.1; maxlat = 48.35; 
minlon = 16.15; maxlon = 16.61; 
lats = minlat:0.0007:maxlat; lons = minlon:0.0007:maxlon; 
[latg,long] = meshgrat(lats,lons); 
latg = flipud(latg); 
LSTgrid_eco = griddata(Lat_eco,Lon_eco,ECO_LST1,latg,long,'cubic'); 
 
%output data in a geotiff file 
latlim = [min(latg(:)) max(latg(:))]; 
lonlim = [min(long(:)) max(long(:))]; 
rasterSize = size(latg); 
R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north'); 
geotiffwrite('ECO2LST_neu.tif',LSTgrid_eco,R); 
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9.2 APPENDIX B: MATLAB IMAGE SHARPENING SCRIPT 
The script is mainly based on a published script by Glynn Hulley (n.d.) and adjusted 

to meet the requirements of this thesis. The source script was accessed on 15-02-

2022 at: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Furbancanopy.s3-us-

west-2.amazonaws.com%2FImageSharpening_Matlab.docx&wdOrigin=BROWSELINK 

clc 
clear all 
%read each band from the Landsat image 30m 
b2=imread("sr_viennac2.tif"); 
b4=imread("sr_viennac4.tif"); 
b5=imread("sr_viennac5.tif"); 
b6=imread("sr_viennac6.tif"); 
b7=imread("sr_viennac7.tif"); 
 
%NDVI 
b4=double(b4); 
b5=double(b5); 
b4 = b4.*0.0001; 
b5 = b5.*0.0001; 
ndvi=(b5-b4)./(b5+b4); 
 
%Albedo 
b2=double(b2); 
b6=double(b6); 
b7=double(b7); 
b2 = b2.*0.0001; 
b6 = b6.*0.0001; 
b7 = b7.*0.0001; 
albedo = ((0.356*b2) + (0.130*b4) + (0.373*b5) + (0.085*b6) + (0.072*b7) -
0.0018)./1.016; 
 
%read ECOSTRESS LST 70m 
[ECO_LST,R] = geotiffread('ECO2LST_neu.tif'); 
 
% Get lat, lon limits 
lonmin = R.LongitudeLimits(1); 
lonmax = R.LongitudeLimits(2); 
latmin = R.LatitudeLimits(1); 
latmax = R.LatitudeLimits(2); 
 
% Resize Landsat-8 30m data to ECOSTRESS 70m 
res = size(ECO_LST); 
NDVItir = imresize(ndvi,res); 
Albedotir = imresize(albedo,res);  
 
% Fitting coefficients that model LST using albedo and NDVI variables 
xt = [318.5394 47.4863 -18.7976 -213.0017 23.6037 -148.3736 251.8148 -15.4255 
373.1151 306.5941 -62.2609 -6.1342 -509.3209 -253.0092]; 
 
% low res LST fit for training 
fitt1 = xt(1) + xt(2).*Albedotir + xt(3).*NDVItir + xt(4).*Albedotir.^2 + 
xt(5).*NDVItir.^2 + xt(6).*NDVItir.*Albedotir + xt(7).*Albedotir.^3 + 
xt(8).*NDVItir.^3 + xt(9).*NDVItir.*Albedotir.^2 +xt(10).*NDVItir.^2.*Albedotir + 
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xt(11).*Albedotir.^4 + xt(12).*NDVItir.^4 + xt(13).*NDVItir.*Albedotir.^3 + 
xt(14).*NDVItir.^3.*Albedotir; 
 
% diff between observed and low res fit 
tdiff = ECO_LST-fitt1; 
 
% Smoothing 
% Building matrices that will compute running sums.  The left-matrix, eL, smooths 
along the rows.  The right-matrix, eR, smooths along the columns.  You end up 
replacing element "i" by the mean of a %(2*Nr+1)-by- (2*Nc+1) rectangle centered on 
element "i". 
matrixIn = tdiff; 
N(1) = 2; N(2) = 2;  % Smooth over 2x2 pixels 
[row,col] = size(matrixIn); 
eL = spdiags(ones(row,2*N(1)+1),(-N(1):N(1)),row,row); 
eR = spdiags(ones(col,2*N(2)+1),(-N(2):N(2)),col,col); 
 
% Setting all "NaN" elements of "matrixIn" to zero so that these will not 
% affect the summation.   
 
A = isnan(matrixIn); 
matrixIn(A) = 0; 
 
% For each element, we have to count how many non-NaN elements went into 
% the sums.  This is so we can divide by that number to get a mean.  We use 
% the same matrices to do this (ie, "eL" and "eR"). 
 
nrmlize = eL*(~A)*eR; 
nrmlize(A) = NaN; 
matrixOut = eL*matrixIn*eR; 
matrixOut = matrixOut./nrmlize; 
tdiff_lr = matrixOut; 
 
% high res sharpening LST fit  
fitt2 = xt(1) + xt(2).*albedo + xt(3).*ndvi + xt(4).*albedo.^2 + xt(5).*ndvi.^2 + 
xt(6).*ndvi.*albedo + xt(7).*albedo.^3 + xt(8).*ndvi.^3 + xt(9).*ndvi.*albedo.^2 
+xt(10).*ndvi.^2.*albedo + xt(11).*albedo.^4 + xt(12).*ndvi.^4 + 
xt(13).*ndvi.*albedo.^3 + xt(14).*ndvi.^3.*albedo; 
tdiff_hr = imresize(tdiff_lr,size(fitt2),'nearest'); 
 
% Final 30m sharpened LST 
LSTsharp = fitt2 + tdiff_hr; 
 
%  Output the final sharpened LST at 30m resolution to a geotiff  
latlim = [latmin latmax]; 
lonlim = [lonmin lonmax]; 
rasterSize = size(LSTsharp); 
R1 = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north'); 
geotiffwrite('ECO2LST_30m_2.tif',LSTsharp,R1); 
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9.3 APPENDIX C: LST MAP WITH EXCLUSION OF LOW-QUALITY PIXELS 
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9.4 APPENDIX D: SHARPENED 30M LST IMAGE 
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9.5 APPENDIX E: TABLE WITH VALIDATION OUTCOMES 

 

 

 

 

5882 25,3 26,9 20,4 4,9 6,5 20,5 4,8 6,4

2117 21,2 17,0 4,2 17,2 4,0

726 19,4 18,8 15,0 4,4 3,8 14,8 4,6 4,0

905 20,9 19,2 18,2 2,7 1,0 18,2 2,7 1,0

2207 22,1 26,7 18,6 3,5 8,1 18,4 3,7 8,3

2401 22,6 26,7 19,3 3,3 7,4 19,3 3,3 7,4

2430 23,3 23 19,2 4,1 3,8 19,2 4,1 3,8

2503 23,8 21,8 18,8 5,0 3,0 18,8 5,0 3,0

2601 24,1 24,9 19,0 5,1 5,9 18,9 5,2 6,0

4081 22,8 21,7 20,2 2,6 1,5 20,1 2,7 1,6

5609 21,0 19,1 1,9 19,0 2,0

5625 19,4 16,7 2,7 17,0 2,4

5701 22,9 17,8 17,5 5,4 0,3 17,6 5,3 0,2

5735 19,5 18,6 17,8 1,7 0,8 18,1 1,4 0,5

5802 20,8 18,4 2,4 18,5 2,3

5805 23,4 19,8 3,6 19,8 3,6

5904 24,0 21,2 20,8 3,2 0,4 20,8 3,2 0,4

5917 24,0 25,3 20,3 3,7 5,0 20,3 3,7 5,0

5990 24,1 26,3 20,2 3,9 6,1 20,4 3,7 5,9

7531 20,1 16,7 3,4 16,8 3,3

7604 24,2 25,7 19,1 5,1 6,6 19,0 5,2 6,7

7610 20,6 17,3 16,8 3,8 0,5 16,6 4,0 0,7

7641 25,1 17,9 7,2 17,8 7,3

10412 16,5 13,4 3,1 14,0 2,5

10415 19,5 16,9 15,8 3,7 1,1 15,7 3,8 1,2

10510 22,6 19,1 15,9 6,7 3,2 15,8 6,8 3,3

10531 24,4 17,1 7,3 17,2 7,2

10550 16,3 14,7 1,6 14,7 1,6

3805 22,9 22 18,8 4,1 3,2 18,8 4,1 3,2

3811 22,4 25,3 17,7 4,7 7,6 17,6 4,8 7,7

4305 23,9 18,1 5,8 18,1 5,8

4224 23,8 21,5 19,4 4,4 2,1 19,4 4,4 2,1

4030 22,9 19,7 3,2 19,7 3,2

4115 23,4 21,4 19,8 3,6 1,6 19,9 3,5 1,5

4125 24,8 25,6 19,6 5,2 6,0 19,7 5,1 5,9

5820 23,9 32,6 20,0 3,9 12,6 19,9 4,0 12,7

5925 23,7 21,3 2,4 21,3 2,4

5972 24,0 23,6 20,1 3,9 3,5 20,0 4,0 3,6

2116 21,6 15,1 6,5 15,3 6,3

2415 20,2 20,1 17,9 2,3 2,2 18,0 2,2 2,1

7505 23,3 26,3 15,7 7,6 10,6 15,7 7,6 10,6

7710 25,8 24,1 19,0 6,8 5,1 18,9 6,9 5,2

5935 24,6 23,7 21,0 3,6 2,7 21,0 3,6 2,7

Mean 22,4 22,9 18,3 4,1 4,2 18,3 4,1 4,2

Station 

number

Station 

measurements 
2m T1 [°C]

LST mean 

Buffer 500m 
LST1 [°C]

Absolute 

difference 
T1 - LST1 [°C]

LST mean 

Buffer 800m 
LST2 [°C]

Absolute 

difference 
T1 - LST2 [°C]

Station 

measurements 

5cm T2[°C] 

Absolute 

difference 
T2 - LST1 [°C]

Absolute 

difference 
T2 - LST2 [°C]


