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Abstract

This paper describes the use of time series analysis methods to predict the heave motion of
a ship to an horizon of 10 and 20 seconds into the future in order for flying objects to land on
the deck with safety. The methods used are a statistical approach, the Auto-Regressive Moving
Average (ARIMA) model, where past values contain information to predict the future values by
incorporating the statistical properties of the data and a supervised learning algorithm, a multi-
step Support Vector Regression (SVR) that aims to fit a plane to feature space minimizing the
prediction errors. The dataset used is resampled at higher timesteps and a sensitivity analysis is
conducted about how data resampling affects the performance of ARIMA and SVR model. The
ultimate goal of this paper is to compare the performance of an SVR to the ARIMA model as
a standalone study which will also serve as baseline model for a Convolutional Neural Network
(CNN) and an Long Short-Term Memory (LSTM) neural network modelled by our group members.
It is concluded that data resampling affects ARIMA’s performance for predictions shorter than 10
seconds but not the performance of the SVR for any forecasting horizon. The comparison of the
models revealed that SVR outperforms ARIMA when trained on a large enough dataset.

1 Introduction

The safety and effectiveness of maritime activities are directly affected by the random motions of a
ship caused by sea waves. Short-term ship attitude forecast that is accurate for the future seconds
plays a critical role in operational decision-making [Liu et al., 2020]. Specifically, the deployment and
landing of air vehicles from a ship can be challenging and even dangerous due to the unpredictable
nature of the ship’s movements in an open ocean environment. Therefore, improving the accuracy
of ship attitude prediction aids decision-making for such motion-sensitive maritime operations, and
getting trustworthy prediction uncertainty information helps to minimize possible navigation issues.
It can be argued that forecasting models are vulnerable to the error accumulation problem since they
employ forecasted values from the past, yet a method to accurately estimate motion would enhance
safety on board ships and allow for more precise vehicle deployment from ships [Khan et al., ]. For
the deployment of such operation it is crucial to accurately predict the ship motion for the next few
seconds. The motion of the ship in an open sea state is influenced by navigational status such as the
load and the speed but also by environmental external factors such as wave, wind and current that are
too complex to predict. This causes the ship to move in six degrees of motion: heave, sway, surge, roll,
pitch, and yaw (Figure 1) with the most important for landing procedures to be the heave motion.
Time series problems like this are traditionally approached by statistical methods including Auto-
regressive model (AR), Moving Average model (MA), Auto-regressive Moving Average as well as their
variations with the ARIMA model to have shown superior precision and accuracy in forecasting future
time series lags. Other combined methods with ARIMA such ARIMA-ANN [Wang et al., 2013] or
Ensemble Empirical Mode Decomposition - ARIMA, a self-adaptive decomposition technique suggest
improved accuracy [chuan Wang et al., 2015]. Additionally, while it is studied that an LSTM neural
network may outperform ARIMA [Siami-Namini et al., 2018], for small amount of data ARIMA may
give comparable result or perform better [Yamak et al., 2019].
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Figure 1: Ship motions

To deal with the substantial non-linearity of ship motion, different artificial intelligence approaches
have been developed to forecast ship motion attitude [Zhang, 2003]. Past research suggest that ma-
chine learning models predict accurately the short-term ship motion attitude for launch and recovery
of air vehicles by discovering patterns within the data, including a neural-network-based modelling
such a nonlinear autoregressive exogenous network (NARX) [Li et al., 2017] analysing the impact of
three different learning strategies, i.e. offline, online and hybrid learning, where the results show the
feasibility of generating a data-driven model through modelling and analysis of the neural network for
ship motion prediction, an LSTM-GPR network [Sun et al., 2022] for time series under both motion
and static conditions and a feed-forward neural network (FNN) [Khan et al., ] utilizing a combination
of the singular value decomposition and genetic algorithm.

This paper compares ARIMA and SVR model with respect to their performance in reducing error
rates. ARIMA is used as a representation of classical forecast modeling for the ability to deal with
non-stationary data, whereas SVR by not being limited to the statistical properties of the data, flexibly
describes it by deploying a linear or non-linear kernel function. For the reason that the wave sensors are
expensive systems and are installed only on larger ships, in this case study we attempt to predict the
heave motion of a ship using univariate time series data without including any information about wave
behaviour or weather conditions, so that a flying vehicle such a helicopter can land on the ship with
safety. For computational reasons and for noise reduction, the data is resampled at higher timesteps,
and a sensitivity analysis is performed to determine how data resampling impacts the ARIMA and
SVR model’s performance.

2 Data

2.1 Selected data exploration results

(a) RefZ time series simulation (b) Distribution of RefZ

Figure 2: Heave motion of ship
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Frequency Parameter Description Unit
5 Hz (0.2 s) time time of observation seconds

zeta wave elevation from Cog (center of gravity) meters
RefX X position of Reference point (surge) meters
RefY Y position of Reference point (sway) meters
RefZ Z position of Reference point (heave) meters
CogX X position of center of gravity meters
CogY Y position of center of gravity meters
CogZ Z position of center of gravity meters
Roll The tilting rotation of a vessel about its transverse/Y axis radians
Pitch The up/down rotation of a vessel about its longitudinal/X radians
Yaw The turning rotation of a vessel about its vertical/Z axis radians

Table 1: Table of Features

FREDYN Simulations : The data are simulations generated by the MARIN Research department
by means of time domain simulations and using FREDYN, a computer software that mimics the
dynamic behavior of a steered ship under the influence of waves and wind. Here it was used to simulate
the 5415M vessel in wave conditions. The movements can be large up to the point of capsize, and
all six degrees of freedom are calculated in the time domain. Rigid-body dynamics with large angles
and fluid flow effects produce here non-linearities. The hydrodynamic forces operating on the hull are
calculated using a nonlinear strip theory technique. When model test data is unavailable, the software
is meant to be utilized in the early stages of design. It is possible to cope with both a fully intact
and a partially damaged spacecraft. The input among others consists of: the geometry of the ship,
resistance curve and propeller characteristics, wind data, wave spectrum type, significant wave height
and average period, initial position and speed, type of manoeuvre and characteristics of the automatic
pilot or human helmsman. The output at each time step consists of: the ship’s position, the velocities
and rotation rates for six degrees of freedom, the rudder angles, the force and moment contributions
of the different components, statistics of all quantities at the end of each run [Source: MARIN]. The
above simulations are exclusively used for academic purposes and for providing knowledge about ship
motion prediction. The original dataset is not to be published in any form.

Ship Motion Dataset: For this analysis 100 simulations of the six motions of the ship were obtained
for a single sea state (5) and for time traces each 3 hours long, that is 55.000 initial observations for
timesteps of 0.2 seconds. Each time series dataset features the six motions of the ship: roll, pitch, yaw
in radians and also the heave, sway and surge motion in meters, measured from a reference point at
the stern and also from the center of gravity of the ship (Table 1). The heave motion (RefZ) variable
lies on a bell curve distribution with a mean value of -6.13 and a standard deviation of 1.65, thus
standardising this feature is meaningful (Figure 2). Furthermore, vessel speed, wave spectrum and
direction are constant and no information will be included about these variables. The author chose the
heave (RefZ) variable as the only feature of time series to be fed into the ARIMA and SVR models.

2.2 Data preparation

(a) Original data (b) Resampled data 0.8 seconds (c) Resampled data 2.0 seconds

Figure 3: Data Resampling
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Data Resampling: For reducing computation time, as well as reducing noise in the data before
training, the dataset is resampled from a granularity of 0.2 seconds per timestep to 0.4, 0.8 and 2.0
seconds that is 2, 4 and 10 timesteps resampling respectively. To do so, we look into sequential non
overlapping windows within the dataset, then locally fit the best fit lines to capture the trend and
assign for this interval the minimum value for a descending or the maximum value for an ascending
trend line. In other words, instead of calculating the mean value of every window of observations and
obtain a highly smoothed version of the data, we conditionally keep the minimum or maximum value,
so the original shape is preserved with only little loss. In Figure 3 where some peaks are smoothed, is
showed that a 2.0 seconds resampling results in significant information loss, so we may examine lower
resampling timesteps and only compare with such high resampling. The above resampling helped
reducing the autocorrelation that data exhibited in Figure 6, which is a key handling before applying
ARIMA model.

Z-score normalization: As SVR model is not scale invariant, the data should take small values
and all the features should have values at approximately the same range. The process of normalizing
every value in a dataset such that the mean of all of the values is 0 and the standard deviation is 1 is
called Z-score normalization. To do this, we import StandardScaler from sklearn library, train it on
the train set from the first simulation and then apply it on the test set and on the next ones. In this
way, no information is leaked from train to test set and/or between the simulations. In other case,
that would introduced bias to our models. The above scaling was also applied for ARIMA method, so
that results would be comparable. The equation for the Z-score normalization is as follows:

Z =
x− µ

σ

where Z represents the normalized value, x represents the observed values, µ the mean value of x and
σ the standard deviation of x.

Train-test split: Finally, each time series data set was split into two subsets: the training and test
datasets, that is 80% of each dataset was used for training and the remaining 20% of each dataset was
used for testing the accuracy of models. Table 5 lists the number of time series observations for each
dataset. For the above data set no missing data and no outliers were reported.

2.3 Assessment metrics

The Root Mean Square error (RMSE) is a commonly used metric for evaluating a model’s
prediction accuracy. It calculates the disparities between actual and predicted values, often known as
residuals. The measure compares the prediction errors of different models for a specific dataset rather
than across datasets.The formula for computing RMSE is as follows:

RMSE =

√
Σn

i=1

( (yipredicted− yiactual)2

N

)
where N is the total number of observations, yiactual is the actual value; and yipredicted is the
predicted value. The main benefit of using RMSE is that it penalizes large errors more than smaller
ones. Another useful property is that it also scales the scores in the same units as the forecast values
(i.e., meters per timestep for this study).

Akaike information criterion (AIC) for a model is defined as

AIC = −2 log
(
L̂
)
+ 2k

where
(
L̂
)
is the likelihood of the model. The first term −2 log

(
L̂
)
in the AIC is two times the negative

log likelihood, which corresponds to the residual sum of squares for the linear regression model with
a Gaussian likelihood. As a result, the first term serves as a measure of the lack of fit of data for
statistical models, with smaller values being preferable. The second term serves as a penalty term
for models with large dimensions. Models with smaller AIC values indicate a better balance between
these two key characteristics [Narisetty, 2020]. Here, the AIC is used for determining the best set of
parameters for the ARIMA model.
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3 Methods

The ARIMA and SVR algorithms that were developed for forecasting the time series are based on an
approach of a training window and a forecast horizon. The models estimate a set of training data lying
into the training window, then multi-step forecasts are computed for the forecast horizon and then the
training window is moved and the model is re-fitted before the next forecasting. By comparing the
value of the Root Mean Square Error, the model is chosen using out-of-sample criteria. Python was
used for implementing the algorithms, an open source machine learning library statsmodels for tuning
and fit of the ARIMA model, sklearn for preprocessing, numpy, pandas and matplotlib for handling
and visualizing the data. The multi-step SVR is performed according to Yukun Bao et al. proposed
workflow [Bao et al., 2014]

Advantages Disadvantages
ARIMA • Suitable for non-stationary time series • Dealing with outliers

• Only needs endogenous variables
(past values determine the future values)

• Does not react to nonlinear relationships

SVR • Less over fitting and robust to noise • Computationally expensive

• No local minimal
• Lack of transparency of results
(low interpretability)

• Good in generalisation • Selection of kernel function

Table 2: Advantages and Disadvantages of selected methods

ARIMA is a suitable method because it performs on non-stationary time series, where the statistical
properties of the data are changing through time and the autocorrelation pattern is not constant and
also only needs endogenous variables, that is past values determine the future values. On the other
hand, the model is not efficient dealing with outliers and does not react to nonlinear relationships.
(Table 2). Another drawback of ARIMA model is that long-term forecasting value inclines to the mean
(Figure 5) which makes it inappropriate for long-term predictions. Additionally, forecasting accuracy
strongly depends on which events are included in the training input (Figure 4) which makes the output
of the model very sensitive to the input vector. Finally, the model does not let us to understand
what lies behind this data development. Forecasting approaches based on univariate techniques have
strong historical coherence but low conceptual coherence, that means these models are often good at
reproducing historical trends, but they give limited insight into their reasons.

(a) (b)

Figure 4: ARIMA short-term forecasting

Figure 5: ARIMA long-term forecasting
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SVR addresses these issues at the cost of transparency of results, computational time and opti-
mal selection of kernel function, epsilon-tube and gamma hyperparameters [Li et al., 2017]. One of
the key advantages of SVR is that its computational complexity is independent of the input space’s
dimensions, as well as it also has a high prediction accuracy and great generalization capabilities.
[Awad and Khanna, 2015].

3.1 Auto Regressive Integrated Moving Average (ARIMA)

The Auto Regressive Integrated Moving Average (ARIMA) is a powerful linear regression-
based approach to forecasting, with application to financial time series, health management, signal
processing and more. When the assumption of uncorrelated errors is violated, classical regression
is not advised. [Din, 2015]. In this model, any observed value of time t is defined as the linear
combination of the previous time t-1 observed values and error terms. [Newbold, 1983] The model
attempts to determine future values by combining three key elements: 1) the autoregressive (AR)
part where a linear regression is incorporated to relate past values of series to future values, 2) the
integrated (I) part where time series is differenced to become stationary, and 3) the moving average
(MA) part that relates past forecast residual errors to future values of time series. So an ARIMA
model defined as ARIMA(p, d, q) model can be written in the form:

yt = c+

p∑
i=1

φiyt−i + εt +

q∑
i=0

ϑiεt−i

where yt is the stationary variable after differencing, c is constant, φi are the autocorrelation coeffi-
cients, εt are the white noise distributed residuals and ϑi are the weights applied on the stochastic
terms.

(a) Original data (b) Resampled data

Figure 6: Data Stationarity

In order to estimate the model the values p, d and q are identified where p is the order of the
autoregressive model, d is the degree of differencing for non-stationary time series and q is the order
of the moving-average model. By looking at the autocorrelation function (ACF) it is clear that the
autocorrelation the original data exhibited is reduced by resampling the series at a higher timestep
(Figure 6), yet no differencing term will be used. This is verified by applying the Augmented Dickey
Fuller (ADF) test under the null hypothesis that the data series is not stationary. In another case,
the coefficients estimated would not be stationary and therefore not invertible. As concluded by Clark
and Avery [Clark and Avery, 2010] when larger groups are formed, the effect of spatial autocorrelation
decreases by increasing internal heterogeneity within the groups, and decreasing heterogeneity between
the groups. The autoregressive term q is also identified by the autocorrelation function (ACF) and
the lag p by the partial autocorrelation function (PACF).

Here, the motivated settings of the model are based on the AIC value, determining the best model.
Therefore, for 0.4 seconds data resampling we use ARIMA(1,0,0) with AIC 10899.02 and for 0.8 and
2.0 seconds resampling we use ARIMA(4,0,4) with AIC 5154.21 and -27407.45 respectively. The above
setting is validated by the auto arima function of pmdarima package. With the above models we
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proceed to make predictions and compare the outcomes to the test set once the model has been fitted
to the training dataset. We determine the Root Mean Square Error score (RMSE) after computing
the residual error for each prediction made.

Additionally, a sensitivity analysis is conducted using different forecast horizons (2.0, 4.0, 10.0
seconds) and different input length (10.0, 20.0, 50.0 seconds) and comparing the prediction errors of
these models (Table 5).

Resampling Forecasting Performance Model
Agg data

(timesteps)
Agg data
(seconds)

#obs
training window

(seconds)
horizon
(seconds)

RMSE
(1-step)

RMSE
(k-steps)

ARIMA
(p,d,q)

AIC

2 0.4 27500 10 2 0.511 1.462 1,0,0 10899.02
10 2.0 5500 12 2 1.480 1.480 4,0,4 5154.21
2 0.4 27500 20 4 0.510 2.039 1,0,0 10899.02
10 2.0 5500 20 4 1.097 1.156 4,0,4 5154.21
2 0.4 27500 48 10 0.507 1.898 1,0,0 10899.02
10 2.0 5500 50 10 0.932 1.432 4,0,4 5154.21
4 0.8 13750 560 10 0.114 1.164 4,0,4 -27407.45
4 0.8 13750 1120 20 0.113 1.034 4,0,4 -27407.45

Table 3: ARIMA training inputs and performance

3.2 Support Vector Regression (SVR)

A Support Vector Machine (SVM) is a supervised learning method that creates a hyperplane or group
of hyperplanes in a high or infinite-dimensional space that may be used for classification, regression, and
other tasks. The introduction of an e-insensitive zone around the function, known as the e-tube, allows
SVM generalization to Support Vector Regression (SVR). Unlike linear regression models that
use the line of best fit to reduce the error between the actual and projected values, SVR is able to fit the
best line within a threshold of values. Hence, the optimization problem is reformulated in discovering
the tube that best approximates the continuous-valued function while balancing model complexity and
prediction error. The model uses a symmetrical loss function to train as a supervised-learning strategy,
penalizing both high and low misestimates equally. Specifically, using Vapnik’s e-insensitive technique,
a symmetrically created flexible tube of minimal radius is built around the estimated function, with
absolute values of errors less than a given threshold e discarded both above and below the estimate.
Points outside the tube are punished in this way, while points inside the tube, whether above or below
the function, are unaffected. As in Support Vector Machines, SVR is an optimization problem where
the most influential parameters that determine the form of the tube are the support vectors, and the
train and test data are considered to be identically distributed and independent (iid), that means
obtained from the same fixed but unknown probability distribution function in a supervised-learning
setting. A brief introduction to the mathematical context of the problem is provided below.

Given a time series φ1, φ2, . . . , φN , we define multi-step ahead forecasting as determining the re-
lation between the present and the previous observation x = [φt, φt−1, . . . , φt−d+1] and future value
y = [φt+1, φt+2, . . . , φt+H ] from the train sample. The multi-step SVR solves this problem by deter-
mining the regressor wj and bj , (j=1,...,H) that minimizes for every output:

Lp(W, b) =
1

2

H∑
j=1

||wj ||2 + C

n∑
i=1

L(ui)

where :

ui = ||ei|| =
√
(eTi ei)

eTi = yTi − φ(xi)W − bT

W = [w1, . . . , wH ]

b = [b1, . . . , bH ]T

C is a hyperparameter that sets the trade-off between the regularization and the error reduction term,
and φ(.) is a nonlinear transformation to the feature space, which is normally a higher dimensional
space. [Bao et al., 2014]
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Figure 7: SVR model workflow

As described at Figure 7 with the workflow followed, after the initial data preparation on 0.8
seconds resampled dataset, we convert train and test data to 2D tensors as inputs for the SVR and
perform grid search cross validation for tuning the hyperparameters gamma, epsilon and the kernel via
an exhaustive generation of candidates from a grid of parameter values where the best combination
is retained. Then, the SVR model is estimated using the above best parameters, trained on train
data and then make predictions on test data. Afterwards, the predictions and the original values
are unscaled and the Root Mean Square Error is calculated as a performance metric. Finally, the
model is retrained on the full data set and make predictions on the rest 99 simulation data sets. The
consistency of the model performance is validated by looking at the box plot of the prediction errors
across simulations.

4 Results

Forecasting Performance
training window

(seconds)
horizon
(seconds)

RMSE
(1-step)

RMSE
(k-steps)

ARIMA
560 10 0.114 1.164

1120 20 0.113 1.034

SVR
560 10 0.175 0.840

1120 20 0.066 0.820

Table 4: Model performance comparison on 0.8 seconds resampled data

The model performance of this study is presented at Table 4 along with the training windows
and the forecasting horizon in seconds. As seen in Table 4, for 10 and 20 seconds forecasting SVR
achieves an overall RMSE of 0.840 and 0.820 seconds whereas ARIMA achieves 1.164 and 1.034
respectively. Regarding the sensitivity analysis, RMSE of ARIMA model on different resampling
timesteps increases for 0.4 seconds resampling where a different model (1,0,0) was used, from 0.50
to 2.50 until 4.0 seconds forecasting and beyond this point decreases to approximately 1.60. For
predictions 10.0 and 20.0 seconds ahead, the predictions errors of ARIMA are not affected by the
resampling timestep used and they are all stabilized and incline to 1.60 (Figure 8a). In the contrary,
RMSE of SVR is not significantly affected by the resampling timestep used (Figure 8b), so for a 10.0
seconds ahead prediction RMSE has a value of approximately 0.84 for 0.4 and 0.8 seconds resampling
and 1.10 for 2.0 seconds resampling.

Moreover, the SVR model trained on the first simulation performs consistently to all the rest 99
simulations, no outliers are observed at the box plot (Figure 9a). Eventually, as presented in Figure 9b,
SVR outperforms ARIMA model for every timestep.
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(a) ARIMA RMSE per timestep (b) SVR RMSE per timestep

Figure 8: Forecasting 10.0 seconds ahead at 0.4, 0.8, 2.0 seconds resampled data

(a) SVR RMSE by timestep across 99 simulations
(b) ARIMA vs SVR model Root Mean Square Error

Figure 9: Forecasting 10.0 seconds ahead at 0.8 seconds resampled data

5 Discussion & Conclusion

Over the last few decades, time series analysis and forecasting has been a major research topic. In
maritime operations, many decision-making processes depend on the accuracy of time series forecasting,
so research into ways to make forecasting models more effective has never ended. One of the most
widely used techniques in forecasting study and application is the ARIMA model, while with their
nonlinear modeling capabilities, Support Vector Regressions (SVR) have also demonstrated promise
in time series forecasting applications. Although both ARIMA and SVR are capable of modeling a
wide range of issues, neither one is the optimum model that can be used uniformly to all forecasting
scenarios.

The best ARIMA validated model for forecasting future values of the time series was presented
in this empirical study. The ARIMA modeling’s success in predicting is one of the reasons for its
popularity. However, even if the model allows us to see what it may be the heave motion of the ship
in the coming seconds, it does not allow us to look behind this data progression, so the output highly
depends on the input. When it comes to forecasting horizon, the lower prediction errors in this study
imply that both models are more effective at short-term forecasting. Additionally, when predicting
further into the future from a timestep t, then the very next timestep t+ 1 predictions are improved
because a longer training input is used. In total, SVR performs significantly better than ARIMA for
10 and 20 seconds predictions on 0.8 seconds resampled data (Appendix: Figure 17). In practice,
ARIMA is able to only capture the trend, while systematically underestimates the predicted values
(Appendix: Figure 14) and most importantly it misses the actual volume of the peak, which is a critical
point for this study. Moreover, because both models’ performance drops for multi-step prediction, it is
required to extend the training input long enough. Eventually, SVR performs well to unseen data that
is the unused simulations, by using large enough training windows (here, the author incorporated a 9
minutes training window to predict the next 10 seconds) and by discovering patterns, whereas ARIMA
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performs analogically better by using already shorter training windows than SVR. In contrast with
ARIMA, SVR is able to capture not only the trend but also the volume of the forthcoming change
sufficiently (Appendix: Figure 15).

Another issue is that training models in high granularity data is indeed time consuming, hence,
data resampling is more than a necessity. Following this handling, SVR performance drops for highly
resampled data but not significantly, so it is preferred to train both models on 0.8 seconds resampled
data, rather than 0.4 seconds for computational reasons. Finally, a blind spot using SVR and other
machine learning models is the optimal hyperparameter tuning. For the reason that a brute force
technique across every possible combination is considered infeasible, the model performance is tested
for only a short list of potential best parameters.

Even though the SVR performance is very promising, it should be considered that the input length
that is currently used is quite long. Therefore, further inquiry is required to determine whether
this is feasible in real-world applications. However, the results presented reveal a lot of possibility
if this performance holds up in practical implementation. In this paper, a uni-variate solution was
approached. To improve human judgment in real-world applications, precise estimates of the other
ship motions are essential and future study into multi-variate ship motion prediction is therefore
necessary. Furthermore, this study uses simulation data, and the simulation only considers one sea
condition. Therefore, it is necessary to investigate if the positive outcomes can also be obtained on
simulation data with various sea conditions, and finally on prototype and real-world data, for use in
future applications. The work described in this paper was mainly focused on predicting a ship motion
time series using different data resampling levels. Future research may include a combination of the
present two models, ARIMA and SVR taking advantage of the useful properties of both models.
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A Appendix

Links to the standalone studies for this case study may be found in the Github repository of this case
study : https://github.com/QuintenSand/Thesis-Marin

A.1 ARIMA Sensitivity Analysis

(a) Forecasting 10.0 sec ahead

(b) Forecasting 20.0 sec ahead

Figure 10: ARIMA RMSE for 0.4, 0.8, 2.0 seconds resampled data

(a) Forecasting on 0.8 sec resampled data (b) Forecasting on 2.0 sec resampled data

Figure 11: ARIMA model forecasting 10-seconds ahead
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(a) Forecasting on 0.8 sec resampled data (b) Forecasting on 2.0 sec resampled data

Figure 12: ARIMA model forecasting 20-seconds ahead

Resampling Forecasting Performance Model
Agg data

(timesteps)
Agg data
(seconds)

#obs
training window

(seconds)
horizon
(seconds)

RMSE
(1-step)

RMSE
(k-steps)

ARIMA
(p,d,q)

AIC

2 0.4 27500 10 2 0.511 1.462 1,0,0 10899.02
10 2.0 5500 12 2 1.480 1.480 4,0,4 5154.21
2 0.4 27500 20 4 0.510 2.039 1,0,0 10899.02
10 2.0 5500 20 4 1.097 1.156 4,0,4 5154.21
2 0.4 27500 48 10 0.507 1.898 1,0,0 10899.02
10 2.0 5500 50 10 0.932 1.432 4,0,4 5154.21
4 0.8 13750 560 10 0.114 1.164 4,0,4 -27407.45
4 0.8 13750 1120 20 0.113 1.034 4,0,4 -27407.45

Table 5: ARIMA training inputs and performance

A.2 SVR Sensitivity Analysis

(a) Forecasting 10-seconds ahead (b) Forecasting 20-seconds ahead

Figure 13: SVR RMSE for 0.4, 0.8, 2.0 seconds resampled data

13



A.3 ARIMA Predictions

(a) 10-seconds forecasting (b) 20-seconds forecasting

Figure 14: ARIMA model forecasting on 0.8 seconds resampled data

A.4 SVR Predictions

(a) 10-seconds forecasting (b) 20-seconds forecasting

Figure 15: SVR model forecasting on 0.8 seconds resampled data
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A.5 SVR performance

(a) Forecasting 10.0 sec ahead (b) Forecasting 20.0 sec ahead

Figure 16: SVR RMSE box-plot by timestep across 99 simulations

A.6 Model Comparison

Forecasting Performance
training window

(seconds)
horizon
(seconds)

RMSE
(1-step)

RMSE
(k-steps)

ARIMA
560 10 0.114 1.164

1120 20 0.113 1.034

SVR
560 10 0.175 0.840

1120 20 0.066 0.820

Table 6: Model performance comparison on 0.8 seconds resampled data

(a) Forecasting 10.0 seconds ahead (b) Forecasting 20.0 seconds ahead

Figure 17: ARIMA vs SVR model Root Mean Square Error
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