
Computing Science MSc Thesis

Generic Incremental Computation for
Regular Datatypes in Haskell

Author
Jort van Gorkum (6142834)

Supervisors
Dr. Wouter Swierstra
Dr. Trevor McDonell

Faculty of Science
Department of Information and Computing Sciences

Programming Technology

August 19, 2022

Abstract

Incremental computation is a method which tries to save time by only recomputing the output of
changed input. A technique of incremental computation is memoization. Memoization stores the
result of a computation and returns the cached result when the same input occurs again. As a
result, a large part of memoization becomes dependent on determining if the input is equal to an
already cached input. This can become problematic when a computation is given a large recursive
data structure. To improve the performance of memoization this paper introduces an incremental
algorithm which determines the equality in constant time. This is accomplished by storing hash
values/digests, which describe the internal structure, inside the data structure. Furthermore, the
incremental algorithm describes how to efficiently update the digests, using a Zipper, when the
data structure changes. The incremental algorithm is then implemented using Datatype-generic
programming, to support the class of regular datatypes. Meanwhile, the usage of the generic
implementation stays the same for the developers as writing the non-incremental algorithm in
Haskell. Finally, we show that the performance is better than the non-incremental version with
minimal extra memory usage, when correctly tuned with cache policies.

Contents

1 Introduction 3
1.1 Contributions . 6

2 Specific Implementation 7
2.1 Merkle Tree . 9
2.2 Zipper . 10

2.2.1 Zipper Merkle Tree . 11

3 Datatype-Generic Programming 12
3.1 Introduction . 12
3.2 Explicit recursion . 14
3.3 Sums of Products . 15
3.4 Mutually recursive datatypes . 16

4 Generic Implementation 17
4.1 Regular . 17
4.2 Generic Zipper . 20
4.3 Cache Management . 21

4.3.1 Cache Addition Policies . 21
4.3.2 Cache Replacement Policies . 23

4.4 Pattern Synonyms . 24

5 Experiments 25
5.1 Method . 25
5.2 Results . 26

5.2.1 Execution Time . 26
5.2.2 Memory Usage . 27
5.2.3 Comparison Cache Addition Policies . 28

6 Discussion & Conclusion 31
6.1 Related Work . 31

6.1.1 Comparison of equality in constant time . 31
6.1.2 Storing the cached results . 31
6.1.3 Updating the input . 32

6.2 Future Work . 32
6.2.1 Support for Mutually Recursive Datatypes 32
6.2.2 Implement the incremental algorithm using Sums-of-Products 33
6.2.3 Benchmarking with real-world data . 33
6.2.4 Support for a new input without changes 33
6.2.5 Prioritization . 33

6.3 Conclusion . 34

1

A Generic Programming 35
A.1 Functor instances for Pattern Functors . 35

B Cache Management 36
B.1 Implementation Recursion Depth . 36

C Results 37
C.1 Minimum of 10 recursion depth . 37
C.2 Individual benchmark results - Worst Case . 39

C.2.1 Linear trend line . 39
C.2.2 Logarithmic trend line . 40

C.3 Individual benchmark results - Average Case . 42
C.3.1 Linear trend line . 42
C.3.2 Logarithmic trend line . 43

C.4 Individual benchmark results - Best Case . 45
C.4.1 Linear trend line . 45
C.4.2 Logarithmic trend line . 46

2

1
Introduction

There are multiple applications where incremental computation has a positive effect on perfor-
mance: GUIs (e.g., DOM diffing), spreadsheets, attribute grammar evaluation, etc. An example,
where incremental computation has significant effect on performance, is computing the Fibonacci
sequence.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 2) + fib (n - 1)

Figure 1.1: The implementation of the Fibonacci sequence in Haskell.

The implementation of the incremental computation for the Fibonacci sequence is called memoiza-
tion. Memoization is a technique that caches the result of a function and reuse the cached result
when the input is the same. A well-used Haskell package which implements memoization is the
MemoTrie package[7].

memoFib :: Integer -> Integer
memoFib = memo memoFib'

where
memoFib' 0 = 0
memoFib' 1 = 1
memoFib' n = memoFib (n - 2) + memoFib (n - 1)

Figure 1.2: The memoized implementation[25] of the Fibonacci sequence using the MemoTrie
package.

The problem with MemoTrie is to determine if an input has already been computed, the entire
input needs to be traversed through. This works well when the input of a function is a small
datatype, but can become problematic when given a large recursive data structure. For example,
when we want to compute the summation over a tree, the lookup can take up a lot of processing
time.

3

data BinTree = Leaf Int
| Node BinTree Int BinTree

sumTree :: BinTree -> Int
sumTree (Leaf x) = x
sumTree (Node l x r) = x + sumTree l + sumTree r

Figure 1.3: Computing the summation of all the numbers in the Tree.

To improve the comparison of two recursive data structure, we introduce the use of hash functions.
Using hash functions to generate hash values/digests, the comparison of two data structures can
be performed in constant time. The hash function used can be found in Chapter 2.

To store the digests, we label every node in the tree with its corresponding digest. The digest
represents the internal structure of itself and its children. This new data structure is called a Hash
Tree or Merkle Tree[16]. Using the digests within the data structure, the comparison can easily be
performed by just comparing both digests for equality.

data BinTreeH = Leaf Digest Int
| Node Digest BinTreeH Int BinTreeH

merkle :: BinTree -> BinTreeH
merkle (Leaf x) = LeafH (hash ["Leaf", show x]) x
merkle (Node l x r) = NodeH d l' x r'

where
d = hash ["Node", show x, getDigest l', getDigest r']
l' = merkle l
r' = merkle r

Figure 1.4: Converting the Tree into a Merkle Tree.

However, what if we want to update a small part of the merkle tree? Then the entire merkle tree
gets rehashed, while only a small part is updated. To improve the performance, only the digest
of a node has to change if the node itself changes or one of its children changes. To efficiently
perform this in Haskell we use a technique named Zipper [12]. The inner workings of the Zipper is
explained in Section 2.2.

Unfortunately, with this implementation it only works for a single datatype. When we want to
support a different datatype the functionality needs to be copied and reimplemented for that
specific datatype. This can become quite cumbersome and error-prone for developers. To support
a large class of datatypes for this functionality we introduce Datatype-Generic programming. The
detailed explanation of what datatype-generic programming is, can be found in Chapter 3.

Datatype-generic programming is a technique to exploit the structure of datatypes to define func-
tions by induction over the type structure. To represent datatypes in a generic representation, we
use pattern functors. Then using datatype-generic programming, we define generic functionality

4

for: computing the digests of the data structure, storing the digests inside the data structure, a
generic zipper, and, functionality for computing the result and cached results of a given function.
The generic implementation of the incremental algorithm is explained in Chapter 4.

However, this does mean that the given function which computes a result needs to use the pattern
functors. The pattern functors are quite verbose and the extension cannot be a drop-in replace-
ment for existing functionality. To make it easier for developers to use, we introduce Pattern
synonyms[21]. Pattern synonyms add an abstraction over patterns, which can be used to simplify
the case expressions used in the given function, making the functionality almost a drop-in exten-
sion (we only need to add an underscore to the data constructors). The implementation of the
pattern-synonyms can be found in Section 4.4.

Finally, to prevent the cache from growing too large for the available amount of memory, we provide
multiple policies, so that the developer can choose the best policy for their use-case. The policy can
be focused on recency, frequency, computational cost or a combination of the previously mentioned
metrics. The suggested cache policies can be found in Section 4.3.

Example

-- The generic implementation for sumTree
sumTree :: PF (BinTree) -> Int
sumTree (Leaf_ x) = x
sumTree (Node_ l x r) = x + l + r

-- Create a BinTree
> let exampleTree = Node (Node (Leaf 8) 7 (Leaf 1)) 3 (Node (Leaf 5) 4 (Leaf 2))
-- Add digests to the BinTree
> let merkleTree = merkle exampleTree

-- Initial computation
> let (y, m) = cataMerkle sumTree (merkleTree)

(18, { "6dd": 18, "5df": 15, "fa0": 8, "8d0": 1, "f3b": 9, "84b": 5
, "1ad": 2 })

-- Update BinTree using the Zipper
> let merkleTree' = update (const (merkle (Leaf 6))) [Bttm] merkleTree

-- Incremental compute the result using
-- the cached results from the previous computation
> cataMerkleMap sumTree m (merkleTree')

(16, { "6dd": 18, "5df": 15, "fa0": 8, "bbd": 16, "91c": 13, "3af": 6
, "8d0": 1, "f3b": 9, "84b": 5, "1ad": 2 })

Figure 1.5: The process of using the incremental computation functionality

5

1.1 Contributions

In summary, the main contributions of the Thesis are the following:

• We define an algorithm for incremental computation over recursive data structures. The in-
cremental algorithm uses digests for comparing whether data structures are equal in constant
time and a Zipper to efficiently update the recursive data structure without rehashing the
entire data structure.

• We use datatype-generic programming to write a generic version of the incremental algorithm,
to support a large class of datatypes, namely regular datatypes.

• We use pattern synonyms, to make the developer experience the same as implementing a
non-incremental algorithm.

• We define cache addition policies and cache replacement policies to optimize the perfor-
mance/memory usage for different use-cases.

6

2
Specific Implementation

The comparison of two values for equality in Haskell is performed using the Eq typeclass, which
implements the equality operator (==) :: a -> a -> Bool. An example implementation of the
Eq typeclass for the Tree datatype would be:

instance Eq a => Eq (Tree a) where
Leaf x1 == Leaf x2 = x1 == x2
Node l1 x1 r1 == Node l2 x2 r2 = x1 == x2 && l1 == l2 && r1 == r2
_ == _ = False

The problem with using this implementation of the Eq typeclass for memoization is that for every
comparison of the Tree datatype the equality is computed. This is inefficient because the equality
implementation has to traverse the complete Tree data structure to know if the Tree’s are equal.

To efficiently compare the Tree datatypes, we need to represent the structure in a manner which
does not lead to traversing to the complete Tree data structure. This can be accomplished using
a hash function. A hash function is a process of transforming input into an arbitrary fixed-size
value, where the same input always generates the same output.

One thing to be cautious when using digests are hash collisions. Hash collisions happen when
two different inputs have the same resulting hash. This is because a hash function has a limited
amount of bits to represent every possible combination of data. To calculate the chance of a hash
collision occurring we use the formula p = ϵ

−k(k−1)
2N from Hash Collision Probabilities[23]. So, given

a common hash function CRC-32[20], which has a digest size of 32bits, to get a 50% chance of a

hash collision occurring in a collection, it needs 0.5 = ϵ
−k(k−1)

2×232 → k = 77163 hash values.

Digest size (in bits) Collection size
32 77163
64 5.06× 109

128 2.17× 1019

Table 2.1: The collection size needed for a 50% chance of getting a hash collision

The hash function ultimately chosen in this paper is the CityHash[24]. CityHash is a non-
cryptographic hash function which works well for hash tables[22]. It supports two different digest

7

sizes: 64- and 128-bit. The digest size used in this paper will be the 64-bit variant. This digest
size is chosen, because we think it gives a good balance between performance and the probability
of getting a hash collision.

class Hashable a where
hash :: a -> Digest

instance Show a => Hashable a where
hash = cityHash64 . show

instance Hashable a => Hashable (Tree a) where
hash (Leaf x) = concatDigest [hash "Leaf", hash x]
hash (Node l x r) = concatDigest [hash "Node", hash x, hash l, hash r]

To keep track of the results of the computation, we store the results in a HashMap[27]. A HashMap
is an implementation of mapping a hashable key to a value. The implementation of the HashMap
is based on hash array mapped tries[3]. The average-case complexity for the lookup and insert
are O(log n), however in practice these operations are in constant time. Especially, because the
keys are digests, meaning that the key size is constant.

sumTreeInc :: Tree Int -> (Int, HashMap Digest Int)
sumTreeInc l@(Leaf x) = (x, insert (hash l) x empty)
sumTreeInc n@(Node l x r) = (y, insert (hash n) y (ml <> mr))

where
y = x + xl + xr
(xl, ml) = sumTreeInc l
(xr, mr) = sumTreeInc r

Then after the first computation over the entire Tree, we can recompute the Tree using the
previously created HashMap. Thus, when we recompute the Tree, we first look in the HashMap
if the computation has already been performed then return the result. Otherwise, compute the
result and store it in the HashMap.

sumTreeIncMap :: HashMap Digest Int -> Tree Int -> (Int, HashMap Digest Int)
sumTreeIncMap m l@(Leaf x) = case lookup (hash l) m of

Just z -> (z, m)
Nothing -> (x, insert (hash l) x m)

sumTreeIncMap m n@(Node l x r) = case lookup (hash n) m of
Just x -> (x, m)
Nothing -> (y, insert (hash n) y m2)

where
y = x + xl + xr
(xl, m1) = sumTreeIncMap m l
(xr, m2) = sumTreeIncMap m1 r

8

Generating a hash for every computation over the data structure is time-consuming and unneces-
sary, because most of the Tree data structure stays the same. The work of Miraldo and Swier-
stra[18] inspired the use of the Merkle Tree. A Merkle Tree is a data structure which integrates
the digests within the data structure.

2.1 Merkle Tree

First we introduce a new datatype TreeH, which contains a Digest for every constructor in Tree.
Then to convert the Tree datatype into the TreeH datatype, the structure of the Tree is hashed
and stored into the datatype using the merkle function.

data TreeH a = LeafH Digest a
| NodeH Digest (Leaf a) a (Leaf a)

merkle :: Tree Int -> TreeH Int
merkle (Leaf x) = LeafH (hash ["Leaf", show x]) x
merkle (Node l x r) = NodeH d l' x r'

where
d = hash ["Node", show x, getDigest l', getDigest r']
l' = merkle l
r' = merkle r

The precomputed digests can then be used to easily create a HashMap, without computing the
digests every time the sumTreeIncH function is called.

sumTreeIncH :: TreeH Int -> (Int, HashMap Digest Int)
sumTreeIncH (LeafH h x) = (x, insert h x empty)
sumTreeIncH (NodeH h l x r) = (y, insert h y (ml <> mr))

where
y = x + xl + xr
(xl, ml) = sumTreeInc l
(xr, mr) = sumTreeInc r

The problem with this implementation is, that when the Tree datatype is updated, the entire Tree
needs to be converted into a TreeH, which is linear in time. This can be done more efficiently, by
only updating the digests which are impacted by the changes. Which means that only the digests
of the change and the parents need to be updated.

The first intuition to fixing this would be using a pointer to the value that needs to be changed.
But because Haskell is a functional programming language, there are no pointers. Luckily, there
is a technique which can be used to efficiently update the data structure, namely the Zipper[12].

9

2.2 Zipper

The Zipper is a technique for keeping track of how the data structure is being traversed through.
The Zipper was first described by Huet[12] and is a solution for efficiently updating pure recursive
data structures in a purely functional programming language (e.g., Haskell). This is accomplished
by keeping track of the downward current subtree and the upward path, also known as the location.

To keep track of the upward path, we need to store the path we traverse to the current subtree.
The traversed path is stored in the Cxt datatype. The Cxt datatype represents three options the
path could be at: the Top, the path has traversed to the left (L), or the path has traversed to the
right (R).

data Cxt a = Top
| L (Cxt a) (Tree a) a
| R (Cxt a) (Tree a) a

type Loc a = (Tree a, Cxt a)

enter :: Tree a -> Loc a
enter t = (t, Top)

Using the Loc, we can define multiple functions on how to traverse through the Tree. Then, when
we get to the desired location in the Tree, we can call the modify function to change the Tree at
the current location.

Eventually, when every value in the Tree has been changed, the entire Tree can then be rebuilt
using the Cxt. By recursively calling the up function until the top is reached, the current subtree
gets rebuilt. And when the top is reached, the entire tree is then returned.

left :: Loc a -> Loc a
left (Node l x r, c) = (l, L c r x)

right :: Loc a -> Loc a
right (Node l x r, c) = (r, R c l x)

up :: Loc a -> Loc a
up (t, L c r x) = (Node t x r, c)
up (t, R c l x) = (Node l x t, c)

modify :: (Tree a -> Tree a) -> Loc a -> Loc a
modify f (t, c) = (f t, c)

leave :: Loc a -> a
leave (t, Top) = t
leave l = top (up l)

10

> leave $ modify (const (Leaf 4)) $ left $ enter (Node (Leaf 1) 2 (Leaf 3))
(Node (Leaf 4) 2 (Leaf 3))

2.2.1 Zipper Merkle Tree

The implementation of the Zipper for the TreeH datatype is the same as for the Tree datatype.
However, the TreeH also contains the hash of the current and underlying data structure. Therefore,
when a value is modified in the TreeH, all the parent digests of the modified value needs to be
updated.

The updateLoc function modifies the value at the current location, then checks if the location has
any parents. If the location has any parents, go up to that parent, update the digest of that parent
and recursively update the parents digests until we are at the top of the data structure. Otherwise,
return the modified locations, because all the other digests are not affected by the change.

updateLoc :: (TreeH a -> TreeH a) -> Loc a -> Loc a
updateLoc f l = if top l' then l' else updateParents (up l')

where
l' = modify f l
updateParents :: Loc a -> Loc a
updateParents (Loc x Top) = Loc (updateHash x) Top
updateParents (Loc x cs) = updateParents $ up (Loc (updateHash x) cs)

Then, the update function can be defined using the updateLoc function, by first traversing through
the data structure with the given directions. Then modifying the location using the updateLoc
function and then leave the location and the function results in the updated data structure.

update :: (TreeH a -> TreeH a) -> [Loc a -> Loc a] -> TreeH a -> TreeH a
update f dirs t = leave $ updateLoc f l'

where
l' = applyDirs dirs (enter t)

11

3
Datatype-Generic Programming

The implementation in Chapter 2 is an efficient implementation for incrementally computing the
summation over a Tree datatype. However, when we want to implement this functionality for
a different datatype, a lot of code needs to be copied while the process remains the same. This
results in poor maintainability, is error-prone and is in general boring work.

An example of reducing manual implementations for datatypes is the deriving mechanism in
Haskell. The built-in classes of Haskell, such as Show, Ord, Read, can be derived for a large
class of datatypes. However, deriving is not supported for recursive datatypes. Therefore, we use
Datatype-Generic Programming [9] to define functionality for a large class of datatypes.

In this chapter, we introduce Datatype-Generic Programming, also known as generic programming
in Haskell, as a technique that uses the structure of a datatype to define functions for a large
class of datatypes. This prevents the need to write the previously defined functionality for every
datatype.

3.1 Introduction

There are multiple generic programming libraries, however to demonstrate the workings of generic
programming we will be using a single library as inspiration, named regular[15]. Here the generic
representation of a datatype is called a pattern functor. A pattern functor is a stripped-down
version of a datatype, by only containing the constructor but not the recursive structure. The
recursive structure is done explicitly by using a fixed-point operator.

First, the pattern functor defined in regular are 5 primitive type constructors and 2 meta informa-
tion constructors. The primitive type constructors describe the datatypes. The meta information
constructors only contain information (e.g., constructor name) but not any structural information.

12

data U r = U -- Empty constructor
data I r = I r -- Recursive position
data K a r = K a -- Constant
data (f :+: g) r = L (f r) | R (g r) -- Sums (Choice)
data (f :*: g) r = (f r) :*: (g r) -- Products (Combine)

The conversion from datatypes into pattern functors is done by the Regular type class. The
Regular type class has two functions. The from function converts the datatype into a pattern
functor and the to function converts the pattern functor back into a datatype. In regular, the
pattern functor is represented by a type family. Then using the Regular conversion to a pattern
functor, we can write the Tree datatype from Chapter 2 as:

type family PF a :: * -> *

class Regular a where
from :: a -> PF a a
to :: PF a a -> a

type instance PF (Tree a) = K a -- Leaf
:+: (I :*: K a :*: I) -- Node

class Regular (Tree a) where
from (Leaf x) = L (K x)
from (Node l x r) = R (I l :*: K x :*: I r)

to (L (K x)) = Leaf x
to (R (I l :*: K x :*: I r)) = Node l x r

To demonstrate the workings of generic programming, we are going to implement a simple generic
function which determines the length of an arbitrary datatype. First, we define the length function
within a type class. The type class is used, to define how to compute the length for every primitive
type constructor f.

class GLength f where
glength :: (a -> Int) -> f a -> Int

Writing instances for the empty constructor U and the constants K is simple because both primitive
type constructors return zero. The U returns zero, because it does not contain any children. The
K returns zero, because we do not count constants for the length.

instance GLength U where
glength _ _ = 0

instance GLength (K a) where
glength _ _ = 0

13

The instances for sums and products are quite similar. The sums recurses into the specified choice.
The product recurses in both constructors and combines them.

instance (GLength f, GLength g) => GLength (f :+: g) where
glength f (L x) = glength f x
glength f (R x) = glength f x

instance (GLength f, GLength g) => GLength (f :*: g) where
glength f (x :*: y) = glength f x + glength f y

The instance for the recursive call I needs an additional argument. Because, we do not know the
type of x, so, an additional function (f :: a -> Int) needs to be given which converts x into the
length for that type.

instance GLength I where
glength f (I x) = f x

Then using the GLength instances for all primitive type constructors, a function can be defined
using the generic length function. By first, converting the datatype into a generic representation,
then calling glength with the function length recursively, and for every recursive call increase the
length by one.

length :: (Regular a, GLength (PF a)) => a -> Int
length = 1 + glength length (from x)

> length [1, 2, 3]
3

> length (Node (Leaf 1) 2 (Leaf 3))
3

> length {"1": 1, "2": 2, "3": 3}
3

3.2 Explicit recursion

The previous implementation of the length function is implemented for a shallow representation. A
shallow representation means that the recursion of the datatype is not explicitly marked. Therefore,
we can only convert one layer of the value into a generic representation using the from function.

Alternatively, by marking the recursion of the datatype explicitly, also called the deep represen-
tation, the entire value can be converted into a generic representation in one go. To mark the
recursion, a fixed-point operator (Fix) is introduced. Then, using the fixed-point operator we can
define a from function that given the pattern functors have an instance of Functor1, return a
generic representation of the entire value.

1The Functor instances for the pattern functors can be found in Appendix A.1

14

data Fix f = In { unFix :: f (Fix f) }

deepFrom :: (Regular a, Functor (PF a)) => a -> Fix (PF a)
deepFrom = In . fmap deepFrom . from

Subsequently, we can define a cata function which can use the explicitly marked recursion by
applying a function at every level of the recursion. Then using the cata function we can define
the same length function as in the previous section, but just in a single line. However, this deep
representation does come at the cost that the implementation is less efficient than the shallow
representation.

cata :: Functor f => (f a -> a) -> Fix f -> a
cata = f . fmap (cata f) . unFix

length' :: (Regular a, GLength (PF a), Functor (PF a), Foldable (PF a))
=> a -> Int

length' = cata ((1+) . sum) . deepFrom

3.3 Sums of Products

A different way of describing datatypes in a generic representation, besides pattern functors, are
Sums of Products[28] (SOP). SOP is a generic representation with additional constraints compared
to pattern functors, which more faithfully reflects the Haskell datatypes. Each datatype is a single
n-ary sum, where each component of the sum is a single n-ary product. In SOP, the generic
representation is first described as a code of kind [[*]]. The outer list describes an n-ary sum,
representing the choice between constructors and each inner list an n-ary products, representing
the constructor arguments. The code is not the same as the generic representation, the code is the
structure which the generic representation has to satisfy. Therefore, a mapping is needed which
converts the code of kind [[*]] into a generic representation of kind *. The code is defined using
a tick mark ` and is used to lift the list from a data-level to a type-level.

Code (Tree a) = `[`[a], `[Tree a, a, Tree a]]

The usage of SOP has a positive effect on expressing generic functions easily or at all. Additionally,
the SOP completely divides the structural representation from the metadata. As a result, you do
not have to deal with metadata while writing generic functions.

However, SOP uses type-level lists to put additional constraints onto the generic representation,
while pattern functors does not. This makes extending the generic functionality more complex for
SOP than pattern functors, because besides data-level programming, also the type-level program-
ming has to be correct.

15

3.4 Mutually recursive datatypes

A large class of datatypes is supported by the previous section, namely regular datatypes. Regular
datatypes are datatypes in which the recursion only goes into the same datatype. However, if
we want to support the abstract syntax tree (AST) of many programming languages, we need to
support datatypes which can recurse over different datatypes, namely mutually recursive datatypes.

data Tree a = Empty
| Node (a, Forest a)

data Forest a = Nil
| Cons (Tree a) (Forest a)

To support mutually recursive datatypes, we need to keep track of which recursive position points
to which datatype. This is accomplished by using an indexed fixed-point [29]. The indexed fixed-
point works by creating a type family φ with n different types, where the types inside the family
represent the indices for different kinds (*φ). Using the limited set of kinds we can determine the
type for the recursive positions. Thus, supporting mutually recursive datatypes is possible, but it
adds more complexity to the implementation.

16

4
Generic Implementation

4.1 Regular

Ultimately, the generic programming library chosen to implement the incremental computation is
the regular library. The regular library is chosen, because the library is the easiest to use, while
still supporting enough datatypes to have meaningful results. However, the mutually recursive
datatypes are not supported, and it does not use SOP which can cause more bugs to occur,
because pattern functors do not represent Haskell datatypes as correctly as SOP.

The first step of writing the generic incremental computation was computing the Merkle Tree.
In other terms, we need to store the hash of the data structure inside the data structure. We
accomplish this by defining a new type Merkle which is a fixed-point over the data structure where
each of the recursive positions contains a digest of type (K Digest).

type Merkle f = Fix (f :*: K Digest)

But, before the hash can be stored inside the data structure, the hash needs to be computed
from the data structure. For this we need to know how to hash the primitive type constructors.
We introduce a typeclass named Hashable which defines a function hash, which converts the f
datatype into a Digest.

class Hashable f where
hash :: f (Merkle g) -> Digest

The Hashable instance of U is simple. The hash function is used to convert the constructor name
U into a Digest. The K also uses the hash function to convert the constructor name into a Digest,
but it also calls hash on the constant value of K. Therefore, the type of the value of K needs an
instance for Show. Then both digests are combined into a single digest.

17

instance Hashable U where
hash _ = hash "U"

instance (Show a) => Hashable (K a) where
hash (K x) = digestConcat [hash "K", hash x]

The instances for sums and products are quite similar as the instance for the K datatype. However,
the value inside the constructor are recursively called.

instance (Hashable f, Hashable g) => Hashable (f :+: g) where
hash (L x) = digestConcat [hash "L", hash x]
hash (R x) = digestConcat [hash "R", hash x]

instance (Hashable f, Hashable g) => Hashable (f :*: g) where
hash (x :*: y) = digestConcat [hash "P", hash x, hash y]

The I instance is different from the previous instances, because the recursive position is already
converted into a Merkle Tree. Thus, we need to get the computed hash from the recursive position,
digest the datatype name and combine the digests.

instance Hashable I where
hash (I x) = digestConcat [digest "I", getDigest x]

where
getDigest :: Fix (f :*: K Digest) -> Digest
getDigest (In (_ :*: K h)) = h

The hash implementation can then be used to define a function merkleG which converts from a
shallow generic representation, to a generic representation where one layer of recursive positions
contains a hash value.

Subsequently, we can define a function merkle which converts the entire datatype, into a pattern
functor where every recursive position contains a hash value. We can define merkle using the same
implementation as in Section 3.2, but we add a step where after all the children are recursively
called, the merkleG function is applied.

merkleG :: Hashable f => f (Merkle g) -> (f :*: K Digest) (Merkle g)
merkleG f = f :*: K (hash f)

merkle :: (Regular a, Hashable (PF a), Functor (PF a))
=> a -> Merkle (PF a)

merkle = In . merkleG . fmap merkle . from

18

The Merkle representation can then be used to define a function cataMerkleState which given
a function alg :: (f a -> a) which converts the generic representation f a into a value of
type a and the Merkle f data structure, and returns a State of (HashMap Digest a) a. The
cataMerkleState function starts with retrieving the State, which keeps track of the cached results
and stores them into a HashMap Digest a. Then, given the hash value of the recursive position,
we look into the HashMap if the value has been computed. If the value has been computed, then
return the value. Otherwise, recursively compute all the children, apply the given function alg,
insert the new value into the HashMap and return the computed value.

cataMerkleState :: (Functor f, Traversable f)
=> (f a -> a) -> Merkle f -> State (HashMap Digest a) a

cataMerkleState alg (In (x :*: K h))
= do m <- get

case lookup h m of
Just a -> return a
Nothing -> do y <- mapM (cataMerkleState alg) x

let r = alg y
modify (insert h r) >> return r

The cataMerkleState function can be used, but to execute the function, first the function needs
a HashMap Digest a. To simplify the use of cataMerkleState, a function cataMerkle is defined,
which executes the cataMerkleState with an empty HashMap and returns the final computed
result and the final state as the result.

cataMerkle :: (Functor f, Traversable f)
=> (f a -> a) -> Merkle f -> (a, HashMap Digest a)

cataMerkle alg t = runState (cataMerkleState alg t) empty

Finally, all the necessary functionality is defined to write a function over the generic representation
and automatically generate all the cached results and the final result. The example below computes
the sum over the generic representation of Tree by adding all the values of the leaf and nodes.

cataSum :: Merkle (PF (Tree Int)) -> (Int, HashMap Digest Int)
cataSum = cataMerkle

(\case
L (K x) -> x
R (I l :*: K x :*: I r) -> l + x + r

)

> cataSum $ merkle $ Node (Leaf 1) 2 (Leaf 3)
(6, {"931090e5": 1, "7d1ef1c9": 3, "ba811ed5": 6})

19

4.2 Generic Zipper

For the implementation of a generic zipper, we need to define (A) a datatype which keeps track of
the location inside the data structure, (B) a context which keeps track of the locations which have
been traversed through (C) and functions which facilitate traversing through the data structure.
The implementation of the general zipper is based on the paper “Generic representations of tree
transformations” by Bransen and Magalhaes[5].

The context (Ctx) is implemented using a type family1[13]. Type families can be defined in two
manners, standalone or associated with a type class. For the explanation we use the standalone
definition because the code is less clumped, making it easier to explain. However, the actual
implementation uses type synonym families, which is makes it clearer how the type should be used
and has better error messages.

The standalone definition uses a data family. Then, we want to write for every representation
type an instance on how to represent the representation type in the context.

data family Ctx (f :: * -> *) :: * -> *

The K and U representation-types do not have a datatype, because these representation-types
cannot be traversed through.

data instance Ctx (K a) r
data instance Ctx U r

The sum representation-type does get traversed, but only has one choice by either traversing the
left CL or the right CR side.

data instance Ctx (f :+: g) r = CL (Ctx f r) | CR (Ctx g r)

The product representation-type does have a choice between two traversals, either traverse through
the left side and store the right side or traverse through the right side and store the left side.

data instance Ctx (f :*: g) r = C1 (Ctx f r) (g r) | C2 (f r) (Ctx g r)

The recursive representation-type does not recursively go into a new Ctx, but into the recursive
type r, thus we only need to define datatype which indicates that it is a recursive position.

data instance Ctx I r = CId

The Zipper type class can now be defined using the Ctx. There are 6 primary functions, which
we need to build navigating functions. The cmap function works like the fmap, but over contexts.
The fill function fills the hole in a context with a given value, which is used to reconstruct the
data structure. The final 4 functions (first, last, next and prev) are the primary navigation
operations used to build interface functions such as left, right, up, down, etc.

1“Type families are to vanilla data types what type class methods are to regular functions.”[10]

20

class Functor f => Zipper f where
cmap :: (a -> b) -> Ctx f a -> Ctx f b
fill :: Ctx f a -> a -> f a
first, last :: f a -> Maybe (a, Ctx f a)
next, prev :: Ctx f a -> a -> Maybe (a, Ctx f a)

Finally, we can define the location Loc using the Ctx and the Zipper. The location takes a datatype
with the constraints that it has an instance for Regular and a pattern functor which works with
the Zipper type class, a list of contexts and returns a location datatype Loc.

data Loc :: * -> * where
Loc :: (Regular a, Zipper (PF a)) => a -> [Ctx (PF a) a] -> Loc a

To use the Merkle type, we need to fulfill the previous constraints. Thus, we need to define a type
instance for the pattern functor and an instance for the Regular typeclass. The pattern functor
type instance is the same definition as the Merkle type but without the fixed-point. The Regular
instance for the Merkle type is folding/unfolding the fixed-point. Moreover, the Merkle type also
needs to update the digests of its parents when a value is changed. This is accomplished in the
same manner as in Section 2.2.1.

type instance PF (Merkle f) = f :*: K Digest
instance Regular (Merkle f) where

from = out
to = In

4.3 Cache Management

In the optimal case, each cached value can be stored. Unfortunately, we are limited by the amount
of memory there is available on the machine. Therefore, the amount of cached results needs to be
limited. There are two suggestions of limiting the amount of cached results with Cache Addition
Policies and Cache Replacement Policies. Cache addition policies are policies which indicate if a
cached value can be added to the cache. And the cache replacement policies are policies which
remove cached results from the cache based on metrics (e.g., recency, frequency, computational
cost, etc.).

4.3.1 Cache Addition Policies

An example of a cache addition policy would be to determine the recursion depth a data structure
has. So, given a node in a tree, how many times we have to go into recursion before reaching the
deepest leaf is the recursion depth. Using that information we can define a filter for the cache,
where only elements with a recursion depth of > i can be added to the cache. This filters out a
large amount of cached results and could potentially lead to a speed-up, because the lookup in the
HashMap takes longer when there are more elements.

21

The recursion depth can be determined in the same pass as when the digests are calculated. To
accomplish this we introduce an annotated fix-point. The annotated fix-point contains the fix-
point as explained in Section 3.2 and an annotation for which we store the information about
the digest and the recursion depth. The final Merkle type is the annotated fix-point with the
annotation containing the digest and the recursion depth. The implementation of the determining
the recursion depth is in Appendix B.1.

data AFix f a = AFix { unAFix :: f (AFix f a), getAnnotation :: a }

data MemoInfo = MemoInfo { getDigest :: Digest, getDepth :: Int }

type Merkle f = AFix f MemoInfo

Then to compute the digest and the recursion depth over a generic datatype, the merkle func-
tion has to be expanded. An additional type constraints HasDepth (PF a) is added for the new
typeclass which computes the recursion depth. Then the digest and depth is computed over the
pattern functor and the final annotated fix-point with the digest and recursion depth is returned.

merkle :: (Regular a, Hashable (PF a), HasDepth (PF a), Functor (PF a))
=> a -> Merkle (PF a)

merkle x = AFix py (MemoInfo d h)
where

py = merkle <$> from x
d = hash py
h = depth py

-- Updated cataMerkleState to support cache addition policy for recursion depth
cataMerkleState :: (Functor f, Traversable f)

=> (f a -> a) -> AFix f MemoInfo
-> State (HashMap Digest (a, CacheInfo)) a

cataMerkleState alg (AFix x (MemoInfo di de))
= do m <- get

case lookup di m of
Just a -> return a
Nothing -> do y <- mapM (cataMerkleState alg) x

let r = alg y
if minDepth <= de

then modify (insert d r) >> return r
else return r

However, this does not prevent the memory from filling-up. A more drastic measure is needed to
keep the memory from filling up and that is to remove cache results. For this another policy needs
to be defined and that are the cache replacement policies.

22

4.3.2 Cache Replacement Policies

The cache replacement policy can be based on a single metric of a combination of multiple metrics.
Unfortunately, we cannot determine the overall best cache replacement policy, because the best
cache replacement policy is application specific as stated in “Selective memoization”2. As a result,
this paper will only describe possible policies which can be used by developers, but not show any
results.

Fortunately, it is quite simple to implement the cache replacement policies. At the end of the
cataMerkle computation, a filter is passed over the cache results. If the cached value is true with
the current cache replacement policy, it gets discarded. Otherwise, the cached value stays in the
cache.

data CacheInfo = CacheInfo { getFrequency :: Int, getRecency :: Int }

-- An example for a replacement policy
replacementPolicy :: CacheInfo -> Bool
replacementPolicy c = getFrequency c <= 1

applyPolicy :: HashMap Digest (a, CacheInfo) -> HashMap Digest (a, CacheInfo)
applyPolicy = filter (replacementPolicy . snd)

cataMerkle :: (Functor f, Traversable f)
=> (f a -> a) -> AFix f MemoInfo -> (a, HashMap Digest (a, CacheInfo))

cataMerkle alg t = (y, applyPolicy ys)
where

(y, ys) = runState (cataMerkleState alg t) empty

There are a multitude of replacement policies which can be chosen to choose which cached results
needs to be replaced. Below, there are some suggestions of what type of replacement policies can
be chosen.

• Random replacement: remove random elements from the cache.

• Recency-based policies: remove elements based on when the element was added.

• Frequency-based policies: remove elements based on the amount of lookups.

• Computational cost policies: remove elements based on the amount of time it takes to com-
pute the value.

• Combination of policies mentioned above. For example, combine the frequency based policy
with the computation cost policy.

2“In general the replacement policy must be application-specific, because, for any fixed policy, there are programs
whose performance is made worse by that choice.”[2]

23

4.4 Pattern Synonyms

The developer experience using cataMerkle is difficult, because the developer needs to know the
pattern functor of its datatype to define a function and the function definitions are quite verbose.
To make the use of cataMerkle easier, we introduce pattern synonyms[21].

Pattern synonyms add an abstraction over patterns, which allows the user to move additional logic
from guards and case expressions into patterns. For example, the pattern functor of the Tree
datatype can be represented using a pattern.

pattern Leaf_ :: a -> PF (Tree a) r
pattern Leaf_ x <- L (K x) where

Leaf_ x = L (K x)

pattern Node_ :: r -> a -> r -> PF (Tree a) r
pattern Node_ l x r <- R (I l :*: K x :*: I r) where

Node_ l x r = R (I l :*: K x :*: I r)

The previously defined patterns can then be used to define the cataSum as the original datatype
Tree, but the constructor names leading with an additional underscore.

cataSum :: Merkle (PF (Tree Int)) -> (Int, HashMap Digest Int)
cataSum = cataMerkle

(\case
Leaf_ x -> x
Node_ l x r -> l + x + r

)

24

5
Experiments

5.1 Method

We conducted experiments over three type of functions: the Cata Sum, Generic Cata Sum and
Incremental Cata Sum. The Cata Sum is the simple function which traverses through the entire
tree and sums all the values. The Generic Cata Sum is the initial Incremental Cata Sum, which
starts with an empty HashMap. And the Incremental Cata Sum, which already has a HashMap
filled with cached results and keeps track over multiple iterations.

cataSum :: Tree Int -> Int
cataSum (Leaf x) = x
cataSum (Node l x r) = x + cataSum l + cataSum r

genericCataSum :: Merkle (PF (Tree Int)) -> (Int, HashMap Digest Int)
genericCataSum = cataMerkle

(\case
Leaf_ x -> x
Node_ l x r -> l + x + r

)

incCataSum :: HashMap Digest Int
-> Merkle (PF (Tree Int)) -> (Int, HashMap Digest Int)

incCataSum = cataMerkleMap
(\case

Leaf_ x -> x
Node_ l x r -> l + x + r

)

The experiments will be benchmarks executed with the Haskell package criterion[19]. Criterion
performs the benchmarks multiple times to get an average result. The benchmarks will track two
metrics: the execution time and the memory usage. The execution time will be in seconds and
the memory usage will be the max-bytes used. The results gathered for the execution time comes
from the criterion package, however the memory usage will not come from the package. This is

25

because criterion only keeps track of the memory allocation and not usage. Therefore, we measure
the memory usage with the GHC profiler[26] and profile every benchmark individually to know its
memory usage.

To test how well the three functions perform, we perform three types of updates, multiple times.
These benchmarks will be based on the three type of cases: worst, average and best. The worst
case updates the lowest left leaf with a new leaf. The average case updates a node in the middle
of the data structure with a new leaf. And the best case updates the left child of the root-node
with a new leaf.

worstCase :: Merkle (PF (Tree Int)) -> Merkle (PF (Tree Int))
worstCase = update (const (Leaf i)) [Bttm]

averageCase :: Merkle (PF (Tree Int)) -> Merkle (PF (Tree Int))
averageCase = update (const (Leaf i)) (replicate n Dwn)

where
n = round (logBase 2.0 (fromIntegral n) / 2.0)

bestCase :: Merkle (PF (Tree Int)) -> Merkle (PF (Tree Int))
bestCase = update (const (Leaf i)) [Dwn]

5.2 Results

The experiments are performed on a laptop with a Intel Core i7-8750H with a base clock of
2.2GHz and a boost clock of 4.1GHz, with 16GB of memory. First we explain the results of
the three algorithms with three different scenarios, iterating 10 times. Then, we show the re-
sults of adding a cache addition policy. The code used for the benchmarks can be found at:
https://github.com/jortvangorkum/memo-cata

5.2.1 Execution Time

Looking at Figure 5.1 the Incremental Cata Sum is faster when the tree contains more than 103

nodes. However, for every benchmark the execution time is better or worse depending on the type
of update that is performed. The best case scenario has the biggest difference, then the average
case and the closest execution time difference is the worst case. The execution time for Cata Sum
and Generic Cata Sum seems to be linear with the amount of nodes and the Incremental Cata
Sum is constant/logarithmic. The Cata Sum seems to be a factor faster than the Generic Cata
Sum, which makes sense because Generic Cata Sum does the same computation as the Cata Sum.
And, additionally computes the generic representation of the data structure, computes the digests
for the data structure and stores all the cached result into a HashMap. The Incremental Cata Sum
is constant/logarithmic, because it only updates the digests of the changed nodes and its parent
nodes and recomputes the nodes with changed digests, which is worst case O(M logN) where M

is the amount of changes and N is the size of the tree. The discrepancy in the range between

26

https://github.com/jortvangorkum/memo-cata

102 − 103 is probably because the amount of nodes is too low to get stable results.

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure 5.1: The execution time over 10 executions for the Worst, Average and Best
case.

5.2.2 Memory Usage

The Figure 5.2 shows that the memory usage is, for all algorithms, linear with the amount of nodes.
The Cata Sum uses the least amount of memory, then the Incremental Cata Sum and the most
used bytes is the Generic Cata Sum. We think that the Incremental Cata Sum uses less memory
than the Generic Cata Sum, because the Incremental Cata Sum needs to load-in fewer parts of
the data structure than the Generic Cata Sum. Also, the same discrepancy occurs in the range
between 102 − 103 as with the execution time.

27

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure 5.2: The max-bytes-used over 10 executions for the Worst, Average and
Best case.

5.2.3 Comparison Cache Addition Policies

As seen in Figure 5.3 and Figure 5.4, the memory usage is lower than when all the cached results
are stored. Even, the execution time did not increase significantly. However, this is probably
because the function which is computed (addition) is not computational intensive. This means
it is less computational intensive to recompute the value than to store the value and retrieve it
when needed. This does not have to be the case for more extensive computations. So, for the best
performance this parameter needs to be correctly tweaked.

For example, if we increased the recursion depth limit to 10. The results in Appendix Section
C.1 show that the memory usage is even lower than the limit of 5. However, the execution time
increases significantly. This is because the computation takes longer to perform than to store and
perform a lookup.

28

Execution Time

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure 5.3: The execution time over 10 executions for the Worst, Average and Best
case, where the minimum recursion depth is 5.

29

Memory Usage

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure 5.4: The max-bytes-used over 10 executions for the Worst, Average and
Best case, where the minimum recursion depth is 5.

30

6
Discussion & Conclusion

6.1 Related Work

There are many other studies which implement incremental computation in functional languages[11]
[1] [8] [6]. However, each study has a different approach in implementing incremental computation.
The most important part of incremental computation is to know if the input has changed and what
has changed.

6.1.1 Comparison of equality in constant time

To determine the changes between the old and current input can be done by comparing the inputs
for equality. This makes it very important that the comparison of the input for equality can
be performed efficiently. The problem with most studies is that for every comparison the entire
data structure of the input needs to be traversed through (e.g., a tree), which can become every
inefficient when folding over a tree [11] [4].

The study “Monads for incremental computing”[6] performs the equality check in constant time,
however the equality check is only on a shallow level. For example, when comparing a list for
equality, the two lists are only equal if both lists are empty or both heads are equal, and the tail
is the same modifiable. This can lead to recomputing the inputs while they are equal.

This paper solves these issues, by introducing the use of hash functions. The initial computation for
computing the digests is the same as the previous equality, however every incremental computation
is in constant time, because the digests are already computed. And it still compares the entire
data structure of the input instead of a shallow comparison. Nevertheless, this still has drawbacks,
because this solution has the risk of hash collisions, but with a large enough digest size the chance
of having a hash collision is very small.

6.1.2 Storing the cached results

Besides, the comparison of equality of the inputs, the results of the given input also has to be stored.
The idea of storing the results in a Trie is done by multiple studies [11] [18]. The implementation
of the “Memo functions, polytypically!”[11] study, MemoTrie[7], uses the input as a key and the
results as the value in the trie. This makes the performance of the lookup function dependent on

31

the size of the input, because the performance of the lookup on a trie is dependent on the size of
the key. This becomes problematic when the input of a function is a large recursive data structure.

To solve this issue, the study “An efficient algorithm for type-safe structural diffing” by Miraldo
and Swierstra uses the combination of digests and tries. As a result, the lookup function becomes
constant time, because the size of the digest is fixed. This study is also the inspiration for using
digests and tries.

6.1.3 Updating the input

Also, a difference between this paper and other studies are the updates of the input. This paper
uses a Zipper to efficiently update the value in the data structure of the input and then updates
the affected nodes. Alternatively, the study “Monads for incremental computing”[6] keeps track of
all the modifications inside a Monad and then propagates the modifications when the propogate
function is called. This is more efficient manner, because if two updates modify the same thing,
the first update does not need to be calculated. Additionally, the data structure does not have to
be navigated through, because of the modifiable references. However, for this paper the Zipper
was a more easy to use technique, because it made it very easy to update the digests of the parents
compared to using a Monad with modifiable references.

6.2 Future Work

The Thesis paper still has some topics that need further exploring. A few small topics would be:

• Implement a storage medium which does not rehash the key (because the key is already a
hash).

• Implement a default cache replacement policy which generally works well for all algorithms.

• Implement the generation of the pattern synonyms using TemplateHaskell.

• Run the benchmarks in a more stable environment than a laptop.

• Benchmark the results against the MemoTrie package.

6.2.1 Support for Mutually Recursive Datatypes

The current implementation of the incremental algorithm only supports regular datatypes. This
makes the possible datatypes the incremental algorithm can be used with, quite limited. To increase
the amount of datatypes, we need to support mutually recursive datatypes. One big advantage of
supporting mutually recursive datatypes is that then most abstract syntax tree (AST) of popular
programming languages can be used with the incremental algorithm. So, for example, we can
incrementally calculate the cyclomatic complexity metric over the AST of a programming language.

32

6.2.2 Implement the incremental algorithm using Sums-of-Products

The generic implementation of the incremental algorithm uses pattern functors. Pattern functors
are a simple way to define generic functionality. However, the pattern functors have no restrictions
on how they are combined. The Sums-of-Products represents the Haskell datatype better than the
pattern functors, by only limiting the creation of sums of products. This can make it easier to
implement the generic version of the incremental algorithm or add additional optimizations.

6.2.3 Benchmarking with real-world data

The current results presented in this paper are all synthetic benchmarks. This makes it easier to
compare the results and make conclusions. However, it does not represent how well the algorithms
actually perform in the real-world. A real-world example would be to compute a metric over public
available code1.

6.2.4 Support for a new input without changes

The incremental algorithm presented in this paper expects that the changes are given to them by
an external system/process (e.g., a structure editor). This limits the way this algorithm can be
used by other developers. To support more use-cases (e.g., a compiler), the incremental algorithm
needs to support that when given a new input, without changes, it can still efficiently compute
the result. A way to support this, is to perform a diff algorithm between the previous input and
the current input and compute the changes between the two. Then using these changes update
the previous input and compute the result using the incremental algorithm. An implementation
of such diff algorithm can be found in the paper “On the Incremental Evaluation of Higher-Order
Attribute Grammars” by Bransen in Section 4.6.3. However, this is certainly not faster than the
current incremental algorithm and could be quite slower than using the non-incremental algorithm.

6.2.5 Prioritization

The simplest topic to research which adds a lot of value to this project is the generation of pattern
synonyms using TemplateHaskell. Currently, the user has to define their own pattern synonyms
which is quite developer unfriendly. The learning curve of TemplateHaskell is quite steep, but
the eventual implementation is not complex. An example of using TemplateHaskell to generate
pattern synonyms can be found at Generics-MRSOP-TH [17].

A more complex topic which adds a lot of value to the project is supporting mutually recursive
datatypes. By supporting mutually recursive datatypes, the incremental algorithm can then be
used for AST’s of most programming languages. As a result, a new generic programming library
needs to be used which supports mutually recursive datatypes (e.g., multirec[14]). This can take
a lot of time,

1This does mean that the algorithm first needs to support mutually recursive datatypes.

33

https://hackage.haskell.org/package/generics-mrsop-2.3.0/docs/Generics-MRSOP-TH.html

6.3 Conclusion

We have created an algorithm for incremental computation over regular datatypes in Haskell. We
have shown that the incremental algorithm performs faster than the non-incremental version when
the data structure contains more than 103 nodes. Also, the additional memory usage needed to
store the cache for the incremental computation is negligible when correctly tuned. The better
performance is accomplished by storing the digests for equality inside the recursive data structure
and using a Zipper to efficiently update the digests when the data structure changes.

We introduced the pattern synonyms to improve the developer experience to almost the same
level as the non-incremental implementation. The pattern synonyms could also be generated using
TemplateHaskell to alleviate the amount of additional work for the developers.

We define possible cache addition and cache replacement policies to improve the performance/memory
usage of the incremental algorithm. There are multiple policies defined to inspire the developers
to find the fitting one for their use-case.

However, some difficulties still remain. First, the initial pass of the incremental algorithm is a
lot slower than the non-incremental version. Therefore, the incremental algorithm needs to be
performed a lot (with small changes), before being overall faster than the non-incremental version.
Secondly, finding the correct policies for the best performance can be quite cumbersome. Third,
the pattern synonyms have to be handwritten instead of being generated using TemplateHaskell.

34

A
Generic Programming

A.1 Functor instances for Pattern Functors

instance Functor I where
fmap f (I r) = I (f r)

instance Functor (K a) where
fmap _ (K a) = K a

instance Functor U where
fmap _ U = U

instance (Functor f, Functor g) => Functor (f :+: g) where
fmap f (L x) = L (fmap f x)
fmap f (R y) = R (fmap f y)

instance (Functor f, Functor g) => Functor (f :*: g) where
fmap f (x :*: y) = fmap f x :*: fmap f y

35

B
Cache Management

B.1 Implementation Recursion Depth

class HasDepth f where
depth :: f (AFix g MemoInfo) -> Int

instance HasDepth (K a) where
depth _ = 1

instance HasDepth U where
depth _ = 1

instance HasDepth I where
depth (I x) = let ph = getHasDepth (getAnnotation x) in 1 + ph

instance (HasDepth f, HasDepth g) => HasDepth (f :+: g) where
depth (L x) = depth x
depth (R x) = depth x

instance (HasDepth f, HasDepth g) => HasDepth (f :*: g) where
depth (x :*: y) = max (depth x) (depth y)

instance (HasDepth f) => HasDepth (C c f) where
depth (C x) = depth x

36

C
Results

C.1 Minimum of 10 recursion depth

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure C.1: The execution time over 10 executions for the Worst, Average and
Best case, where the minimum recursion depth is 10.

37

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

102 103 104 105

Amount Nodes

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Benchmark

Cata Sum
Generic Cata Sum
Incremental Cata Sum

Figure C.2: The max-bytes-used over 10 executions for the Worst, Average and
Best case, where the minimum recursion depth is 10.

38

C.2 Individual benchmark results - Worst Case

C.2.1 Linear trend line

102 103 104 105

Amount Nodes

10 4

10 3

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Equation

y=7.59e-07 * x, R²=1.00

Figure C.3: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Equation

y=6.55e-05 * x, R²=1.00

Figure C.4: Execution Time -
Generic Cata Sum

102 103 104 105

Amount Nodes

10 5

10 4

10 3

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Equation

y=2.61e-08 * x, R²=0.49

Figure C.5: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Equation

y=2.75e+02 * x, R²=1.00

Figure C.6: Memory Usage -
Cata Sum

39

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Equation

y=5.99e+02 * x, R²=1.00

Figure C.7: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Worst, Iterations: 10
Equation

y=4.15e+02 * x, R²=1.00

Figure C.8: Memory Usage -
Incremental Cata Sum

C.2.2 Logarithmic trend line

102 103 104 105

Amount Nodes

0

2

4

6

Ex
ec

ut
io

n
Ti

m
e

×10 2 Case: Worst, Iterations: 10
Equation

y=-5.13e-02 * ln(x) + 8.19e-03, R²=0.63

Figure C.9: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

1

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

Case: Worst, Iterations: 10
Equation

y=-4.40e+00 * ln(x) + 6.90e-01, R²=0.56

Figure C.10: Execution Time -
Generic Cata Sum

40

102 103 104 105

Amount Nodes

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ex
ec

ut
io

n
Ti

m
e

×10 3 Case: Worst, Iterations: 10
Equation

y=-3.57e-04 * ln(x) + 1.95e-04, R²=0.66

Figure C.11: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

 B
yt

es
 U

se
d

×107 Case: Worst, Iterations: 10
Equation

y=-1.67e+07 * ln(x) + 2.76e+06, R²=0.56

Figure C.12: Memory Usage -
Cata Sum

102 103 104 105

Amount Nodes

1

0

1

2

3

4

5

6

M
ax

 B
yt

es
 U

se
d

×107 Case: Worst, Iterations: 10
Equation

y=-3.99e+07 * ln(x) + 6.36e+06, R²=0.60

Figure C.13: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

0

1

2

3

4

M
ax

 B
yt

es
 U

se
d

×107 Case: Worst, Iterations: 10
Equation

y=-2.71e+07 * ln(x) + 4.36e+06, R²=0.59

Figure C.14: Memory Usage -
Incremental Cata Sum

41

C.3 Individual benchmark results - Average Case

C.3.1 Linear trend line

102 103 104 105

Amount Nodes

10 4

10 3

10 2

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Equation

y=6.79e-07 * x, R²=1.00

Figure C.15: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Equation

y=6.14e-05 * x, R²=1.00

Figure C.16: Execution Time -
Generic Cata Sum

102 103 104 105

Amount Nodes

10 6

10 5

10 4

10 3

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Equation

y=1.04e-08 * x, R²=0.28

Figure C.17: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Equation

y=2.74e+02 * x, R²=1.00

Figure C.18: Memory Usage -
Cata Sum

42

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Equation

y=5.98e+02 * x, R²=1.00

Figure C.19: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Average, Iterations: 10
Equation

y=4.14e+02 * x, R²=1.00

Figure C.20: Memory Usage -
Incremental Cata Sum

C.3.2 Logarithmic trend line

102 103 104 105

Amount Nodes

1

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

×10 2 Case: Average, Iterations: 10
Equation

y=-4.56e-02 * ln(x) + 7.28e-03, R²=0.62

Figure C.21: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

1

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

Case: Average, Iterations: 10
Equation

y=-4.14e+00 * ln(x) + 6.52e-01, R²=0.58

Figure C.22: Execution Time -
Generic Cata Sum

43

102 103 104 105

Amount Nodes

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
Ti

m
e

×10 3 Case: Average, Iterations: 10
Equation

y=5.82e-04 * ln(x) + 5.28e-06, R²=0.00

Figure C.23: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

 B
yt

es
 U

se
d

×107 Case: Average, Iterations: 10
Equation

y=-1.66e+07 * ln(x) + 2.75e+06, R²=0.56

Figure C.24: Memory Usage -
Cata Sum

102 103 104 105

Amount Nodes

1

0

1

2

3

4

5

6

M
ax

 B
yt

es
 U

se
d

×107 Case: Average, Iterations: 10
Equation

y=-3.99e+07 * ln(x) + 6.36e+06, R²=0.60

Figure C.25: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

0

1

2

3

4

M
ax

 B
yt

es
 U

se
d

×107 Case: Average, Iterations: 10
Equation

y=-2.64e+07 * ln(x) + 4.28e+06, R²=0.58

Figure C.26: Memory Usage -
Incremental Cata Sum

44

C.4 Individual benchmark results - Best Case

C.4.1 Linear trend line

102 103 104 105

Amount Nodes

10 4

10 3

10 2

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Equation

y=3.51e-07 * x, R²=0.99

Figure C.27: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

10 3

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Equation

y=3.06e-05 * x, R²=0.99

Figure C.28: Execution Time -
Generic Cata Sum

102 103 104 105

Amount Nodes

10 7

10 6

10 5

10 4

10 3

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Equation

y=1.49e-09 * x, R²=0.01

Figure C.29: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Equation

y=2.75e+02 * x, R²=0.99

Figure C.30: Memory Usage -
Cata Sum

45

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Equation

y=4.35e+02 * x, R²=1.00

Figure C.31: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

105

106

107

M
ax

 B
yt

es
 U

se
d

Case: Best, Iterations: 10
Equation

y=3.42e+02 * x, R²=1.00

Figure C.32: Memory Usage -
Incremental Cata Sum

C.4.2 Logarithmic trend line

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

×10 2 Case: Best, Iterations: 10
Equation

y=-2.36e-02 * ln(x) + 3.80e-03, R²=0.64

Figure C.33: Execution Time -
Cata Sum

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

Case: Best, Iterations: 10
Equation

y=-2.04e+00 * ln(x) + 3.18e-01, R²=0.53

Figure C.34: Execution Time -
Generic Cata Sum

46

102 103 104 105

Amount Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Ti

m
e

×10 3 Case: Best, Iterations: 10
Equation

y=1.22e-03 * ln(x) + -1.07e-04, R²=0.44

Figure C.35: Execution Time -
Incremental Cata Sum

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

 B
yt

es
 U

se
d

×107 Case: Best, Iterations: 10
Equation

y=-1.64e+07 * ln(x) + 2.73e+06, R²=0.56

Figure C.36: Memory Usage -
Cata Sum

102 103 104 105

Amount Nodes

1

0

1

2

3

4

M
ax

 B
yt

es
 U

se
d

×107 Case: Best, Iterations: 10
Equation

y=-2.87e+07 * ln(x) + 4.60e+06, R²=0.60

Figure C.37: Memory Usage -
Generic Cata Sum

102 103 104 105

Amount Nodes

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ax

 B
yt

es
 U

se
d

×107 Case: Best, Iterations: 10
Equation

y=-2.10e+07 * ln(x) + 3.46e+06, R²=0.57

Figure C.38: Memory Usage -
Incremental Cata Sum

47

Bibliography

[1] Umut A Acar, Guy E Blelloch, and Robert Harper. “Adaptive functional programming”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 28.6 (2006),
pp. 990–1034.

[2] Umut A Acar, Guy E Blelloch, and Robert Harper. “Selective memoization”. In: ACM SIG-
PLAN Notices 38.1 (2003), pp. 14–25.

[3] Phil Bagwell. Ideal hash trees. Tech. rep. 2001.

[4] Jeroen Bransen. “On the Incremental Evaluation of Higher-Order Attribute Grammars”. PhD
thesis. Utrecht University, 2015.

[5] Jeroen Bransen and José Pedro Magalhaes. “Generic representations of tree transformations”.
In: Proceedings of the 9th ACM SIGPLAN workshop on Generic programming. 2013, pp. 73–
84.

[6] Magnus Carlsson. “Monads for incremental computing”. In: Proceedings of the seventh ACM
SIGPLAN international conference on Functional programming. 2002, pp. 26–35.

[7] Conal Elliott. MemoTrie. 2019. url: https://hackage.haskell.org/package/MemoTrie
(visited on July 28, 2022).

[8] Denis Firsov and Wolfgang Jeltsch. “Purely functional incremental computing”. In: Brazilian
Symposium on Programming Languages. Springer. 2016, pp. 62–77.

[9] Jeremy Gibbons. “Datatype-generic programming”. In: International Spring School on Datatype-
Generic Programming. Springer. 2006, pp. 1–71.

[10] HaskellWiki. GHC/Type families. 2021. url: https://wiki.haskell.org/GHC/Type_
families (visited on May 25, 2022).

[11] Ralf Hinze. “Memo functions, polytypically!” In: Proceedings of the 2nd Workshop on Generic
Programming, Ponte de. Citeseer. 2000.

[12] Gérard Huet. “The zipper”. In: Journal of functional programming 7.5 (1997), pp. 549–554.

[13] Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. “Fun with type functions”. In:
Reflections on the Work of CAR Hoare. Springer, 2010, pp. 301–331.

[14] Andres Löh. Generic programming for families of recursive datatypes. url: https://hackage.
haskell.org/package/multirec (visited on May 10, 2022).

[15] Jose Pedro Magalhaes. Generic programming library for regular datatypes. url: https://
hackage.haskell.org/package/regular (visited on Apr. 28, 2022).

[16] Ralph C Merkle. “A digital signature based on a conventional encryption function”. In: Con-
ference on the theory and application of cryptographic techniques. Springer. 1987, pp. 369–
378.

[17] Victor Miraldo and Alejandro Serrano. Generic Programming with Mutually Recursive Sums
of Products. url: https://hackage.haskell.org/package/generics-mrsop (visited on
May 10, 2022).

48

https://hackage.haskell.org/package/MemoTrie
https://wiki.haskell.org/GHC/Type_families
https://wiki.haskell.org/GHC/Type_families
https://hackage.haskell.org/package/multirec
https://hackage.haskell.org/package/multirec
https://hackage.haskell.org/package/regular
https://hackage.haskell.org/package/regular
https://hackage.haskell.org/package/generics-mrsop

[18] Victor Cacciari Miraldo and Wouter Swierstra. “An efficient algorithm for type-safe structural
diffing”. In: Proceedings of the ACM on Programming Languages 3.ICFP (2019), pp. 1–29.

[19] Bryan O’Sullivan. Robust, reliable performance measurement and analysis. url: https://
hackage.haskell.org/package/criterion (visited on June 14, 2022).

[20] William Wesley Peterson and Daniel T Brown. “Cyclic codes for error detection”. In: Pro-
ceedings of the IRE 49.1 (1961), pp. 228–235.

[21] Matthew Pickering et al. “Pattern synonyms”. In: Proceedings of the 9th International Sym-
posium on Haskell. 2016, pp. 80–91.

[22] Geoff Pike, Jyrki Alakuijala, and Software Engineering Team. Introducing CityHash. Apr. 11,
2011. url: https://opensource.googleblog.com/2011/04/introducing-cityhash.html
(visited on June 14, 2022).

[23] Jeff Preshing. Hash Collision Probabilities. 2011. url: https://preshing.com/20110504/
hash-collision-probabilities (visited on May 3, 2022).

[24] Austin Seipp. Bindings to CityHash. url: https://hackage.haskell.org/package/
cityhash (visited on June 15, 2022).

[25] Samir Talwar. Transparent memoisation in Haskell with MemoTries. url: https://monospacedmonologues.
com/2022/01/memotries/ (visited on Aug. 2, 2022).

[26] GHC Team. Running a compiled program. url: https://downloads.haskell.org/~ghc/
6.12.1/docs/html/users_guide/runtime-control.html (visited on June 14, 2022).

[27] Johan Tibell. Efficient hashing-based container types. url: https://hackage.haskell.org/
package/unordered-containers-0.2.19.1/docs/Data-HashMap-Strict.html (visited
on June 15, 2022).

[28] Edsko de Vries and Andres Löh. “True sums of products”. In: Proceedings of the 10th ACM
SIGPLAN workshop on Generic programming. 2014, pp. 83–94.

[29] Alexey Rodriguez Yakushev et al. “Generic programming with fixed points for mutually
recursive datatypes”. In: ACM Sigplan Notices 44.9 (2009), pp. 233–244.

49

https://hackage.haskell.org/package/criterion
https://hackage.haskell.org/package/criterion
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://preshing.com/20110504/hash-collision-probabilities
https://preshing.com/20110504/hash-collision-probabilities
https://hackage.haskell.org/package/cityhash
https://hackage.haskell.org/package/cityhash
https://monospacedmonologues.com/2022/01/memotries/
https://monospacedmonologues.com/2022/01/memotries/
https://downloads.haskell.org/~ghc/6.12.1/docs/html/users_guide/runtime-control.html
https://downloads.haskell.org/~ghc/6.12.1/docs/html/users_guide/runtime-control.html
https://hackage.haskell.org/package/unordered-containers-0.2.19.1/docs/Data-HashMap-Strict.html
https://hackage.haskell.org/package/unordered-containers-0.2.19.1/docs/Data-HashMap-Strict.html

	Introduction
	Contributions

	Specific Implementation
	Merkle Tree
	Zipper
	Zipper Merkle Tree

	Datatype-Generic Programming
	Introduction
	Explicit recursion
	Sums of Products
	Mutually recursive datatypes

	Generic Implementation
	Regular
	Generic Zipper
	Cache Management
	Cache Addition Policies
	Cache Replacement Policies

	Pattern Synonyms

	Experiments
	Method
	Results
	Execution Time
	Memory Usage
	Comparison Cache Addition Policies

	Discussion & Conclusion
	Related Work
	Comparison of equality in constant time
	Storing the cached results
	Updating the input

	Future Work
	Support for Mutually Recursive Datatypes
	Implement the incremental algorithm using Sums-of-Products
	Benchmarking with real-world data
	Support for a new input without changes
	Prioritization

	Conclusion

	Generic Programming
	Functor instances for Pattern Functors

	Cache Management
	Implementation Recursion Depth

	Results
	Minimum of 10 recursion depth
	Individual benchmark results - Worst Case
	Linear trend line
	Logarithmic trend line

	Individual benchmark results - Average Case
	Linear trend line
	Logarithmic trend line

	Individual benchmark results - Best Case
	Linear trend line
	Logarithmic trend line

