
Improving Curve Arrangements

Through Local Changes

John Krijger
Master’s Thesis

Game and Media Technology
Utrecht University

Supervised by Maarten Löffler and Frank Staals
ICA-5847001

July 2022

A curve arrangement can contain popular faces if a face is bounded
the same curve multiple times. Popular faces and closed loops can
make generated curved nonogram puzzles complex. To remove these
features we make changes to small areas in the curve arrangement.
We identify possible local changes in a curve arrangement and test
several method that try to make the biggest improvement with the
fewest changes.

1 Introduction

A curve arrangement is a subdivision of a 2D shape defined by a set of curves.
These curves are contained within a border polygon and either form closed loops
or start and end at the borders. These curves and the border create a planar
graph: the vertices are the points where curves intersect each other or where
they meet the border, the edges are segments of curves or the border between
the vertices and the faces are the areas enclosed by curves and the border. Fig-
ure 1 is an example of a curve arrangement that contains four curves. One
curves forms a closed loop and the other three start and end at the border. The
planar graph of this curve arrangement contains 12 faces (within the border), 25
edges (including border edges) and 14 vertices (including those on the border).

Figure 1: A simple curve arrangement consisting of four curves.

We will improve a curve arrangement by removing and reducing bad fea-
tures, such as closed loops and popular faces. Popular faces are faces in the
curve arrangement of which two or more edges incident to the face belong to
the same curve [1], we will call a pair of such edges a popular edge pair. Fig-
ure 2 contains a popular face: edges ℓ0 and ℓ4 both belong to curve ℓ and are
bordering face F , edges ℓ0 and ell4 form a popular edge pair over face F .

We will make these improvements to the curve arrangement with local
changes. A local change is one or more crossings and uncrossings of curves within

2

Figure 2: A simple curve arrangement with a popular edge pair. Edges ℓ0 and
ℓ4 are both segments of curve ℓ and border face F .

a circle with a predefined local radius. If (un)crossings cannot be contained to
the same circle, we need multiple local changes to achieve these (un)crossings.
Figure 3 shows a curve arrangement with all bad features and a corresponding
desirable result, the resulting curve arrangement has no bad features after four
local changes. We will investigate an exact and two stochastic methods to try
to find the optimal set of local changes to minimize closed loops and popular
faces.

Figure 3: (left) An example of a curve arrangement with all forms of bad fea-
tures. Curve ℓ is a looped curve, due to this loop, all faces adjacent to v0 are
popular faces. Face A is another popular face, independent from the looped
curve. Lastly, curve m is a closed loop. (right) A solution of the same arrange-
ment where four local changes have been applied, this resulting arrangement
has no closed loops or popular faces.

2 Related Work

The problem of popular faces in curve arrangements has previously been en-
countered in research on curved nonograms.
Nonograms, also known as Japanese puzzles or paint-by-number puzzles, are a

3

type of puzzle where the puzzler has to color cells on a grid. Each row and
column of the grid contains a hint: a set of numbers that indicate the sequences
of cells that should be colored in that row or column. Van de Kerkhof et al. [2]
introduced a variant named curved nonograms, where the puzzle uses a curve
arrangement instead of a grid. Hints are given per side of a curve that origi-
nates from the border instead of per row or column. If the curved nonogram
contains popular faces, these faces could be referenced multiple times by the
same hint. Therefore De Nooijer et al. [1] categorize nonograms without popu-
lar faces as basic nonograms and nonograms with popular faces as advanced or
expert nonograms and if popular faces can be removed from a curve arrange-
ment, a advanced or expert nonogram can be converted into basic nonogram.
The method De Nooijer et al. used to improve curve arrangements is to insert
extra curves. They have proven that finding one curve that removes all popular
faces is NP-complete, by reducing the problem to finding a non-intersecting Eu-
lerian cycle in a planar graph, which has been proven by Bent and Manber [3]
to be NP-complete.
Constructs similar to curve arrangements are pseudoline arrangements and
knots, though research in these fields focuses to much on their restrictions.
However, we can make use of Reidemeister moves [4] to change curves without
reconnecting them.

3 Curves

A curve can be defined by the trace left by a continuous function that maps a
single parameter to two-dimensional space. A curve is similar to a line segment
except that is allowed to bend.
The curves we allow can consist of one or more connected segments. The seg-
ment types we consider here are:

• Line segments

• Quadratic, cubic or higher degree Bézier curves

• Circular or (rotated) elliptical arcs

Figure 4 shows examples of a quadratic Bézier curve, a cubic Bézier curve and an
elliptical arc. We only consider parametric curves because they can be trivially
changed locally by cutting one segments into multiple segments and replacing
one of those segments.

As we will see later, we will need to find intersections and near misses between
curve segments to find locations where local changes have the most impact on
a curve arrangement.
We can find exact intersections and distances between points, line segments and
circular arcs. Therefore, we can find exact solutions for curve arrangements that
only consist of line and circular arc segments. We must use approximations to
find solutions for curve arrangements that include other segment types. One

4

Figure 4: Three different segment types. For the Bézier curves, the dashed lines
connect successive support points. For the elliptical arc the dashed lines show
the supporting ellipse and its major and minor axes.

approach is to split all curves into xy-monotone curves without inflection points
and create triangles that bound these segments to find intersections and points
within twice the local radius between themselves. The vertices of the bounding
triangle of an xy-monotone curve segment are start point of the segment, the
end point of the segment and the intersection between the tangents to the curve
segment at the two previous points.

3.1 Nontrivial Intersections between Curve Segments

Figure 5: (a) The bounding triangles of the curve segments overlap, but an
intersection is not guaranteed. (b) We split each segments in two subsegments
and find their bounding triangles. (c) The bounding triangles of two subseg-
ments overlap and this overlap splits the bounding triangles into four polygons
that each contain one segment start or end. There is an intersection within the
overlap.

To find intersections between curve sections, we check if their bounding tri-
angles overlap. If the bounding triangles do not overlap, there is no intersection
between their corresponding curve segments. If the boxes do overlap and an in-
tersection is still uncertain or the point of intersection needs to be more precise,
we split both curve segments into smaller segments and try to find intersections

5

between the smaller segments. We can know for certain that there is an intersec-
tion if the overlap between the the bounding triangles separate both triangles
into parts that contain only the start or end of the curve segment. Figure 5
shows the steps to find an intersection.

3.2 Nontrivial Near Misses between Curve Segments

Figure 6: (a) The difference between the minimum and maximum distances
between the bounding triangles of the segments is too large to be certain of a
near miss within twice the local radius. (b) We split each segment into two
subsegments and find their bounding triangles. (c) The maximum distance
between the bounding triangles of these subsegments is now smaller than the
maximum distance for a near miss, there is for certain a near miss between these
subsegments.

To find near misses, we need to find curve segments that have a distance
between each other of at most twice the local radius. To approximate the
distance between two curve segments, we check the minimum and maximum
distance between their bounding triangles. If the minimum distance between
the bounding triangles is greater than the given twice the local radius, the
distance between the curve segments is also greater than twice the local radius.
If the maximum distance between the bounding triangles is lesser than twice
the local radius, we know for certain that both segments are within twice the
local radius to each other. Otherwise, if twice the local radius is between the
minimum and maximum distance between the bounding triangles, we split the
curve segments into smaller segments and try to find whether these smaller
segments are within twice the local radius between each other. Figure 6 shows
the steps to determine if two curve segments are within twice the local radius
to each other.

4 Abstract Representations

We abstract the curve arrangement into a global arrangement and local arrange-
ments. The global arrangement is a static planar subdivision wherein vertices
represent local areas containing two or more curves and edges represent the parts
of the curves that connect these local areas. Local arrangements are dynamic
planar subdivisions wherein vertices represent intersections between curves or
between a curve and the boundary of the local area. Figure 8 shows the global

6

Figure 7: (left) An example of an input curve arrangement and the local areas
where we allow changes. (right) A desired solution to the same arrangement
where changes have been made in four local areas, this resulting arrangement
has no closed loops or popular faces.

Figure 8: The global arrangements corresponding to the curve arrangements in
Figure 7. The edges are colored according to their corresponding curve. (left)
The input arrangement. (right) A desired solution. Only the curves that the
edges belong to has changed in the global arrangement.

Figure 9: The local arrangements corresponding to the vertices in Figure 8.
(left) The input arrangement. (right) A desired solution. Local changes have
been made to vertices v0, v1, v2 and v3.

7

arrangements corresponding to the curve arrangements in Figure 7. Figure 9
shows the local arrangements corresponding to the vertices in Figure 8.

4.1 Global Arrangement

The global arrangement needs to store how local areas are connected to each
other and to the boundary. Local areas can be stored as vertices in the global
arrangement and their connections can be stored as edges. Local areas can have
multiple connections between each other and their orientations are important;
most importantly, faces need to be preserved. The global arrangement needs to
be constructed only once thus reading this arrangement is more important than
changing it.

4.2 Finding Intersections in the Curve Arrangement

Intersections are important candidates for local changes: changing an inter-
section to a near miss might improve or worsen the curcve arrangement. To
find all intersections in the curve arrangement, we need to find all intersections
between or within curve segments. Several papers [5, 6, 7, 8, 9] describe meth-
ods to create a curve arrangement from a set of curves, most of which use the
Bentley-Ottmann algorithm [10]. If no exact solution for an intersection exist,
we need can use the approximation method described before.

4.3 Finding Near Misses in the Curve Arrangement

Intersections are not the only locations where local changes can improve curve
arrangements, two or more sections of curves that pass each other within twice
the local radius but do not share an intersection are also local areas to consider.
These near misses could be changed to intersections or near misses in perpendic-
ular direction. We add these near misses as vertices in our global arrangement
and create local arrangements for them.
To find pair-wise near misses, we consider only potential edge pairs from our
current global arrangement, which are pairs of edges that share a face but not
a vertex in the global arrangement. If a potential pair has multiple near misses,
we only consider the nearest miss.
If three edges adjacent to the same face have distances a, b and c between each
other, and the radius of a circle circumscribing a triangle with side lengths a, b
and c is lesser than the local radius, we try to find a circle that includes parts of
or is tangential to all three edges. If all three edges consist of only line segments,
circular arcs and bend points, the problem of finding a tangential circle is one
of the special cases of the Problem of Apollonius, which could be solved using
inversion [11].

8

5 Local Changes

Local changes consist of one or more moves applied to part of the same local
area. We define five different moves: uncrossing, crossing, R1, R2 and R3.
Crossing and uncrossing, shown in Figure 10, are necessary to construct any
local change, they turn two adjacent curves in to an intersection or vice versa
respectively.

Figure 10: Crossing and uncrossing.

R1, R2 and R3 are the Reidemeister moves, these can be constructed using
crossings and/or uncrossings, though we choose to allow Reidemeister moves
as single moves, because these keep curves consistent and thus only affect the
curve arrangement locally. Figures 11, 12 and 13 show the Reidemeister moves.

Figure 11: The first Reidemeister move, a loop is undone.

Figure 12: The second Reidemeister move, two overlapping curves are separated.

9

Figure 13: The third Reidemeister move, a curve is moved over the intersection
of two other curves.

6 Improving the Curve Arrangement

We use three different methods to find improvements to the curve arrangements.
These method try to reduce the badness of an arrangement, a linear combination
of the number of popular edge pairs and number of closed loops, with changes
to as few local areas as possible. The methods we use are Breadth First Search,
Simulated Annealing and our own Heuristic Search.

6.1 Breadth First Search

Breadth First Search checks all variations on the curve arrangement with an
increasing number of changed local areas. However, an arrangement with n
local areas that have (at least) m possible local arrangements each has (at least)(
n
d

)
× (m−1)d variations that have d local areas changed. (We choose d out of n

local areas to change, these areas have, at least, m− 1 variations.) This means
that for curve arrangements with many local areas, the number of variations
grows almost exponentially with a low number of changes. Therefore, BFS
requires many iterations to check all variations with more than a few changes
in a large curve arrangement. For those large arrangements, we can use BFS
mainly to find the optimal badness for variants with a limited number of changes.

6.2 Simulated Annealing

Simulated Annealing evaluates a single random change to the curve arrangement
every iteration. By chance, dependant on a decreasing temperature parameter,
we accept the change without evaluating the difference in badness this change
makes. Otherwise we do evaluate the difference in badness and accept the
change only if it decreases the badness or keeps the same badness and reverses
a change. The process can be restarted after a given number of iterations from
the best solution found previously. Simulated Annealing can find solutions that
require many changes to the curve arrangement without evaluating the difference
in badness of many of these changes, thus iterations can be fast. This method
prioritizes minimizing the badness of an arrangement and its solutions may have
more changed local areas than necessary. We can use this method manly to find
a low upper bound to the optimal badness of changes to a curve arrangement.

10

6.3 Heuristic Search

Heuristic Search, like Breadth First Search, checks all variations at most once.
Though the order in which variations are checked are dependant on a prior-
ity queue that is sorted by a heuristic function that takes the badness of a
variation and the number of changed local areas from the initial curve arrange-
ment. Initially, the only element in the queue is the original state of the curve
arrangement. In each iteration we take and remove the first element of the pri-
ority queue. For each change that can be made to this state that we have not
processed before, we add the resulting variation to the priority queue. After-
wards, we add this state to a set of all states we have processed. After a given
number of iterations, this method returns the state with the best badness (and
fewest changed local areas) that we have processed. The heuristic function must
weigh reducing the badness up against keeping the number of changes low.

6.4 Applying Changes to the Curve Arrangement

For the resulting curve arrangement, we only have to change curves within
changed local areas. We can cut these curves on the borders of the local areas
and reconnect them based on how these local areas have changed. For local areas
that contained only a crossing, we replace this crossing with two quadratic Bézier
curves with endpoints connecting to the original curve and a support point at
the original intersection.

7 Implementation

The program has been implemented in C++ using CGAL [12] for geometry func-
tionality and TinyXML-2 [13] to read and write arrangements from and to
IPE [14] files. We limit our implementation to a local radius of zero, this means
that we do not search for near misses in the input curve arrangement and each
local area initially contains one intersection. If an intersection is changed to a
near miss, the distance of the near miss is zero, but does not count as an inter-
section. Instead, when applying the changes we found we treat these changes
as if the local radius is a small value greater than zero.

7.1 Algorithm Input

The program receives a curve arrangement and several parameters. The curve
arrangement is read from an IPE file containing only lines, quadratic and cubic
Bézier curves, ellipses and elliptical arcs. Figure 14 is an example of an input
arrangement These segments can be color coded to restrict manipulation on it
or its endpoints:

• Blue segments are the borders of the curve arrangement, its endpoints
cannot be manipulated and these do not count towards popular edge pairs.

11

Figure 14: Arrangement fox, the border is formed by blue edges and the image
is formed by red fixed edges. These fixed edges therefore have to stay connected.

12

• Red segments are fixed edges and are part of the original image, connected
fixed segments in the input must remain consecutive edges along a face in
the output arrangement.

• Purple segments are both part of the border of the curve arrangement and
part of the original image, these are treated the same as border segments
by the program.

• Black segments are free edges in the arrangement, a vertex connected to
only free edges can be freely manipulated.

The arrangement and three other parameters form a scenario, these other pa-
rameters are:

• IFE, whether to ignore fixed edges: if this value is true, all fixed edges are
treated as free edges.

• Open Area Ratio: a number between 0 and 1 (both inclusive) that indi-
cates the chance that a local area will start as an open state instead of an
intersection.

• Closed Loop Penalty: this value determines how much a closed loop counts
towards the badness of a state compared to a popular edge pair.

Lastly, we use three parameters for the Heuristic Search method:

• Heuristic ratio: this value determines the heuristic function we use. If
this value is a number rh between (and including) zero and 1, we use the
function

Hr(badness,#changes) = (1− rh)× badness+ rh ×#changes

as heuristic function. A heuristic ratio of 0 or 1 means that the heuristic
only consists of the badness or number of changes respectively. A heuristic
ratio of 0.5 means that one change of the state counts equally to the
heuristic as one popular edge pair. If this parameter is −q, we use the
function

Hq(badness,#changes) =
badness− initial badness

#changes

as heuristic function and call this the quotient heuristic. The quotient
heuristic tries to optimize the decrease in badness per change.

• Maximum number of changes: this parameter simply limits the number
of changes the algorithm is allowed to make to the initial state of the
arrangement.

• Maximum number of iterations: this parameter limits the number of states
the algorithm will check.

13

Figure 15: Four variants on arrangement fox with different open area ratios.
The open area ratios are 0.25, 0.5, 0.75 and 1.0 for variants (a), (b), (c) and (d)
respectively.

14

7.2 Algorithm Output

The program outputs an IPE file containing the output curve arrangement and
a file containing data about set of subsolutions found during the run of the
Heuristic Search. All subsolutions in this have a lower badness, fewer changes
and/or were found sooner than other subsolutions. The output curve arrange-
ment corresponds to the first state found with the lowest number of changes
among the states with the lowest badness found. In addition to the badness,
number of changes and the iteration at which the state was found, the data file
contains the elapsed time between the start of the search algorithm and when
the state was found, the number of each type of change made to the arrangement
and the number of closed loops in the resulting arrangements.

7.3 Program Steps

The program can be divided in four phases: Reading the input, constructing
the global and local arrangements and finding solutions and writing output.

7.3.1 Reading Input

During this face, we construct an arrangement in the form of a doubly con-
nected edge list containing cubic Bézier curves from the input arrangement file.
We restrict our program to a local radius of 0, therefore we only look for in-
tersections in the input and ignore near misses. We use TinyXML-2 to read
all segments from the input IPE file. CGAL uses the Bentley-Ottmann sweep
line algorithm [10] to find all intersections between the line segments and Bézier
curves. This algorithm takes time O((n + k) log n) for arrangements whose
curves can be split in n x-monotone curves and that have k intersection. For
the arrangement, CGAL constructs a DCEL (doubly connected edge list) which
we can use for the second phase of the program. We split ellipses and elliptical
arcs into xy-monotone arcs and then approximate them by xy-monotone cubic
Bézier curves, because this was easier than getting CGAL to allow Bézier curves
and elliptical arcs in the same arrangement.

7.3.2 Constructing Global and Local Arrangements

We use the DCEL constructed in the first phase to construct the global arrange-
ment. The global arrangement is a planar graph where its vertices represent
local areas, areas at which we can change the local arrangement, and its edges
represent global edges, collections of curve segments that connect local areas.
In this implementation, local areas contain one intersection or near miss or are
marked as a border area. Local areas not part of the border can have at most
three possible local arrangements: crossed or either of the uncrossed configura-
tions, these three local arrangements are depicted in Figure 16. Fixed edges can
restrict local areas to fewer local arrangements. Local areas and global edges
can be part of the border of the arrangement, border areas cannot change their

15

Figure 16: The three local arrangements we allow in our implementation.

local arrangement and border edges do not count towards the number of popu-
lar edge pairs and the number of closed loops in the global arrangement.
We also construct a state object that contains the local arrangement of each
local area, which global edges belong to the same curve, the number of popular
edge pairs in the global arrangement and the number of closed loops in the global
arrangement. Each state can provide its badness, given a closed loop penalty,
the number of differences between it and another state, a random neighbor or
all its neighbors, though calculating this takes time O(n log n) with n as the
number of edges in the global arrangement.
A neighbor of a state is another state where one local area has a different local
arrangement.

7.3.3 Finding Solutions

We use the three different methods described earlier to find solutions. We
restart Simulated Annealing 100 times and iterate 100,000 times per restart.
The chance of taking any change decreases linearly from one to zero per itera-
tion. BFS is limited to two million iterations. For the Heuristic Search we us
a priority queue implemented using a multimap that maps a heuristic value to

16

states that have that value. The multimap keeps itself sorted on the heuristic,
which allows us to efficiently get a state with the lowest heuristic to process and
it allows us to remove states with the highest heuristic if the size of the queue
exceeds the number of iterations the search has left.

7.3.4 Writing Output

Lastly, we apply the changes in the solutions to the curve arrangement by cutting
the edges a small distance from changed intersections and replacing them with
two quadratic Bézier curves. We then write the resulting to a new IPE file. We
write the gathered data to an csv file.

8 Experiments

We will preform two sets of experiments: one where we vary many parameters
on few arrangements and one where we vary few parameters on many arrange-
ments. The tested arrangements and parameters per set of experiments are
detailed in Table 1. We test all combinations of parameters, except when an ar-
rangement has no fixed edges, in which case we only test cases where we ignore
fixed edges.

Parameter Set 1 Set 2
Arrangement fox, snowman beaver, butterfly, elephant,

fox, snowman, tree, drop,
eye, fish, lens, para, ring,
wave, test0, test1, test2,

test3, test4, test6
Ignore Fixed Edges (IFE) true, false true, false
Random Open Area Ratio 0, 0.25, 0.5, 0.75, 1 0

Re-rolls Per Ratio 2 1
Closed Loop Penalty 0, 1, 3, 5 3

Max Number Of Changes 5, 20, ∞ ∞
Max Number Of Iterations 2000 40000

Heuristic Ratio 0.001, 0.2, 0.5, 0.001, 0.2, 0.5,
0.8, 0.999, -q 0.8, 0.999, -q

Number Of Trials Per Set 5 3
Of Parameters

Table 1: The possible values for each parameter per experiment set.

Table 2 shows the size and source of each curve arrangement used. These
arrangements were provided by my thesis supervisor and have been used for the
research by Van de Kerkhof et al. [2] and De Nooijer et al. [1] or have been
created for Master’s Theses that are still in progress. The curve arrangements

17

can be found in Appendix A.

Arran-
#Edges

#Border #Fixed Size
gement Edges Edges Category
fox 278 20 63 Large
tree 175 22 30 Large

elephant 135 22 40 Large
snowman 133 14 29 Large
butterfly 116 16 35 Large
beaver 53 10 14 Medium
ring 42 12 12 Medium
eye 32 8 8 Medium
test6 30 12 0 Medium
test4 29 10 0 Medium
fish 28 8 9 Medium
test1 19 6 4 Small
lens 17 6 4 Small
test2 17 6 5 Small
test0 15 6 2 Small
test3 15 6 0 Small
drop 12 4 3 Small
para 11 6 2 Small
wave 8 4 2 Small

Table 2: The size and source of each curve arrangement used. These arrange-
ments were provided by my thesis supervisor and have been used for the research
by Van de Kerkhof et al. [2] and De Nooijer et al. [1] or have been created for
Master’s Theses that are still in progress.

A scenario is the combination of an arrangement, whether to ignore fixed
edges, an open area re-roll and a closed loop penalty. For each scenario, we
record the best solution BFS found per number of changes and the solution
found by Simulated Annealing. Furthermore, we record the solution found by
each trial of the Heuristic Search method. The best badness for a scenario is
the lowest badness found for that scenario among all trials. The best number
of changes for a scenario is the lowest number of changes that resulted in the
best badness found among all trials.
Furthermore, we store additional data for the Heuristic Search method: if an
iteration finds a solution with either a better badness or an equal badness but
with fewer changes, we store the parameters for that trial, the badness, number
of changes and iteration number of that solution.
All experiments are run using an AMD Ryzen 7 3700X processor.

18

9 Results

9.1 Best results per method

Tables 3 and 4 show the best results found by each method for each scenario in
experiment set 1 and 2 respectively.

Scenario

In
it
ia
l
B
a
d
n
es
s BFS

Simulated Heuristic
Best

Annealing Search

B
ad

n
es
s

#
C
h
an

g
es

B
ad

n
es
s

#
C
h
an

g
es

B
ad

n
es
s

#
C
h
an

g
es

B
ad

n
es
s

#
C
h
a
n
g
es

Ignore Closed
Arran- Fixed Loop
gement Edges Penalty

fox

True

0 59 31 3 0 51 0 16 0 16
1 59 32 3 0 43 0 18 0 18
3 59 32 3 0 40 0 18 0 18
5 59 32 3 0 43 0 18 0 18

False

0 59 25 4 1 36 4 16 1 36
1 59 26 4 1 32 4 16 1 32
3 59 27 4 1 27 1 22 1 19
5 59 27 4 1 25 4 16 1 25

True

0 32 4 5 0 18 0 11 0 11
1 32 5 5 0 16 0 11 0 11
3 32 7 5 0 16 0 11 0 11

snow- 5 32 8 5 0 17 0 11 0 11
man

False

0 32 4 5 0 14 0 10 0 10
1 32 5 5 0 17 1 10 0 17
3 32 7 5 0 17 1 15 0 17
5 32 9 5 0 18 1 15 0 18

Table 3: The best solution found by each method for each scenario with an open
area ratio of 0.0 in experiment set 1. The best solution is the best solution for
a scenario by these methods in both experiment sets. Values matching the best
solution are made bold. If no solution in this table matches the best solution,
the best solution is found by experiment set 2.

For experiment set 1, BFS was unable to find the optimal solution for any
scenario in its given iterations. BFS was able to make up to 3 to 5 changes
which was insufficient for finding the optimal badness. Simulated Annealing
found the best badness for all scenarios in experiment set 1 whereas Heuristic
Search found best solutions for scenarios without fixed edges and for some with
fixed edges. Simulated Annealing only found the best number of changes for
scenarios where Heuristic Search did not find the best badness and for scenarios
where Heuristic Search did find the best badness, it did so with significantly

19

Scenario

In
it
ia
l
B
a
d
n
es
s BFS

Simulated Heuristic
Best

Annealing Search

B
ad

n
es
s

#
C
h
a
n
g
es

B
ad

n
es
s

#
C
h
an

g
es

B
ad

n
es
s

#
C
h
an

g
es

B
ad

n
es
s

#
C
h
an

g
es

Ignore Closed
Arran- Fixed Loop
gement Edges Penalty

fox
True 3 59 32 3 0 40 0 18 0 18
False 3 59 27 4 1 27 1 19 1 19

tree
True 3 7 0 4 0 4 0 4 0 4
False 3 7 2 2 0 5 0 4 0 4

ele- True 3 31 13 4 0 11 0 11 0 11
phant False 3 31 9 6 2 11 2 11 2 11
snow- True 3 32 7 5 0 16 0 11 0 11
man False 3 32 7 5 0 17 0 17 0 17
butter- True 3 30 17 4 0 13 0 13 0 13
fly False 3 30 25 3 23 10 23 12 23 10
bea- True 3 30 1 6 0 7 0 7 0 7
ver False 3 30 4 5 - - 4 5 4 5
ring Either 3 0 0 0 0 0 0 0 0 0

eye
True 3 4 0 1 0 1 0 1 0 1
False 3 4 3 2 - - 3 2 3 2

test6 True 3 2 0 1 - - 0 1 0 1
test4 True 3 6 0 3 0 3 0 3 0 3

fish
True 3 4 0 1 0 1 0 1 0 1
False 3 4 3 2 - - 3 2 3 2

test1 Either 3 1 0 1 0 1 0 1 0 1
lens Either 3 0 0 0 0 0 0 0 0 0

test2
True 3 3 0 1 0 1 0 1 0 1
False 3 3 3 0 - - 3 0 3 0

test0
True 3 2 0 1 0 1 0 1 0 1
False 3 2 2 0 - - 2 0 2 0

test3 True 3 2 0 1 0 1 0 1 0 1

drop
True 3 5 0 2 0 2 0 2 0 2
False 3 5 5 0 - - 5 0 5 0

para Either 3 0 0 0 0 0 0 0 0 0
wave Either 3 0 0 0 0 0 0 0 0 0

Table 4: The best solution found by each method for each scenario in experiment
set 2. Scenarios where fixed edges did not impact the best solutions found are
combined. If BFS for certain found the optimal solution (due to exhausting all
states), Simulated Annealing was sometimes skipped. The best solution is the
best solution for a scenario by these methods in both experiment sets. Values
matching the best solution are made bold.

20

fewer changes.

For experiment set 2, BFS was able to find the optimal solution for scenarios
that were small enough to be exhausted or for a scenario where a solution with
a badness of 0 could be found within a few changes. For all scenarios where BFS
found the optimal solution, Simulated Annealing (if not skipped) and Heuristic
Search did so as well. For the ten scenarios where BFS did not find the optimal
solution, both Simulated Annealing and Heuristic Search found the best bad-
ness. Out of these ten scenarios, Simulated Annealing found the best number of
changes for six scenarios and Heuristic Search found the best number of changes
in nine scenarios.

9.2 Subsolutions in Heuristic Search

A subsolution is any state visited by our search methods that has a lower bad-
ness, fewer changes and/or was found in an earlier iteration than all other sub-
solutions. Figure 17 shows the subsolutions found by BFS and the first trial of
Heuristic Search per Heuristic Ratio in experiment set 2 on one scenario. The
scenario used is arrangement fox with fixed edges, no initial open areas and a
closed loop penalty of 3. The subsolutions of Heuristic Search are labelled with
the iteration at which they were found.
The trials with heuristic ratios 0.001 and 0.2 find the best badness after around
6000 and 10000 iterations respectively. Both trials find mostly the same sub-
solutions with suboptimal badness but neither finds the optimal badness for
four changes. The trial with heuristic ratio 0.001 has enough iterations left af-
ter finding the best badness to find the best number of changes after around
10000 iterations. The trial with heuristic ratio 0.5 finds many subsolutions with
a badness around 16 and 4, but no solution with a lower badness than 4 and
no subsolutions after 844 iterations. This trial also does not find the optimal
badness for four changes. The trial with heuristic ratio 0.8 finds no subsolutions
with a badness lower than 12, but finds subsolutions with better or equal bad-
ness than trials with a lower heuristic ratio with ten or fewer changes. The trial
with a heuristic ratio of 0.999 finds the same subsolutions as BFS, though no
subsolution with more than three changes. The trial with a quotient heuristic
finds subsolutions with up to eight changes of which all subsolutions of BFS
are matched. This trial does not find more than one subsolution per number of
changes, meaning that this trial cannot find better subsolutions than the first
subsolution found for a number of changes. Overall, it seems that subsolutions
with lower badness than previous subsolutions require an exponentially growing
number of iterations, especially for trials with a high heuristic ratio or quotient
heuristic. The badness of subsolutions seem to decrease exponentially with the
number of changes made.

21

Figure 17: The badness and number of changes of subsolutions of Heuristic
Search trials with differing Heuristic Ratios on the same scenario are plotted in
blue and labelled with the iteration at which the subsolution was found. The
optimal badness per number of changes for this scenario found by BFS is plotted
in orange. The best solution found by all methods for this scenario is plotted
with a green star.

22

9.3 Trial Times of Heuristic Search per Arrangement

Figure 18 summarized the time required per trial of Heuristic Search using box
plots per arrangement per experiment set.

Figure 18: Box plots representing the time required per trial for each arrange-
ment per experiment set, ordered by the number of edges of the arrangement in
decreasing order. The means are represented by a green triangle. The vertical
axis are in logarithmic scale and the plots for experiment set 1 and 2 are scaled
to accommodate the difference in maximum number of iterations. If trials in
different sets would require their maximum number of iterations and require the
same time per iteration, their vertical position would be the same in both plots.

The arrangements of experiment set 1 have more variation in the times per
trial than those of experiment set 2, most likely due to a greater number of and
variety in trials per arrangement. The minimum time required for the trials on
the arrangements of set 1 and some arrangements of set 2 is about 1.4 × 10−5

seconds. Generally, larger arrangements require more time per trial, requiring
both more time per iteration and most often more iterations. Interestingly, the
times required for the arrangement beaver in experiment set 2 matches the times
required for the arrangements categorized as large than the other arrangements
in the medium size category, this might be due to its high number of popular
edge pairs in the initial arrangement (19 compared to 6, the number of initial
edge pairs of test4, the medium sized arrangement with the second highest num-
ber of initial popular edge pairs).

23

9.4 Results of Heuristic Search

Appendix B contains tables summarizing the results of the Heuristic Search for
experiment set 1 and 2. Figures 19 and 20 show the percentage of Heuristic
Search trials that found the best badness and/or best number of changes within
a number of elapsed iterations for set 1 and 2 respectively. The Heuristic Search
found relatively more solutions for experiment set 1 than for experiment set 2.
This is not surprising, since set 1 only contains some of the largest arrangements
from set 2 and trials in set 2 were allowed twenty times as many iterations than
those in set 1. The curves for best badness and for best badness and best num-
ber of changes generally follow the same shape, though not requiring the best
number of changes leads to more solutions for most elapsed iterations.

Figure 19: The percentage of trials in experiment set 1 that found the best
badness and/or best number of changes within a number of elapsed iterations.

In the following subsections, we will vary one parameter and observe how its
values affect the results.

9.4.1 Influence of Arrangement Size

For experiment set 1, we used two different arrangements, these are fox and
snowman with 278 and 133 edges in their global arrangement respectively. Fig-
ure 21 shows the percentage of trials for each arrangement that found the best
badness and best number of changes within a number of iterations in experiment
set 1.

24

Figure 20: The percentage of trials in experiment set 2 that found the best
badness and/or best number of changes within a number of elapsed iterations.

Figure 21: The percentage of trials per arrangement in experiment set 1 that
found the best badness and/or best number of changes within a number of
elapsed iterations.

25

For experiment set 2, we used 19 different arrangements, we pooled these into
three different size categories: large, medium and small. Large arrangements
contain at least 100 edges, the arrangement in this category are: butterfly, ele-
phant, fox, snowman and tree. Medium arrangements contain between 25 and
100 edges, the arrangements in this category are: beaver, eye, ring, test4 and
test6. Small arrangements contain fewer than 25 edges, the arrangements in
this category are: drop, lens, para, test0, test1, test2, test3 and wave. Figure 22
shows the percentage of trials for each size category that found the best badness
and best number of changes within a number of iterations in experiment set 2.

Figure 22: The percentage of trials per arrangement in experiment set 1 that
found the best badness and/or best number of changes within a number of
elapsed iterations.

The Heuristic Search finds more solutions per maximum number of elapsed
iterations for smaller arrangements (for set 1) or size categories (for set 2) than
larger ones. This was the expected result, because smaller arrangements have
exponentially fewer states to iterate through. And with fewer states, a solution
is generally encountered sooner.
The graphs for number of solutions that found both the best badness and best
number of changes have similar shapes to those that only found the best badness.

9.4.2 Influence of Fixed Edges

Figures 23 and 24 show the percentage of trials for which fixed edges are either
ignores or enforced that found the best badness and best number of changes

26

Figure 23: The percentage of trials in experiment set 1 that found the best
badness and/or best number of changes within a number of elapsed iterations
for scenarios where fixed edges are either ignored or enforced.

Figure 24: The percentage of trials in experiment set 2 that found the best
badness and/or best number of changes within a number of elapsed iterations
for scenarios where fixed edges are either ignored or enforced.

27

within a number of iterations in experiment set 1 and 2 respectively.

In experiment set 1, the Heuristic Search found significantly more solutions
when fixed edges could be ignored than when they were enforced. In fact, with
fixed edges, only 1.69% of trials in set 1 found the best badness. However in
experiment set 2, this difference is drastically smaller. There may be at least
two reasons for this. The first reason may be that set 1 has scenarios that are
significantly easier without fixed edges, such as when the open area ratio is high
(there are few intersections, areas with fixed edges may remain intersections) and
the closed loop penalty is 0 (only intersections can cause badness). The second
may be that ignoring fixed edges allow more possible states of the arrangement,
which may have a bigger influence on the smaller arrangements in set 2.
The graphs for number of solutions that found both the best badness and best
number of changes have similar shapes to those that only found the best badness.

9.4.3 Influence of Open Areas in the Initial Arrangement

The open area ratio was only varied in experiment set 1, it created variants
where each intersection has a chance to start as near miss. Figure 25 shows the
percentage of trials for each open area ratio that found the best badness and
best number of changes within a number of iterations in experiment set 1.

Figure 25: The percentage of trials per open area ratio in experiment set 1
that found the best badness and/or best number of changes within a number of
elapsed iterations.

28

Scenarios with an open area ratio of 1.0 have significantly more solutions
than those with fewer open areas. These scenarios can only have initial inter-
sections if there are fixed edges, meaning that the initial badness due to popular
edge pairs will be low. A low initial badness allows the Heuristic Search to skip
many states that have an equal or higher badness, probably resulting in fewer
required iterations per scenario. Similarly, the Heuristic Search finds the sec-
ond most solutions with the best badness in scenarios with an open area ratio
of 0.75, though only up to around 370 iterations, after which the benefit on an
initially lower badness drop off and scenarios with an open area ratio of 0.0 gain
more solutions. The same thing happens to scenarios with an open area ratio
of 0.5, though these have fewer solutions than those with a ratio of 0.75 and it
takes fewer iterations before scenarios with an open area ratio of 0.0 gains more
solutions. Scenarios with an open area ratio on 0.25 have the fewest solutions
with the best badness, though these have found about as many solutions as
those with ratios of 0.5 and 0.75 after 2000 iterations.
The graphs for number of solutions that found both the best badness and best
number of changes have similar shapes to those that only found the best bad-
ness.

9.4.4 Influence or Closed Loop Penalties

Figure 26: The percentage of trials per closed loop penalty in experiment set 1
that found the best badness and/or best number of changes within a number of
elapsed iterations.

The closed loop penalty was only varied in experiment set 1, it determines

29

how much a closed loop counts towards the badness compared to a popular
edge pair. Figure 26 shows the percentage of trials for each closed loop penalty
that found the best badness and best number of changes within a number of
iterations in experiment set 1.

Scenarios with a closed loop penalty of 0 have the most solutions for about
the first 135 iterations, though scenarios with a closed loop penalty of 5 gain
more solutions after about 270 iterations. Scenarios with no or few initial in-
tersections have solutions that require few iterations if closed loops are not
penalized. Scenarios with a closed loop penalty of 0 might have a lower best
badness than those with a higher closed loop penalty, because arrangements
with the optimal badness may contain closed loops. This lower best badness
may be harder to find in scenarios with many initial intersections. Scenarios
with a closed loop penalty of 1 have the fewest solutions for all iterations, the
Heuristic Search might have difficulty in prioritizing removing closed loops that
need to be removed over removing popular edge faces.
The graphs for number of solutions that found both the best badness and best
number of changes have similar shapes to those that only found the best bad-
ness.

9.4.5 Influence of Limits on the Number of Changes

Figure 27: The percentage of trials per maximum number of changes in experi-
ment set 1 that found the best badness and/or best number of changes within
a number of elapsed iterations.

30

The maximum number of changes was only varied in experiment set 1. Fig-
ure 27 shows the percentage of trials for each closed loop penalty that found
the best badness and best number of changes within a number of iterations in
experiment set 1.

Trials that are only allowed fewer than 5 changes from the initial state match
the number of solutions found of the other trials for the first seven iterations,
however, these do not find any more solutions after the second iteration. Most
solutions require at least 5 changes, which cannot be found with a maximum
number of changes of 5. Trials that are only allowed fewer than 20 changes from
the initial state find about the same number of solutions as trials without a limit
on the number of changes for more iterations, though trials without a maximum
number of changes gain more solutions with the best badness than those with a
maximum of 20 after around 24 iterations. Similarly, trials without a maximum
number of changes gain more solutions with the best badness and number of
changes than those with a maximum of 20 after around 500 iterations.

9.4.6 Influence of Heuristic Ratio

We varied the heuristic ratio on both experiment sets. Figures 28 and 29 show
the percentage of trials for each heuristic ratio that found the best badness and
best number of changes within a number of iterations in experiment set 1 and 2
respectively.

Trials with a heuristic ratio of 0.999 find the fewest solutions for all elapsed
iterations for both experiment sets. The Heuristic Search with this ratio strongly
prioritizes keeping the number of changes low over lowering the badness, thus
processing states by an increasing number of changes, similar to BFS. However,
this means that trials with a heuristic ratio of 0.999 require many iterations to
find solutions for large scenarios and scenarios that require many changes to
achieve the best badness. Trials with a heuristic ratio of 0.8 find the second
fewest solutions for all iterations for experiment set 2 and for most iterations
for experiment set 1, only finding more or as many solutions as trials with a
quotient heuristic in about the first 115 iterations. Interestingly all trials with
a quotient heuristic in experiment set 1 that find the best badness also find the
best number of changes in the same iteration, this also holds for most iterations
in experiment set 2. Trials with heuristic ratios of 0.001, 0.2 or 0.5 find the
most solutions for any number of elapsed iterations for both experiment sets.
In experiment set 1, trials with heuristic ratios of 0.001 or 0.2 find about as
many solutions with the best badness as each other and more than those with
a heuristic ratio of 0.5 for each iteration. This is also the case for solutions
with both the best badness and best number of changes for about the first
150 iterations, after which trials with a heuristic ratio of 0.5 gain more solutions
with the best number of changes than trials with a lower heuristic ratio. In
experiment set 2, trials with heuristic ratios of 0.001 or 0.2 also find about as
many solutions with the best badness as each other and more than those with

31

Figure 28: The percentage of trials per heuristic ratio in experiment set 1 that
found the best badness and/or best number of changes within a number of
elapsed iterations.

Figure 29: The percentage of trials per heuristic ratio in experiment set 2 that
found the best badness and/or best number of changes within a number of
elapsed iterations.

32

a heuristic ratio of 0.5 for each iteration. However, trials with a heuristic ratio
of 0.001, 0.2 and 0.5 found about as many solutions with the best badness and
best number of changes as each other.

10 Conclusions

Most large curve arrangements require too many iterations for BFS to find the
optimal solution. Simulated Annealing finds solutions with a lower or equal
badness than Heuristic Search in their given iterations, though Heuristic Search
generally finds solutions with fewer changes from the original arrangement than
Simulated Annealing when it does find a solution with the best badness.

Heuristic Search finds many subsolutions, trials with a high heuristic ratio
or quotient ratio find subsolutions with a lower badness for few changes, though
trials with a lower heuristic ratio find subsolutions with lower badness and often
fewer changes for low badness subsolutions.

Trials on larger arrangements often require more time and the minimum
time for all trials was around 1.4× 10−5 seconds.

Larger arrangements, fixed edges, fewer but not no open areas and a lower
closed loop penalty greater than 0 make scenarios harder for the Heuristic Search
method to solve. Restricting Heuristic Search to a maximum number of changes
decreases the number of solutions found. Heuristic Search with a heuristic ratio
of 0.001 or 0.2 seems to find the most solutions with the best badness, whereas
Heuristic Search with a heuristic ratio of 0.5 seems to find the most solutions
with the best badness and the best number of changes.

11 Future work

There were some problems we encountered we were unable to solve and some
parts of our algorithms we were unable to test. We will discuss these in the
following subsections.

11.1 Research

The first problem is finding the minimum closed loop penalty that guarantees no
closed loops in an optimal badness solution. In our current implementation, we
use a closed loop penalty of at most 5, though this does not guarantee that the
solution with the minimum badness has no closed loops. Finding the minimum
closed loop penalty (for an arrangement) that does guarantee this may aid in
finding fast deterministic methods.
The second problem is finding the minimum badness for an arrangement. This
is currently done by the slow BFS method, or a stochastic method if BFS re-
quires too many iterations. Finding a faster exact method that analyses a curve

33

arrangement to find its minimum badness aids the Heuristic Search method that
finds such a solution or may lead to finding a fast exact method to find such a
solution.
The last problem is finding the lower bound of the time complexity of a deter-
ministic method that finds the optimal badness (with the minimal number of
changes). We currently use BFS to find exact solutions, however, the asymp-
totic runtime of this method is exponential in the size of the curve arrangement.
There may be algorithms with a lower time complexity and the problem might
be NP-hard.

11.2 Program

Our first possible improvement to the implementation would be to find a method
that finds the difference in badness for a change without evaluating the entirety
of both states. A change affects on the changed global curves and the faces sur-
rounding the changed area. Only reevaluating affected parts of the arrangement
might drastically reduce the running time of larger arrangements.
Our second possible improvement is exact support for rational curves, includ-
ing elliptical arcs. Currently, we approximate elliptical arcs, which means that
these curves in the output never exactly the input. Our third possible improve-
ment is for the program to find near misses within given radius. Our current
implementation only finds intersections in the input and behaves as if the local
radius is 0. We can currently only simulate arrangements with open areas by
changing some local areas in the initial state. However, the program should be
able to find near misses in the arrangement and be able to change these.
Our final possible improvement is to support more complex local areas. Cur-
rently, local areas contain two curves, but local areas with a larger radius may
contain more than two curves. The program should be able to handle these by
describing a local area by more than three states.

References

[1] Phoebe de Nooijer, Soeren Nickel, Alexandra Weinberger, Zuzana
Masárová, Tamara Mchedlidze, Maarten Löffler, and Günter Rote. Remov-
ing popular faces in curve arrangements. arXiv preprint arXiv:2202.12175,
2022.

[2] Mees van de Kerkhof, Tim de Jong, Raphael Parment, Maarten Löffler,
Amir Vaxman, and Marc van Kreveld. Design and automated generation
of japanese picture puzzles. Computer Graphics Forum, 38(2):343–353,
2019.

[3] Samuel W Bent and Udi Manber. On non-intersecting eulerian circuits.
Discrete Applied Mathematics, 18(1):87–94, 1987.

34

[4] Kurt Reidemeister. Elementare begründung der knotentheorie. In Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg,
volume 5, pages 24–32. Springer, 1927.

[5] Nancy M Amato, Michael T Goodrich, and Edgar A Ramos. Computing
the arrangement of curve segments: Divide-and-conquer algorithms via
sampling. In SODA, pages 705–706. Citeseer, 2000.

[6] Arno Eigenwillig and Michael Kerber. Exact and efficient 2d-arrangements
of arbitrary algebraic curves. In SoDA, volume 8, pages 122–131, 2008.

[7] Arno Eigenwillig, Lutz Kettner, Elmar Schömer, and Nicola Wolpert. Ex-
act, efficient, and complete arrangement computation for cubic curves.
Computational Geometry, 35(1-2):36–73, 2006.

[8] Victor Milenkovic. Calculating approximate curve arrangements using
rounded arithmetic. In Proceedings of the fifth annual symposium on Com-
putational geometry, pages 197–207, 1989.

[9] Victor Milenkovic and Elisha Sacks. An approximate arrangement algo-
rithm for semi-algebraic curves. International journal of computational
geometry & applications, 17(02):175–198, 2007.

[10] Jon Louis Bentley and Thomas A Ottmann. Algorithms for reporting
and counting geometric intersections. IEEE Transactions on computers,
28(09):643–647, 1979.

[11] A Bruen, JC Fisher, and JB Wilker. Apollonius by inversion. Mathematics
Magazine, 56(2):97–103, 1983.

[12] The computational geometry algorithms library. https://www.cgal.org/.
Accessed: 2022-07-01.

[13] Tinyxml-2. https://www.grinninglizard.com/tinyxml2/. Accessed: 2022-
07-01.

[14] The ipe extensible drawing editor. https://ipe.otfried.org. Accessed: 2022-
07-01.

35

A Curve arrangements used for Experiments

Figure 30: Arrangement beaver.

Figure 31: Arrangement butterfly.

36

Figure 32: Arrangement drop.

Figure 33: Arrangement elephant.

37

Figure 34: Arrangement eye.

Figure 35: Arrangement fish.

38

Figure 36: Arrangement fox.

39

Figure 37: Arrangement lens.

Figure 38: Arrangement para.

40

Figure 39: Arrangement ring.

Figure 40: Arrangement snowman.

41

Figure 41: Arrangement test0.

Figure 42: Arrangement test1.

42

Figure 43: Arrangement test2.

Figure 44: Arrangement test3.

43

Figure 45: Arrangement test4.

Figure 46: Arrangement test6.

44

Figure 47: Arrangement tree.

Figure 48: Arrangement wave.

45

B Summarized Results of Heuristic Search

Best Badness Best #Changes

Param. Value #
T
ri
al
s

S
o
lu
ti
o
n
s
F
ou

n
d

A
v
g.

o
f
B
es
t
5
%

o
f
T
ri
a
ls

M
ax

.
o
f
95
%

o
f
S
ol
u
ti
o
n
s

S
o
lu
ti
o
n
s
F
ou

n
d

A
v
g.

o
f
B
es
t
5
%

of
T
ri
a
ls

M
ax

.
o
f
95
%

o
f
S
o
lu
ti
o
n
s

All of Set 2 630 86.7% 1.00 1829 84.0% 1.00 1801

Arran- Large 180 55.0% 8.33 13349 45.6% 9.44 17858
gement Medium 180 98.3% 1.00 911 98.3% 1.00 911
Size Small 270 100% 1.00 3 100% 1.00 3

IFE
True 342 87.7% 1.00 726 87.1% 1.00 1801
False 288 85.4% 1.00 3487 80.2% 1.00 1998

0.001 105 97.1% 1.00 245 92.4% 1.00 2152
Heuris- 0.200 105 100% 1.00 10180 94.3% 1.00 3294

tic 0.500 105 94.3% 1.00 7775 91.4% 1.00 370
Ratio 0.800 105 77.1% 1.00 1637 77.1% 1.00 1637

0.999 0.5 68.6% 1.00 100 68.6% 1.00 100
-q 105 82.9% 1.00 1829 80.0% 1.00 911

Table 5: Summarized results for experiment set 2. Each row represents a subset
of trials, it contains the size of the subset, the percentage of trials that found the
best badness, the average number of elapsed iterations of the 5% of trials of the
subset that required the fewest number of iterations to find the best badness (if
less than 5% found the best badness, this is the average over the trials that did)
and the maximum number of iterations required to find 95% of the solutions
that found the best badness. All three statistics regarding the trials that found
the best badness are repeated for trials that found both the best badness and
the best number of changes. These statistics are given for the entire set and
divided by each value for each parameter.

46

Best Badness Best #Changes

Param. Value #
T
ri
al
s

S
o
lu
ti
o
n
s
F
ou

n
d

A
v
g.

o
f
B
es
t
5
%

of
T
ri
al
s

M
ax

.
o
f
95
%

o
f
S
ol
u
ti
on

s

S
o
lu
ti
o
n
s
F
ou

n
d

A
v
g.

o
f
B
es
t
5
%

of
T
ri
a
ls

M
ax

.
o
f
95
%

o
f
S
o
lu
ti
o
n
s

All of Set 1 14400 13.5% 6.07 983 8.81% 9.77 1289

Arran- fox 7200 9.51% 10.2 945 4.63% 299 1440
gement snowm. 7200 17.6% 4.25 996 13.0% 4.25 1229

IFE
True 7200 25.4% 1.42 725 16.7% 3.67 1106
False 7200 1.69% 880 1902 0.89% 1020 1919

0.00 2880 12.4% 63.4 1326 9.34% 68.3 1757
Open 0.25 2880 9.13% 96.7 1402 3.78% 646 1883
Area 0.50 2880 8.85% 35.9 1499 2.67% 607 1831
Ratio 0.75 2880 9.38% 13.4 481 5.49% 91.3 1370

1.00 2880 28.0% 1.00 96 22.7% 1.00 114

Closed 0 3600 14.8% 1.00 1052 9.03% 1.00 998
coop 1 3600 9.28% 31.1 1318 7.31% 38.8 1464

Penalty 3 3600 14.0% 14.0 783 8.22% 16.5 1560
5 3600 16.1% 11.9 875 10.7% 12.7 1165

Max. 5 4800 2.50% 1.42 2 1.46% 1.00 1
#Chan- 20 4800 16.5% 4.94 1007 12.0% 78.6 1140

ges ∞ 4800 21.7% 4.93 1012 13.0% 7.89 1560

0.001 2400 23.2% 4.50 763 13.3% 7.04 1250
Heuris- 0.200 2400 23.9% 4.50 1012 14.6% 7.05 1735

tic 0.500 2400 22.6% 5.25 1267 15.8% 9.02 1434
Ratio 0.800 2400 4.17% 6.10 19 2.92% 7.86 19

0.999 2400 2.50% 1.50 2 1.25% 1.00 1
-q 2400 5.00% 47.7 182 5.00% 47.7 182

Table 6: Summarized results for experiment set 1. Each row represents a subset
of trials, it contains the size of the subset, the percentage of trials that found the
best badness, the average number of elapsed iterations of the 5% of trials of the
subset that required the fewest number of iterations to find the best badness (if
less than 5% found the best badness, this is the average over the trials that did)
and the maximum number of iterations required to find 95% of the solutions
that found the best badness. All three statistics regarding the trials that found
the best badness are repeated for trials that found both the best badness and
the best number of changes. These statistics are given for the entire set and
divided by each value for each parameter.

47

