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ABSTRACT 

Active learning aided abstract screening can alleviate the labour-intensive process of systematic 

reviewing. In such a learning cycle, a machine learning model suggests the next abstract to be 

reviewed, and a researcher classifies the abstract as relevant or irrelevant. A systematic review should 

include all relevant studies, regardless of the language it is conducted in. Machine translation of 

abstracts helps here, but it is unknown how classification performance changes when abstracts are 

translated. This study simulates the active learning process with English datasets, and with the same 

datasets that were machine-translated to German, Spanish and Turkish. A key step in the active 

learning pipeline is the generation of a vector representation of the text, using a feature extractor. The 

feature extraction methods tf-idf, Doc2Vec, FastText and SBERT were compared on their classification 

performance for all languages. The results show that no consistent disadvantage to translation can be 

found for the selected datasets, except for FastText.  
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1 INTRODUCTION AND MOTIVATION 

Active learning aided abstract screening can alleviate the labour-intensive process of systematic 

reviewing. In such a learning cycle, a machine learning model suggests the next abstract to be 

reviewed, and a researcher classifies the abstract as relevant or irrelevant. Systematic reviews should 

include all valid articles, no matter the language they are written in [1]. Machine translation is a valid 

option for researchers who wish to include foreign languages in their study [2]. However, how active 

learning models comparatively perform on translated texts is unclear. This study aims to provide 

insight into the change in classification performance introduced by translation into linguistically more 

complex languages than English. The study simulates the active learning process with English datasets, 

and with the same datasets that were machine-translated to German, Spanish and Turkish. To 

generate a better understanding of the research question this study aims to answer, a general 

overview of the relevant literature is provided. 

2 LITERATURE REVIEW 

2.1 SYSTEMATIC REVIEWS 
Systematic reviews are a form of literature review that aim to synthesize the results of many related 

research studies into a single overview. The studies to be reviewed should be gathered in an unbiased, 

comprehensive, transparent and reproducible manner [1]. Once this search has been performed, the 

relevant studies need to be identified, based on a predetermined set of inclusion and exclusion 

criteria. An initial search can easily identify thousands of potentially relevant studies [3]. A first step in 

selecting relevant studies from this search is often abstract screening. Here, the abstract of every 

search result is weighed against the inclusion/exclusion criteria. Human abstract reviewers mark 

abstracts as relevant or irrelevant with error rates of about 1 in 9 abstracts [4], [5]. Abstract reviewing 

is therefore often conducted by a team of reviewers, which makes it an even more labour-intensive 

process. 

2.2 ACTIVE LEARNING AIDED ABSTRACT SCREENING 
Active learning aided abstract screening aims to reduce the workload of human abstract screening. In 

active learning, a machine learning model picks the next instance(s) it will learn from. With human-in-

the-loop machine learning, a human then labels these instances [6]. In the case of abstract screening, 

a human reviewer can label an abstract that is proposed by the model for reviewing as relevant or 

irrelevant for the study they are conducting. After being trained on this added information, the model 

will make new predictions on the unlabelled data and make the next selection for labelling. This 

process ends when all instances are labelled, or when the human stops labelling earlier. A workload 

reduction in abstract screening can of course only be achieved if the researcher stops labelling before 

the last abstract is reviewed. 

2.3 ASREVIEW 
ASReview is an open-source software platform developed at Utrecht University [6]. It provides an 

offline pipeline for active learning aided reviewing. As input, it requires a set of records (e.g. abstracts), 

and at least one record pre-labelled as relevant, and one as irrelevant. Its output is the subset of 

relevant and irrelevant records, labelled by the human-in-the-loop. The four basic elements of this 

pipeline are feature extraction, classification, query strategy and balance strategy. [7] 
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2.3.1 Feature extraction 

The feature extraction method defines how the input records are transformed into a feature matrix, 

in which each document is represented as a vector. This transformation of records needs to be done 

only once before the active learning cycle starts. The default method is tf-idf (term frequency-inverse 

document frequency) [8], which weights a bag-of-words vector by the inverse frequency of the words 

as they appear in the entire corpus. Among other available methods are Doc2Vec [9] and Sentence-

BERT (SBERT) [10], which are respectively simple and complex neural network feature extractors, 

which try to embed the semantics of a document within a vector. In the ASReview implementation, 

SBERT uses a pre-trained model, while Doc2Vec trains on the corpus of abstracts. 

2.3.2 Classification 

Classification is the method by which a probability is calculated for the unlabelled records to belong 

to the ‘relevant’ class, given the labelled records. ASReview provides implementations ranging from 

statistical methods like Multinomial Naive Bayes (default) and Logistic Regression to Neural Network-

based methods. 

2.3.3 Balance strategy 

In a systematic review, usually, the irrelevant records far outnumber the relevant ones. This class 

imbalance can lead to a model that has high accuracy, but only because it has a high true negative 

rate and most cases are indeed negative. The balance strategy resamples the training data to account 

for the imbalance. 

2.3.4 Query strategy 

The query strategy defines the method by which the relevance probabilities that are calculated by the 

classifier lead to the next recommended record to be reviewed. When the goal is to find the next most 

similar record, the record with the highest probability must be recommended. However, a random or 

uncertainty-based query strategy may find new clusters of relevant records sooner. 

2.3.5 Simulation 

ASReview implements a method to simulate human-in-the-loop active learning. In such a use case, a 

fully labelled dataset of abstracts is provided as input. Several prelabelled datasets are available in the 

ASReview repository. A set of relevant and irrelevant labels is provided as prior knowledge for the 

classifier to train on. The classifier makes a recommendation for the next record to review. The 

classifier is then retrained with the added knowledge of the label of the new recommendation it made, 

as if a human would assign the label at that moment. The simulation continues until a stopping rule is 

reached (e.g. all relevant records found). 

2.4 LANGUAGE MORPHOLOGY 
Words are composed of the smallest semantic units in a language, called morphemes. Morphology is 

the study of words in a language; how they are built up from morphemes, and how their composition 

depends on the linguistical context in which they appear [11, p. 2]. In morphologically rich languages 

(MRLs), like Turkish, the combination of morphemes into words is varied and complex. Therefore, 

MRLs have a larger vocabulary than analytical (morphologically poor) languages, like English, given the 

same corpus size. The larger vocabulary makes the MRLs in general perform worse than English on 

language processing tasks that implement statistical feature extraction methods and that do not 

account for additional morphological rules [12]. The larger vocabulary increases the sparseness of the 

feature matrix for tf-idf, since the chance that a term occurs in multiple documents decreases. 
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Models trained on multiple languages can suffer from the curse of multilinguality, decreasing in 

performance with the more languages they are trained on [13]. This could lead to a decrease in 

classification performance when implementing a feature extraction model that has been pre-trained 

to recognize multiple languages. Multilingual SBERT, one of the feature extractors that will be tested 

in RQ1, could have lower classification performance than an SBERT model trained on English only, due 

to the multilingual nature of its pretrained vectors.  

 

3 RESEARCH QUESTION 

This study investigates the following: Does the classification performance of active learning aided 

systematic review simulations depend on the morphological richness of the input language? 

This research question has been divided into two sub-questions, which can be methodologically 

investigated: 

RQ1: What is the classification performance of current feature extractors implemented in 

ASReview for languages with differing morphological richness?  

RQ2: Does FastText as a feature extractor increase classification performance over the 

selected languages and feature extractors in RQ1? 

Results from this study could be used to inform researchers on the possibility of including translations 

of abstracts of studies that were written in a foreign language in their active learning aided systematic 

review pipeline. 

3.1 RQ1 
This study explores how classification performance depends on the morphological richness of a 

language. In RQ1 it is investigated if this dependence is different for the feature extraction methods 

tf-idf, Doc2Vec and SBERT, which are already implemented in ASReview. For td-idf, the link between 

increased vocabulary size and feature matrix sparseness is direct (see Table 1). Tf-idf cannot use sparse 

words to find similar documents, since they only occur in one document. Therefore, tf-idf is expected 

to perform worse with an increase in morphological richness. For Doc2Vec it is less obvious how 

increased vocabulary size will impact the vector training, since the model is fitted to vectors of a fixed 

dimension. SBERT does not fit a model to the dataset at all, but uses a pre-trained model to transform 

documents to vectors of a fixed dimension. The hypothesis for RQ1 is: All feature extraction methods 

will see a significant decrease in classification performance due to machine translation into a language 

with a higher morphological richness than English. 

3.2 RQ2 
FastText [14] is a word embedding skip-gram model like Word2Vec (on which Doc2Vec is based). 

FastText extends this method by comprising each word embedding of a bag of n-gram sub-word 

vectors. The n-grams typically are 3 to 6 characters long. This way, even out-of-vocabulary (OOV) 

words can be transformed into a vector representation [13]. Vector generation for OOV words could 

be an important feature for text classification of MRLs, because they have a high OOV rate due to their 

linguistic complexity. In one example, the OOV rate for Turkish was 8% versus English 1% at the same 

vocabulary size (60k) [15]. For RQ2, a FastText feature extractor will be implemented and subjected 
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to the same setups as the feature extractors in RQ1. The hypothesis for RQ2 is: FastText will not see a 

significant decrease in classification performance due to machine translation into a language with a 

higher morphological richness than English. 

 

4 DATA AND METHODS 

Three languages were selected to be compared to the classification performance in English. English is 

mostly an analytical language. English words are not often agglutinated or transformed based on their 

context. Therefore, it is considered morphologically poor. Selection criteria for comparison languages 

were: 1) Different language families; 2) Different morphological typology; 3) Reasonable number of 

native speakers (+50 million). Based on these criteria, the following languages were chosen: 

- German; it has higher derivational synthesis than English, agglutinating morphemes more often 

than English. It stems from the Germanic language family [16]. 

- Spanish; it has higher relational synthesis than English, adding bounding morphologies to root 

words to create new grammatical meaning. It stems from the Latin language family [16].  

- Turkish; it is a highly relational synthetic language, with complex grammatical rules like vowel 

harmony that contribute to a large vocabulary. Statistical language processing approaches 

perform poorly due to the sparseness of words within a corpus [15]. It stems from the Turkic 

language family. 

The increase in vocabulary size and sparse words (words that occur in only a single document) after 

machine translation will be used as a proxy for the increase in morphological richness introduced by 

the translation into a linguistically more complex language. 

The six datasets that were used to estimate classification performance are the same as the ones used 

in Ferdinands et al. [17]. These prelabeled datasets were selected on basis of their diversity in research 

fields and availability. They are part of the ASReview systematic-review-datasets package and 

have been published under an open license. In this report, the investigated datasets are referred to 

as: ACE, Nudging, PTSD, Software, Virus and Wilson. They respectively cover systematic reviews on 

the following research topics:  Angiotensin-Converting Enzyme Inhibitors [18]; Nudging Health Care 

Professionals [19]; Post Traumatic Stress Disorder Trajectories [20]; Software Fault Prediction [21]; 

Virus Metagenomics [22]; Wilson’s disease [23]. 

The abstracts and titles in the datasets were translated using Google Translate v3 machine translation. 

In comparative studies, DeepL slightly outperforms Google Translate on standard translation metrics 

[24]. However, Google Translate can perform document translation of excel files, which decreases the 

complexity of the translation pipeline. Google Translate also supports more languages than DeepL. 

Google translate has been deemed a viable, accurate tool for translation for medical systematic 

reviews [2]. 

For RQ1, the datasets were classified in all languages on all selected feature extractors: tf-idf, Doc2Vec 

and multilingual SBERT. During Doc2Vec pre-processing, stop word removal was performed in the 

applicable language. For SBERT, the pretrained multilingual model ‘distiluse-base-multilingual-cased-

v2' [10] was used, which supports 50+ languages, including the ones under investigation. In this report, 

the multilingual SBERT feature extractor will be referred to as simply ‘SBERT’. 
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For RQ2, FastText was implemented as a feature extractor. For each language, pre-trained word 

vectors trained on the Common Crawl corpus of that language were used [25]. These word vectors 

have 300 dimensions and are comprised of 5-character long n-grams. For each document in a dataset, 

all word vectors were calculated. These word vectors were then transformed into a sentence vector 

using the get_sentence_vector()function from the fasttext package. This function calculates the 

L2 norm of each separate dimension over all word vectors in the document.1 

For classification, the Logistic Regression classifier was used instead of the default Multinomial Naive 

Bayes classifier, since it is able to classify the negative vector components of Doc2Vec and SBERT. The 

default balance and query strategies were used. 

For each simulation setup of a language and feature extraction combination, a simulation was run 15 

times. Each simulation was initiated with one randomly picked relevant and one randomly picked 

irrelevant record as prior knowledge. To decrease the runtime of the simulations, the feature 

extraction step of SBERT was performed only once per setup, and the resulting feature matrix was 

used for all 15 simulations. This method is not different to generating the feature matrix every single 

time. 

The recall curve visualises the progression of the labelling process (see Figure 1). It plots the number 

of records that have been reviewed as a proportion of the total number of records in the dataset on 

the x-axis. This can be understood as a progression through time, where every step on the x-axis is a 

newly labelled record. This is plotted against the number of relevant records that have been labelled 

as a proportion of all relevant records in the dataset on the y-axis. Therefore, this plot can only be 

drawn once all relevant records are known. 

The Relevant Records Found (RRF) is the proportion of relevant records that have been found after 

reviewing a certain proportion of all records. When read from the recall curve, the RRF is the y-value 

at a given x-value. In the results, the RRF after reviewing 10% of all records is reported. If one would 

stop reviewing after only a certain portion (e.g. 10%) of all records were reviewed, and label all 

remaining records as ‘irrelevant’, the RRF would be equal to the recall of the experiment. 

If the next record to be reviewed was picked completely at random (simple sampling), the averaged 

recall curve would approach a straight line with intercept = 0 and slope = 1. The Work Saved over 

Sampling (WSS) is the difference in the number of records that need to be reviewed to reach a certain 

RRF (e.g 95%) between the actual recall curve and the simple sampling line. In the results, the WSS 

after finding 95% of all relevant records is reported. 

The Average Time to Discovery (ATD) was introduced by Ferdinands et al. [17] as a metric for 

classification performance. It is the average number of document reviews it takes to find a relevant 

document, as a percentage of all documents in the dataset. The closer the ATD is to zero, the better 

the classification performance. Another way to interpret the ATD is as the area above the recall curve. 

For each setup, the estimated mean and standard error of the mean (SEM) of the ATD over 15 runs 

were calculated.  

With Student’s t-test, the ATD of each machine-translated setup was compared to the same setup 

with the original (not translated) dataset, to estimate the statistical significance of the sample 

 
1 For RQ2, the Sent2Vec [26] FastText implementation was considered as a feature extraction method. This 
would have allowed for unsupervised sentence vector training, much like the current Doc2Vec method. 
However, the available package sent2vec is only supported for Linux and macOS distributions. Therefore this 
method was not further investigated. 
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difference. The resulting p-value reports the probability that both sets of 15 samples were drawn from 

the same t-distribution. In other words, the p-value represents the probability that the null hypothesis 

“The machine translation had no impact on classification performance” is true. 

 

5 RESULTS 

5.1 VOCABULARY SIZE 
Table 1 compares the word counts of the machine translation for German, Spanish and Turkish (DE, 

ES, TR) to the original English (EN) PTSD dataset. These translations were also translated back to 

English (EN from XX). The vocabulary size is the total number of unique words in the dataset. The 

sparse words occur in only one document in the dataset. It can be seen that the vocabulary size and 

the number of sparse words increase like: EN < ES < DE < TR. This is in line with the claim that Turkish 

has a high morphological richness. Note that when the translated datasets are translated back to 

English, the word counts drop below the original dataset. This implies that a generalization of the 

vocabulary occurs, due to the machine translations. The ratio of vocabulary size to sparse words stays 

roughly equal over all versions of the dataset. 

Table 1: Sparse words in the PTSD dataset 

Language 
Vocabulary 
size 

Sparse 
Words 

Sparse Words to 
Vocabulary ratio 

EN (original) 22334 9103 0.41 

DE 37170 17002 0.46 

ES 27702 11134 0.40 

TR 45657 20047 0.44 

EN (from DE) 20791 8184 0.39 

EN (from ES) 20744 8119 0.39 

EN (from TR) 20405 7875 0.39 

 

5.2 RECALL CURVES 
For the sake of brevity, only the recall curves of the PTSD dataset are displayed here. All dataset recall 

curves can be viewed at full scale in the Tables and Figures section. Each line is comprised of the 

average of 15 samples. The width of the curve represents the standard error of the mean RRF at a 

given point in time. It can be noted that the WSS@95% for the German SBERT setup overestimates its 

deviation from the other setups. The RFF@10% is not a good performance measure for the tf-idf and 

Doc2Vec, because most samples have reached 100% RRF by then. Both WSS and RRF represent a single 

point in time and are not representing classification performance over the whole review process. The 

ADT is reported further on as the classification performance measure of choice, since it summarises 

the performance over the whole simulated review. 
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Figure 1: Recall curves of the PTSD dataset. RRF at 10% labelled records, WSS at 95% RRF and ATD are included in the 
legend 

5.3 ATD COMPARISON 
In Figure 2 and Figure 3, all the simulation results are presented. Each unique combination of feature 

extractor, translation language and dataset is represented as a point. On the x-axis, the ATD of a 

translated dataset setup is shown. On the y-axis, the ATD of the same setup is shown, except for using 

the original English dataset. The reported ADT for a setup is the average of 15 simulations. The position 

of each point shows the relation between the classification performance of a translated setup and the 

same setup with the original dataset. The closer a point is to the origin, the better the classification 

performance is in general.  

The dashed grey line represents the null hypothesis that machine translation has no impact on 

classification performance, since in that case ATD Translated would be equal to ATD Original. If a point 

appears above the grey line, this means that classification performance increased after translation. 

Conversely, classification performance decreased after translation if a point appears below the grey 

line. If the deviation from the grey line is not significant (p-value ≥ 0.05 for a t-test on the ATD of 15 

original and 15 translated simulations), then the point is drawn as a cross. 

The simulation results are split over two figures, to account for the performance difference per 

dataset. The ATD for the “Software” and “PTSD” datasets is much lower (i.e. better) than for the other 

datasets. To visually represent the points properly, they were plotted in a separate figure, with shorter 

axis ranges. As a consequence, Figure 2 and Figure 3 are not one-to-one visually comparable. 

All plotted results can be viewed as well in Table 2 in the Tables and Figures section. 
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Figure 2: ATD comparison for ACE, Nudging, Virus and Wilson datasets 

 

Figure 3: ATD comparison for PTSD and Software datasets. Please take note that the ATD-axes ranges are shorter and closer 
to zero 

5.4 RESULTS RQ1 
Concerning RQ1, it was found that for tf-idf, Doc2Vec and SBERT, there exist setups that perform 

significantly better on the translation than on the original dataset. Therefore the hypothesis that all 

feature extractors will perform significantly worse on translation to languages with a higher 

morphological richness than English, must be rejected.  
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For Doc2Vec and SBERT, the change in ATD after translation seems to depend on the dataset. 

Doc2Vec’s ATD improved for ACE, Wilson and PTSD, and worsened for Nudging and Virus. SBERT’s ATD 

improved for ACE and Wilson, and worsened for Nudging, Virus, PTSD and Software. Noteworthy is 

SBERT’s relatively poor performance on the German PTSD dataset (ATD original: 6.2%; ATD 

translation: 14.0%).  

Tf-idf seems resilient to the translations in its classification performance. Most setups do not show a 

large deviation from the null line. A slight performance loss for tf-idf can be seen for all significant 

Turkish setups, which is in line with the expectation that a high morphological richness will decrease 

tf-idf performance. Especially on the Turkish Wilson set, tf-idf performs relatively poorly. This also is 

the only setup where tf-idf is clearly outperformed by another feature extractor, Doc2Vec in this case. 

SBERT performs slightly better than tf-idf on the original Software dataset. 

5.5 RESULTS RQ2 
Concerning RQ2, the performance of the current implementation of FastText as a sentence 

embedding algorithm has the worst overall classification performance of all investigated feature 

extractors. The only setup where FastText performs better than another feature extractor is on the 

original Wilson dataset, where it slightly outperforms SBERT. 

Furthermore, the classification performance of the translations relative to their original datasets is 

significantly worse for most setups. Especially in the German translations, FastText performs poorly. 

Therefore, the hypothesis that FastText will not see a significant decrease in classification performance 

due to machine translation, must be rejected as well. 

 

6 DISCUSSION 

This study intended to find a relation between the morphological richness of a language, and the 

classification performance of different feature extractors. The most surprising and unintuitive finding 

is that translation into a morphologically richer language than English does not impact the 

classification performance in a consistently negative way (with exception of the current FastText 

implementation). This was observed even for an MRL like Turkish, which had double the vocabulary 

size of the original language.  

6.1 LIMITATIONS 
The results from this study are foremost limited by the low number of datasets and languages that 

were used. From the sample space of three languages, performance in other languages is hard to infer. 

Languages that are not written in the Latin alphabet were not included in this study, and remain to be 

investigated. The six different datasets showed large variability among the performance of different 

feature extractors. Also here it is difficult to infer how different sets of abstracts will respond to 

translation, let alone use cases other than systematic reviewing. 

So why is there no clear impact caused by translation? It could well be that the words and document 

features that account for the most classification performance are so specific within the research field 

that translating them does not transform them in an impactful way. Going a step further, it is possible 

that the machine translation step generalizes terms in some datasets in such a way that the similarity 
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of relevant documents increases. Therefore, it is difficult to extrapolate the findings of this study to 

datasets of documents that were originally written in another language than English. 

An explanation for the stable performance of tf-idf is that, although the number of sparse words 

increases during translation, the vocabulary size also increases, so their ratio stays roughly the same. 

Tf-idf cannot use the sparse words to find similar documents, since they only occur in one document. 

However, the increase in vocabulary size might compensate for the increase in sparse words for tf-idf, 

since the total number of non-sparse terms actually increases.  

Doc2Vec creates vectors using a skip-gram model, so it trains the vectors of words that surround a 

word. In this way, it may circumvent the issue of sparse words partly, since sparse words will occur in 

a similar context to words that mean almost the same. 

SBERT and FastText are pre-trained on very large datasets, so they should not suffer from increased 

sparseness. Based on the results, there is no evidence to suggest that multilingual SBERT performs 

better in English than in the other investigated languages.  

The FastText model seems to perform better in English than in the other languages. This could mean 

that the training quality of the vectors in the non-English models is lower than in the English model. 

However, it could also be due to the way FastText was implemented. Taking the L2-norm of all word 

vectors in a document is not an effective way to extract semantics from a document, since the 

semantics encoded in the order of the words is lost. This study was not designed to estimate the vector 

quality difference of pre-trained models on different languages in an unambiguous way. 

6.2 FURTHER RESEARCH 
Further research could include implementing a FastText unsupervised sentence vector training 

algorithm like Sent2Vec [26]. However, the benefit of FastText, namely being able to represent OOV 

words, may be very slim compared to other pretrained libraries like SBERT, since these pre-trained 

libraries have a vast vocabulary. The OOV rate of SBERT on the English and the translated datasets has 

not yet been investigated. Multilingual models like multilingual SBERT should also be able to classify 

datasets containing mixed language documents. The classification performance of such a setup 

remains to be researched. 

This study only investigated datasets translated from English. However, datasets originating in other 

languages that are translated into English were not investigated. This may be a valid follow-up study, 

since it would provide further evidence for researchers who wish to use active learning to review 

documents from multilingual sources that are translated to English. 

Tf-idf is still by far the best-performing feature extractor that is implemented in ASReview. Given the 

large number of sparse terms (~40% of the vocabulary) that are ignored by tf-idf, it might be beneficial 

to transform these terms. A pre-trained word embedding library like BERT, Word2Vec or FastText 

could be used for this purpose as a pre-processing step for tf-idf. This pre-processor would convert a 

sparse word into a similar word that occurs in at least one other document if the similarity between 

these words is above a certain threshold.  

6.3 CONCLUSION 
This study finds no clear and structurally significant disadvantage to classification in active learning 

aided systematic reviews when the investigated datasets are translated to German, Spanish or 

Turkish. An exception is the discussed FastText implementation. These are promising results for 
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researchers who hope to use an active learning pipeline with (partially) translated documents. 

However, further research is needed to find out if these results apply to different types of setups. 
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9 TABLES AND FIGURES 

9.1 ATD COMPARISON TABLE 
Table 2: Simulation results, each ATD value is the mean of 15 samples. The standard error is the standard error of the mean 
for the translated datasets. 

dataset language 
feature 
extractor ATD (%) 

ATD (%) 
English 

Standard 
error p-value p < 0.05 

Software ES sbert 1.73 1.69 0.0214 0.068494 FALSE 

Software ES tfidf 1.74 1.76 0.0279 0.626554 FALSE 

Software DE tfidf 1.84 1.76 0.0224 0.000474 TRUE 

PTSD ES tfidf 1.86 1.99 0.0413 0.006237 TRUE 

Software DE sbert 2 1.69 0.0196 2.58E-15 TRUE 

Software ES doc2vec 2.01 2.16 0.0341 0.000402 TRUE 

Software TR doc2vec 2.08 2.16 0.0356 0.038852 TRUE 

Software TR tfidf 2.08 1.76 0.024 4.01E-13 TRUE 

PTSD TR tfidf 2.16 1.99 0.0743 0.029058 TRUE 

PTSD DE tfidf 2.31 1.99 0.091 0.002369 TRUE 

Software TR sbert 2.73 1.69 0.0236 2.41E-25 TRUE 

Software DE doc2vec 2.78 2.16 0.0372 5.21E-15 TRUE 

Software TR fasttext 2.86 2.44 0.0216 1.61E-16 TRUE 

PTSD DE doc2vec 3.46 4.39 0.1134 2.13E-08 TRUE 

Software ES fasttext 3.75 2.44 0.0557 1.55E-14 TRUE 

PTSD TR doc2vec 3.79 4.39 0.1327 0.000113 TRUE 

PTSD ES doc2vec 4.15 4.39 0.1603 0.153669 FALSE 

Software DE fasttext 5.55 2.44 0.0491 8.50E-23 TRUE 

ACE ES tfidf 6.01 6.29 0.3864 0.465009 FALSE 

ACE TR tfidf 6.11 6.29 0.381 0.629021 FALSE 

ACE DE tfidf 6.17 6.29 0.4391 0.770739 FALSE 

PTSD TR sbert 6.6 6.21 0.1549 0.016888 TRUE 

Wilson DE tfidf 7.21 7.95 0.1401 2.92E-05 TRUE 

ACE DE sbert 7.29 9.34 0.1415 2.36E-12 TRUE 

Wilson TR doc2vec 7.96 11.66 0.6874 6.31E-05 TRUE 

ACE TR sbert 8.12 9.34 0.2032 1.49E-05 TRUE 

PTSD TR fasttext 8.28 7.5 0.0885 1.73E-09 TRUE 

PTSD ES sbert 8.35 6.21 0.1647 2.73E-13 TRUE 

Wilson ES tfidf 8.36 7.95 0.836 0.637312 FALSE 

ACE ES sbert 8.47 9.34 0.1551 2.02E-05 TRUE 

ACE TR doc2vec 8.8 10 0.1926 1.56E-06 TRUE 

Wilson ES doc2vec 8.88 11.66 0.6974 0.000976 TRUE 

ACE ES doc2vec 9.32 10 0.2088 0.002903 TRUE 

Virus TR tfidf 9.49 9.27 0.2123 0.313163 FALSE 

ACE DE doc2vec 9.54 10 0.3294 0.182915 FALSE 

Wilson ES sbert 9.55 13.18 0.8481 0.000427 TRUE 

Virus ES tfidf 9.57 9.27 0.1178 0.018212 TRUE 

Virus DE tfidf 9.7 9.27 0.1666 0.017732 TRUE 
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PTSD ES fasttext 9.92 7.5 0.0968 8.61E-20 TRUE 

Wilson TR tfidf 9.98 7.95 0.1828 1.07E-11 TRUE 

Wilson DE doc2vec 10.21 11.66 0.7412 0.064245 FALSE 

Nudging ES tfidf 10.47 10.27 0.0891 0.033487 TRUE 

Wilson DE sbert 10.55 13.18 0.7904 0.004764 TRUE 

Nudging DE tfidf 10.84 10.27 0.106 2.02E-05 TRUE 

Wilson TR sbert 10.96 13.18 0.8209 0.015123 TRUE 

Nudging TR tfidf 11.01 10.27 0.1106 1.17E-06 TRUE 

Nudging TR doc2vec 11.07 11.03 0.2199 0.862334 FALSE 

Nudging ES doc2vec 11.56 11.03 0.232 0.032565 TRUE 

Nudging DE sbert 11.72 11.65 0.2691 0.82178 FALSE 

Virus TR doc2vec 11.83 11.76 0.1298 0.562183 FALSE 

Wilson DE fasttext 12.08 12.42 0.5136 0.51586 FALSE 

Nudging ES sbert 12.36 11.65 0.2995 0.026062 TRUE 

Virus ES sbert 12.51 11.43 0.1343 1.35E-07 TRUE 

Nudging DE doc2vec 12.66 11.03 0.2495 7.83E-07 TRUE 

Virus DE doc2vec 12.78 11.76 0.2059 8.81E-05 TRUE 

Virus ES doc2vec 12.91 11.76 0.1428 2.13E-08 TRUE 

Wilson ES fasttext 12.97 12.42 1.2745 0.670627 FALSE 

Nudging TR sbert 12.97 11.65 0.2618 2.52E-05 TRUE 

Nudging TR fasttext 13.95 13.3 0.108 2.40E-06 TRUE 

PTSD DE sbert 14 6.21 0.3062 1.39E-15 TRUE 

PTSD DE fasttext 14.03 7.5 0.2565 4.21E-14 TRUE 

ACE ES fasttext 14.08 13.9 0.4147 0.67029 FALSE 

Virus TR sbert 14.84 11.43 0.1482 3.62E-18 TRUE 

Virus DE sbert 14.99 11.43 0.2636 7.27E-12 TRUE 

ACE TR fasttext 15.33 13.9 0.9311 0.141765 FALSE 

Wilson TR fasttext 15.78 12.42 0.7015 5.60E-05 TRUE 

Nudging ES fasttext 16.09 13.3 0.1449 1.75E-16 TRUE 

Nudging DE fasttext 18.43 13.3 0.112 1.06E-27 TRUE 

ACE DE fasttext 19.38 13.9 0.5076 3.36E-11 TRUE 

Virus ES fasttext 20.11 17.85 0.1534 2.93E-12 TRUE 

Virus DE fasttext 22.35 17.85 0.1504 2.52E-18 TRUE 

Virus TR fasttext 22.52 17.85 0.1707 1.26E-16 TRUE 
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9.2 ACE RECALL CURVES 
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9.3 NUDGING RECALL CURVES 
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9.4 PTSD RECALL CURVES 
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9.5 SOFTWARE RECALL CURVES 
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9.6 VIRUS RECALL CURVES 
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9.7 WILSON RECALL CURVES 
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