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Abstract 
 
Microplastic particles in rivers negatively influence the overall water quality and have a 

harming effect on biotic species living in aquatic ecosystems. Global microplastic 

concentrations in rivers are often determined by various area-specific drivers, from different 

driver categories. Examples are population density, gross domestic product and the amount 

of mismanaged plastic waste (socio-economic driver category). Other examples are 

precipitation, surface runoff and river streamflow (hydrologic driver category). Improved 

understanding of these drivers is therefore urgently needed in determining and counteracting 

the increasing amount of riverine plastic pollution. Previous literature has shown that both 

human- and natural processes tend to have a strong influence on microplastic concentrations 

in rivers and oceans. In this study, an extensive literature study on microplastic hotspots 

worldwide is carried out. Microplastic hotspots in the world can be found in East and Southeast 

Asia, India, Central Africa, Europe and North America. Estimates of global riverine microplastic 

outputs are between 1.15 and 2.41 million tonnes per year with the largest contribution from 

rivers in Asia.  

In addition, a data analysis of microplastic concentrations in rivers worldwide is carried out in 

relation to four socio-economic drivers, three hydrologic drivers and six land use drivers. For 

these analyses, the multiple linear regression, and the random forest regression approach are 

applied in order to determine the most important and significant drivers. Both regression 

approaches showed that drivers from the socio-economic category had the highest 

contribution in explaining concentrations of microplastic in rivers, with gross domestic product 

and mismanaged plastic waste production being the most important drivers. In this study, 

conclusions are drawn on the importance of various drivers on microplastic concentrations, 

which can contribute to understand the origin and fate of microplastics in the environment and 

set up mitigation strategies in the future.  
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Abbreviations 
 
 
 
MLR   |   Multiple linear regression 

RF   |   Random forest 

PD   |   Population density 

GDP   |   Gros domestic product 

MPW   |   Mismanaged plastic waste production 

WWT   |   Wastewater treatment  

R   |   Surface runoff 

HDI   |   Human development index 

PP   |   Polypropylene 

PE   |   Polyethylene  

PET   |   Polyethylene terephthalate 

PS   |   Polystyrene 

PA   |   Polyamide 

MSE   |   Mean squared error 

nRMSE  |   Normalised root mean squared error 
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1. Introduction 
To meet the global human plastic demand, wide-scale use of plastic material has increased 

strongly since the 1950’s. Where the share of plastic in municipal solid waste in 1960 was only 

1%, this percentage has increased to almost 10% in 2005 (Geyer et al., 2017). Even though 

plastic consumption in developed countries shows a consistent pattern nowadays, the 

abundance of plastic in developing countries is still rising fast due to low production costs and 

the lack of alternative materials (Andrady & Neal, 2009). The abundance of plastic and thus 

the amount of mismanaged plastic waste (MPW) depends on multiple socio-economic drivers 

such as population density, gross domestic product (GDP), waste generation and the 

percentage of plastic present in general waste (Hoornweg & Bhada-Tata, 2012; Schmidt et 

al., 2017). Non-natural properties of plastic make MPW susceptible to accumulation in natural 

systems, such as rivers and oceans. 

 

To improve the functionality of plastic, it is produced in different sizes. A distinction is made 

between macro-, meso-, micro- and nanoplastics. Macroplastics are plastic particles with a 

size larger than 5 cm. Mesoplastics have a size of 5 mm to 5 cm. In addition to this, 

microplastics (0.1 µm to 5 mm) and nanoplastics (< 0.1 µm) are distinguished (van Emmerik 

& Schwarz, 2020). Degradation of the two largest groups results in increased amounts of 

micro- and nanoplastics (van Wijnen et al., 2019). Therefore, micro- and nanoplastics are 

often categorized as plastic waste as they are originating from the larger plastic categories. 

The smaller size of the particles in micro- and nano-category makes collection and recycling 

less productive. 

Accumulation of mismanaged plastic waste into river systems depends on multiple hydrologic 

drivers. Examples of these drivers are precipitation, surface runoff and river discharge. 

Precipitation mobilises plastic particles located on land surfaces (Meijer et al., 2021). Surface 

runoff after rainfall events can transport plastic particles towards rivers and streams (Lebreton 

et al., 2017). River discharge is important in transporting plastic particles from rivers towards 

the oceans (Schmidt et al., 2017).  

Furthermore, land use characteristics and especially canopy cover determined by the type of 

land use, tend to influence soil erosion processes (Hartanto et al., 2003). Erosion of the soil by 

surface runoff and rainfall enhances microplastic particles to enter aquatic ecosystems. For 

other pollutants such as nitrogen, phosphorus and lead, the correlation between the land use 

type and the surface water quality has been outlined in multiple other studies (Adeola Fashae 

et al., 2019; Liu et al., 2009; Tong & Chen, 2002). A positive correlation has been found 

multiple times for ‘open’ land use types where human impact strongly changed the landcover.  
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Wastewater treatment (WWT) on domestic and industrial water can be applied to decrease 

the amount of plastic waste entering the environment. Depending on the method used, the 

efficiency of microplastic removal can reach a value between 80 and 90 percent (Ngo et al., 

2019). 

 

The urge to better understand the transport of (micro)plastics from land to rivers has been 

acknowledged, resulting in more research on this topic in recent years (Lebreton et al., 2017; 

Meijer et al., 2021; Schmidt et al., 2017; van Wijnen et al., 2019). These studies have resulted 

in different types of models to quantify the amount of micro- and macroplastics and specify 

the spreading of plastics that accumulate into aquatic systems. Examples are modelling 

studies which calculate pollutant loadings of plastics to streams and rivers using socio-

economic drivers such as population density, mismanaged plastic waste production and 

connection to wastewater treatment (Schmidt et al., 2017; van Wijnen et al., 2019). On the 

other hand, a hydrological modelling approach on this topic has also been used to calculate 

transport of plastics in aquatic systems (Meijer et al., 2021). Here, the land surface part of the 

hydrological cycle is represented and hydrological output (e.g., surface runoff, discharge) are 

used to quantify plastic mobilisation and transport both over land and through rivers to 

eventually calculate plastic concentrations in rivers. Both types of models are applied on a 

global scale (Lebreton et al., 2017; Meijer et al., 2021; Schmidt et al., 2017; van Wijnen et al., 

2019). However, a combined approach to estimate the contribution of both socio-economic 

drivers, hydrologic drivers, and land use characteristics on microplastic pollution has not been 

developed yet. This thesis will investigate the difference in importance and contribution of 

these various drivers to fill the knowledge gap that is present to date.  

 

One method to estimate the amount of microplastics in rivers is by using a statistical data 

analysis of microplastic monitoring data and driver data. Such analyses can be done by 

applying multiple approaches. Multiple linear regression (MLR) is a commonly used method 

to analyse the relation between a dependent (predicted) variable and multiple independent 

(predictor) variables, assuming a linear relation between the different predictor variables (Boy-

Roura et al., 2013). Via this method and the eventual regression model performance analysis, 

importance and significance of the predictor variables can be estimated. Random forest 

regression (RF regression) is a more contemporary regression method based on a machine 

learning algorithm analysing data using large numbers of random decision trees (Breiman, 

2001; Rodriguez-Galiano et al., 2014). 

 

To fill the presented knowledge gap on microplastic concentrations in rivers and its drivers, 

this study will estimate the influence of socio-economic-, hydrologic- and catchment land use 
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drivers on global microplastic concentrations in rivers comparing the multiple linear regression 

and random forest regression approach. Both approaches are tested on monitoring data of 

riverine microplastic amounts of 59 locations and spatially explicit data of socio-economic-, 

hydrologic- and land use drivers. Such a combined approach using various driver categories 

has not yet been assessed in scientific research. To address this aim the following research 

questions will be answered: 

1. What are hotspot regions of microplastic concentrations in rivers worldwide? 

2. What is the contribution of socio-economic drivers, hydrologic drivers, and land use 

characteristics to microplastic loads in rivers, according to the multiple linear 

regression and random forest regression approach? 

3. How do the results of estimated importance of the various drivers of both methods 

compare? 

4. What is the performance of both methods for predicting microplastic loads in rivers 

in other regions of the world? 

Answering these questions will eventually result in the ability to evaluate the most important 

drivers that are responsible for microplastic particles in rivers worldwide. These results will 

than make it possible to mitigate to microplastic pollution more efficiently, only considering the 

drivers that are most responsible. Research question 1 will be answered using a literature 

study presented in chapter 2. Here the spatial distribution of hotspots together with the origin, 

fate and the transport mechanisms of microplastics in the environment will be discussed. The 

methodology to gather the results for research question two to four is outlined in chapter 3. 

Research question two to four will be answered in chapter 4 by analysing the results of the 

multiple linear regression and the random forest regression. In chapter 5, the results of both 

regression analyses will be discussed, and implications of the used methods and approaches 

will be analysed. 
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2. Literature Study 
A literature study has been conducted to answer the first research question concerning 

hotspots of microplastic concentrations worldwide. Search terms used to find literature in the 

Web of Science database and Google Scholar were ‘microplastic* rivers’ combined with 

‘Oceans’, ‘Transport’, ‘Modelling’ and ‘Hotspots’. Merging ‘microplastic* rivers’ with ‘modelling’ 

resulted in 38 articles of which seven applied a modelling approach to determine microplastic 

transport from rivers to the oceans worldwide. An overview of the articles is given in Table 1. 

Four of these studies used driver and monitoring data to build regression models. Three of the 

four studies using regression especially investigated the influence of socio-economic driver 

and ignored the possible influence of hydrologic drivers or land use characteristics (Jambeck 

Jenna R. et al., 2015; Mai et al., 2020; Schmidt et al., 2017). Only one study considered the 

influence of surface runoff on the mobility of microplastics and was therefore able to 

investigate seasonality in microplastic loads influenced by monsoonal precipitation (Lebreton 

et al., 2017). Three of the seven modelling studies developed a process-based model to 

determine microplastic loads in rivers. These studies only considered socio-economic drivers 

as model inputs, again ignoring the possible influence of hydrologic drivers (Meijer et al., 2021; 

Siegfried et al., 2017; van Wijnen et al., 2019). In addition to the seven regression or process-

based studies, two monitoring studies were considered where visual counting of microplastic 

particles in rivers at different locations was implemented (Eriksen et al., 2014; van Calcar & 

van Emmerik, 2019). Eriksen et al. (2014) used neuston nets with a standard mesh size of 

0.33 mm towed at the sea surface outside of a vessel. Van Calcar and Van Emmerik (2019) 

applied visual counting by observing all plastic particles passing through a predefined section 

of the river. These observations were done on bridges. Different measuring methods may 

show different results which makes it important to discuss the various results on microplastic 

counting in both rivers and oceans. In addition to the modelling studies described in Table 1, 

other studies investigating the fate, transport capacity and harming characteristics of 

microplastics will be used and referred to with in-text citations. 
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Table 1 Overview presenting the title, method, considered drivers and references of the applied literature. Abbreviations 
represent mismanaged plastic waste (MPW), population density (PD), surface runoff (R) and human development index (HDI). 

 

 

2.1 Fate and characteristics of (micro)plastic in the environment 
Plastic is human-made material consisting of large polymers, produced using non-natural 

chemical reactions (van Emmerik & Schwarz, 2020). This production process enables plastic 

to be a flexible, strong, lightweight and thermoresistant material that can be used for a range 

of different purposes. Development of the modern-day plastics takes place since the 1950’s. 

In this period, different polymer types were introduced. The combination of the advantageous 

properties and the relatively small production costs resulted in a quick emergence of plastic 

material in today’s society. In 2008, the global plastic demand reached a value of 245 million 

tonnes (Andrady & Neal, 2009). Recent numbers on plastic production rates show an 

enormous increase in plastic production over the last decade. Where plastic demand in 2008 

was 245 million tonnes, plastic production in 2018 reached a value of 348 million tonnes (van 

Emmerik & Schwarz, 2020).  

 

Plastic material can be subdivided in different groups depending on chemical composition and 

size. The main types of plastic produced nowadays are polypropylene (PP), polyethylene 

(PE), polyethylene terephthalate (PET), polystyrene (PS) and polyamide (PA) (van Emmerik 

Article title Method Drivers Reference 
River plastic emissions to the world’s oceans Regression 

model 
MPW, PD, 
R 

(Lebreton et al., 
2017) 

Export of Plastic Debris by Rivers into the 
Sea 

Regression 
model 

MPW (Schmidt et al., 
2017) 

Plastic waste inputs from land into the ocean Regression 
model 

MPW, PD (Jambeck 
Jenna R. et al., 
2015) 

Global Riverine Plastic Outflows Regression 
model 

PD, MPW, 
HDI 

(Mai et al., 
2020) 

Modelling global river export of microplastics 
to the marine environment: Sources and 
future trends 

Process-based model (van Wijnen et 
al., 2019) 

More than 1000 rivers account for 80% of 
global riverine plastic emissions into the 
ocean 

Process-based model (Meijer et al., 
2021) 

Export of microplastics from land to sea. A 
modelling approach 

Process-based model (Siegfried et al., 
2017) 

Abundance of plastic debris across 
European and Asian rivers 

Monitoring based on 
visual counting 

(van Calcar & 
van Emmerik, 
2019) 

Plastic Pollution in the World’s Oceans: More 
than 5 Trillion Plastic Pieces weighing over 
250.000 Tons Afloat at Sea 

Monitoring based on 
visual counting 

(Eriksen et al., 
2014) 
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& Schwarz, 2020). PP, PE and PET composites are mostly used in the packaging industry 

since these materials are easily formable, can be hermetically sealed and are hydrophobic. It 

is therefore often used to package food. The application of these plastic types in the packaging 

industry has resulted in reducing transport costs and expanding expiring dates. PS and PA 

are mostly applied in textiles (van Emmerik & Schwarz, 2020).  

 

The non-natural chemical reactions used to produce plastic material, ensure that natural 

degradation cannot take place, making accurate collection of plastic waste extremely 

important. Where the share of plastic in municipal solid waste in 1960 was only 1%, this 

percentage has increased to almost 10% in 2005 (Geyer et al., 2017). These increasing 

numbers can be coupled to the rapid increase in plastic production since the 1950’s (Andrady 

& Neal, 2009). When collection or recycling of plastic waste does not take place and the 

disposal of plastic waste is not well managed, solid plastic waste becomes mismanaged 

plastic waste (MPW). The abundance of plastic and thus the amount of MPW depends on 

multiple socio-economic factors. Examples are population density, gross domestic product 

(GDP), waste generation and the percentage of plastic present in general waste (Hoornweg 

& Bhada-Tata, 2012; Schmidt et al., 2017).  

Regions that have a large population density can be found in East and Southeast Asia, 

Northern India, Northwest Europe and the east coast of the United States (CIESIN - Columbia 

University, 2018). A correlation can be found in the MPW values for the same regions. MPW 

generation shows largest amounts in East and Southeast Asia and Northern India, where 

MPW generation easily exceeds 200.000 tonnes per year (Figure 1) (Lebreton & Andrady, 

2019). However, for Northwest Europe and the east coast of the US, Lebreton and Andrady 

Figure 1 Mismanaged plastic waste generation in 2015 in tonnes per year as presented by Lebreton & Andrady (2019). 
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(2019) visualise smaller MPW generation numbers (Figure 1). In such regions more 

investments are done to filter municipal solid waste in order to recycle plastic materials, 

preventing them from becoming MPW (Hoornweg & Bhada-Tata, 2012). 

 
Accumulation of MPW into river systems depends on multiple hydrologic drivers. Examples of 

these drivers are precipitation, surface runoff and river discharge. Precipitation mobilises 

plastic particles located on land surfaces (Meijer et al., 2021). To explain this process, 

mobilisation and transport of plastic is coupled to the transport behaviour of natural sediments 

(Waldschläger et al., 2022). Waldschläger et al. (2022) compare the behaviour of natural 

sediments to tackle microplastic challenges. The impact of falling raindrops on the soil can 

start a process known as hydraulic soil erosion (Nearing et al., 2005). Natural sediments on 

land surfaces react to this precipitation impact in two different ways. It reacts to the total 

amount of rain that falls in the region. Therefore, long-term precipitation periods result in larger 

erosive potentials which enhances soil erosion. In addition to this, varying rainfall intensities 

have a strong influence on the soil erosion capacities of a certain region (Nearing et al., 2005).  

Surface runoff after rainfall events transports plastic particles towards rivers and streams 

(Lebreton et al., 2017). Areas where precipitation is able to (re)mobilise soil particles, surface 

runoff acts as transport mechanism for soil particles, resulting in higher soil erosion rates 

(Arnaez et al., 2007). When plastic particles are included in the soil or lay on the soil, the same 

transport mechanism is responsible for the movement of these particles. 

When eventually plastic particles enter rivers and streams via these land surface processes, 

river discharge plays a role in transporting it through the rivers towards the oceans and seas 

(Schmidt et al., 2017). This driver is therefore important for investigating plastic amounts in 

oceans but also for analysing the movement of plastic from the upstream area of a river to the 

downstream area. During peak discharges, transport of microplastic follows the discharge 

trend, resulting in a higher transport capacity of plastic in the downstream direction (Hurley et 

al., 2018). In addition, peak discharges of river system often go hand in hand with increased 

surface runoff, which again enhances microplastic concentrations (Arnaez et al., 2007). 

 

Land use characteristics tend to influence the transport and mobilisation of polluting 

substances by surface water processes. For other pollutants than microplastics, such as 

nitrogen, phosphorus and lead, the correlation between the land use type and the surface 

water quality has been the focus of multiple studies (Adeola Fashae et al., 2019; Liu et al., 

2009; Tong & Chen, 2002). A positive correlation has been found multiple times for ‘open’ land 

use types where human impact strongly changed the landcover. Examples of these land use 

types are pastureland, cropland, urban areas and waste ground. Here, trees and shrubs are 

often missing which enhances surface runoff flow velocities, resulting in an increased transport 
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capacity and soil erosion. In addition to this, earlier mentioned land use types tend to have a 

decreased canopy cover, which normally reduces the impact of raindrops on the surface. A 

lack of leaves therefore increases mobilisation of polluting particles, resulting in a larger 

chance of these particles ending up in the water environment. This also applies for 

microplastics (Townsend et al., 2019). 

Eventually all these drivers result in an increased abundance of plastic waste particles in 

aquatic environments worldwide. The harming effect of microplastic on biotic and abiotic 

species in these aquatic environments disturbs natural processes, resulting in reduced 

functionality of the internal systems of varying species (van Emmerik & Schwarz, 2020). 

Especially the smaller plastic particles (< 1cm) can easily infiltrate into the food chain of the 

small aquatic species which will also lead to a disturbed ecosystem for the larger species living 

in rivers and streams.  

 

To reduce plastic pollution in the aquatic system, treatment of domestic and industrial 

wastewater can be applied (Talvitie et al., 2017). Especially for the larger plastic particles from 

the macro- and mesoplastic groups, purification of wastewater is more efficient. These larger 

groups are filtered out more easily, resulting in a reduced amount of macro- and mesoplastic 

particles in aquatic systems after the treatment plant (Rasmussen et al., 2021). Since known 

that a vast amount of microplastic originates from the degradation of the larger plastic particle 

groups, treatment of largest category will also result in a reduced amount of microplastics. 

However, treatment of wastewater is not applied in the same way around the globe and seems 

to have a strong correlation with GDP (Jones et al., 2021). Therefore, treatment of wastewater 

is done on larger scales in regions such as North America and Northwest Europe. In Asia and 

South America, a smaller part of wastewater is treated, resulting in more polluted water re-

entering the environmental systems (Jones et al., 2021). Numbers on wastewater treatment 

are 50-100% for North America and Northwest Europe and 25-50% for Asia and South 

American regions. Africa has the lowest wastewater treatment percentages varying between 

0 and 25%. However, in Egypt, Tunis and Morocco 25% to 50% of the total amount of 

wastewater is treated (Jones et al., 2021).  

 

2.2 Approaches to estimate microplastics in rivers worldwide 
To date, the most robust estimates of plastic concentrations are obtained by research where 

plastic concentrations are visually monitored. With this method the number of plastic particles 

in riverine or ocean ecosystems is visually counted or investigated using nets to get the plastic 

out of the water (Eriksen et al., 2014; Mani et al., 2015). Microplastic samples can directly be 

elaborated and analysed. Therefore, the quality of this type of data often reaches the desired 

accuracy. However, the quantity of monitoring data is often scarce and forces researchers to 
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reduce the spatial scale of their study. For this reason, it is still not possible to investigate 

microplastic concentrations in rivers on a global scale using only monitoring data.  

 
To work towards a solution for this problem, the development of process-based- and 

regression models to describe microplastic concentrations in rivers has become an important 

topic for researchers in the field of microplastics worldwide. Especially the recently increasing 

numbers of articles focussing on the development of these models demonstrate the urgency 

of large-scale microplastic research (Chen et al., 2021; Lebreton et al., 2017; Meijer et al., 

2021; Schmidt et al., 2017). To add to this, marine microplastic research is far more extensive 

than freshwater microplastic research (Chen et al., 2021). Validated models give the 

opportunity to determine microplastic concentrations in rivers where no monitoring data is 

available. Therefore, the scale of research can be increased making it possible to not only 

focus on one river, but to broaden the scope to multiple rivers. It is also possible to 

development multiple models, with each model focussing on different drivers. For example, 

Lebreton et al. (2017) developed a regression model with mismanaged plastic waste, 

population density and surface runoff as drivers. On the other hand, Meijer et al. (2021) applies 

a process-based model to drivers such as plastic waste, land use, wind, precipitation and 

rivers. A disadvantage of these type of model is that most models do not consider all drivers 

that are influencing the amount of plastic in aquatic systems. This often leads to results with 

larger uncertainties. 

 
Due to the improving quality of process-based models, a shift can be seen in modern-day 

microplastic research. As a consequence, monitoring research now often focuses on macro- 

and mesoplastics, since those categories are better visible with the naked eye and do not 

require a microscope. Researching macro- and mesoplastic hotspots can provide 

understanding of the spatial distribution of microplastic (van Wijnen et al., 2019). However, for 

microplastics, research methodologies nowadays often use validated models. 

During most recent years, the development of conceptual modelling and the increase in the 

amount of data that drive global plastic numbers, have created opportunities to analyse 

(micro)plastic, reducing the amount of monitoring equipment and expensive expeditions to 

gather data. New monitoring data will always remain necessary to validate the conceptual 

models build nowadays. However, feeding models with data of drivers that is already 

available, enables the possibility to calculate plastic amounts in regions where availability of 

monitoring data is scarce. Process-based models also allow the production of future 

projections of microplastic concentrations.  
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Regression models, as used in this study, have also shown increasing importance in recent 

microplastic research (Jambeck Jenna R. et al., 2015; Lebreton et al., 2017; Mai et al., 2020; 

Schmidt et al., 2017). Due to the easy applicability of varying regression equations, the 

statistical relationship between varying drivers and a predicted variable can be assessed. 

Therefore, it does not require complicated equations describing the process as is the case 

with process-based models. When a statistical relationship is found, new driver data can be 

used to determine plastic concentrations at locations where monitoring data is scarce. Also, 

when future driver data is available, future projections of microplastic concentrations can be 

produced. However, a disadvantage is that regression analyses need large amounts of initial 

driver data and predicted variable data to find the statistical relationship. When these data are 

not available, the application of regression models will not lead to the desired result. 

 

2.3 Microplastic hotspots in rivers worldwide 
Global (micro)plastic loads exported from rivers to the oceans as determined by the regression 

studies are between 1.15 and 2.41 million tonnes per year (Lebreton et al., 2017; Schmidt et 

al., 2017). The 20 most polluting rivers are located in Asia and contribute for more than 2/3 of 

the global annual plastic input to oceans. Both studies considered micro- as well as 

macroplastics. Global annual input of only microplastics was estimated to be 0.16 million 

tonnes (Schmidt et al., 2017). However, regression analyses done by Schmidt et al. (2017) 

only considered the amount of mismanaged plastic waste as input variable for the regression 

model. Regression studies executed by Lebreton et al. (2017) also took into account monthly 

averaged runoff in addition to the amount of plastic waste in the catchment. (Micro)plastic 

Figure 2 Global plastic inputs from rivers to sea in tonnes per year according to Lebreton et al. (2017). 
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hotspots are located in Asia, Southeast Asia, India, Central Africa and the east coast of South 

America (Figure 2). 

 

For studies that used conceptual modelling in their methodology, results on microplastic loads 

in rivers show different values. One of the most notable conclusions from one of these studies 

is that more than 1000 rivers account for 80% of the global riverine plastic emissions into the 

oceans (Meijer et al., 2021). These findings are completely different compared to the top 20 

rivers accounting for 2/3 of the global annual plastic input as concluded by Lebreton et al. 

(2017). Conceptual modelling showed that annual emission of plastic was 0.8 to 2.7 million 

metric tonnes in 2015, which is the same order of magnitude as the findings in the regression 

studies (Lebreton et al., 2017; Schmidt et al., 2017). Again, hotspots are located in Asia, 

Southeast Asia, India and the east coast of South America where The Philippines and India 

are responsible for the largest pollution of plastic into the ocean with 356.000 and 126.000 

metric tonnes per year, respectively. Results from Meijer et al. (2021) are shown in Figure 3. 

  

Determining plastic pollution hotspots from studies that only use visual counting requires 

evaluation of large amounts of studies to achieve an overview of where more plastic particles 

are counted. For this research, studies that used visual counting of (micro)plastic particles 

have been reviewed. The fact that most modelling and regression studies required monitoring 

data to validate their models, papers describing visual counting of plastics were easily findable 

in the already applied articles. For the analyses, the Rhine River, Danube River and Yangtze 

River are compared. The number of plastic particles per m3 for these rivers are 4.92∙100, 

8.23∙10-1 and 4.14∙103, respectively (Schmidt et al., 2017). As shown in these results the 

Yangtze River, located in East Asia, contains the highest amount of microplastic particles, 

supporting the hypothesis of Asia being a (micro)plastic hotspot. However, only considering 

Figure 3 National riverine plastic emissions in metric tonnes per year according to Meijer et al. (2021). 
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these three rivers is not convincing enough to point out microplastic hotspots with visual 

counting techniques.  

 

Therefore, the AdventureScientists.org database was used to support the studies that applied 

visual counting for determination of (micro)plastic concentrations. This database consists of a 

large amount of plastic particle measurements both in rivers and in oceans. Counting is done 

by volunteer researchers and it expresses the number of pieces microplastic per litre 

(Christiansen, 2018). 

The data can be accessed via AdventureScientists.org/microplastics.html and shows a world 

map containing all measurements done for this project (Figure 4). It shows the large amount 

of datapoints that is analysed. Focus of the data is pointed to oceanic monitoring locations, 

especially around the USA and in the Atlantic Ocean between Central America and North 

Africa. Near the east coast of South America and in the Southeast Asian region, oceanic 

microplastic measurements were also executed. Riverine monitoring is lacking in most parts 

of the world, except for the USA and some locations in Europe, South America and 

India/Bangladesh. From the riverine datapoints, it is impossible to distinguish microplastic 

Figure 4 Marine and freshwater microplastic concentrations as determined by the AdventureScientists.org monitoring 
campaign (Christiansen, 2018). Green dots represent marine microplastic measurements, blue dots represent freshwater 
microplastic measurements. 
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hotspots as the spatial distribution of the monitoring locations is too poor. High concentrations 

of microplastics in rivers can be found in the early stages of the Amazone River and in the 

Ganges/Brahmaputra Delta. However, from Figure 4 it is unclear whether these regions can 

be assigned as hotspots, considering the low amount of measuring points.  

 

For the oceanic datapoints, the spatial distribution and the quantity of measurements allows 

a better interpretation of the data. Hotspots can be found around the east and west coast of 

the USA, in northern Canada, and in the Southeast Asian area. Especially in the Beaufort Sea, 

north of Canada and Alaska, multiple samples were collected with a microplastic concentration 

exceeding a value of 100 pieces per litre. For Southeast Asia, only one measurement 

contained more than 100 pieces per litre. 

A disadvantage of these oceanic datapoints is the uncertainty of the origin of the plastic 

material. Due to the ocean circulation currents that are present around the globe, plastic that 

is found at a certain location can have a different origin location. For rivers, it can be said that 

the plastic particle has its origin within the upstream catchment area, ignoring the possible 

influence of wind on the spreading of plastic. For the oceanic plastic particles, the location 

where monitored plastic will eventually be measured is strongly depending on the ocean 

currents that are present in the part of the world where the datapoint is achieved. In addition, 

climatic circulation patterns vary over time and space, making the route of a plastic particle in 

the ocean unpredictable (Welden & Lusher, 2017). 
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3. Methods for regression analyses 
3.1 Monitoring data 

To estimate microplastic concentrations in rivers based on socio-economic-, hydrologic- and 

land use driver data, monitoring data of microplastic concentrations from rivers was gathered 

at 59 different locations. For the composition of this monitoring database, global spatial 

distribution of monitoring data was important in the process of collecting a heterogeneous 

dataset. Especially in the eventual process of combining monitoring data with driver data, a 

heterogeneous set of numbers on driver data is desired in order to reduce correlation between 

various drivers and produce a stable regression model (Disatnik & Sivan, 2016).  

In this study, monitoring data from 59 locations presented in two different studies was 

implemented with a spatial distribution over North- and South America, Europe and Asia 

(Jiang et al., 2019; Schmidt et al., 2017). 55 Monitoring locations were obtained from Schmidt 

et al. (2017) spread across North America, South America, Europe, and Asia. Approximately 

60% of these monitoring data points were conducted in rivers around the Great Lakes in the 

United States and 16 other samples were taken in the Rhine and Seine River. The other 4 

monitoring locations, located on the Tibetan Plateau in Central Asia, were obtained from Jiang 

et al. (2019). An overview of the monitoring data locations is given in Figure 5.  

 
It was considered important that monitoring data was obtained from rivers with varying flow 

regimes, hydroclimatic zones and socio-economic conditions. Therefore, rivers with large 

discharges were included such as the Danube River and the Yangtze River but also smaller 

scale rivers, such as the Biobio River in Chile were used in the monitoring dataset. Microplastic 

measurements as presented in the monitoring studies were transformed into concentration 

with the unit number of microplastic particles per m3 (p/m3). For the data from Schmidt et al. 

(2017) a unit conversion from n/1000m3 to p/m3 was applied. In other words, concentration 

magnitudes were multiplied by 0.001. Data from Jiang et al. (2019) was already presented in 

the unit p/m3, so no conversion was needed. A shapefile of all monitoring locations was added 

to ArcGIS Pro, containing information on the latitude, longitude and the microplastic 

concentrations at each location. 

All microplastic measurements from Schmidt et al. (2017) were carried out between July 2013 

and December 2014, except for the two measurements in Los Angeles, United States. These 

measurements were done in 2004. Monitoring locations that contained data from multiple 

samples were averaged, so that for each location one microplastic concentration value was 

obtained. Data sampling from Jiang et al. (2019) was obtained in July 2018 and consisted of 

four days of sampling. How many samples eventually were taken is not mentioned in the 

article. Therefore, it is assumed that these monitoring locations contained more than 17 
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samples, so more samples than the location from Schmidt et al. (2017) with the highest 

number of samples. 

  

3.2 Driver data 
Monitoring data from the 59 locations was connected to spatially distributed gridded raster 

data of various drivers to estimate the influence of these drivers on global microplastic 

concentrations in rivers. Driver data was subdivided into socio-economic driver data 

(population density, gross domestic product, mismanaged plastic waste production and 

wastewater treatment) and hydrologic driver data (precipitation, surface runoff and river 

discharge). In addition, land use data was also considered to be a driver for microplastic input 

to rivers. Landcover classes implemented to the dataset were non-forest, forest, cropland, 

Figure 5 Overview of the monitoring data locations implemented in the regression analyses. Dots represent monitoring data 
from Schmidt et al. (2017), triangles represent monitoring data from Jiang et al. (2019). Colour of the dots represents the 
number of samples taken at each monitoring location. 
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urban land, rangeland and pastureland. The eventual regression models were fitted 

considering four socio-economic drivers, three hydro-geological drivers and six different land 

use types (Table 2). All driver data was achieved from publications in scientific research 

journals. Raster data was uploaded into ArcGIS Pro as NetCDF or TIFF file, so that raster 

calculations were executable. Raster calculations that were applied to the data will be 

explained in the next part of this thesis. 

 
Table 2 Overview of the driver data implemented in the regression analyses. The table shows the resolution, unit and 
reference of the socio-economic, hydrologic- and land use driver data. Bottom row shows the applied catchment area data 
that is explained in section 3.3. The colours for each driver correspond to the flowchart in Figure 6. 

 

3.2.1 Socio-economic driver data 

Socio-economic driver data consisted of four global datasets:  

1) populations density data (CIESIN - Columbia University, 2018); 

2) Gross Domestic Product (GDP) per capita data (Kummu et al., 2018); 

3) Mismanaged Plastic Waste (MPW) production data (Lebreton & Andrady, 2019); and, 

Socio-
economic 
data 

Driver dataset Resolution Unit Reference 

 GPW population 
density 

30 arcsec People/km2 (CIESIN - Columbia 
University, 2018) 

 GDP per capita 5 arcmin USD (Kummu et al., 2018) 
 MPW production 30 arcsec Tonnes/year (Lebreton & Andrady, 

2019) 
 WWT discharge 15 arcsec m3/day (Ehalt Macedo et al., 

2022) 
Hydrological 
data 

Precipitation 30 arcmin mm (Schneider et al., 2015) 

 Surface Runoff 30 arcmin mm/day (Ghiggi et al., 2019) 
 Streamflow 30 arcsec m3/s (Barbarossa et al., 

2018) 
Land use 
data 

Non-Forest 
Fraction 

30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

 Forest Fraction 30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

 Crop Fraction 30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

 Urban Fraction 30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

 Rangeland 
Fraction 

30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

 Pasture Fraction 30 arcmin Fraction per 
pixel 

(Hurtt et al., 2020) 

Upstream 
Catchment 
Area 

HydroBASINS 
Catchment 
outlines 

500 m 
spatial 
resolution 

Km2 (Lehner & Grill, 2013) 
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4) wastewater treatment (WWT) data (Ehalt Macedo et al., 2022). An overview of the 

implemented data is given in Table 2, which also shows the original resolution, units and 

references of the applied driver datasets. Appendix A1-13 visualises all microplastic 

concentration drivers on a global grid.  

 

Most monitoring data samples were measured at different moments in time. To deal with this, 

driver data was matched to the same period as the monitoring data. Therefore, monitoring 

data from 2004 was matched with driver data from 2004 and monitoring data from 2013/2014 

was matched with driver data from 2013/2014. For some driver data sets, the corresponding 

year to match monitoring data was missing. In this case, the period closest to the monitoring 

data time period was used, so that temporal scales of monitoring and driver data were as 

closely linked as possible.  

 

Population density data was obtained from the Center for International Earth Science 

Information Network (CIESIN) which presented a global gridded dataset for population density 

and total population for the year 2000, 2005, 2010, 2015 and 2020. Population density in 2015 

was used for the monitoring data from 2013/2014. For monitoring data from 2004, population 

density data from 2005 was implemented. For the monitoring data from Jiang et al. (2019) that 

was measured in 2018, also population density data from 2015 was used. Raster data was 

available in TIFF-format, which enabled importation into the ArcGIS database.  

 

Global gridded GDP per capita data was obtained from Kummu et al. (2018), which was a 

multiyear dataset from 1990 to 2015. The temporal spreading of the data enabled the 

possibility to couple monitoring data from 2004 and 2013/2014 with GDP per capita data from 

the same year, with the aim to improve the quality of the eventual regression model. For the 

monitoring data from 2018, GDP data from 2015 was used.  

 

MPW production data was obtained from Lebreton and Andrady (2019) and consisted of TIFF 

raster data with a resolution of 30 arcseconds. A temporal dimension is missing in this data, 

making it impossible to match the MPW production data with the corresponding sampling year.  

WWT discharge data was obtained from Ehalt Macedo et al. (2022), also known as the 

HydroWASTE dataset for wastewater treatment data, which is a spatially explicit database 

consisting of the characteristics of 58,502 wastewater treatment plants. For this study only the 

discharge of treated wastewater in m3/day was used as influencing driver on the amount of 

riverine microplastics. HydroWASTE data was downloaded as CSV-file and transformed into 

raster data using ArcGIS Pro. Table 2 and Appendix A1-4 show the properties and a global 

plot of all socio-economic datasets used in the analysis of driver contribution. 
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3.2.2 Hydrologic driver data 

Influence of hydrologic driver data was assessed by implementing three datasets: 1) 

precipitation data, 2) surface runoff data and 3) streamflow data. Precipitation data was 

obtained from the GPCC Global precipitation dataset including long-term monthly mean 

precipitation from 1891 until 2016. To correlate driver data with the right monitoring data, 

RStudio was used to calculate the yearly average precipitation for the mutual year. By doing 

this, it was possible to create a raster dataset containing the average precipitation for the year 

2004 and 2013/2014, which were the years where most samples were taken. Again, 

precipitation data for the year 2018 was not included in the data, making it impossible to match 

precipitation data with the monitoring data from 2018. Therefore, precipitation data for the 

latest year 2016 was used for the monitoring data from 2018. 

Surface runoff data was obtained from GRUN global gridded runoff dataset (Ghiggi et al., 

2019). GRUN is an observation based monthly reconstruction of surface runoff covering the 

period from 1902 to 2014. The same method applied the precipitation data was used to 

calculate the yearly average runoff for the years 2004 and 2013/2014. 

Global gridded streamflow data was used from FLO1K global annual streamflow dataset 

(Barbarossa et al., 2018). Here, an annual streamflow dataset at a resolution of 30 arcseconds 

(1 km) is presented covering a period from 1960 to 2015. Data was made time specific and 

yearly averaged for 2004 and 2014. Table 2 gives an overview of the properties of the used 

hydrologic datasets. Appendix A5-7 shows again global plots of the hydrological data. 

 
3.2.3 Land use data 

For the implementation of land use data, the Land Use Harmonization 2 (LUH2) historical 

dataset was used as third driver category (Hurtt et al., 2020). The data consists of historical 

land use states covering a period from 850-2015. It is based on the History of the Global 

Environment database (HYDE), presented by Klein Goldewijk et al. (2017) providing long-term 

historical, spatially explicit timeseries of population estimates and land use reconstructions on 

a 30 arcmin resolution. Present land use is reconstructed by analysing satellite images using 

remote sensing techniques. With the use of historical data of climate, soil, slope and 

neighbourhood of rivers and lakes, land use data analysis for the past are determined (Hurtt 

et al., 2020). The raw data consists of six different land use types describing non-forest, forest, 

cropland, rangeland, urban land and pastureland (Appendix A8-13). Non-forest and forest land 

use type were subdivided in primary and secondary forests. Primary forests represent 

woodlands that have not been modified by humans since the start of the data in 850. 

Secondary forest is now described as forest, but with the characteristic that it has been 

modified in the past. The same subdivision was applied to the non-forest land use types. 

Cropland was divided into C4 annuals, C3 annuals, C4 perennials and C3 perennials.  
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For this study, the LUH2 data for the year 2004 and 2013/2014 was taken corresponding to 

the microplastic monitoring data. Again, land use data from 2015 was connected to the 

monitoring data from 2018, since the land use data stopped in the year 2015. Primary non-

forest and secondary non-forest data was summed so that the land use data considered all 

areas that were covered by non-forest or forest in the years 2004 and 2013/2014. This was 

also done for primary forest and secondary forest data. For the cropland data, only the C4 and 

C3 annual crops were summed so that only the yearly growing crops were considered, 

ignoring shrubs and small plants that have lifetime longer than 2 years. These were namely 

categorised as the perennials crop types. Rangeland, urban land and pastureland were not 

subdivided in different categories and could be included immediately into the dataset. LUH2 

data was again downloaded as NetCDF file, containing for each land use type the fraction per 

pixel (number between 0 and 1) assigned to that certain land use type. 

 

3.3 Data conversions 
After extraction of the driver data for the specific year with available monitoring data, the cell 

size of all gridded driver datasets was set to a consistent spatial resolution of 0.05 degrees 

(180 arcseconds). Since all driver datasets consisted of continuous raster data instead of 

discrete class data, resampling in order to increase the resolution was carried out using the 

bilinear resampling technique in ArcGIS Pro. This technique was chosen because it uses the 

four surrounding grid cells to assign a new cell in the finer resolution raster grid, which makes 

the bilinear interpolation method better suitable for continuous raster data (Fewtrell et al., 

2008). Converting the gridded driver data to a finer resolution was important to eventually 

determine driver data quantities on a catchment wide scale. These steps will be outlined in 

the next part of this study. 

 
To determine the influence of the driver data on the monitored microplastic concentrations, 

the HydroBASINS global basin outline dataset was used to match monitoring point data with 

the upstream catchment area in which the monitoring data point was located (Lehner & Grill, 

2013). By doing this, not only driver data at the monitoring location itself was taken into 

account, but driver data from the entire upstream catchment area was considered.  

The Hydrobasins dataset was used to determine the upstream basin area for each monitoring 

point. Polygon features were drawn in ArcGIS Pro to visualise and quantify the upstream 

catchment areas that were connected to the monitoring locations. Via this method driver data 

of the entire upstream area was considered that will eventually flow through the monitoring 

location. All driver datasets were clipped on the HydroBasins feature polygons using the Zonal 

Statistics spatial analyst tool in ArcGIS Pro. For the socio-economic- and the hydrologic driver 

data, this tool summed all grid cells within the upstream catchment polygon. For land use 
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types, data was averaged over the upstream catchment area. This because land use data 

was given in fraction per pixel (between 0 and 1). Summing over the entire upstream area 

would therefore not correspond with the unit of the data. The result is an eventual dataset 

consisting of microplastic concentrations for all 59 monitoring locations and catchment 

summed and averaged driver data for the seven different drivers and six land use types with 

a consistent resolution and time period. Lastly, driver and land use data were normalized by 

the total upstream catchment area (km2) so that the order of magnitude of the complete 

dataset became smaller. For the driver data sets, all values were divided by the total upstream 

catchment area. Land use data was multiplied by the upstream catchment area. As already 

explained, the difference in unit between driver and land use data required a different 

normalization method. A flowchart of the data process is shown in Figure 6. 

 
 

  

Figure 6 Flowchart of the data conversion process executed for the regression analyses. Colours of the various steps correspond 
to Table 2. 
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3.4 Multiple linear regression 
Multiple linear regression (MLR) is a frequently used method for data analyses focussing on 

determining relationships between one dependent variable and multiple independent 

variables. The general form of an MLR equation that is commonly used is (Chenini & Khemiri, 

2009): 

 
(1) !! =	$" +	$#!$# +	$%!$% +⋯+	$&!$& 

 

For the determination of microplastic concentrations using socio-economic-, hydrologic- and 

land use drivers, this MLR formula can be described by the following equation: 

 
(2) ''( = $" +	$#() + $%*+( + $),(- + $*--. + $+( + $,/ + $-0 +

$.12# + $/12% + $#"12) + $##12* + $#%12+ + $#)12, 
 

In this equation Cmp represents the microplastic concentrations in rivers. The independent 

variables in this equation consist of population density (PD), GDP, MPW, WWT, precipitation 

(P), runoff (R), streamflow (Q) and the six land use classes (LU1-6). b0 describes the intercept 

of the linear model. b1-13 describe the MLR coefficients, also known as the slopes of the linear 

model.  

 

Before applying the MLR function on the data, correlations between the independent and 

depending variables were analysed. Pearson’s correlation (r) was determined for all driver 

variables included in the data (Lee Rodgers & Nicewander, 1988). A correlation matrix was 

produced visualising the correlation between two variables as a number between r = +1 and r 

= -1. The meaning of r = +1 is that the variables have a strong positive correlation, 0 displays 

a weak correlation and r = -1 suggests that variables have a strong negative correlation. A 

strong correlation between independent variables means that these variables not only relate 

to the depending variable but also influence each other. For an optimal MLR analysis, 

correlation between the independent variables is low, so that changes in one of the variables 

do not influence the other variables and eventually the regression model. In the case of high 

correlation between multiple independent variables, multicollinearity of the data can be 

assessed. Multicollinearity explains the problem of high correlation between two or more 

independent variables, such that these variables do not provide unique or independent 

information in the regression model. The variance inflation factor (VIF) is a commonly used 

method to describe multicollinearity between independent variables. VIF was therefore 

calculated and plotted in RStudio. Multicollinearity becomes a problem when the VIF threshold 

of 5 is exceeded (Fotheringham & Oshan, 2016).  
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Multiple linear regression analyses in this study were conducted using the MLR function 

incorporated into RStudio. The dependent variable was taken as the monitored microplastic 

concentration in particles per m3. Independent variables were set to be all driver datasets used 

in this study. However, to better examine the functionality of the MLR analyses and the 

influence of driver data determined by this regression method, stepwise regression was 

carried out (Wang et al., 2016). This method allows to add the independent variables step by 

step to the regression function. It can therefore show statistical characteristics of each 

independent variable, but also the influence and importance of the added variables. 

Eventually, all variables are added in the stepwise regression resulting in the complete 

regression analysis with all independent variables included.  

 

Output of the MLR function in RStudio gives a matrix displaying statistical information on the 

relationship between the dependent and the independent variables. The matrix contains the 

model residuals, which describe the difference between the actual observed response values 

and the response values that the linear regression model predicted. For the linear model to 

be accurate, it is desired to have the residuals equally distributed around the monitoring data 

points. In addition to this, the output matrix of the linear model describes the intercept and 

slope of the analysed variables within the statistical relationship, also known as the model 

coefficients. They can be used to make predictions with the multiple linear regression model 

that is produced. For each variable, the standard error of the coefficients is displayed in the 

matrix. P-values are used to determine the significance of the statistical relation. The smaller 

the p-value, the greater the statistical significance of the observed difference. Rule of thumb 

is p<0.05 means a significant difference. When p>0.05, the observed difference is not 

considered significant (Uyanık & Güler, 2013). R2 of the eventual regression model was also 

analysed to check the quality of the model. 

 

3.5 Random forest regression 
Random forests (RF) and random forest regression were first introduced by Breiman, (2001). 

This machine learning algorithm was developed to produce classification and regression trees 

using independent and dependent variables in a structured dataset consisting of training and 

testing data (Figure 7). RF regression was executed using the 59 locations containing 

microplastic monitoring data and the socio-economic-, hydrologic- and land use drivers. 

RF regression uses a randomly selected subset of the data to determine the relationship and 

importance of the independent variables, for which the drivers as discussed above were 

selected. The algorithm is trained by using a subset of the data as training data, also known 

as the InBag data. Another subset of the data is used to test the data, this subset is also known 
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as the Out of Bag (OOB) data. Application of RF regression in earlier studies have shown its 

improved functionality on the following characteristics (Rodriguez-Galiano et al., 2014):  

1. It is able to learn complex patterns in datasets, also taking into account any 

nonlinear complex relationships between explanatory and dependent variables. 

This characteristic is important in physical geographic research because statistical 

relations are often nonlinear.  

2. It requires less computing time for large datasets, making it a perfect method for 

global statistical modelling. 

3. It can handle enormous numbers of variables without variable deletion. 

4. It gives estimated of what variables are important.  

To construct the machine learning decision trees, 90% of the data was categorised as as 

InBag training data and 10% of the data as OOB testing data. Monitoring and driver data of 

the first 54 rivers of the dataset were used as training data and separated from the last five 

rivers of the dataset. This latter group of rivers was assigned as test data in order to validate 

the model. The model constructed in this thesis used more training data compared to other 

studies applying RF to physical geographic problems (Rodriguez-Galiano et al., 2014; 

Thorslund et al., 2021). These studies used 80% and 66% of their data as InBag training data, 

respectively. Due to the smaller amount of input data that was available, it was not possible 

to fit our model with such a division of training and test data. For this reason, a larger amount 

Figure 7 Flowchart of the random forest regression process (Rodriguez-Galiano et al., 2014). 
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of data was used to train the model. As a consequence, a reduced amount of data remained 

to test the model. RF regression models were than built using the training data and validated 

with the testing data. Two required parameters in building an accurate RF regression model 

are the number of decision trees (ntree) used to build the RF model and the random subset 

of independent variables (mtry) used for each decision tree (Breiman, 2001). This latter 

process is called ‘bagging’ and is used to support the randomness of the RF regression which 

increases the quality of the training process (Rodriguez-Galiano et al., 2014). The number of 

trees needed to build a stable regression model depends on when the mean squared error 

(MSE) of the model stabilizes. Therefore, multiple model runs were done using 50, 100, 200, 

and 500 decision trees. MSE’s were than plotted and the number of trees were chosen where 

MSE was stable. Next, mtry was chosen after modification of mtry after every run until MSE 

reached the lowest value. Via this method, the TuneRF function included in RStudio which is 

produced to find the optimal mtry for the analysed data, was ignored. Mtry, as suggested by 

the TuneRF function, did not produce the required results and therefore did not decrease the 

MSE of the model. Eventually, ntree was set to 100 and mtry was set to 10. After 

implementation of these settings, the model was run ten times, which was needed to tackle 

the randomness of the RF function. Due to this randomness, the output of the model is slightly 

different each time it runs. At ntree = 100 and mtry = 10, the variation between all 10 runs was 

small enough to be useful, without increasing the MSE or decreasing the R2 value.  

 

The run where MSE was minimal also resulted in the optimal R2 value, suggesting that with 

this run, microplastic concentrations could be best explained by the driver data. From the MSE 

results of each run, the normalised root mean squared error (nRMSE) was calculated to 

evaluate the model performances. To do so, the square root of the MSE was used to calculate 

the RMSE. After this, RMSE was divided by the mean of all microplastic concentration 

observations in the dataset. A normalised RMSE represents the differences between the 

average of the summation of the squared error of the actual output value and the predicted 

output value (Singh et al., 2017). It can therefore determine whether the model reaches a high 

enough accuracy to predict output when only independent variables are used as input. After 

evaluating the RMSE, the output of the model can be used for multiple other purposes. In this 

study, the variable importance function of the model output will be used to analyse the 

importance of the drivers on the microplastic particles concentrations. A comparison of the 

multiple linear regression approach and the random forest approach will be used to answer 

research question 2 and 3. 
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3.6  Microplastic predictions 
To answer the fourth research question concerning microplastic concentration predictions, 

both regression methods were applied to new driver data from other rivers around the globe. 

Prediction calculations of both regression methods were applied to eight rivers, on condition 

that these prediction rivers were not included in the initial monitoring data used to build the 

MLR and RF regression models. These eight rivers were the Mekong River, Indus River, Nile 

River, Congo River, Niger River, Amazon River, Paraña River and the Orinoco River (Figure 

8).  

Predicted microplastic concentrations were calculated with driver data at the corresponding 

locations. Looking at the temporal scale, predictions were calculated with the most recent data 

from each driver dataset. Population density data from the year 2020 was applied, GDP from 

2015, WWT discharge from 2022, MPW data from 2019, precipitation data from 2016, runoff 

data from 2014, streamflow data from 2015 and land use data from 2015. For the eight rivers, 

data on these thirteen drivers was implemented into an ArcGIS Pro raster map and an Excel 

file. The raster map was required for the MLR predictions. Random forest predictions were 

gathered using the Excel file and RStudio. Predicted microplastic concentrations determined 

by both approaches were than analysed and compared to existing literature. 

Microplastic concentration predictions from the MLR approach were executed with the variable 

coefficients output of the model. These variable coefficients describe the statistical relationship 

of that specific variable with the concentration of microplastic (Boy-Roura et al., 2013). In other 

words, when driver coefficients are determined, it is possible to apply them on new data, 

Figure 8 Locations of the rivers applied in the regression predictions. Eight rivers were chosen with a spatial distribution 
across Asia, Africa and South America. 
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resulting in new microplastic concentration data that follows the new driver data. This method 

was applied for the MLR predictions and was executed by applying the MLR equation to the 

new driver data. Since MLR predictions were applied on an ArcGIS raster layer, it was possible 

to produce a global plot of the new predictions that came out of the MLR model. As a result, 

a 0.25 x 0.25-degree raster layer was produced containing the new microplastic concentration 

predictions (in particles/m3). 

Microplastic concentration predictions for the RF approach required a different method. 

Random Forest in RStudio has an incorporated prediction function, which is a function that 

uses the produced RF model for predictions with new data. It is for this reason that new data 

required to be an Excel File instead of an ArcGIS Pro raster layer. After running the code, new 

microplastic concentration predictions (in particles/m3) are presented that allow comparison 

with the predictions from the MLR approach. Due to the raster structure of the new data and 

the incompatibility of the RF model with this raster data, RF predictions were only executed 

on the eight rivers with new driver data. A global plot of the RF predictions is therefore missing.  

 

  



 30 

4. Regression Results 
4.1 Global driver data correlation 

For MLR to be accurate, a correlation matrix for all independent variables was produced 

(Figure 9). Rows and columns show the correlation between the different drivers. In the right 

column, correlation between all drivers and the microplastic concentrations is also presented. 

A complete correlation matrix that consists of at least two rows and columns is always a 

symmetrical square. Therefore, only showing half the correlation matrix is enough to analyse 

it. This upper half of the correlation matrix is shown in Figure 9. As can be seen, the correlation 

matrix consists of positive and negative correlations with all correlation coefficients between r 

= +1 and r = -1. The further away the correlation coefficient is from 0, the stronger the 

relationship is between the two drivers. As rule of thumb a correlation magnitude of r = 0.4 or 

-0.4 is considered weak, magnitudes outside of this range represent a strong correlation 

Figure 9 Correlation matrix displaying Pearson’s correlation (r) between all drivers and microplastic concentrations. 
Values range from +1 to -1, where +1 represents a strong positive correlation and -1 represents a strong negative 
correlation. The right column shows the correlation between microplastic concentration and the considered drivers. 
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(Taylor, 1990). However, the diagonal shows a line of maximum positive correlation which 

makes sense since the diagonal displays the correlation between two of the same variables.  

To discuss the spatial distribution and the correlation of each driver with respect to microplastic 

concentrations, Figure 10 represents global grids of the applied driver data.  

Figure 10 A-G Global gridded plots of the socio-economic- and hydrologic driver data. Magnifications of these figures are 
added to Appendix A. Figure 10H visualises global microplastic hotspots with the amount of plastic input from rivers as 
determined by Lebreton et al. (2017). 

A B 

C D 

E F 

G H 
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Figure 10A-G show the socio-economic- and hydrologic drivers. Figure 10H displays the 

microplastic concentration hotspots according to Lebreton et al. (2017). Larger visualisations 

of these plots can be found in Appendix A1-13, where land use drivers are also presented on 

a global grid.  

 
4.1.1 Population density 

Figure 10A and Appendix A1 show a corresponding pattern between population density and 

microplastic concentration hotspots for the regions Southeast Asia, India and Bangladesh and 

Central Africa (Figure 10H). Within these geographical areas, multiple regions are present 

where population density exceeds 900 inhabitants per km2. The most densely populated areas 

can be found in Northeast India and Bangladesh. However, correlation between population 

density and microplastic concentration in the correlation matrix (Figure 9) has a magnitude of 

0.14. Since values within the range -0.4 and +0.4 represent small correlation, it can be said 

that population density and microplastic concentrations have a weak correlation according to 

the correlation matrix (Taylor, 1990). It can thus be said that visual correlation from Figure 10A 

and Figure 10H and the correlation given by the correlation matrix do not correspond. Probably 

since only three regions (Southeast Asia, India and Bangladesh and Central Africa) show 

visual correlation between population density and microplastic concentration as shown in 

Figure 10A and 10H. 

 
4.1.2 Mismanaged Plastic Waste production 

Mismanaged plastic waste production (Figure 10B, Appendix A2) shows strong correlation 

with the spatial distribution of microplastic hotspots. Again, Southeast Asia shows the largest 

amounts of mismanaged plastic waste (18.4 Mt/y), followed by Central Africa (5.89 Mt/y) and 

Europe (2.66 Mt/y). High correlations between MPW and microplastic concentration are 

supported by a Pearson’s r value of 0.55 (Figure 9).  

 
4.1.3 Wastewater treatment 

Global distribution of wastewater treatment discharge (Figure 10C, Appendix A3) shows a 

different pattern when comparing this driver to the spatial distribution of microplastic hotspots. 

Figure 10C visualises that large areas can be distinguished where no wastewater treatment 

is taking place. These areas are present in Africa, South America and Asia. Areas where 

largescale treatment is applied are located in North America, Europe and East Asia and seem 

to correlate with the areas where the GDP is high. This argument is not supported by the 

correlation matrix, since WWT and GDP correlate with a magnitude of +0.23. According to 

Laerd Statistics (2020), this magnitude is not large enough to allocate it as a strong correlation. 

In addition, correlation between WWT and microplastic concentrations represents a 



 33 

magnitude of 0.24, which again is not considered as strong correlation. In fact, a positive 

correlation between WWT and microplastic concentrations is remarkable since the application 

of WWT would result in a decrease in microplastic concentration and therefore in a negative 

correlation (Rasmussen et al., 2021). 

 
4.1.4 Gross domestic product 

GDP per capita (Figure 10D, Appendix A4) is differently distributed than the microplastic 

hotspots. Large GDP values can be found in North America, Europe, small parts of Russia, 

the Middle East and Australia. A low GDP is found in large parts of Africa, South America and 

Asia. Therefore, it seems that a low GDP has a stronger correlation with microplastic hotspots 

than regions with a high GDP. The same result is presented in the correlation matrix. GDP 

has strong negative correlation with microplastic concentration (r = -0.43). Therefore, it can 

be said that an increased GDP results in reduced amounts of microplastic in rivers. 

 
4.1.5 Hydrologic driver data correlations 

Hydrologic driver data is plotted in Figure 10E-G and Appendix A5-7, where global distribution 

of precipitation, surface runoff and streamflow are visualised. Correlation between the 

hydrologic drivers and microplastic concentration is rather small. R for precipitation is -0.2, for 

runoff -0.16 and for streamflow +0.1. However, from the plotted figures (Figure 10E-G) 

correlation between hydrologic drivers and microplastic concentrations seems stronger. 

Especially for regions where precipitation and runoff reach large magnitudes, microplastic 

concentration rates seem to increase. 

 
Mutual correlation between drivers themselves is worth investigating since strong correlations 

between drivers may results in a regression model with larger uncertainties, especially for the 

machine learning random forest regression (Nicodemus & Malley, 2009). As can be seen, the 

socio-economic drivers show a strong positive correlation to each other (r > 0.4). Especially 

population density, MPW and WWTdischarge represent high coefficients (population density-

MPW, r = 0.69; population density-WWTdischarge, r = 0.71; MPW-WWTdischarge, r = 0.46). 

However, GDP is the only socio-economic driver that does not have a strong correlation with 

the other socio-economic drivers (r < 0.4). Strong correlations can also be found between the 

different land use drivers as can be seen in the bottom right corner of the correlation matric 

(Figure 9). Non-forest land cover fraction and crop land cover fraction have a positive 

correlation of 0.89. In addition, pastureland cover fraction shows strong correlations with non-

forest, forest and cropland (r = 0.8, r = 0.89 and r = 0.96, respectively). GDP is the only driver 

showing stronger negative coefficients. Pearson’s correlation for GDP was smaller than -0.4 

with the non-forest land cover, urban land cover, rangeland cover and pastureland cover (r = 
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-0.49, r = -0.43, r = -0.41, r = -0.41, respectively). Correlation between de independent drivers 

and the dependent driver (MP concentration) is shown in the right column of the correlation 

matrix. For microplastic concentration, the highest positive correlation is with MPW driver (r = 

0.55), the most negative correlation is with GDP (r = -0.43). All other correlation coefficients 

are within the +0.4 or -0.4 range and are therefore weaker correlated with microplatic 

concentrations (Figure 9). 

 

Multicollinearity was also plotted in RStudio. Results from this analysis are shown in Figure 

11. This figure shows for each independent variable the multicollinearity this variable has with 

the other independent variables. Values larger than five suggest high multicollinearity that may 

influence regression analysis in a negative way. A vertical line is drawn which shows a 

multicollinearity of five. All bars that reach further than this line have a multicollinearity higher 

than ideal for MLR and RF analyses. However, considered that in this study multiple variables 

influence each other, for instance the different land use drivers, a multicollinearity smaller than 

ten is still considered acceptable (Salmerón et al., 2018). Multicollinearity between the various 

land use drivers is immediately visible. Especially pastureland and cropland have a severe 

Figure 11 Multicollinearity plotted using the variance inflation factor (VIF). Dotted line represents VIF value of 5. 
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multicollinearity with VIF magnitudes exceeding 50. Since the unit of these drivers is in fraction 

per pixel, a change in value for one of the land use drivers also influences the value of another 

land use driver. In addition to this, population density has a multicollinearity larger than five 

(VIF = 8), suggesting that this variable can negatively influence the quality of the MLR model. 

However, since multicollinearity for this variable is still between five and ten, it is considered 

that the consequences of this higher multicollinearity are neglectable.  
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4.2 Multiple linear regression 
As discussed, MLR was implemented using a stepwise method which executes the linear 

regression step by step adding one independent variable with each step. Therefore, thirteen 

separate regression steps were constructed, starting with the driver that had the largest 

Pearson’s correlation coefficient with microplastic concentration (Figure 9). This method 

allowed researching the improvement of the model after each added driver. Results of the 

stepwise analyses are shown in Table 3. For each regression step, the added driver, R2, the 

number of significant drivers and what drivers were significant is presented. Detailed results 

of the stepwise linear regression analyses can be found in Appendix B. 

 
Table 3 Detailed stepwise multiple linear regression results presenting R2 after each step, the number of significant drivers 
and the type of significant driver. 

Step Added Driver R2 N significant 
variables 

Significant drivers 

1 MPW 0.30 1/1 MPW 

2 GDP 0.43 2/2 MPW; GDP 
3 Forest fraction 0.44 2/3 MPW; GDP 
4 Pasture fraction 0.47 2/4 MPW; GDP 
5 WWT 0.47 2/5 MPW; GDP 
6 Precipitation 0.52 3/6 MPW; GDP; Precipitation 
7 Rangeland fraction 0.54 3/7 MPW; GDP; Precipitation 
8 Runoff 0.54 3/8 MPW; GDP; Precipitation 
9 Population density 0.58 4/9 MPW; GDP; Precipitation; 

Population density 
10 Crop fraction 0.69 4/10 GDP; Pasture fraction; WWT; 

Crop fraction 
11 Streamflow 0.69 4/11 GDP; Pasture fraction; WWT; 

Crop fraction 
12 Urban fraction 0.73 5/12 GDP; Pasture fraction; WWT; 

Crop fraction; Urban fraction 
13 Non-forest 

fraction 
0.73 5/13 GDP; Pasture fraction; WWT; 

Crop fraction; Urban fraction 
 
Linear regression after thirteen steps shows an R2 of 0.73 with five out of thirteen drivers being 

significant (p < 0.05) (Uyanık & Güler, 2013). These significant drivers are GDP (p = 0.005), 

Pasture fraction (p = 0.0008), WWT (p = 0.009), Crop fraction (p = 0.0003) and Urban fraction 

(p = 0.02). Each driver that was added to the stepwise linear regression model, resulted in 

varying improvements of the models R2 value, which is often referred to as the coefficient of 

determination (Hopfe & Hensen, 2011; Nimon & Oswald, 2013). The first run with only MPW 

as driver resulted in an R2 of 0.30. From the second run onwards R2 gradually increased to 

0.73. Table 4 shows the coefficient of determination (R2 increase) for each driver. The 
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strongest improvement of the coefficient of determination was after step two, where GDP was 

added to the model. It went from 0.30 to 0.43 and therefore had an increase of 0.13. The 

second largest improvement of the model was after step 10 (crop fraction), where R2 increased 

with 0.11. Step 5 (WWT), 8 (runoff), 11 (streamflow) and 13 (non-forest fraction) did not 

improve the model. Drivers added during these steps also did not increase the number of 

significant drivers. 

 
Table 4 Increase in coefficient of determination after each step of the multiple linear regression approach. Colours follow 
the magnitude of increase. 

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 
R2 
increase 

0.30 0.13 0.01 0.03 0 0.05 0.02 0 0.04 0.11 0 0.04 0 

 

Remarkable is the change in significant drivers after step 10. Here, the crop fraction driver 

was added to the regression model, resulting in a switch in driver significance. Prior to step 

10, MPW, GDP, precipitation and population density were the significant drivers. However, 

the consideration of crop fraction as driver of microplastic concentrations changed the 

statistical relationship making GDP, pasture fraction, WWT and crop fraction the significant 

drivers. Eight drivers did not show a significant relationship with microplastic concentrations 

after complete stepwise regression. These drivers were MPW, forest fraction, precipitation, 

rangeland fraction, runoff, population density, streamflow and non-forest fraction. 

 

4.3 Random forest regression 
Random forest analyses were done with the exact same dataset that was used for the MLR 

model. The RF function was run ten times and the run with the smallest normalised root mean 

squared error (nRMSE) and largest R-squared (R2) was chosen to be the best fit for the data 

analysis. The reason that the code was run ten times is that because of the randomness of 

RF. Due to the random subset of variables that is used to build each tree, results of the model 

show minor differences each time it runs. Running the model more than ten times did not 

improve the model accuracy (R2 and nRMSE) and did not reduce the difference in results. 

 

Results showing the nRMSE, R2 and variable importance are shown in Figure 12. As can be 

seen, 100 decision trees were used to build the model. From this point, the nRMSE and R2 

stabilise (Peters et al., 2007). Increasing the number of trees did not decrease the error rate 

and thus improve the results. NRMSE for the optimal run stabilized around 24.2. R2 for this 

model run became stable with a value of 0.55. Both the nRMSE and R2 figure also show the 

irregularity of the model during the first twenty decision trees. nRMSE of the first two decision 

trees had the smallest magnitude (nRMSE = 17 and nRMSE = 12). After producing three 
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decision trees, the error rate strongly increases to a magnitude of 38.1, reaching the highest 

error of the entire run. From this point onwards, the extra decision trees resulted in a gradual 

reduction of the nRMSE. R2 results displayed in Figure 12B show an opposite trend. After 

formation of two decision trees, R2 reaches a maximum value of 0.88. From this point it 

strongly decreases to a value of -0.12 from which it gradually increases towards the stabilized 

value of 0.55. 

Figure 12C shows the importance in percentage increase in mean squared error (%IncMSE) 

of each driver variable that is considered in the RF model runs. It therefore displays the 

influence that each driver has on the nRMSE of the model and thus on the microplastic 

concentrations. GDP comes out as the most important independent variable with an %IncMSE 

of 6.6. Variations in GDP will lead to the largest increase in MSE, making the model less 

accurate. A reduced accuracy represents a model that is less capable of describing 

microplastic concentrations considering the driver data that is imported into the model. Second 

most important is the production of mismanaged plastic waste (%IncMSE = 4.2), followed by 

B  
 Normalised root mean squared error A Variable importance plot C 

R2 

Figure 12 A) Normalised root mean squared error. B)  R2 and C) relative variable importance in percentage mean squared 
error increase of the random forest regression approach. 
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the population density (%IncMSE = 3.5). It is worth mentioning that all hydrologic drivers 

(precipitation, runoff and streamflow) show a very small importance. From this driver category, 

precipitation has the largest importance with an %IncMSE of 0.54 followed by streamflow 

(%IncMSE = -0.23) and runoff (%IncMSE = -0.41). For the land use driver category, 

importance of the different variables varies widely. Crop fraction, non-forest fraction, 

rangeland fraction and pasture fraction have a rather strong importance with a %IncMSE value 

between 2.3 and 1.0. However, urban fraction, which is part of the land use driver category 

represents the smallest importance with a %IncMSE magnitude of -0.58. 

 

4.4 Variable importance comparison  
As can be seen, both regression approaches have led to dissimilar results in both the 

performance and the variable importance analysis. Both models did not result in a similar 

magnitude for R2, pointing out that one model better described the relationship between the 

drivers and microplastic concentrations. MLR showed that for this dataset, it was able to 

predict 73% of the monitoring microplastic data (namely, R2 = 0.73). For RF, only 55% of the 

microplastic monitoring data can be explained by the driver data. It can thus be said that for 

this amount of data, the more standard MLR approach resulted in the most accurate model to 

describe microplastic concentrations in rivers. In addition, both models differently analysed 

the importance of the drivers. For MLR, relative importance of drivers was assessed via the 

influence that each driver has on the change in R2, also known as the coefficient of 

determination (Hopfe & Hensen, 2011; Nimon & Oswald, 2013). As is shown in Table 4, the 

strongest variable weight can be assigned to MPW, GDP and cropland fraction. After addition 

of these drivers to the stepwise regression, the coefficient of determination reached the largest 

value and R2 increased strongly. However, MPW was the first variable added to the stepwise 

MLR, which probably exaggerates the weight of this driver and therefore the relative 

importance on the regression (Hopfe & Hensen, 2011). Implementation of the WWT, runoff, 

streamflow and the non-forest land use fraction step did not lead to an increased R2, 

suggesting that these drivers had a smaller relative importance according to the MLR 

approach. 

As discussed, relative importance for the RF approach is determined using the percent 

increase in MSE that each driver has (%IncMSE). Figure 12C determines GDP, MPW, 

population density and cropland fraction as drivers with the largest %IncMSE. WWT, 

streamflow, runoff and urban land fraction showed the least influence on the MSE.  

Both regression approaches do show varying results on relative driver importance. Where 

GDP, MPW and cropland fraction are important drivers for both models, population density is 

more important for the RF model than for the MLR model (%IncMSE = 3.5 against a coefficient 

of determination of 0.04). Also, the least important drivers of both regression models seem to 
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correspond. However, one strong difference is the influence of the urban land use fraction. 

For MLR, this driver resulted in a coefficient of determination of 0.04. It is a small increase in 

R2, but it did influence the regression model. However, for RF regression, urban land use is 

assigned as the driver with the smallest %IncMSE.  

 

4.5 Microplastic predictions 
Global plotted MLR predictions are shown in Figure 14 where also the location of the eight 

prediction rivers is pointed out. Figure 15 presents a zoom on Asia since this is the 

geographical region where microplastic accumulate most strongly. As can be seen in Figure 

14, large regions represent a microplastic concentration of zero. This is true for North America, 

large areas in Europe, Northern Africa and Australia. However, in or near rivers with a high 

flow regime, MLR predicts accumulation of microplastics. Examples are the Mississippi River, 

Danube and Volga River. In Central Africa, India and Bangladesh, Southeast Asia and East 

Asia microplastic concentrations increase gradually. Maximum microplastic concentrations as 

determined by the MLR model occur in the Amazon River region and the Ganges Brahmaputra 

Delta. For both regions, microplastic concentrations exceed 2500 particles per m3. Also, in 

these regions microplastic concentrations trends follow the river paths of multiple rivers. 

Examples are the Amazon River, the Congo River and the Paraña River. An explanation for 

this trend can be that the streamflow driver data has strongly influenced the prediction 

outcomes. Table 5 and Figure 13 present the results of both regression approaches (in 

particles/m3) for each prediction river. The order of magnitude difference between both 

predictions is also outlined.  

MLR predicts the largest amount of microplastic in the Amazon River (179.1 particles/m3). The 

second most polluted river is the Nile with 116 particles/m3 microplastic. With a concentration 

of 0.79 particles/m3, the Indus Rivers is determined as the least polluted river. 

Predictions as calculated by the RF approach have a much smaller magnitude compared to 

the MLR predictions. RF determines the Nile as most polluted river. Here, microplastic 

concentrations are 0.54 particles/m3. Furthermore, the Mekong and Congo River have the 

second highest microplastic concentration with 0.41 particles/m3. The Amazon, Paraña and 

Orinoco River have the least amount of microplastic with 0.033, 0.032 and 0.032 particles/m3, 

respectively. 

For none of the prediction locations the difference in predicted microplastic concentration 

between both approaches was zero orders of magnitude. For the Mekong and Indus River, 

the prediction difference was one order of magnitude. For the Congo and Niger River, the 

difference was two orders of magnitude and for the Nile, Paraña and Orinoco River prediction 

outcomes varied over three orders of magnitude. For the Amazon River, microplastic 
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prediction from both approaches resulted in the largest dissimilarity. Here, the difference 

between MLR and RF predictions contained four orders of magnitude. 

It can thus be stated that both regression approaches predict microplastic pollution on a wide 

range of magnitudes. Comparing both results with existing literature, predictions given by the 

MLR approach seem to be the best estimation of micoplastic concentrations for these eight 

rivers. Lebreton et al. (2017) has shown that plastic inputs from rivers, in tonnes per year, 

within the mentioned pollution hotspots reach a 103 and 104 order of magnitude. Even though 

this study has determined plastic pollution in the unit particles/m3, it becomes clear that the 

magnitudes determined by the MLR approach are needed to reach the number of tonnes per 

year river input as calculated by Lebreton et al. (2017). Riverine plastic emissions (in metric 

tonnes per year) for the mentioned pollution hotspots, as determined by Meijer et al. (2021), 

lay in the range between 50.000 and 200.000 metric tonnes per year. These results show 

even larger orders of magnitudes than the outcomes of Lebreton et al. (2017), which again is 

in favour of the plastic predictions determined by the MLR approach. The higher model 

performances that are shown in section 4.2 support these findings. Comparison of our 

prediction results with the AdventureScientists.org database (section 2.3) was not possible, 

since none of the predicted rivers considered in this study is included in the Adventure 

Scientist monitoring campaign.  

 
Table 5 Microplastic concentration predictions of both regression approaches for the eight considered prediction rivers 
[particles/m3]. The right column presents the difference, in orders of magnitude, between the MLR and the RF approach. 

 

Location Multiple Linear Regression Random Forest Regression  
 MP concentration [p/m3] MP concentration [p/m3] ΔMP [order of 

magnitude] 
Mekong River 7.7 0.41 1 
Indus River 0.79 0.027 1 
Nile River 116 0.54 3 
Congo River 21.1 0.41 2 
Niger River 4.2 0.032 2 
Amazon River 179.1 0.033 4 
Paraña River 17.03 0.032 3 
Orinoco River 17.41 0.038 3 
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Figure 13 Diagram visualising the difference in microplastic concentration for all prediction rivers in particles per m3. Blue 
diagrams visualise prediction results from the MLR approach. Orange diagrams represent the RF prediction results. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 Global plot of the MLR microplastic concentration predictions in particles per m3. Red dots show the eight prediction locations. 
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Figure 15 MLR prediction plot focussing on Asia. Again, the predicted microplastic concentration is plotted in particles per m3. Red dots show the prediction locations in Asia. 
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5. Discussion 

From the literature study and the global multiple linear regression predictions, it can be stated 

that microplastic concentration hotspots are present in multiple regions of the world. 

Considering the literature review, microplastic concentration amounts have the largest 

magnitudes in Southeast Asia, South Asia, Central Africa, Europe and North America (Figure 

2). Multiple linear regression in this study assigns microplastic hotspots to regions in 

Southeast Asia, South Asia, Central Africa and South America (Figure 14). It can be concluded 

that MLR proves to be the best approach to determine a statistical relationship between the 

considered drivers and global microplastic concentrations with this amount of data. R2 results 

and the significance of various drivers support this outcome. Random forest does not reach 

the same performance as the MLR approach and therefore shows a smaller R2, resulting in 

an increased normalised root mean squared error. Both approaches show that GDP, MPW 

and cropland fraction are the three most important drivers for microplastic concentrations. For 

MLR this was visible in the increase of the models’ R2 after stepwise addition of drivers. RF 

visualised this in the variable importance plot that was produced. Urban land use, runoff and 

streamflow are the least important drivers as was shown by both models.  

Predictions that were determined with both regression models resulted in rather strong 

dissimilarities. MLR predictions were able to point out microplastic hotspots in regions 

corresponding to Lebreton et al. (2017) and Meijer et al. (2021). In addition, the orders of 

magnitude that MLR predictions showed seem to be more precise compared to the RF 

predictions (Lebreton et al., 2017; van Calcar & van Emmerik, 2019; van Wijnen et al., 2019). 

  

5.1 Main sources of uncertainties 
As always, data studies and the application of regression models show results with varying 

uncertainties (Reis & Saraiva, 2005). Such uncertainties can occur in the data that is 

implemented into the model (both monitoring data and driver data), the data conversions that 

were used to modify the data and in the models itself. For this study, the first two reasons for 

uncertainty will likely have reduced the accuracy of both regression models. As is explained 

in the method section (section 3.2) the driver datasets that were used for both regression 

analyses were implemented from scientific literature. Therefore, it is assumed that these driver 

datasets met the required quality standards for regression analysis. This applies the same for 

the monitoring data. However, since multiple measurements were achieved at each 

monitoring location, it was required to average the microplastic concentrations to obtain one 

measurement for each location. For some locations (Yangtze River and Hanjiang River in 

China) this average number was received from one measurement (Schmidt et al., 2017). 
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Other monitoring locations consisted of more than 17 samples from which the average 

microplastic concentration was determined. Examples are the Rhine River Delta near 

Rotterdam from Schmidt et al. (2017) and the monitoring data from the Tibetan Plateau (Jiang 

et al., 2019) (Figure 5). Averaging over a varying number of samples increases the uncertainty 

of the eventual microplastic concentration magnitude. In addition, a potential temporal scale 

included in data with multiple samples is often eliminated when averaging has been taking 

place. 

 

Inconsistency in the data also occurs within the temporal differences between monitoring data 

and driver data. For instance, monitoring data from Jiang et al. (2019), that was measured in 

2018, was mostly matched with driver data from the year 2015. This because driver data from 

the year 2018 was not available for most driver datasets. It is very likely that this approach 

has led to increased inaccuracy of both models. This type of inconsistency can be reduced 

when monitoring data is matched with driver data from the same year.  

Lastly, the conversions that were applied to the driver datasets may have caused uncertainty 

in both models. All data conversions executed in this study are outlined in Figure 6. Even 

though these data conversions were supported by scientific literature, some of these actions 

can have influenced the homogeneity and resolution of driver data. Especially the 

implementation of the HydroBASINS dataset to determine upstream catchment areas (Lehner 

& Grill, 2013). Per monitoring location, the upstream basin area was determined with hand-

drawn polygons in ArcGIS Pro. Within the data conversion process, this step has probably 

resulted in the strongest uncertainty since it was sometimes not completely clear where the 

border of the catchment area was located, forcing us to use other literature to determine where 

a catchment border was located. These uncertainties have influenced the area over which the 

driver data was calculated.   

 
Regression results of both approaches have also shown a difference in performance. This 

difference in performance, and especially the lower accuracy of the RF model (R2 = 0.55), can 

be a result of the amount of monitoring and driver data that was used in this study. To date, 

the volume of monitored microplastic data is small and mostly focussing on marine monitoring 

campaigns (Wagner et al., 2014). And even though the topic of microplastic pollution is 

becoming more and more important in scientific research, large-scale monitoring campaigns 

are still lacking. Therefore, finding monitoring data for the 59 locations used in this study 

already was a challenging task. It resulted in monitoring data that was focussed on a study 

which mainly described monitoring data measured in the United Stated (Schmidt et al., 2017). 

Comparing our data amount with other physical geographic research that applied RF 

regression, suggests that an increase in monitoring- and driver data would increase the RF 
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performances. For instance, Rodriguez-Galiano et al. (2014) applied RF to 175 wells of 

monitoring data and 24 driver variables to analyse nitrate pollution in groundwater. The same 

is true for Thorslund et al. (2021). Here, water salinity from 401 sub-basins and more than 

400.000 measurements from 1980 to 2010 are analysed using 25 different driver variables. 

For the MLR, a smaller amount of data does often not reduce the performances of the model 

(Bonett & Wright, 2011). It is for this reason that the MLR model performed better than the RF 

model. 

 

Results on microplastic predictions have shown strong differences between both regression 

methods. Especially the small magnitudes of the RF predictions are remarkable, knowing that 

the eight considered rivers are among the largest on the globe (Lehner & Grill, 2013). Schmidt 

et al. (2017) concluded that the largest rivers in the world do have the highest microplastic 

pollution rates. Comparing our results with monitoring studies from the Indus and Amazon 

River, it becomes clear that the MLR method shows the most corresponding results. 

Microplastic concentrations as determined by the RF approach are too small and not 

supported by any literature (Gerolin et al., 2020; Tsering et al., 2021). Gerolin et al. (2020) 

and Tsering et al. (2021) examined the amount of microplastic in river sediments and 

determined that the number of particles per kg sediment lay in the same order of magnitude 

as the MLR outcomes in this study. Comparison of our results with modelling studies focussing 

on the microplastic output from rivers to oceans is complicated due to the difference in unit 

that those studies use. Lebreton et al. (2017) and Meijer et al. (2021) both show that for the 

eight predicted rivers, microplastic output to sea exceeds a magnitude of 2000 tonnes per 

year. Such an amount of plastic will never be reached with the concentrations predicted by 

the RF approach, taking into account the small mass of microplastic particles and the 

discharges that these eight predicted rivers have. Even with the predicted MLR concentrations 

it is probably not possible to reach those amounts of microplastic output. 

 
5.2 Implications and recommendations of future microplastic 

research 
Results that are presented in this study can be used for multiple purposes. First, the 

dissimilarity of model performance of both regression approaches has shown the better quality 

of the MLR approach for this amount of monitoring and driver data. It is therefore 

recommended to analyse same-sized datasets with the MLR methods instead of the RF 

regression approach. When a larger scale dataset is investigated, RF regression may be a 

more suitable approach. Especially when the number of independent variables increases 

(Luan et al., 2020). 
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Second, the extensive results on variable importance open the opportunity to apply these 

outcomes to water quality policy and microplastic reduction in freshwater systems. Information 

on the correlation between dependent and independent variable can tell what the effect of 

changing driver data is on the other drivers and on the microplastic concentrations itself. Small 

changes in one driver can result in large changes in other drivers if the value of correlation is 

high enough. When the modified drivers have a significant influence on the amount of 

microplastics in rivers, it can eventually lead to a reduction of the microplastic concentrations. 

It needs to be said that due to the lower accuracy of the RF regression, its results on variable 

importance need to be analysed with caution, since the findings may not represent the right 

values. However, due to the stable model that is produced (Figure 12) and the similarities with 

MLR for the most important drivers, the variable importance outcomes are considered useful 

(Peters et al., 2007). From these results, changes in GDP, MPW, population density and 

cropland fraction will most strongly influence the amount of microplastic in rivers. Multiple 

studies focussing on microplastic drivers have shown that the socio-economic drivers are 

responsible for microplastic input to rivers (Lebreton et al., 2017; Meijer et al., 2021; Schmidt 

et al., 2017; van Wijnen et al., 2019). However, the importance of certain land use drivers on 

the input of microplastics has never been assessed and is therefore a promising result for 

future plastic pollution policy.  
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6. Conclusions 
This study estimates the drivers and hotspot regions of microplastic concentrations worldwide 

based on literature study and regression analyses including both multiple linear regression 

and random forest regression. Spatial explicit driver data of four socio-economic drivers, three 

hydrologic drivers and six land use drivers was applied in combination with microplastic 

concentration data from 59 monitoring locations spread across the globe. The following 

conclusions for each research question can be stated. 

 

What are hotspot regions of microplastic concentrations in rivers worldwide? 
Global plastic loads from rivers to sea was estimated to be between 1.15 and 2.41 million 

tonnes per year, considering the modelling studies from Lebreton et al. (2017) and Schmidt et 

al. (2017). The 20 most polluting rivers were located in Asia and contributed for more than 2/3 

to the global annual plastic input towards oceans. Degradation of macro- and mesoplastics is 

a common process which implies high microplastic concentrations in these regions (van 

Wijnen et al., 2019). Microplastic concentration hotspots can thus be found in East and 

Southeast Asia, India and Bangladesh, Central Africa, Europe and North America. Drivers that 

were clearly correlated with microplastic concentrations were MPW and GDP. This latter one 

showed the largest negative correlation. Microplastic hotspots with a high GDP (Europe and 

North America) clearly have lower microplastic concentrations than the other hotspots with a 

lower GDP (India and Bangladesh). 

 

What is the contribution of socio-economic drivers, hydrologic drivers, and land use 
characteristics to microplastic loads in rivers, according to both statistical methods? 
Stepwise multiple linear regression of the 13 driver variables with the 59 monitoring locations 

resulted in a regression model with a varying R2 and significance for each driver. Drivers were 

added according to the correlation the driver had with microplastic concentration. After 

addition of all drivers into the stepwise multiple linear regression, R2 reached a value of 0.73 

and the significant drivers were GDP, pasture fraction, WWT discharge, GDP, crop fraction 

and urban fraction. Steps where MPW, GDP and crop fraction were added resulted in the 

largest increase in R2. Random forest regression resulted in a model with an R2 of 0.55. 

Normalised root mean squared error stabilised around 24.2. From the model, a variable 

importance analysis was done making it possible to conclude that GDP, MPW, population 

density and crop fraction were the most important drivers for microplastic concentrations in 

rivers.  

This study therefore showed the difference in results of both regression approaches but has 

also shown that three of the four socio-economic drivers (GDP, MPW, Population Density) 

contributed most to pollution of microplastics in rivers. In addition, the crop fraction land use 
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drivers also proved to be a large contributor according to both approaches. Crop fraction is 

followed by the other land use drivers, which are located in the middle of the contribution 

spectrum. Hydrologic drivers were the least important contributors of microplastic pollution as 

was determined by both regression models.  

 

How do the results of estimated importance of the various drivers of both methods 
compare? 
Multiple linear regression as well as random forest regression determined that GDP and MPW 

were the most important drivers of microplastic pollution in rivers. For MLR, these two drivers 

are followed by the relative importance of crop fraction, where for RF regression population 

density comes after the two most important drivers. Comparison of both approaches also 

outlined the difference in non-forest fraction importance. This driver did not result in an R2 

increase of the MLR model, suggesting a relatively small influence on microplastic pollution. 

However, RF regression determined a much stronger influence of this driver, making it the 

fifth strongest driver of microplastics in rivers. Both approaches showed similar results for the 

relatively small importance of the hydrologic drivers, making it the least important driver 

category. 

 
What is the performance of multiple linear regression and random forest regression 
techniques for predicting microplastic loads in rivers in other regions of the world? 
As presented, most recent driver data was used to produce microplastic concentration 

predictions of eight global rivers, calculated from both the MLR and RF regression approach. 

Results of the two regression methods leaded to strong variations in predicted microplastic 

concentrations. MLR predictions showed the most promising outcomes when compared with 

microplastic concentration research (Lebreton et al., 2017; van Calcar & van Emmerik, 2019; 

van Wijnen et al., 2019). RF predictions presented much smaller magnitudes than the MLR 

predictions. For the Amazon River, the difference in microplastic predictions was four orders 

of magnitude, making it the most dissimilar of the considered rivers. The higher accuracy and 

the better correspondence with existing literature, shows that the MLR approach was the best 

predicting model for global microplastic concentrations in rivers with the amount of data used 

in this study.   
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- Complete database as used in both regression analyses can be accessed via following 

link:  

Complete Database Excel File Download 

In this file monitoring data, driver data and catchment area and location of all locations is 

presented. 

- Codes for the multiple linear regression and random forest regression are given in the 

following R scripts: 

o Multiple linear regression: Link to stepwise multiple linear regression code 
(Rscript) 

o Random forest regression: Link to random forest regression code (Rscript) 
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7. Appendices 
7.1 Overview and description of the appendices 

This study contains 2 appendices referred to with in-text references to maintain readability 

when large figures or multiple consecutive figures are used. An overview and description of 

the appendices is given on this page. 

 

Appendix A: Global gridded raster data of the microplastic concentration drivers that are 

analysed in the two regression methods.  

Appendix A1: Global gridded population density data in 2020 in number of persons per km2 

(CIESIN - Columbia University, 2018). 

Appendix A2: Global gridded Mismanaged Plastic Waste production in 2019 in tonnes per 

year (Lebreton & Andrady, 2019). 

Appendix A3: Global gridded Wastewater Treatment discharge data in m3/day (Ehalt Macedo 

et al., 2022). 

Appendix A4: Global gridded GDP per capita in 2015 in US dollars (Kummu et al., 2018). 

Appendix A5: Global gridded precipitation data form 2014 in mm (Schneider et al., 2015). 

Appendix A6: Global gridded surface runoff data from 2014 in mm/day (Ghiggi et al., 2019). 

Appendix A7: Global gridded streamflow data from 2014 in m3/s (Barbarossa et al., 2018). 

Appendix A8: Global gridded non-forest land use fraction in fraction per pixels (Hurtt et al., 

2020). 

Appendix A9: Global gridded forest land use fraction in fraction per pixel (Hurtt et al., 2020). 

Appendix A10: Global gridded crop land use fraction in fraction per pixel (Hurtt et al., 2020). 

Appendix A11: Global gridded urban land use fraction in fraction per pixel (Hurtt et al., 2020). 

Appendix A12: Global gridded rangeland land use fraction in fraction per pixel (Hurtt et al., 

2020). 

Appendix A13: Global gridded pastureland land use fraction in fraction per pixel (Hurtt et al., 

2020). 

 

Appendix B1: Extended results of the stepwise multiple linear regression analyses. Table 

shows for each driver the standard error and p-value. 

Appendix B2: Residuals versus model fit as determined by the MLR approach 

 



Appendix A1 Global gridded population density data in 2020 in number of persons per km2 



 54 

Appendix A2 Global gridded Mismanaged Plastic Waste production in 2019 in tonnes per year 
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Appendix A3 Global gridded Wastewater Treatment discharge data in m3/day 
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Appendix A4 Global gridded GDP per capita in 2015 in US dollars 
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Appendix A5 Global gridded precipitation data form 2014 in mm  
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Appendix A6 Global gridded surface runoff data from 2014 in mm/day 
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Appendix A7 Global gridded streamflow data from 2014 in m3/s 
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Appendix A8 Global gridded non-forest land use fraction in fraction per pixels 

  

Non-forest land use 
[fraction/pixel] 
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Appendix A9 Global gridded forest land use fraction in fraction per pixel 

  

Forest land use 
[fraction/pixel] 
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Appendix A10 Global gridded crop land use fraction in fraction per pixel 

  

Crop land use 
[fraction/pixel] 
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Appendix A11 Global gridded urban land use fraction in fraction per pixel 

  

Urban land use 
[fraction/pixel] 
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Appendix A12 Global gridded rangeland land use fraction in fraction per pixel 

  

Rangeland land use 
[fraction/pixel] 
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Appendix A13 Global gridded pastureland land use fraction in fraction per pixel

Pastureland land use 
[fraction/pixel] 
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Appendix B1 Extended results of the stepwise multiple linear regression analyses. 
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Appendix B2 Residuals versus model fit as determined by the MLR approach 

 

  



 68 

8. References 
 
Adeola Fashae, O., Abiola Ayorinde, H., Oludapo Olusola, A., & Oluseyi Obateru, R. (2019). 

Landuse and surface water quality in an emerging urban city. Applied Water Science, 

9(2), 25. https://doi.org/10.1007/s13201-019-0903-2 

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 

1977–1984. https://doi.org/10.1098/rstb.2008.0304 

Arnaez, J., Lasanta, T., Ruiz-Flaño, P., & Ortigosa, L. (2007). Factors affecting runoff and 

erosion under simulated rainfall in Mediterranean vineyards. Soil and Tillage 

Research, 93(2), 324–334. https://doi.org/10.1016/j.still.2006.05.013 

Barbarossa, V., Huijbregts, M. A. J., Beusen, A. H. W., Beck, H. E., King, H., & Schipper, A. M. 

(2018). FLO1K, global maps of mean, maximum and minimum annual streamflow at 

1 km resolution from 1960 through 2015. Scientific Data, 5(1), 180052. 

https://doi.org/10.1038/sdata.2018.52 

Bonett, D. G., & Wright, T. A. (2011). Sample size requirements for multiple regression 

interval estimation. Journal of Organizational Behavior, 32(6), 822–830. 

https://doi.org/10.1002/job.717 

Boy-Roura, M., Nolan, B. T., Menció, A., & Mas-Pla, J. (2013). Regression model for aquifer 

vulnerability assessment of nitrate pollution in the Osona region (NE Spain). Journal 

of Hydrology, 505, 150–162. https://doi.org/10.1016/j.jhydrol.2013.09.048 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 



 69 

Chen, H. L., Selvam, S. B., Ting, K. N., & Gibbins, C. N. (2021). Microplastic pollution in 

freshwater systems in Southeast Asia: Contamination levels, sources, and ecological 

impacts. Environmental Science and Pollution Research, 28(39), 54222–54237. 

https://doi.org/10.1007/s11356-021-15826-x 

Chenini, I., & Khemiri, S. (2009). Evaluation of ground water quality using multiple linear 

regression and structural equation modeling. International Journal of Environmental 

Science & Technology, 6(3), 509–519. https://doi.org/10.1007/BF03326090 

Christiansen, K. (2018). Global and gallatin microplastics initiatives. Adventure Scientists, 

531, 532. 

CIESIN - Columbia University. (2018). Gridded Population of the World, Version 4 (GPWv4): 

Population Density, Revision 11. NASA Socioeconomic Data and Applications Center 

(SEDAC). https://doi.org/10.7927/H49C6VHW 

Disatnik, D., & Sivan, L. (2016). The multicollinearity illusion in moderated regression 

analysis. Marketing Letters, 27(2), 403–408. https://doi.org/10.1007/s11002-014-

9339-5 

Ehalt Macedo, H., Lehner, B., Nicell, J., Grill, G., Li, J., Limtong, A., & Shakya, R. (2022). 

Distribution and characteristics of wastewater treatment plants within the global 

river network. Earth Syst. Sci. Data, 14(2), 559–577. https://doi.org/10.5194/essd-

14-559-2022 

Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, 

F., Ryan, P. G., & Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More 

than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE, 

9(12), e111913. https://doi.org/10.1371/journal.pone.0111913 



 70 

Fewtrell, T. J., Bates, P. D., Horritt, M., & Hunter, N. M. (2008). Evaluating the effect of scale 

in flood inundation modelling in urban environments. Hydrological Processes, 22(26), 

5107–5118. https://doi.org/10.1002/hyp.7148 

Fotheringham, A. S., & Oshan, T. M. (2016). Geographically weighted regression and 

multicollinearity: Dispelling the myth. Journal of Geographical Systems, 18(4), 303–

329. https://doi.org/10.1007/s10109-016-0239-5 

Gerolin, C. R., Pupim, F. N., Sawakuchi, A. O., Grohmann, C. H., Labuto, G., & Semensatto, D. 

(2020). Microplastics in sediments from Amazon rivers, Brazil. Science of The Total 

Environment, 749, 141604. https://doi.org/10.1016/j.scitotenv.2020.141604 

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever 

made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782 

Ghiggi, G., Humphrey, V., Seneviratne, S. I., & Gudmundsson, L. (2019). GRUN: an 

observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. 

Data, 11(4), 1655–1674. https://doi.org/10.5194/essd-11-1655-2019 

Hartanto, H., Prabhu, R., Widayat, A. S. E., & Asdak, C. (2003). Factors affecting runoff and 

soil erosion: Plot-level soil loss monitoring for assessing sustainability of forest 

management. Forest Ecology and Management, 180(1), 361–374. 

https://doi.org/10.1016/S0378-1127(02)00656-4 

Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste 

management. 

Hopfe, C. J., & Hensen, J. L. M. (2011). Uncertainty analysis in building performance 

simulation for design support. Energy and Buildings, 43(10), 2798–2805. 

https://doi.org/10.1016/j.enbuild.2011.06.034 



 71 

Hurley, R., Woodward, J., & Rothwell, J. J. (2018). Microplastic contamination of river beds 

significantly reduced by catchment-wide flooding. Nature Geoscience, 11(4), 251–

257. https://doi.org/10.1038/s41561-018-0080-1 

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, 

J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., 

Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., … 

Zhang, X. (2020). Harmonization of global land use change and management for the 

period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev., 13(11), 5425–5464. 

https://doi.org/10.5194/gmd-13-5425-2020 

Jambeck Jenna R., Geyer Roland, Wilcox Chris, Siegler Theodore R., Perryman Miriam, 

Andrady Anthony, Narayan Ramani, & Law Kara Lavender. (2015). Plastic waste 

inputs from land into the ocean. Science, 347(6223), 768–771. 

https://doi.org/10.1126/science.1260352 

Jiang, C., Yin, L., Li, Z., Wen, X., Luo, X., Hu, S., Yang, H., Long, Y., Deng, B., Huang, L., & Liu, Y. 

(2019). Microplastic pollution in the rivers of the Tibet Plateau. Environmental 

Pollution, 249, 91–98. https://doi.org/10.1016/j.envpol.2019.03.022 

Jones, E. R., van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Country-level and 

gridded estimates of wastewater production, collection, treatment and reuse. Earth 

System Science Data, 13(2), 237–254. https://doi.org/10.5194/essd-13-237-2021 

Kummu, M., Taka, M., & Guillaume, J. H. A. (2018). Gridded global datasets for Gross 

Domestic Product and Human Development Index over 1990–2015. Scientific Data, 

5(1), 180004. https://doi.org/10.1038/sdata.2018.4 



 72 

Lebreton, L., & Andrady, A. (2019). Future scenarios of global plastic waste generation and 

disposal. Palgrave Communications, 5(1), 6. https://doi.org/10.1057/s41599-018-

0212-7 

Lebreton, L., Zwet, J. van der, Damsteeg, J.-W., Slat, B., Andrady, A., & Reisser, J. (2017). 

River plastic emissions to the world’s oceans. Nature Communications, 8(1), 15611. 

https://doi.org/10.1038/ncomms15611 

Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen Ways to Look at the Correlation 

Coefficient. The American Statistician, 42(1), 59–66. 

https://doi.org/10.1080/00031305.1988.10475524 

Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: Baseline data 

and new approaches to study the world’s large river systems. Hydrological Processes, 

27(15), 2171–2186. https://doi.org/10.1002/hyp.9740 

Liu, Z., Li, Y., & Li, Z. (2009). Surface water quality and land use in Wisconsin, USA – a GIS 

approach. Journal of Integrative Environmental Sciences, 6(1), 69–89. 

https://doi.org/10.1080/15693430802696442 

Luan, J., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2020). The predictive performances of random 

forest models with limited sample size and different species traits. Fisheries 

Research, 227, 105534. https://doi.org/10.1016/j.fishres.2020.105534 

Mai, L., Sun, X.-F., Xia, L.-L., Bao, L.-J., Liu, L.-Y., & Zeng, E. Y. (2020). Global Riverine Plastic 

Outflows. Environmental Science & Technology, 54(16), 10049–10056. 

https://doi.org/10.1021/acs.est.0c02273 

Mani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the 

Rhine River. Scientific Reports, 5(1), 17988. https://doi.org/10.1038/srep17988 



 73 

Meijer, van Emmerik Tim, van der Ent Ruud, Schmidt Christian, & Lebreton Laurent. (2021). 

More than 1000 rivers account for 80% of global riverine plastic emissions into the 

ocean. Science Advances, 7(18), eaaz5803. https://doi.org/10.1126/sciadv.aaz5803 

Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le 

Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchère, V., & van Oost, 

K. (2005). Modeling response of soil erosion and runoff to changes in precipitation 

and cover. Soil Erosion under Climate Change: Rates, Implications and Feedbacks, 

61(2), 131–154. https://doi.org/10.1016/j.catena.2005.03.007 

Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and 

removal efficiency of microplastics in wastewater treatment plants. Environmental 

Pollution, 255, 113326. https://doi.org/10.1016/j.envpol.2019.113326 

Nicodemus, K. K., & Malley, J. D. (2009). Predictor correlation impacts machine learning 

algorithms: Implications for genomic studies. Bioinformatics, 25(15), 1884–1890. 

https://doi.org/10.1093/bioinformatics/btp331 

Nimon, K. F., & Oswald, F. L. (2013). Understanding the Results of Multiple Linear 

Regression: Beyond Standardized Regression Coefficients. Organizational Research 

Methods, 16(4), 650–674. https://doi.org/10.1177/1094428113493929 

Peters, J., Baets, B. D., Verhoest, N. E. C., Samson, R., Degroeve, S., Becker, P. D., & 

Huybrechts, W. (2007). Random forests as a tool for ecohydrological distribution 

modelling. Ecological Modelling, 207(2), 304–318. 

https://doi.org/10.1016/j.ecolmodel.2007.05.011 

Rasmussen, L. A., Iordachescu, L., Tumlin, S., & Vollertsen, J. (2021). A complete mass 

balance for plastics in a wastewater treatment plant—Macroplastics contributes 



 74 

more than microplastics. Water Research, 201, 117307. 

https://doi.org/10.1016/j.watres.2021.117307 

Reis, M. S., & Saraiva, P. M. (2005). Integration of data uncertainty in linear regression and 

process optimization. AIChE Journal, 51(11), 3007–3019. 

https://doi.org/10.1002/aic.10540 

Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L. 

(2014). Predictive modeling of groundwater nitrate pollution using Random Forest 

and multisource variables related to intrinsic and specific vulnerability: A case study 

in an agricultural setting (Southern Spain). Science of The Total Environment, 476–

477, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001 

Salmerón, R., García, C. B., & García, J. (2018). Variance Inflation Factor and Condition 

Number in multiple linear regression. Journal of Statistical Computation and 

Simulation, 88(12), 2365–2384. https://doi.org/10.1080/00949655.2018.1463376 

Schmidt, C., Krauth, T., & Wagner, S. (2017). Export of Plastic Debris by Rivers into the Sea. 

Environmental Science & Technology, 51(21), 12246–12253. 

https://doi.org/10.1021/acs.est.7b02368 

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2015). 

GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation 

from Rain-Gauges built on GTS-based and Historic Data. 

https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050 

Siegfried, M., Koelmans, A. A., Besseling, E., & Kroeze, C. (2017). Export of microplastics 

from land to sea. A modelling approach. Water Research, 127, 249–257. 

https://doi.org/10.1016/j.watres.2017.10.011 



 75 

Singh, B., Sihag, P., & Singh, K. (2017). Modelling of impact of water quality on infiltration 

rate of soil by random forest regression. Modeling Earth Systems and Environment, 

3(3), 999–1004. https://doi.org/10.1007/s40808-017-0347-3 

Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – 

Removal of microplastics from wastewater effluent with advanced wastewater 

treatment technologies. Water Research, 123, 401–407. 

https://doi.org/10.1016/j.watres.2017.07.005 

Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of 

Diagnostic Medical Sonography, 6(1), 35–39. 

https://doi.org/10.1177/875647939000600106 

Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H., & van Vliet, M. T. 

H. (2021). Common irrigation drivers of freshwater salinisation in river basins 

worldwide. Nature Communications, 12(1), 4232. https://doi.org/10.1038/s41467-

021-24281-8 

Tong, S. T. Y., & Chen, W. (2002). Modeling the relationship between land use and surface 

water quality. Journal of Environmental Management, 66(4), 377–393. 

https://doi.org/10.1006/jema.2002.0593 

Townsend, K. R., Lu, H.-C., Sharley, D. J., & Pettigrove, V. (2019). Associations between 

microplastic pollution and land use in urban wetland sediments. Environmental 

Science and Pollution Research, 26(22), 22551–22561. 

https://doi.org/10.1007/s11356-019-04885-w 

Tsering, T., Sillanpää, M., Sillanpää, M., Viitala, M., & Reinikainen, S.-P. (2021). Microplastics 

pollution in the Brahmaputra River and the Indus River of the Indian Himalaya. 



 76 

Science of The Total Environment, 789, 147968. 

https://doi.org/10.1016/j.scitotenv.2021.147968 

Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. 4th 

International Conference on New Horizons in Education, 106, 234–240. 

https://doi.org/10.1016/j.sbspro.2013.12.027 

van Calcar, C. van, & van Emmerik, T. van. (2019). Abundance of plastic debris across 

European and Asian rivers. Environmental Research Letters, 14(12), 124051. 

van Emmerik, T., & Schwarz, A. (2020). Plastic debris in rivers. WIREs Water, 7(1), e1398. 

https://doi.org/10.1002/wat2.1398 

van Wijnen, J., Ragas, A. M. J., & Kroeze, C. (2019). Modelling global river export of 

microplastics to the marine environment: Sources and future trends. Science of The 

Total Environment, 673, 392–401. https://doi.org/10.1016/j.scitotenv.2019.04.078 

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, 

E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, 

A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater 

ecosystems: What we know and what we need to know. Environmental Sciences 

Europe, 26(1), 12. https://doi.org/10.1186/s12302-014-0012-7 

Waldschläger, K., Brückner, M. Z. M., Carney Almroth, B., Hackney, C. R., Adyel, T. M., Alimi, 

O. S., Belontz, S. L., Cowger, W., Doyle, D., Gray, A., Kane, I., Kooi, M., Kramer, M., 

Lechthaler, S., Michie, L., Nordam, T., Pohl, F., Russell, C., Thit, A., … Wu, N. (2022). 

Learning from natural sediments to tackle microplastics challenges: A 

multidisciplinary perspective. Earth-Science Reviews, 228, 104021. 

https://doi.org/10.1016/j.earscirev.2022.104021 



 77 

Wang, M., Wright, J., Brownlee, A., & Buswell, R. (2016). A comparison of approaches to 

stepwise regression on variables sensitivities in building simulation and analysis. 

Energy and Buildings, 127, 313–326. https://doi.org/10.1016/j.enbuild.2016.05.065 

Welden, N. A., & Lusher, A. L. (2017). Impacts of changing ocean circulation on the 

distribution of marine microplastic litter. Integrated Environmental Assessment and 

Management, 13(3), 483–487. https://doi.org/10.1002/ieam.1911 

 


