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Abstract 
Background 

The COVID-19 pandemic is the largest outbreak of an infectious disease in modern history. 

Europe has reported the most cases of COVID-19 as of July 2022 and every country has  

implemented some form of containment measures to mitigate the spread of COVID-19. 

Outbreaks of infectious diseases are however characterized by containment measures taken 

by one country having substantial consequences for others. Studying these spatial effects is 

crucial to understand the trajectory of COVID-19.  

Methods 

Spatial panel data models have been used to study the effects of containment measures on 

COVID-19 cases. Spatial panel data models have been chosen as this type of analysis 

encompasses both the temporal and spatial dimension. This study has used 38 European 

countries over a 109-week period. A fixed effects spatial lag and spatial error model has 

been conducted on this data.  

Results  

When a country implements stricter containment measures, this will decrease cases two 

weeks later in the same country. Furthermore, when countries implement stricter 

containment measures, this will decrease COVID-19 cases two weeks later in Europe. Spatial 

effects are present in containment measures on COVID-19 cases. 

Conclusion 

Understanding the spatial and temporal dimension of containment measures is crucial to 

design proper containment measures for COVID-19 and future infectious diseases with 

pandemic potential.  
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Chapter 1 Introduction 
The COVID-19 pandemic is the largest outbreak of an infectious disease in modern history. 

Since early 2020, COVID-19 cases have spread throughout the world and have been going up 

and down in this period. At this moment of writing,  544,324,069 confirmed cases have been 

reported globally, including 6,332,963 deaths. For contact transmission, COVID-19 

transmission occurs via human-to-human contact due to coughing, sneezing, speaking, 

singing, or breathing. In addition, people may become infected when touching their eyes, 

nose, or mouth after touching contaminated surfaces. The disease spread quickly across 

borders and continents, given the connected world we live in (World Health Organization, 

2022). At the beginning of the pandemic, the World Health Organization (WHO) provided 

recommendations for governments on how to mitigate the spread of COVID-19, both 

pharmaceutical and non-pharmaceutical (World Health Organization, 2022). This included 

recommendations on an individual level such as face mask wearing but also 

recommendations on a group level such as mobility restrictions.  Every country in the world 

implemented some form of these containment measures (Ritchie et al., 2022). Outbreaks of 

infectious diseases are characterized by containment measures taken by one country having 

substantial consequences for others (Gersovitz, 2014).  

To tackle cross-border issues such as a pandemic, countries form multilateral agreements. In 

Europe, both small and large countries have benefited from the rise in multilateral 

agreements in the past decades. The COVID-19 pandemic has however showed weaknesses 

in the European multilateral system. The initial response was slow and inadequate, 

reflecting the urgency which was given on pandemic preparedness in previous years of 

European countries. Countries pursued their own self-interest in terms of containment 

measures to reduce cases (Jit et al., 2021) 

Just as with any disease, prevalence results from individual characteristics. However, spatial 

dimensions and containment measures have a relation with the spread of COVID-19 (Wang 

et al., 2021). After two years, the world has learned more on the trajectory of COVID-19 and 

how to reduce cases. COVID-19 tends to increase exponentially (Vetter et al., 2020) (Palmer 

et al., 2021). Implementing strict containment measures at an early stage will limit the 

spread of COVID-19 through a country (Haug et al., 2020). The higher connectedness of 

countries implies higher virus circulation between the countries. The rate of COVID-19 cases 

has a spatial dimension just as other infectious diseases. Countries with a higher level of 

connectedness are prone to higher case rates. Furthermore, regions are more prone to 

higher cases when their neighbouring regions have a high incidence rate (Wang et al., 2021).  

Knowledge is thus available on the impact that cases have on neighbouring countries. 

Knowledge on the effects that containment measures over time have on the cases of its 

neighbouring countries is however limited. Studying these temporal and spatial 

determinants is crucial to understand the entire magnitude of COVID-19 spread through a 

network. Europe is the most connected continent in the world in terms of human mobility, 

Therefore, using this continent as the region for this analysis is all the more relevant 

(Amdaoud et al., 2021).  
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1.1 Relevancy, urgency, objective 
At this moment of writing, the COVID-19 pandemic is still ongoing. The latest Omicron 

variant has shown signs of weaker symptoms, reducing COVID-19 hospitalization rates all 

over Europe (WHO, 2022). European governments have lifted containment measures due to 

these lower COVID-19 hospitalization rates, giving governments time to reflect on the first 

two years of the pandemic (Ritchie et al., 2022).  

Understanding the entire scope of the effects of containment measures on cases is urgent 

as the COVID-19 pandemic does not only encompass health related issues. As time 

progresses, more attention is focused on the socioeconomic effects due to COVID-19 

measures. Just as the health system has been hit by COVID-19, so has the socioeconomic 

system. These systems may need years to recover, giving decision-makers more elements to 

consider in possible new COVID-19 waves (Amdaoud et al., 2021). In addition, new types of 

infectious disease with pandemic potential will appear in the future (Jit et al., 2021).  

Given the connected world that we live in it is crucial to understand the spatial dimension 

between countries to design proper mitigation strategies for COVID-19 but also for future 

infectious diseases. Studying these temporal and spatial dimensions of COVID-19 is crucial, 

given that Europe is highly connected but the decision-making on containment measures is 

based on a national level. Uncovering the effects that containment measures taken on a 

national level have on its own cases but also on other countries paints a more complete 

picture of the impact of containment measures. The aim of this study is therefore to 

research the effects of COVID-19 containment measures of countries on COVID-19 cases in 

neighbouring countries in Europe. This will be done using a spatial panel data model to 

encompass both temporal and spatial effects.  

1.2 Research question:  
 

To what extent do COVID-19 containment measures of a country have an impact on COVID-

19 cases of neighbouring countries? 

 

 

 

 

 

 

 

 

 



9 
 

Chapter 2 Literature review 
In this section a literature review will be conducted. Literature on the trajectory of cases of 

COVID-19 will be given. In addition, containment measures will be discussed and how these 

containment measures will be quantified during this study.  

2.1. COVID-19 cases 
At this moment of writing, 227,862,893 confirmed cases of COVID-19 have been reported in 

Europe, including 2,760,872 deaths. The true COVID-19 cases and deaths are expected to be 

higher. The first confirmed case was reported in France on the 24th of January 2020. By the 

17th of March 2022, every country in Europe had confirmed cases. Europe experienced 

several peaks in cases. By far the largest peak in cases occurred in December 2021 due to 

the emergence of the Omicron variant. This peak lasted several weeks. As of July 2022, 

Europe is the most affected continent in the world in terms of confirmed cases (WHO, 

2022).  

Figure 1: COVID-19 cases in Europe 01-01-2020 until 01-07-2022 (WHO, 2022) 

 

COVID-19 is a disease with strong spatial dimension in infection spread. The trajectory of 

COVID-19 throughout Europe did not go homogeneous. Significant differences occurred in 

infection rates between regions. Regional impacts were highly heterogenous and the effects 

on countries differed both on cases and on deaths. Differences did not only occur among 

countries but also within countries. The reason for this is the regional socioeconomic 

differences (OECD, 2020).  

The relationship between infectious diseases and socioeconomic factors is not new. This 

topic has however raised more attention in the past decade. Multiple studies have been 

conducted which concluded that omitting the spatial element from an analysis on virus 

spread would lead to a partial understanding of infectious diseases (Linard et al., 2007) 

(Stanturf et al., 2015). These socioeconomic factors can be grouped into four categories: 

demographic determinants, income determinants, health care determinants and 

institutional determinants (Amdaoud et al., 2021). 
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Demographic determinants are particularly important for Europe as Europe is the oldest 

continent in the world and is expected to stay this for the foreseeable future. In addition, 

Europe is the most densely populated continent in the world (Eurostat, 2022). This is 

important as around 95% of people who die of COVID-19 are over 60 years, and 50% are 

over 80 years (WHO, 2022). The wealth and income in a region also play a role in the 

occurrence of COVID-19 just as in other diseases. In addition, the type of occupations in a 

region plays a role. Occupations which require one to be in close proximity of another will 

be more likely to be prone to infectious diseases. This was seen in  for instance cleaners, 

healthcare workers, and teachers (Mongey et al., 2020). Furthermore, a significant relation 

exists between poverty and the prevalence of infectious diseases. This is because people in 

poverty are more likely to be less educated, are less likely to have health insurance, and 

work more often in close proximity occupation (Talavera & Perez, 2009) (Olson et al., 2012). 

Countries with a higher GDP per capita rate are however prone to higher infection rates, 

what may seem contradictive because of the previous statement. The reason behind this is 

that countries with higher levels of GDP per capita are also countries higher levels of 

connectedness between individuals. In addition, countries with higher levels of GDP per 

capita are more open to international trade and the movement of people. Clusters of 

COVID-19 for instance occurred at the centres of economic activity (Ascani et al., 2020). 

Furthermore, a country its health infrastructure plays a role in coping with pandemics. Well-

structured health infrastructure positively affects a government its capacity to deal with 

rising hospitalization rates (Zanakis et al., 2007) (Gizelis et al., 2017). In addition, the country 

is better equipped in detecting, diagnosing, and reporting new cases (Hosseini et al., 2010) 

(Hogan et al., 2018). The institutional factor plays a role in the level of trust citizens have in 

its government. Government containment measures take time to enforce. Trust in public 

authorities is therefore of the essence to enforce these measures. Higher levels of trust in 

government institutions have a significant effect on mitigating the spread of COVID-19 

(OECD, 2020).  

The trajectory of COVID-19 in countries is therefore not solely dependent on the virus itself. 

Other factors in a country are at play which may influence the prevalence of COVID-19. It is 

important to be aware of these factors as they are mostly fixed over a relatively short time 

period. Understanding that demographic determinants, income determinants, health care 

determinants and institutional determinants al have an impact on cases is important to 

understand the spatial dimension of COVID-19 and design proper containment measures. 

This is because these determinants are challenging to influence to contain cases. These 

determinants are thus assumed to be time invariant and fixed when containing cases of 

COVID-19 (Terriau et al., 2021).  

For the remainder of this study, COVID-19 cases will be considered new confirmed cases of 

COVID-19 per 1,000,000 people. Counts can include probable cases, where reported. 

  

 

 



11 
 

2.2. COVID-19 containment measures 
Every European country has implemented some form of containment measure to control 

the spread of COVID-19, both pharmaceutical and non-pharmaceutical. Just as cases, the 

strictness of these containment measures has been going up and down in the past two years 

(Ritchie et al., 2022). The decision-making process was led by individual countries instead of 

on a multi-country level. At the beginning of the pandemic, European countries 

implemented relatively homogeneous types of non-pharmaceutical interventions to stop 

the spread of COVID-19. In general, some type of lockdown was implemented due to a lack 

of medical equipment and knowledge on the virus. Countries reintroduced border controls 

and social distancing measures were taken (Maurice et al., 2020). When cases dropped due 

to the seasonality of the virus and vaccines, countries lifted their restrictions. This process of 

rising cases leading to stricter measures was an ongoing process. The only difference with 

the beginning of the pandemic was that the types of measures differed more among 

countries as medical equipment was now more on hand and governments learned more 

about the virus. Countries weight independently which type of measure to take (Jit et al., 

2021).  

After two years, the world has learned from the impact the disease and containment 

measures had and still have on health and socioeconomic systems. In addition to the 

physical health risks, COVID-19 has had an impact on the mental health of people. 

Furthermore, socioeconomic systems have been disrupted due to containment measures, 

increasing economic hardship, food insecurity, lack of education, and lack of access to 

healthcare (Van Lancker & Parolin, 2020). Since early 2021, containment measures are not 

always received well across Europe. Reasons for this is economic loss, psychological 

burdens, inadequate communication, lack of long-term perspective, increasing vaccination 

coverage, and lack of trust in the government (Iftekhar et al., 2021).  

Even though the measures are not always received well, the effect of stricter COVID-19 

measures on lowering cases is significant. Countries which are found implementing fast and 

strict restrictions see a reduction in cases, with less and less new cases every day. When 

countries ease their restrictions, this increases cases. This however has a smaller effect than 

when countries tighten their measures. If population immunity is not achieved, measures 

are needed to mitigate the spread COVID-19 cases. The earlier these measures are 

implemented the more effective they are (Iftekhar et al., 2021). Countries therefore need to 

weigh whether they give more preference to the reduction of cases or the socioeconomic 

effect of stricter containment measures.   

Knowledge on the impact of containment measures on COVID-19 cases in neighbouring 

countries is limited. One study by Ahmed and May (2021) mentions the impact of 

containment measures on cases in neighbouring regions. This study concludes that stricter 

containment measures in Northern Ireland have had a negative impact on COVID-19 cases 

in districts in Ireland which laid at the border of Northern Ireland.   
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The strictness of containment measures can be measured with the containment index. This 

is a measure of response metrics of governments. The index uses the following thirteen 

indicators: school closures, workplace closures, cancellation of public events, restrictions on 

public gatherings, closures of public transport, stay-at-home requirements, public 

information campaigns, restrictions on internal movements, international travel controls,  

testing policy, extent of contact tracing, face coverings, and vaccine policy. The index is 

calculated by taken the mean of the thirteen indexes. A higher score indicates a stricter 

containment measure. The containment index ranges from 0 to 100. When the decision-

making process in not uniform across a country, the response level of the strictest region is 

taken (Ritchie et al., 2022).  
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Chapter 3 Theoretical framework 
To study both the temporal and spatial dimension of COVID-19, a spatial panel data model 

will be used which encompasses both aspects. This section will describe the theory behind 

the use panel data and spatial panel data and their mathematical background. In addition, 

different models used in panel data models and spatial panel data models will be 

introduced.  

3.1 Panel data model 
Panel data has a different structure than ordinary data frames. Panel data refers to a cross 

section of observations which is repeated over multiple time periods. Examples of 

observations are individuals, groups, counties, regions, and countries. This analysis is often 

used in econometrics, epidemiology, and social science (Baltagi et al., 2013). The following 

equation displays a panel data regression model: 

                       (1) 

where y is the dependent variable, i is the index for observations, and t is the index for time. 

x’it denotes the 1 x k  vector of observations for the independent variables. β is the k x 1 

vector of undetermined coefficients. ui is the unobserved individual effects. ε is the error 

time of disturbance that varies with the individual and time. When is ui  is related to the x’it  , 

the panel data model is a fixed effects model, otherwise it is a random effects model 

(Fotheringham and Rogerson, 2008).  

Fixed effects assume different intercepts in the regression equation. Fixed effects are 

variables that are constant across individuals. Examples are age, sex, and ethnicity. They 

either do not change or change at a constant rate over time. In theory, variables can change. 

These changes are however assumed to change at a slow rate and thus treated as constant.  

The alternative is random effects. Random effects assume different disturbances in the 

regression equation. Examples are prices, costs, temperatures. These variables change 

faster over time and are therefore considered random.  

Determining whether to use a fixed or random effects model can be done with tests. This 

can be done using with the F test and Wald test for fixed effects and the Breusch-Pagan 

Lagrange Multiplier (LM) test for random effects as can be seen in table 1. If both fixed and 

random turn out, the Hausman test can be conducted. The null hypothesis of the Hausman 

test is that either the fixed or random effects are not correlated with other independent 

variables. If the null hypothesis is rejected, random effect models will be suffering from the 

Gauss-Markov theory. This leads to biased estimates. Fixed effect models will remain 

unbiased. Therefore, if the null hypothesis is rejected, fixed effect models must be used (Bell 

& Jones, 2015).  
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Table 1. Determining the panel data model 

Fixed effect  
(F test or Wald test) 

Random effect  
(Breusch-Pagan LM test) 

Model 

H0 is not rejected  
(No fixed effect) 

H0 is not rejected  
(No random effect) 

Pooled  

H0 is rejected  
(Fixed effect) 

H0 is not rejected  
(No random effect) 

Fixed effect model 

H0 is not rejected  
(No fixed effect) 

H0 is rejected  
(Random effect) 

Random effect model 

H0 is rejected  
(Fixed effect) 

H0 is rejected  
(Random effect) 

Hausman test 

 

3.2 Spatial panel data model 
Spatial data analysis deals with spatial interactions and spatial structures in regression 

models for cross-sectional and panel data (Anselin, 1998). In the past, spatial data analysis 

which uses geography was used in regional science and economics. More recently, it is used 

in social sciences and epidemiology. The focus has been put more on this type of analysis 

because of the interest in spatial effects, being spatial autocorrelation and spatial 

heterogeneity. Spatial autocorrelation concerns the degree of spatial dependence among 

observations in a geographic space. Spatial heterogeneity concerns the uneven distribution 

of various concentration of each observation in a geographic space (Katchova et al., 2002).   

To perform spatial data analysis, the structure of spatial relationships among observations 

must be known. This can be captured using a spatial weights matrix (SWM). The SWM 

encompasses which observations are neighbours and how their values relate. The SWM can 

be defined as W where elements Wij indicate whether observation i and j are spatially close. 

The dimensions of the SWM are NxN with N being the sample size. This can cause difficulties 

with large sample sizes. In an SWM, the diagonal elements are put to zero. The matrix is row 

standardized. This means that weights of each row need to add up to one. An SWM can be 

based on contiguity and on distance. Contiguity means whether a region is adjacent to 

another region. Distance means the inverse distance among regions up to a distance band.  

The SWM can be used to conduct spatial regression. Spatial regressions account for the 

spatial dependence in the data. This spatial dependence is added to the regression equation 

with spatial lag and spatial error (Lam & Souza, 2020). 

The spatial lag model can be used when the spatial dependence revolves around the 

dependent variable. This model is a spatial autoregressive model, and it includes a spatially 

lagged dependent variable y. An example of this is that the number of COVID-19 cases in a 

region depends on the number of COVID-19 cases of its neighbouring regions. The 

independent variables in this equation explain the variation in the dependent variables 

which is not explained by the neighbours. The spatial lag is defined as Wy. This means that 

the dependent variable y is a weighted average of its neighbouring values. The model for 

spatial lag regression is called the spatial autoregression (SAR) model and is defined as: 

         (2) 
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where ρWyt is the spatial lag of the dependent variable. ρ is the spatial autoregression 

coefficient. The Wyt is the contiguity based on the matrix and can be defined as: 

         (3) 

If ρ is statistically significant, there is spatial dependence in the dependent variable. The 

value for ρ is the degree of dependence. (Gelfand et al., 2010).  

The spatial error model can be used when you want to correct for spatial autocorrelation 

because of the use spatial data. It does not matter here whether the model is spatial. The 

structure of the spatial relationship is not known. In this model you include spatially 

correlated errors due to the unobserved features which are related to the neighbour. The 

spatial error model (SEM) can be defined as: 

         (4) 

  

where λWεt is the spatial error term and vit is the random error term. This random error 

term is assumed to be independent. In this equation λ is the autoregressive factor. If λ is 

statistically significant, unobserved independent variables with spatial autocorrelation is 

present. This can be noticed with a trend in of spatial autocorrelation in the residuals 

(Elhorst, 2014).  

3.2.1 Maximum Likelihood and Generalized Method of Moments 

When the model is determined, both Maximum Likelihood (ML) and Generalized Method of 

Moments (GMM) estimators can be implemented in the model. The GMM approach is more 

robust than ML given that the ML approach uses assumptions about the entire distribution 

whereas GMM uses assumptions about specific moments. The GMM approach is therefore 

computationally less intensive and reduces running time. This makes the GMM method 

more suitable for large datasets and when both spatial lag and spatial error is present. Large 

datasets for spatial panel data models are considered to have 10,000 cross sectional 

observations. This is therefore not relevant for this study. Results are expected to be 

relatively similar when using either method (Millo & Piras, 2012).  
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Chapter 4 Methods and techniques 
To answer the research question, a spatial panel data analysis will be conducted. This will be 

done by firstly conducting a panel data analysis. Secondary data will be used from Our 

World in Data. To conduct these analyses SQL, GeoDA,  QGIS, and R will be used.  

4.1 Data preparation 
Data was extracted from Our World in Data (Ritchie et al., 2022). Both data files on cases 

and containment index were  merged using SQL code. The values were aggregated into 

weekly data as they were presented in daily data with R code. This was done to remove 

daily fluctuation in the data. Panel data is a data structure which consists of a cross section 

of individuals (countries) repeated over several time periods (109 weeks) (Baltagi et al., 

2013). For this study, the cross section of individuals is 38 countries on the European 

continent. The number of countries is limited to 38 for two conditions: 

• The country needs at least one neighbouring country in terms of land borders.  

• The country needs to have data available for COVID-19 cases and containment 

measures.  

After going through these conditions, 38 countries remained. The time periods were taken 

from the 2nd of March 2020 until the 27th of March 2022, accounting for 109 weeks. Mean 

imputation was conducted as the number of missing values is less than one percentage 

being 0.56% .  

The analysis has been conducted in R with the “pml” and “spml” package (Yves & Croissant, 

2008) (Millo & Piras, 2012). The pml package will be used for the panel model data analysis. 

The spml package will be used for the spatial panel model analysis. These packages are 

designed based on the theory described in the theoretical framework. For the analysis, 

requirements for both packages are that data are transformed into panel data. To transform 

the data to panel data an index for the observations and an index for the time is needed. 

These indexes are listed below: 

 

 

 

Indices 

• Observations:  Country_ID  

• Time:   Week 
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Both packages also require a dependent variable and independent variable(s). These are as 

follows: 

When the distributions of the dependent and four independent variables is visualized, it is 

displayed that a significant left skew is visible in the variables cases, cases_lag_2 and 

cases_nb_lag_2. As these variables are skewed, they are logarithmically transformed to 

acquire a distribution that reflects a normal distribution (Benoit, 2011), Therefore, the log 

for these variables is taken. The ci_lag_2 and ci_nb_lag_2 remain as is.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable 

• log(cases): the country its confirmed cases of COVID-19 per 1,000,000 people. Counts 

can include probable cases, where reported. 

Independent variables 

• log(cases_lag_2): the country its confirmed cases of COVID-19 per 1,000,000 people with 

a two-week lag. Counts can include probable cases, where reported. 

• log(cases_nb_lag_2): the average confirmed cases of COVID-19 per 1,000,000 people of 

the neighbouring countries with a two-week lag. Counts can include probable cases, 

where reported. 

• ci_lag_2: the containment index of the country with a two-week lag. 

• ci_nb_lag_2: the average containment index of the neighbouring countries with a two-

week lag. 
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Figure 2. Distributions of variables  

    

  

Figure 3. Distribution of variables after log transformation 

   

The panel data frame consists of 38 countries with seven features over the same time 

period (week 1 to 109). Each country has values for every week, making it a balanced panel 

data set, a requirement for the plm and splm package in R.  

The SWM was computed using QGIS, Geoda, and R. To construct an SWM, a panel data 

frame is needed. In addition, a Shapefile and a GAL file are needed. To construct the 

Shapefile and GAL file, data on the 38 countries was extracted from Natural Earth Data 

(Natural Earth Data, 2022). This data includes features of countries and how they relate. 

This datafile was imported into QGIS. In QGIS, the 38 countries from the QGIS data frame 

were merged with the 38 countries from the panel data frame. After selection and merging, 

a new data frame was extracted, and a Shapefile was created. In GeoDA the relationships 

whether countries are neighbours is defined based on contiguity, thus adjacent. These 

relationships are then extracted from GeoDA as a GAL file. Both the Shapefile and GAL file 

were imported in R. In R code was written to construct the SWM based on contiguity. 
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4.2 Data models 

4.2.1 Panel data model 

The plm package provides four functions. For this analysis only the plm function will be 

used. This function estimates the fixed and random effect models.  (Croissant & Millo, 

2008). The plm package requires that each row of the data corresponds to a specific 

observation (country) and time (week). The data argument must be as follows:  

• NULL (the default value), it is then assumed that the first two columns contain the 

individual and the time index and that observations are ordered by individual and by 

time period. 

• A character string, which should be the name of the individual index. 

• A character vector of length two containing the names of the individual and the time 

index. 

• An integer which is the number of individuals (only in case of a balanced panel with 

observations ordered by individual). 

• A panel data frame where individual and time indexes need to be specified.  

The display of the plm function is similar to the linear model  lm() function. The first 

argument needs to include the formula and the second argument should be data as 

described in the above five possibilities. Additionally, three arguments are available: 

• index: this argument enables the estimation functions to identify the structure of 

the data, such as the individual and the time period for each observation. 

• effect: the kind of effects to include in the model, such as individual effects, time 

effects or both. 

• model: the kind of model to be estimated, most of the time a model with fixed 

effects or a model with random effects. 

 

4.2.2 Spatial panel data model 

The splm package builds further on the plm package, adding the spatial dimension. Just as in 

the plm package, the spml package requires that each row of the data corresponds to a 

specific individual (country) and time (week) (Millo & Piras, 2012). The data argument must 

be as follows:  

• A data frame whose first two variables are the individual and time indexes. The index 

argument should be left to the default value (i.e., NULL). 

• A data frame and a character vector indicating the indexes variables. 

• A panel data frame where individual and time indexes need to be specified.  

The structure of the associations between the spatial unit is represented by an SWM. An 

SWM W is a N x N positive matrix (Bates & Maechler, 2012). The observations appear in 

both rows and columns of the matrix. The non-zero elements represent whether two 

locations (countries) are neighbours. The diagonal elements are thus all set to zero. The 

reason for this is to exclude self-neighbours. The spatial weights are row standardized. The 

SWM can be a matrix object or a listw object (Lam & Souza, 2020).  
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Chapter 5 Findings 
In this section the results of the analysis will be discussed. The results of the panel data 

model and the spatial panel data model will be presented including the R output. The results 

will shed a light on the spatial dependence of COVID-19 cases and containment measures. 

Firstly, the analysis will start with the panel data model without spatial autocorrelation. 

Secondly, the Hausman test will determine whether to choose the fixed effects or random 

effects model. Thirdly, the LM tests will determine whether to choose a SAR or SEM model. 

Fourthly, the results of the spatial panel data models will be presented. In table 2 a 

summary of the variables can be seen.  

Table 2. Summary statistics of dependent and independent variables 

Statistic N Mean St. Dev. Min Max 

Log(cases) 4142 6.53 2.05 0.01 10.92 

log(cases_lag_2) 4142 6.53 2.05 0.01 10.92 

log(cases_nb_lag_2) 4142 6.62 1.66 0.07 10.50 

ci_lag_2 4142 56.44 12.73 0.01 90.00 

ci_nb_lag_2 4142 54.79 12.18 5.58 83.81 

 

5.1 Panel data model 
The panel data model can be used select the most suitable specification for the spatial panel 

data model. The model is without spatial autocorrelation and the Hausman test and LM test 

will be conducted to proceed with the spatial panel data model. Table 3 shows the results of 

the panel data model analysis. The pooled data model will be used as baseline to compare 

the fixed effects and random effects models. These models take into account the 

unobserved heterogeneity. In the fixed effects model, an increase in the country its cases 

will increase its cases two weeks later. A similar conclusion can be drawn of the of the cases 

of its neighbouring countries, although on a smaller scale. The measures of a country do not 

have a significant effect on its cases two weeks later. While the measures of its 

neighbouring countries lead to a decrease in cases two weeks later. The rounded adjusted R 

square is 0.31. For the random effects model all independent variables are significant. An 

increase in the country its cases and that of its neighbours increases the cases of the country 

after two weeks. While when a country and when neighbouring countries implement 

stricter measures, this leads to a reduction in the cases of the country after two weeks. 

Where the measures of the neighbouring countries have a bigger effect. The rounded 

adjusted R square is 0.31. 
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Table 3. Summary of panel data models 

Model  pooled data fixed effects random effects 

log(cases_lag_2) 0.8964*** 0.8770*** 0.8964*** 

log(cases_nb_lag_2) -0.0318 0.0127 -0.0318 

ci_lag_2 -0.0110*** -0.0097*** -0.0106*** 

ci_nb_lag_2 -0.0058*** -0.0215*** -0.0058*** 

constant 1.8018***    

observations 4142 4142 4142 

R squared adjusted  0.7070 0.7015 0.7070 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

5.2 Tests 

5.2.1 Determining the panel data model 

Determining fixed effects or random effects can be done with the F test for fixed effects, LM 

test for random effects, and the Hausman test when both are considered.  

The F test for fixed effects rejects the null hypothesis, indicating that fixed effects are 

present in the data:  

- F(37,4100) = 3.568, p < 0.001.  

The LM test for random effects rejects the null hypothesis as well, indicating that random 

effects are present in the data: 

- 4.5778, p < 0.001.  

As both tests reject the null hypothesis, the Hausman Test will be conducted. The Hausman 

Test rejects the null hypothesis of absence of correlation between individual effects and 

independent variables. Therefore, the analysis proceeds with the fixed effects model: 

- X2(4) = 113.22, p < 0.001 
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5.2.2 Determining the spatial panel data model 

Determining the which spatial panel data model to use can be done with the LM tests. 

These tests include the LM test for spatial lag dependence, LM test for spatial error, and two 

extensions of these tests (RLMlag, RLMerr).  

LM test for spatial lag dependence: 

- LM(1) = 1385.10, p < 0.001 

LM test for spatial error dependence: 

- LM(1) = 1949.70, p < 0.001 

The results of the LM tests conclude that for the spatial panel data model a spatial 

autoregressive model with spatial autoregressive disturbances is preferred. The LM test for 

spatial lag dependence and spatial error dependence both reject the null hypothesis, 

indicating that both spatial lag and spatial error dependence is present. Therefore, no 

choice can be made on whether to use a SAR or SEM model. Therefore, robust tests are 

conducted. Test 3 The rlml version tests for the absence of a spatial autoregressive term 

when the model contains a spatial autoregressive term in the errors. The rlme tests for the 

absence of a spatial autoregressive term in the errors when the models contain a spatial 

autoregressive term.  

Locally robust LM test for spatial lag dependence sub spatial error (RLMlag): 

- LM(1) = 24.608, p < 0.001 

Locally robust LM test for spatial error dependence sub spatial lag (RLMerr): 

- LM(1) = 589.17, p < 0.001 

Both tests reject the null hypothesis and therefore it is not possible to make a choice using a 

SAR or SEM model based on the LM tests. Therefore, the procedure is to follow the SARAR 

model , which includes both the spatial dependencies. Nonetheless, the SEM model is 

performed. This is due to the SAR dimension being present in the cases_nb_lag_2 and 

ci_nb_lag_2 variables.  
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5.3 Spatial panel data model 
The results of the spatial panel data analyses are displayed in table 4. Again, the pooled data 

model will be used as  a baseline. Two models based on ML are displayed, the baltagi and 

KKP error model, and the GMM model is displayed.  

Conclusions of all three models are similar. Firstly, an increase in cases leads to an increase 

in cases two weeks later. Secondly, an increase in strictness of containment measures 

decrease cases two weeks later.  Thirdly, an increase in strictness of containment measures 

in neighbouring countries decreases cases two weeks later. All these three variables are 

significant, p < 0.001. The cases of the neighbouring countries decrease cases two weeks 

later. This variable is however not significant in all three models.  

The results of the two models based on ML are similar. This is due to the KKP being an 

extension of baltagi and is used for particularly for spatial lag in SAR models (Baltagi & Liu, 

2016). The results of GMM model differ from the ML models. This is due to that the ML 

approach uses assumptions about the entire distribution whereas GMM uses assumptions 

about specific moments (Millo & Piras, 2012).  

To conclude, cases of a country have a positive effect on a country its cases two weeks later. 

Whereas containment measures of a country and its neighbouring countries have a negative 

effect on its cases two weeks later. There appears to be no relationship between cases of 

neighbouring countries and a country its own cases.  

Table 4. Summary of spatial panel data models 

Model  pooled data model 
fixed effects         

baltagi error model 
fixed effects                

KKP error model 
fixed effects    
GMM model 

log(cases_lag_2) 0.8690 0.8432*** 0.8432*** 0.8783*** 

log(cases_nb_lag_2) -0.0411 -0.0151 -0.0151 -0.0326. 

ci_lag_2 -0.0045 -0.0084*** -0.0084*** -0.0127*** 

ci_nb_lag_2 0.0007 -0.0145*** -0.0145*** -0.0086*** 

constant 1.1348       

Rho 0.6521 0.6539*** 0.6539*** 0.2475*** 

observations 4142 4142 4142 4142 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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6 Discussion 
Results from this study have shown that an increase in COVID-19 cases in a country result in 

higher COVID-19 cases two weeks later in the same country. A result which is already widely 

described in the literature (Vetter et al., 2020) (Palmer et al., 2021). Furthermore, this study 

has shown that when a country implements stricter containment measures, this will 

decrease cases two weeks later in the same country. A result which is also already widely 

described in the literature (Haug et al., 2020).  A spatial effect which has also been described 

in the literature, is that regions are more prone to higher cases when their neighbouring 

regions have a high incidence rate (Wang et al., 2020). The results of this study however are 

that this relation is not significant. This could be explained by that the study of Wang et al. 

(2020) was conducted on regions in China instead of on a country level. In addition, 

different types of analyses were conducted.   

The main aim of this study is to research the effects of COVID-19 containment measures of 

countries on COVID-19 cases in neighbouring countries in Europe over time. The results 

from this study show that when countries implement stricter containment measures, this 

will decrease COVID-19 cases two weeks later in Europe. Spatial effects are present in 

containment measures on COVID-19 cases. This is in line with the study of Ahmed and May 

(2021) which researched this topic but on a smaller scale in Ireland and Northern Ireland.  

This negative relation can be explained by that the containment index incorporates mobility 

restrictions which affects cross border relations. The containment index for instance 

incorporates closures of public transport, stay-at-home requirements, restrictions on 

internal movement, and international travel controls. Where a decrease in mobility across 

regions is associated with lower COVID-19 cases (Warren & Skillman, 2020) (Nouvellet et al., 

2021) These restrictions reduce the flow of people across borders and thus the 

connectedness of countries.  

This study has several limitations. Firstly, this study has been focused on the impact of 

containment measures on cases. The registration of cases differs between country but also 

within countries over time. Countries in Europe have had different testing policies 

throughout the pandemic which could have an impact on results (Goniewicz et al.,2020). 

Secondly, this study has been solely focused on cases. An addition to this study could be to 

incorporate other elements such as COVID-19 hospitalizations or deaths to encompass the 

full scope of the pandemic. Furthermore, in some countries the priority in registration has 

been focused more on hospitalizations and deaths than on cases (Karanikolos & Mckee, 

2020). Thirdly, this study has been conducted on a national level. An additional dimension 

could be to study this topic on a regional level. Containment measures in some countries 

have been conducted on a regional level instead of on a national level. In addition, when 

measures of the containment index vary within countries, the containment index takes the 

level of the strictest region (Ritchie et al., 2022).  
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A strength of this study is that it is the first study which focuses on the impact of 

containment measures on COVID-19 cases across borders over time. The use of the spatial 

panel data model across countries provides a more complete picture of the pandemic than 

studies focusing on one country or on one point in time. It highlights the spatial and the 

temporal dimension of COVID-19. Elements which are crucial to understand with infectious 

diseases and the connected world that we live in. .  

To conclude, this study shows that just as country its own containment measures negatively 

influence cases, so does the containment measures of its neighbouring countries. These 

findings contribute to understanding the relationship between containment measures and 

cases on a multi-country level. Understanding the spatial and temporal dimension of 

containment measures is crucial to design proper containment measures for COVID-19 and 

future infectious diseases with pandemic potential. 
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7 Appendices 

7.1 List of countries  

1 Albania 

2 Andorra 

3 Austria 

4 Belarus 

5 Belgium 

6 
Bosnia and 
Herzegovina 

7 Bulgaria 

8 Croatia 

9 Czechia 

10 Denmark 

11 Estonia 

12 Finland  

13 France 

14 Germany 

15 Greece 

16 Hungary 

17 Iceland 

18 Ireland 

19 Italy 

20 Kosovo 

21 Latvia 

22 Liechtenstein 

23 Lithuania 

24 Luxembourg 

25 Moldova 

26 Netherlands 

27 Norway 

28 Poland 

29 Portugal 

30 Romania 

31 Russia 

32 Serbia 

33 Slovakia 

34 Slovenia 

35 Spain 

36 Sweden 

37 Ukraine 

38 United Kingdom 
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7.2 R code 
#Loading libraries 
library(splm) 

library(plm) 

library(dplyr) 

library(spdep) 

library(readr) 

library(rgdal) 

library(lmtest) 

library(ggplot2) 

Data preparation 
#Reading in Excel file 
library(readxl) 

CI <- read_excel("thesisproject.xlsx") 

#Creating column: "cases_lag_2" 
step1  <- CI %>%                             
  group_by(id) %>% 
  dplyr::mutate(cases_lag_2 = dplyr::lag(cases, n = 2, default = NA)) %>%  
  as.data.frame() 
#Creating column: "cases_nb_lag_2" 
step2 <- step1 %>%                             
  group_by(id) %>% 
  dplyr::mutate(cases_nb_lag_2 = dplyr::lag(cases_nb, n = 2, default = NA)) %>%  
  as.data.frame() 
#Creating column: "ci_lag_2" 
step3 <-step2 %>%                             
  group_by(id) %>% 
  dplyr::mutate(ci_lag_2 = dplyr::lag(ci, n = 2, default = NA)) %>%  
  as.data.frame() 
#Creating column "ci_nb_lag_2" 
step4 <- step3 %>%                             
  group_by(id) %>% 
  dplyr::mutate(ci_nb_lag_2 = dplyr::lag(ci_nb 
, n = 2, default = NA)) %>%  
  as.data.frame() 

#Creating panel data 
pdata <- pdata.frame(step4, index=c("id", "week")) 

#Calculating percentage of missing values 
sum(is.na(pdata))/53846 

## [1] 0.00564573 

#Mean imputation 
pdata$cases[is.na(pdata$cases)] <- mean(pdata$cases,na.rm = TRUE) 
pdata$cases_lag_2[is.na(pdata$cases_lag_2)] <- mean(pdata$cases_lag_2,na.rm = TRUE) 
pdata$cases_nb_lag_2[is.na(pdata$cases_nb_lag_2)] <- mean(pdata$cases_nb_lag_2,na.rm = TRUE
) 
pdata$ci_lag_2[is.na(pdata$ci_lag_2)] <- mean(pdata$ci_lag_2,na.rm = TRUE) 
pdata$ci_nb_lag_2[is.na(pdata$ci_nb_lag_2)] <- mean(pdata$ci_nb_lag_2,na.rm = TRUE) 

#Setting 0's from the lagged variables to 0.001.  
pdata[pdata == 0] <- 0.001 
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#Visualizing cases 
ggplot(step4, aes(x = step4$cases)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "cases", 
       y = "Frequency") 

 

#Visualizing cases_lag_2 
ggplot(step4, aes(x = step4$cases_lag_2)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "cases_lag_2", 
       y = "Frequency") 
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#Visualizing cases_nb_lag_2 
ggplot(step4, aes(x = step4$cases_nb_lag_2)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "cases_nb_lag_2", 
       y = "Frequency") 

 

#Visualizing ci_lag_2 
ggplot(step4, aes(x = step4$ci_lag_2)) +                            
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  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "ci_lag_2", 
       y = "Frequency") 

 

#Visualizing ci_nb_lag_2 
ggplot(step4, aes(x = step4$ci_nb_lag_2)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "ci_nb_lag_2", 
       y = "Frequency") 
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#Log transformation for visualizing 
lcases <- log(step4$cases) 
lcases_lag_2 <- log(step4$cases_lag_2) 
lcases_nb_lag_2 <- log(step4$cases_nb_lag_2) 

#Visualizing lcases 
ggplot(step4, aes(x = lcases)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "log lcases", 
       y = "Frequency") 
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#Visualizing lcases_lag_2 
ggplot(step4, aes(x = lcases_lag_2)) +                            
  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "lcases_lag_2", 
       y = "Frequency") 

 

#Visualizing lcases_nb_lag_2 
ggplot(step4, aes(x = lcases_nb_lag_2)) +                            



36 
 

  geom_histogram() + 
  labs(title = "COVID-19 cases", 
       x = "lcases_nb_lag_2", 
       y = "Frequency") 

 

#Creating y and x 
y <- cbind(log(pdata$cases+1)) 
x <- cbind(log(pdata$cases_lag_2+1), log(pdata$cases_nb_lag_2+1), pdata$ci_lag_2, pdata$ci_
nb_lag_2) 
summary(y) 

##        V1         
##  Min.   : 0.001   
##  1st Qu.: 5.365   
##  Median : 6.822   
##  Mean   : 6.534   
##  3rd Qu.: 7.868   
##  Max.   :10.924 

summary(x) 

##        V1               V2                 V3               V4        
##  Min.   : 0.001   Min.   : 0.06766   Min.   : 0.001   Min.   : 5.58   
##  1st Qu.: 5.376   1st Qu.: 5.58297   1st Qu.:48.693   1st Qu.:48.01   
##  Median : 6.833   Median : 6.90230   Median :56.594   Median :55.84   
##  Mean   : 6.535   Mean   : 6.62850   Mean   :56.439   Mean   :54.79   
##  3rd Qu.: 7.860   3rd Qu.: 7.67288   3rd Qu.:64.400   3rd Qu.:63.69   
##  Max.   :10.924   Max.   :10.50163   Max.   :90.000   Max.   :83.81 

#Creating formula argument 
fm <- y~x 

#Creating spatial weights matrix based on contiguity 
EU <- readOGR(dsn = ".", layer = "EUNOICELAND") 

## OGR data source with driver: ESRI Shapefile  
## Source: "C:\Users\ibrah\Documents", layer: "EUNOICELAND" 
## with 38 features 
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## It has 177 fields 
## Integer64 fields read as strings:  NE_ID CI_id CI_week 

EU.nb=read.gal("EUGAL.gal", region.id=EU$BRK_A3) 
eulist <- nb2listw(EU.nb) 
summary(eulist) 

## Characteristics of weights list object: 
## Neighbour list object: 
## Number of regions: 38  
## Number of nonzero links: 146  
## Percentage nonzero weights: 10.1108  
## Average number of links: 3.842105  
## Link number distribution: 
##  
##  1  2  3  4  5  6  7  8  9  
##  4 10  5  7  4  1  4  2  1  
## 4 least connected regions: 
## DNK IRL GBR PR1 with 1 link 
## 1 most connected region: 
## DEU with 9 links 
##  
## Weights style: W  
## Weights constants summary: 
##    n   nn S0       S1       S2 
## W 38 1444 38 25.48924 165.2069 

Panel data models 
#Pooling model 
pooling <- plm(y~x, data = pdata, model = "pooling") 
summary(pooling) 

## Pooling Model 
##  
## Call: 
## plm(formula = y ~ x, data = pdata, model = "pooling") 
##  
## Balanced Panel: n = 38, T = 109, N = 4142 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -8.097897 -0.320251  0.095388  0.473884  6.648639  
##  
## Coefficients: 
##               Estimate Std. Error t-value  Pr(>|t|)     
## (Intercept)  1.8017614  0.0954685 18.8728 < 2.2e-16 *** 
## x1           0.8963874  0.0151521 59.1594 < 2.2e-16 *** 
## x2          -0.0317756  0.0177803 -1.7871 0.0739908 .   
## x3          -0.0105924  0.0015476 -6.8446 8.799e-12 *** 
## x4          -0.0057802  0.0016231 -3.5612 0.0003733 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Total Sum of Squares:    15537 
## Residual Sum of Squares: 4548.1 
## R-Squared:      0.70727 
## Adj. R-Squared: 0.70699 
## F-statistic: 2498.86 on 4 and 4137 DF, p-value: < 2.22e-16 

#Fixed effects model 
fixed <- plm(y~x, data = pdata, model = "within") 
summary(fixed) 
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## Oneway (individual) effect Within Model 
##  
## Call: 
## plm(formula = y ~ x, data = pdata, model = "within") 
##  
## Balanced Panel: n = 38, T = 109, N = 4142 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -8.037351 -0.302965  0.098852  0.468844  6.162920  
##  
## Coefficients: 
##      Estimate Std. Error t-value  Pr(>|t|)     
## x1  0.8769909  0.0162512 53.9647 < 2.2e-16 *** 
## x2  0.0127460  0.0191951  0.6640    0.5067     
## x3 -0.0096971  0.0021157 -4.5834 4.710e-06 *** 
## x4 -0.0214552  0.0027060 -7.9287 2.832e-15 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Total Sum of Squares:    14891 
## Residual Sum of Squares: 4401.2 
## R-Squared:      0.70443 
## Adj. R-Squared: 0.70147 
## F-statistic: 2442.85 on 4 and 4100 DF, p-value: < 2.22e-16 

#Random effects model 
random <- plm(y~x, data = pdata, model = "random") 
summary(random) 

## Oneway (individual) effect Random Effect Model  
##    (Swamy-Arora's transformation) 
##  
## Call: 
## plm(formula = y ~ x, data = pdata, model = "random") 
##  
## Balanced Panel: n = 38, T = 109, N = 4142 
##  
## Effects: 
##                 var std.dev share 
## idiosyncratic 1.073   1.036     1 
## individual    0.000   0.000     0 
## theta: 0 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -8.097897 -0.320251  0.095388  0.473884  6.648639  
##  
## Coefficients: 
##               Estimate Std. Error z-value  Pr(>|z|)     
## (Intercept)  1.8017614  0.0954685 18.8728 < 2.2e-16 *** 
## x1           0.8963874  0.0151521 59.1594 < 2.2e-16 *** 
## x2          -0.0317756  0.0177803 -1.7871 0.0739177 .   
## x3          -0.0105924  0.0015476 -6.8446  7.67e-12 *** 
## x4          -0.0057802  0.0016231 -3.5612 0.0003692 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Total Sum of Squares:    15537 
## Residual Sum of Squares: 4548.1 
## R-Squared:      0.70727 
## Adj. R-Squared: 0.70699 
## Chisq: 9995.42 on 4 DF, p-value: < 2.22e-16 
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Tests 
#F Test 
pFtest(fixed, pooling) 

##  
##  F test for individual effects 
##  
## data:  y ~ x 
## F = 3.6968, df1 = 37, df2 = 4100, p-value = 4.268e-13 
## alternative hypothesis: significant effects 

#LM Test 
plmtest(pooling) 

##  
##  Lagrange Multiplier Test - (Honda) for balanced panels 
##  
## data:  y ~ x 
## normal = 4.7508, p-value = 1.013e-06 
## alternative hypothesis: significant effects 

#Hausman Test 
phtest(fm, pdata) 

##  
##  Hausman Test 
##  
## data:  fm 
## chisq = 122.46, df = 4, p-value < 2.2e-16 
## alternative hypothesis: one model is inconsistent 

#Hausman Test robust to spatial autocorrelation  
sphtest(fm,pdata,listw =eulist, spatial.model = "error", method="ML") 

##  
##  Hausman test for spatial models 
##  
## data:  x 
## chisq = 29.815, df = 4, p-value = 5.338e-06 
## alternative hypothesis: one model is inconsistent 

#Hausman Test for spatial models 
sphtest(fm,pdata,listw =eulist, spatial.model = "lag", method="ML") 

##  
##  Hausman test for spatial models 
##  
## data:  x 
## chisq = 42.955, df = 4, p-value = 1.057e-08 
## alternative hypothesis: one model is inconsistent 

#LM test 1 
slmtest(fm, pdata, listw = eulist, test = "lme", model="within") 

##  
##  LM test for spatial error dependence 
##  
## data:  formula (within transformation) 
## LM = 2595.2, df = 1, p-value < 2.2e-16 
## alternative hypothesis: spatial error dependence 

#LM test 2 
slmtest(fm, pdata, listw = eulist, test = "lml",model="within") 
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##  
##  LM test for spatial lag dependence 
##  
## data:  formula (within transformation) 
## LM = 1608.5, df = 1, p-value < 2.2e-16 
## alternative hypothesis: spatial lag dependence 

#LM test 3 
slmtest(fm, pdata, listw = eulist, test = "rlme", model="within") 

##  
##  Locally robust LM test for spatial error dependence sub spatial lag 
##  
## data:  formula (within transformation) 
## LM = 1002.1, df = 1, p-value < 2.2e-16 
## alternative hypothesis: spatial error dependence 

#LM test 4 
slmtest(fm, pdata, listw = eulist, test = "rlml", model="within") 

##  
##  Locally robust LM test for spatial lag dependence sub spatial error 
##  
## data:  formula (within transformation) 
## LM = 15.411, df = 1, p-value = 8.647e-05 
## alternative hypothesis: spatial lag dependence 

Spatial panel data models 
spml(fm, pdata, 
listw = eulist, lag=FALSE,model="pooling") 

## Warning in if (class(covTheta) == "try-error") {: the condition has length > 1 
## and only the first element will be used 

##  
## Call: 
## spreml(formula = formula, data = data, index = index, w = listw2mat(listw),     w2 = lis
tw2mat(listw2), lag = lag, errors = errors, cl = cl) 
##  
## Coefficients: 
## (Intercept)           x1           x2           x3           x4   
##   1.3476212    0.8689291   -0.0410703   -0.0045199    0.0006763   
##  
## Error covariance parameters: 
##    rho   
## 0.6521 

#Baltagi error  
sem_b <- spml(fm, data = pdata, 
listw = eulist, lag=FALSE,model="within", effect="individual", spatial.error="b") 
summary(sem_b) 

## Spatial panel fixed effects error model 
##   
##  
## Call: 
## spml(formula = fm, data = pdata, listw = eulist, model = "within",  
##     effect = "individual", lag = FALSE, spatial.error = "b") 
##  
## Residuals: 
##     Min.  1st Qu.   Median  3rd Qu.     Max.  
## -7.88497 -0.30704  0.10713  0.48018  6.06617  
##  
## Spatial error parameter: 
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##     Estimate Std. Error t-value  Pr(>|t|)     
## rho 0.653870   0.010924  59.855 < 2.2e-16 *** 
##  
## Coefficients: 
##      Estimate Std. Error t-value  Pr(>|t|)     
## x1  0.8431958  0.0114678 73.5272 < 2.2e-16 *** 
## x2 -0.0151300  0.0148681 -1.0176    0.3089     
## x3 -0.0083915  0.0013989 -5.9985 1.992e-09 *** 
## x4 -0.0145063  0.0021239 -6.8300 8.490e-12 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#KKP error 
sem_b <- spml(fm, data = pdata, 
listw = eulist, lag=FALSE,model="within", effect="individual", spatial.error="kkp") 
summary(sem_b) 

## Spatial panel fixed effects error model 
##   
##  
## Call: 
## spml(formula = fm, data = pdata, listw = eulist, model = "within",  
##     effect = "individual", lag = FALSE, spatial.error = "kkp") 
##  
## Residuals: 
##     Min.  1st Qu.   Median  3rd Qu.     Max.  
## -7.88497 -0.30704  0.10713  0.48018  6.06617  
##  
## Spatial error parameter: 
##     Estimate Std. Error t-value  Pr(>|t|)     
## rho 0.653870   0.010924  59.855 < 2.2e-16 *** 
##  
## Coefficients: 
##      Estimate Std. Error t-value  Pr(>|t|)     
## x1  0.8431958  0.0114678 73.5272 < 2.2e-16 *** 
## x2 -0.0151300  0.0148681 -1.0176    0.3089     
## x3 -0.0083915  0.0013989 -5.9985 1.992e-09 *** 
## x4 -0.0145063  0.0021239 -6.8300 8.490e-12 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#GMM 
sem_gm<- spgm(fm, data=pdata, 
listw = eulist, model="within", moments="fullweights", 
spatial.error = TRUE) 
summary(sem_gm) 

## Spatial fixed effects error model (GM estimation)  
##  
## Call: 
## spgm(formula = fm, data = pdata, listw = eulist, model = "within",  
##     spatial.error = TRUE, moments = "fullweights") 
##  
## Residuals: 
##      Min.   1st Qu.    Median   3rd Qu.      Max.  
## -7.870906 -0.296702  0.089798  0.461623  6.409945  
##  
## Estimated spatial coefficient, variance components and theta: 
##           Estimate 
## rho        0.24752 
## sigma^2_v  1.03528 
##  
## Coefficients: 
##      Estimate Std. Error t-value  Pr(>|t|)     
## x1  0.8782547  0.0162055 54.1949 < 2.2e-16 *** 
## x2 -0.0325944  0.0189711 -1.7181   0.08578 .   
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## x3 -0.0127190  0.0017362 -7.3257 2.377e-13 *** 
## x4 -0.0085781  0.0018946 -4.5278 5.961e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

 

 

 


