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Abstract

The aim of this study is to find out from what point in time and with what amount and type of data you
can detect with a certain amount of certainty a significant decrease of the gas consumption for an individual
household. Data points for the summed gas consumption for the average temperature differences between
indoor and outdoor temperature for each day for annual periods between September and April from 2015 till
2020 were taken. To be able to make the earliest possible detection of a valid decrease of gas consumption,
three consecutive heating periods are needed.

Afterwards, the slopes were compared with the following period slopes to identify an increase or decrease. If
there is a significant change that was determined differently in three different approaches, you can assume that
a possible reason is a newly add insulation of that household. Those household where a significant decrease
has been detected by the different approaches linear regression, Support Vector Regression and Random For-
est, were afterwards filtered out to have a final dataset with houses where an insulation has possibly been
added.

The findings of the study showed that with two linear models, linear regression and support vector regression,
significant decreases in gas consumption can be detected in the data.

These results lead to the assumption that the gas consumption and the average temperature difference per day
alone show a change in gas consumption, but this cannot be attributed to a newly added insulation, as this can
also have many other reasons.
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Preface

The study was done as part of a task for the company Intergas Verwaming BV and is divided into three main
tasks. The first part is a collaboration between the three applied data science students from Utrecht University,
in which they prepare the data provided by Intergas. The aim of this work is to create a data set that is as
meaningful as possible and as close to reality as possible in order to learn and test different models for use.

In the second task of this thesis, each of the three students works individually on the model for the gas use.
Varoon Sushil Agrawal is working on processing the various slopes for each heater in the prepared data with
linear regression to detect significant changes. Maria Fakou researches with a random forest regression model
to find a different way of detecting changes and Moritz Münten applies a Support Vector Regression model
for calculating the slopes and detecting significant decreases.

The third and final part of this study is again a joint comparison of the different results in order to make
assumptions about which model is most suitable in the context of the task. Here the three students come to
a common conclusion about the study, answer the research question and make a recommendation for further
research.
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1 | Introduction

In the fight against the climate crisis, one tool is to drastically minimize our energy and gas consumption. The
housing sector is a huge consumer of the energy and plays a vital role in achieving energy efficiency targets in
the EU (Faidra Filippidou 2018). Due to poor energy performance of buildings, they account for 38% of total
energy consumption in the European Union(EU) (Delft CE 2015). Out of which, households are responsible
for 24.8% of final energy consumption in the EU (Consumption of energy 2016). Thermal comfort in housing
is established by space heating by maintaining the indoor temperature at a desired, uniform level and provid-
ing proper admission of fresh air (Haris Lulic 2013). In the Netherlands, 85% of the households are heated
using natural gas (Faidra Filippidou 2018). So to contribute to solving the challenges of the climate crisis,
one first step is to reduce the energy and therfore gas consumption of individual households in the Netherlands.

Intergas Verwarming BV. builds and sells heating equipment from gas boilers, water heaters, hybrids and
control devices to heat pumps. Through various contracts with their customers, Intergas has a detailed, large
accumulation of data of the respective energy use of their clients. However, at the current time of rising
energy prices and inflation, energy consumption by individual households is also becoming increasingly
expensive. Of these, many consumers and landlords are already deciding to build their properties energy
poorer and to insulate them better afterwards. Intergas is already exploring different ways to identify these
newly built houses based on their data in order to better manage their energy budget through houses that have
been newly installed and therefore consume less energy. Intergas also want to share this information with
their customers to show them the benefits of a new insulation, which is a possible percentage decrease in gas
consumption so that they can save costs.

There are now two essential challenges. On the one hand, Intergas would like to know how quickly and with
what certainty one can say something about the changes in energy consumption. This is about the temporal
aspect as well as the data aspect, because you collect data over a certain period of time, but you want to know
with what amount of data you can say something about the changes with certainty. Secondly, how certain is
the change in slope associated with a change in insulation? In this context, slopes are the increasing summed
gas consumption from an individual heater per temperature difference of inside and outside temperature.
After calculating the differences after a new insulation, it becomes clear that these only become apparent at
a higher energy consumption, which is usually the case when temperatures are colder than in summer when
heating is hardly used.

Thus, the main question of this research: How soon can we say something about a new slope with certain
amount of certainty?

First, the data made available must be processed and then used for the models. With a data exploration
analysis is trying to find out how many data points are needed to calculate a statistically relevant slope can
be drawn for the consumption of the gas. Additionally, whether these data points are compared on a daily
monthly or periodic basis. After differences are calculated with the various changes, an attempt is made to
detect significant changes by adjusted filter functions and by comparing increased error rates in a prediction
model.
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Finally, the aim of this research is to compare the different results of the detection of a significant decrease in
gas consumption. And classify this difference whether it is due to a newly added insulation of the individual
household.
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2 | Data

The data were provided by Intergas to perform the current analysis. To gather all the needed information the
following four datasets were combined.

Column Name Type Description

heater_id Integer Heater unique identification number
gas_use Double Gas consumption in m3/hour
surface_area Integer Surface area of the house in m2

t_set Double Temperature set on the thermometer (C)
t_act Double House temperature (C)
TimeKey Timestamp year/month/day hour

Table 2.1: Ig_gasuse_hourly.

Column Name Type Description

HEATER_ID Integer Heater unique identification number
wijk Integer Neighborhood
building_year Integer Building year

Table 2.2: ig-heater-info-nl-2.

Column Name Type Description

wijk Integer Neighborhood
rain Double Rainfall amount in 0.1 mm
sun Double Amount of sun in 0.1 hours
temp Double Temperature (C) * 10
wind Double Wind in 0.1 meters/second
TimeKey Timestamp year/month/day hour

Table 2.3: od_knmi_hourly_wijken_v2.

Column Name Type Description

HEATER_ID Integer Heater unique identification number
WONING_TYPE String House type

Table 2.4: House_prop.
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2.1 Data preprocessing

In the first stage of the data preprocessing, it was considered of paramount importance to inspect the datasets
individually and delete problematic values to reduce their size and the computational time of the analysis, but
also to improve the quality of the results. Following are the steps taken:

• The data recorded from May until August were removed, since the gas consumption during
these months is negligible for heating. This operation was applied to Ig_gasuse_hourly and
od_knmi_hourly_wijken_v2.

• Buildings of size below 40 or above 400 square meters, in Ig_gasuse_hourly, were filtered out, as they
do not provide any useful information to the current research.

• The upper threshold of 26 and lower threshold of 0 degrees Celsius was set for t_set, while the upper
threshold of 30 and lower threshold of 10 degrees Celsius was set for the t_act, in Ig_gasuse_hourly.
The remainder of the records is assumed unlikely to be accurate.

• Heaters that did not have building year or neighborhood were removed from ig-heater-info-nl-2.

• Houses that had a missing house type in house_prop were discarded.

• The minimum building year was 1005 and 25% of the values fell before 1956, hence it was decided to
delete these data from ig-heater-info-nl-2, as they were odd. Specifically, the research was limited to
buildings constructed from 1950 onwards.

To result in the final dataset left inner joins were performed to select the records that match in both datasets
and prevent missingness of information. The datasets were joined as shown in table 2.5.

Left table Right table Key Table Name

Ig_gasuse_hourly ig-heater-info-nl-2 heater_id Join_1
Join_1 od_knmi_hourly_wijken_v2 Wijk, TimeKey Join_2
Join_2 House_prop heater_id Final_df

Table 2.5: Left inner join tables.

Consequently, duplicate rows were detected and deleted, as well as records of the same house and timestamp
that contained different measurements for the gas usage or the inside temperature. In the latter case, every
record related to these heaters was removed and considered incorrect. Heaters monitored for a single period
were also removed from the dataset. A period includes data for the months September to April, under the
hypothesis that insulation is mostly added during the summer months. Hence, if there is a shift to be detected,
it will be between these heating periods, and not between calendar years.

Additionally, the following table describes the datasets size before and after the related filters.
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Dataset Before filtering After filtering Percentage removed

Ig_gasuse_hourly 558,960,694 354,261,532 36.6%
ig-heater-info-nl-2 39,305 39,175 0.33%
od_knmi_hourly_wijken_v2 74,894,318 51,603,006 31.09%
House_prop 39,305 39,155 0.38%
Final_df 324,849,444 222,216,880 31.6%

Table 2.6: Datasets size before and after filtering

For further preparation of the data, the outside temperature was divided by 10 and was subtracted from the
indoor temperature (t_act - temp). The resulting difference denoted the insulation level of the house and was a
determinant variable of the research objective, namely, to identify the change in energy consumption by early
detection of improvement in house insulation. Negative values of this difference were not reliable; thus, these
data were removed.

Insulation directly affects gas use, so the temperature difference could be used to build a simple and quite
accurate model, without including the variables of weather conditions. Moreover, zero gas use during some
hours of the day implied better predictions for daily data than for hourly data. As the hourly values could
adversely affect the regression models, the data were grouped by period, month and day of the month, summed
by gas use and averaged by temperature difference.

The time information was extracted by the TimeKey timestamp and the heating periods were defined as pre-
sented in table 2.7:

ID Period

1 Sept. 2015 - Apr. 2016
2 Sept. 2016 - Apr. 2017
3 Sept. 2017 - Apr. 2018
4 Sept. 2018 - Apr. 2019
5 Sept. 2019 - Apr. 2020

Table 2.7: Heating periods.

The structure of the final dataset and its first five rows are depicted in tables 2.8 and 2.9, respectively.

Column Name Type

heater_id Integer
period Integer
month Integer
dayOfMonth Integer
sum_gas Double
avg_t_diff Double

Table 2.8: Final dataset structure.
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ID heater_id period month dayOfMonth sum_gas avg_t_diff

0 93059 3 4 14 2.7573 10.622500
1 93059 4 10 9 1.6920 8.964167
2 96265 5 1 11 6.0406 15.012917
3 66595 2 3 11 6.4874 11.985000
4 54477 4 10 30 5.6728 15.618750

Table 2.9: First rows of the final dataset.

2.2 Exploratory Data Analysis

The dataset contains 6,886,234 records of 12,675 heaters from October 10th, 2015, until March 1st, 2020.
The number of records of a heater was not necessarily equivalent to other heaters, meaning that some heaters
were measured for longer periods than others. In addition, data from 308 heaters related to a single period
were not valuable for this research.

Table 2.10 shows the descriptive statistics of the daily gas use and average temperature difference. Both the
daily gas consumption and the temperature difference presented extreme values on some occasions, while
their most common values, or medians, were 4.66 and 12.10, in the given order.

summary sum_gas_use avg_t_diff

mean 5.376 12.162
stddev 4.459 4.31
min 0.0 0.01
25% 1.723 8.912
50% 4.669 12.107
75% 7.821 14.99
max 74.567 33.44

Table 2.10: Descriptive Statistics.

To understand the relationship between these instrumental variables for the current exploration, the Pearson
Correlation Coefficient was computed and its value of 0.6 revealed that the daily gas use and the temperature
difference were positively correlated. As illustrated in figure 2.1, there was a moderately strong, positive,
linear association with a few outliers. This association justified the choice of linear regression models, which
considered as suitable to estimate the difference in gas use between every two sequential periods.
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Figure 2.1: Gas use vs. temperature difference.

Furthermore, the 1st period contained the fewest data, namely the 5%, and the 2nd period consisted of the
second smaller share of the dataset, the 14%. Data from the 4th period exceeded the rest, still those from the
5th and 3rd periods were nearly a quarter each, i.e., 25.2% and 24.1%, respectively. Therefore, the first period
could not be perceived as a representative sample of the data, yet it was included in the three types of models,
as the objective of this analysis was to test how fast a change can be detected using the least possible amount
of data.

As expected, the gas consumption was higher during the winter months and decreased significantly in April,
September, and October. The same trend was noticed for the temperature difference as well, while both cases
suggested September to be the warmest month, as it had the lowest gas use and temperature differences (Figure
2.2).On the other hand, no pattern was detected on the gas use or temperature difference during the separate
days of the months, which was a reasonable inference, and indicated uniformity across the daily behavior of
the users.
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Figure 2.2: Temp. diff. and gas use per month.

Some examples of heaters were selected for further investigation, as the initial aim was to distinguish those
that presented reduction in gas use, and then to examine how soon the distinction can be drawn. Figure 2.3,
demonstrates three heaters of whom 8180 and 27729 were potential houses that added insulation during their
recording by Intergas. Heater 8180 seemed to lower its gas use dramatically after the 1st period, whereas
heater 27729 appeared to suddenly decrease after the 3rd period, and the gas use of both houses was stabilized
immediately after declining. The gas use of 5924, in contrast, remained quite stable trough the different
periods and thus, it was assumed that the specific house did not improve its insulation level.

8



Figure 2.3: Daily gas use per period.

It is essential to highlight that these data were anonymous, meaning that they could not be connected to the
individuals who own the heaters. Access to them was given by Intergas to recognize as soon as possible the
decrease of their gas use caused by added insulation, but only data experts of the company would be able to
interpret the location of the clients or their actual name.
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3 | Methods

This research aims to help Intergas reduce the energy consumption of their clients by detecting the change in
insulation and further, in gas use. To identify this change, three different regression models were trained: Sim-
ple Linear Regression (LR) (Agrawal 2022), Support Vector Regression (SVR) (Münten 2022), and Random
Forest Regression (RF). The current thesis uses the RF model, which is by nature a nonlinear model

3.1 Random Forest Regression

Regression is a supervised technique, meaning that the model is trained on labeled data, i.e., known output,
to estimate a relationship between the input and the output, or the independent and dependent variables re-
spectively. The model’s objective is to predict unseen data, or testing data, by learning some training data,
and hence to be able to generalize and make accurate predictions on both sets. If the training data are not a
representative sample of the population, the model captures this specific relationship and is unable to predict
new data correctly. This problem is known as overfitting and can be avoided by applying appropriate settings
to the model if the data do not allow further improvement.

Random Forest or Random Decision Forest is a collection of decision trees, suitable for regression and clas-
sification problems, and trained with the “bagging” (bootstrap aggregating) method. Bagging, which is an
ensemble method, combines the predictions from multiple learning models to improve predictions and raise
the stability of the final model, and since the predictions, in this case, were continuous outcomes, this problem
could be solved using regression models. (Schonlau 2020)

For understanding how RF works it is helpful to look at the well-known Decision Tree. A decision tree can
be considered as a set of the best questions someone might ask to a dataset so that a sample will be predicted
as accurately as possible. Additionally, RF separates the data into multiple random subsets and generates a
decision tree of each subset. Every decision tree predicts a result, and these various results are averaged and
selected as the final prediction.

There are specific assets of RF that identify it as a remarkable model used for several regression and classifica-
tion problems. For example, the model is non-parametric and resistant to outliers. Conversely, the algorithm
is prone to overfitting and generally slower than simple linear regression, but the main complication for the
present analysis was that the model cannot be interpreted by coefficients and intercept.

3.2 Hyperparameter Tuning

Even though RF is often used in complex datasets with multiple features, it could be applied in the current
data on the condition that a small number of trees was chosen to form the forest. In that way, overfitting
was prevented, and the present approach could be used in future research. Thus, hyperparameter tuning was
applied to find out under which conditions the performance improves. Except for the number of trees, the
maximum depth was taken into consideration, which indicates the longest path from the root to the deepest
leaf node that a tree in the forest can have. Large values of depth can cause overfitting, and as only one
feature was considered for the model’s decisions, it was necessary to restrict the parameter space accordingly.
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(Koehrsen 2018)

The hyperparameter space was adjusted according to the number of available training and testing data. Two
types of experiments were conducted; models were trained for each period and each month of every period.
The latter case included much fewer data points than the former one, and hence smaller parameter values
were required to tune the models. Specifically, the models of every period were tested for larger parameter
values, but they performed worse, and they were excluded from the analysis to boost their reliability and
computational efficiency. The best values of the parameters were selected after an extensive search of specific
parameter values. The candidate values of the parameters used to tune the RF models are presented in the
tables below.

Parameter Parameter space

Number of trees [1, 2, 3]
Maximum depth [1, 2, 3, 4, 5, 6]

Table 3.1: Candidate parameter values of models per period

Parameter Parameter space

Number of trees [1, 2, 3]
Maximum depth [1, 2, 3, 4]

Table 3.2: Candidate parameter values of models per month

Each model was fine-tuned using the 3-fold cross-validation method, while the performance was measured
and evaluated by the mean squared error. In more detail:

• The k-fold cross-validation technique is a resampling process that partitions the dataset into k sets.
(Brownlee 2018) For each set, the specific set takes the role of the testing set and the rest of the sets
compile the training set. In other words, each set is used one time as the testing set, k-1 times to train
the model, and the summary of the k performances is returned to evaluate the model. For this analysis,
three folds or sets were selected because of the small data size, as more partitions of the data would be
unnecessary.

• The mean squared error (MSE) denotes the average squared difference between the true values and the
predicted values, and therefore it is always positive. This metric uses square units, which render it easily
influenced by large errors, and it was used as the evaluation criterion in the grid search to select the best
combination of the hyperparameters. It is calculated by the following formula for a sample of n data
points, where Yi are the true values and Ŷi the predicted values. (Mean squared error 2022)

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

3.3 Procedure

After hyperparameter tuning, the models were trained, using the best values of their parameters, in two ways:
for each period, and each month of every period. Each model was trained by the data of one period and
evaluated by the data of the next heating period. The result was the predictions for both sets, which were
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subtracted from the true values of the daily gas used to compute the prediction errors. Since the heating periods
were five, models were trained for the first four periods, as the last period was solely used for evaluation, and
only heaters that were recorded for more than one period were included.

While Random Forest is a complicated model, setting a threshold for the appropriate amount of data was
cumbersome and since the research’s objective was to do more with less, the single restriction was the mini-
mum possible number of data points to perform any necessary estimation. Consequently, a model was trained
only if there were available data from a certain heater for more than one period, and if there were at least 6
days recorded for each period. Less than that caused problems during hyperparameter tuning and metrics’
computation, but it was also presumed that fewer data points would cause the models to learn the specific data
points extremely well and fail to predict new unseen data.

Furthermore, the distributions of the prediction errors were investigated to reveal the degree of dissimilarity
between the train and test sets. If the two distributions were homogeneous, it was beyond doubt that no change
could be detected, as the model of the past month could fit the latest data and produce similar errors to the
earliest data. On the contrary case, it was assumed that the train and test sets were not drawn from the same
distribution, meaning that the daily gas use of the two consecutive periods was not commensurable, and there
was a change in insulation.

To determine whether the two samples were similar t-tests and z-tests were applied to each set of training and
testing prediction errors under the assumption that these residuals followed the Gaussian distribution. Z-tests
(Z-test 2022) were performed in case the sets consisted of more than 50 data points and t-tests (T-test 2022)
were used for some heaters measured for less than 50 days per period, to establish the significance of the
similarity of the samples provided. The null hypothesis, that the two means were statistically similar, was
rejected when the p-value of the test was smaller than the significance level of 1%.

To evaluate the predictions and compare the entire performance of the various models, the prediction errors
were assessed by basic statistics as the mean and the standard deviation, and the quality of the estimators was
quantified by the mean absolute error (MAE). (Mean absolute error 2022) The MAE is the averaged sum of
the absolute prediction errors, as presented in the formula below, and it is an interpretable estimator of the
model’s predictions, because of its dependency on the measurement scale of the variable. For a given sample
of n data points, where Yi are the true values and Ŷi the predicted values, the MAE is defined as:

MAE =

∑n
i=1 |Yi − Ŷi|

n

Since the prediction errors were supposed to be normally distributed, to be able to distinguish whether there is
a noticeable change, heaters that resulted in unusual values of MAE test score, namely outliers, were selected
based on the three-sigma rule of thumb. The 3σ rule is also known as the 68–95–99.7 rule or empirical rule,
and it is used to represent how the data lie within a normal distribution. (Hayes 2022) According to this rule,
99.7% of the data points lie within three standard deviations from the mean, and the rest 0.3% are considered
outliers
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4 | Results

First, the models were trained, for every period and heater individually, with data from 12,367 houses,to
examine several independent clients and provide an accurate insight into the problem of detecting added
insulation. The specific number of different heaters was regarded as suitable to appraise the following findings
with a certain confidence, and the required computational time was feasible to conduct experiments, as it was
estimated that every heater spent approximately 1,5 minutes for hyperparameter tuning and training.

During the analysis, various hyperparameters were tested for these models and it was noted that larger values
of the max depth and number of trees yielded lower performance, especially in cases of low data quantity.
These cases appeared to cause overfitting and generally larger prediction errors in both train and test sets. In
addition, larger parameter values required higher computational time than the parameters mentioned in table
3.1.

To test whether the difference between the prediction errors of each pair of train and test sets were statistically
significant, t-tests and z-tests were applied accordingly. The results exhibited that the residuals from 8478
heaters had different population means, while 3117 of them showed this inconsistency in more than one pair
of heating seasons. An example of this odd case, including the mean of each set, is illustrated in figure 4.1,
which explained why data from approximately 25% of heaters were determined as statistically different in
more than two periods. As witnessed, the means of the two sets seemed to be more distant when one of the
sets contained fewer data points, and it is important to mention that only the means of the top left and bottom
right density plots were statistically different.

Figure 4.1: Heater 35419 - prediction errors per period.
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Other cases reflected similar findings but also highlighted that these statistical tests could not extrapolate a
conclusion for the actual change between the train and test set. As shown in figure 4.2, the pairs of error
distributions were quite similar in the upper right and bottom left plots, although their means appeared to be
statistically different. The p-value of the z-test conducted on the sets of the upper right plot was almost equal
to the p-value of the bottom plot and higher than the p-value of the upper left populations, yet all of them were
lower than 0.001 and the null hypothesis was rejected.

Figure 4.2: Heater 23607 - prediction errors per period.

Since it was impossible to compare each heater separately, the succeeding step was to observe the distribution
of the evaluation metrics for each period, and even though the distributions per period were quite similar, the
MAE was reviewed for each of them individually. This inspection was deemed essential to identify abnormal
values, as most of the heaters did not have an equal amount of data per period and some heating seasons had
generally fewer data, e.g., the first period. As presented in figure 4.3, the long right tails of the distributions
suggested irregular values of the MAE in both sets and every period, while the range of the test scores was
broader than the range of the train scores.
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Figure 4.3: MAE Distribution per period.

Given that the prediction errors follow the Gaussian distribution, the three-sigma rule of thumb was applied
to find out the heaters that generated these outliers. Specifically, the MAE of the train scores was filtered out
to discover the values that fall into the range of 99.7%, and the MAE of the test scores was filtered out, in
contrast, to find the outliers, i.e., the 0.3% of these data. In that way, models that performed well for the train
set, but not the test set, could be differentiated from models that displayed deviant behavior, to wit, models
that failed to make accurate predictions for data that were already known to them. Table 4.1 outlines the MAE
mean and standard deviation of the data of every period, rounded to two decimal places, that were used to
calculate the threshold of µ + 3σ.

MAE Mean (µ) Standard deviation (σ)

Period 1
Train 1.45 0.67
Test 2.13 1.07

Period 2
Train 1.38 0.62
Test 1.84 1.02

Period 3
Train 1.33 0.61
Test 1.78 0.87

Period 4
Train 1.38 0.60
Test 1.69 0.86

Table 4.1: Mean and standard deviation of MAE per period

Consequently, aberrant values were observed in 276 heaters, while 73 of them had been measured only for
two heating periods, and thus their reliability was questioned due to possible insufficiency of data in one or
both periods. Some of these models were trained or/and tested for less than 60 days per period, which may be
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considered insufficient for RF, whereas few of them were trained and tested for several days and might have
performed better in a simpler model, such as LR (Agrawal 2022). It is noteworthy that 7 heaters expounded
significant deviations in two pairs of periods, but these were heaters measured for a shorter time in two or
three of the heating periods as well.

Some of these heaters were examined individually to inspect whether the error distribution of their train and
test period was noticeably different, but the results demonstrated unusual behavior mostly in cases of few data
points. For instance, heater 32567, as shown in figure 4.4, presents discrepancies in more than one pair of
periods, but its set sizes per period were quite unbalanced. As evidenced by table 4.2 and 4.3, periods 1 and
4 had the fewest data and the greatest difference between the MAE of the two sets, regardless of their use as
train or test set.

Figure 4.4: Heater 32567 - prediction errors per period.

Period No. of days measured

1 26
2 129
3 90
4 37
5 120

Table 4.2: No. of days measured per period - heater 32567.

16



Train period Test period MAE train MAE test

1 2 1.30 3.65
2 3 3.28 4.41
3 4 1.99 4.02
4 5 2.51 5.27

Table 4.3: Test and train MAE per period - heater 32567.

Given that specific heaters were already suspected by the results of LR (Agrawal 2022) and SVR (Münten
2022) of possible improvement in insulation, the density of their prediction errors was plotted to identify
whether the initial assumption, regarding the means difference, was valid. Therefore, the residuals’ distribu-
tion of the heaters 8180 and 27729 are shown in Figures 4.5 and 4.6, respectively. As stated previously, heater
8180 displayed a change in gas use during the third period, while heater 27729 showed analogous deviation
during the fourth period. The same conclusion could be drawn from the residuals’ distribution of these two
heaters for each period, while the difference between the means of the train and test sets was quite evident and
statistically significant.

Figure 4.5: Heater 8180 - prediction errors per period.
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Figure 4.6: Heater 27729 - prediction errors per period.

Alternatively, after training the model with data for every period, models for every month, period, and heater
were built to explore whether an improvement in insulation could be identified earlier. As expected, the
specific analysis was more time-consuming than the preceding experiment and hence was only applied to
6000 heaters from which only 4482 complied with the essential number of data points. The approximate time
of hyperparameter tuning and training for every heater was 2,5 minutes. The analysis of the previous case
indicated that RF did not perform well for small data sets and biased this investigation.

Furthermore, t-tests were performed for every pair of prediction errors, since their sample size was equal to
31 days or shorter, and it was observed that 4198 of these heaters had statistically different measurements per
month and period. The MAE was also inspected and resulted in outrageous test scores. As it was inconvenient
to inspect the score of each month and each period individually, figure 4.7 shows the MAE of every period,
and validates that these models performed generally worse than the period-wise models. Thus, the present
experiment was not completed due to these early signs that the results were inaccurate.
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Figure 4.7: MAE Distribution per period of models trained with monthly data.

19



5 | Conclusion and Discussion

The Random Forest Regression was analyzed, as a part of a widened research, to support Intergas’ to act on
the climate change by reducing the energy consumption. Even though the model is not linear and could not be
directly compared to LR (Agrawal 2022) and SVR (Münten 2022), it was considered a supplementary study
to discover possible relevance.

Random Forest was trained using several different numbers of data points, given the availability of them
by Intergas, and proved to be unsuitable for the current analysis. Due to its nature, the model does not
reveal much information about its internal operations, as it cannot be interpreted in terms of coefficients and
intercept. Moreover, it was noticed that the RF model produced larger MAE for higher parameter values, and
it was extremely sensitive to the sample size of the train and test set.

Most of the pairs of train and test sets appeared to be statistically different and produced abnormal MAE scores
in cases that the data were not enough for RF to become a stable predictor. Because of this complication, there
was no proof that RF could be used to discover the change in insulation using fewer data points and this
limitation evinced that the current research was better approached by the linear models.

During the research, the fast detection of the change in daily gas use was of crucial importance, and thus,
models were fit into data of every month, period, and heater to compare the gas use of the months between
two consecutive periods. The results showed that the amount of information is inadequate for RF, and besides
the quantity of the data had been an issue of the specific model for longer periods too.

Further research in the specific domain could be amended by including more factors that might influence
the gas consumption, such as the weather conditions and personalized behavior of the users. The gas use and
temperature difference were positively correlated but obviously the gas use could not be fully explained by the
insulation. In such circumstances, RF may produce better results and exhibit its strength, as it is identifiable
for its ability to handle complex datasets.

5.1 Comparison of Models

In a comparison of the three different approaches and models in the various works, the following result could
be achieved. It is clear that Varoon Sushil Agrawal’s approach of a linear regression method is very similar
to Moritz Muenten’s support vector regression model. This indicates that both models show the linear re-
lationship between the average temperature difference and the added gas consumption per day. Also in the
results, despite different approaches to filtering and distribution, there is a large overlap in the final selection
of heaters with valid decrease and potential households where an insulation could be a reason for that. Maria
Fakou’s approach of detecting significant changes in the heaters using a non-linear model such as a random
forest shows that this approach was able to detect the various heaters that come into question, but the breadth
of the results due to other error rates is so high that one cannot obtain a valid result.
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A | Full data exploration results

1
2 # Ig_gasuse_hourly filtering
3 gasuse_df = gasuse_df.filter((gasuse_df.oppervlakteverblijfsobject >= 40) & (

gasuse_df.oppervlakteverblijfsobject <= 400) & (gasuse_df.t_set <= 26) & (
gasuse_df.t_act <= 30) & (gasuse_df.t_act >= 10))

4
5
6 # filter out summer months from Ig_gasuse_hourly and od_knmi_hourly_wijken_v2
7 gasuse_no_summer = gasuse_df.filter((gasuse_df.month > 8) | (gasuse_df.month <

5)).drop(’month’)
8 knmi_no_summer = knmi_hourly_df.filter((knmi_hourly_df.month > 8) | (

knmi_hourly_df.month < 5)).drop(’month’)
9

10
11 # remove missing values from ig-heater-info-nl-2 and house_prop
12 house_prop_df = house_prop_df.na.drop()
13 heater_info = heater_info.na.drop(subset=[’pandbouwjaar’,’wijk’]).select(’

HEATER_ID’, ’pandbouwjaar’, ’wijk’)
14
15
16 # join the datasets
17 gasuse = gasuse_no_summer.join(heater_info, gasuse_no_summer.heater_id ==

heater_info.HEATER_ID, "inner").drop(heater_info.HEATER_ID)
18 gasuse_with_knmi = gasuse.join(knmi_no_summer, [’Wijk’, ’TimeKey’], "inner")
19 df_joined = gasuse_with_knmi.join(house_prop_df, gasuse_with_knmi.heater_id ==

house_prop_df.HEATER_ID, "inner").drop(house_prop_df.HEATER_ID)
20
21 # removes heaters that contain multiple different records for the same date
22 duplicate_id = df_joined.groupby([’heater_id’, ’TimeKey’]).count() \
23 .where(’count > 1’).select(’heater_id’).distinct()
24 duplicate_id = [row[0] for row in duplicate_id.select(’heater_id’).collect()]
25 df = df_joined.filter(~df_joined.heater_id.isin(duplicate_id))

Figure A.1: data_cleaning.ipynb
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B | Annotated scripts of analyses and
method settings

1 results = []
2 for h in heaters:
3 sample_data = data[data.heater_id == h]
4 for period in range(1, 5):
5 data_train = sample_data[sample_data.period == period]
6 data_test = sample_data[sample_data.period == period+1]
7 if(data_train.shape[0] >= 6) & (data_test.shape[0]>= 6):
8 # assign train and test sets
9 x_train = data_train.avg_t_diff.array.reshape(-1,1)

10 y_train = data_train[’sum_gas’]
11 x_test = data_test.avg_t_diff.array.reshape(-1,1)
12 y_test = data_test[’sum_gas’]
13 # Create the parameter grid based on the results of random search
14 param_grid = {’max_depth’: [1, 2, 3],
15 ’n_estimators’: [1, 2, 3, 4, 5, 6]}
16 # Create a based model
17 rf = RandomForestRegressor()
18 # Instantiate the grid search model
19 grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,

cv = 3, n_jobs = -1, verbose = 2)
20 grid_search.fit(x_train, y_train)
21 # fit RF with best parameters
22 rf_2 = RandomForestRegressor(max_depth=grid_search.best_params_[’

max_depth’], n_estimators=grid_search.best_params_[’n_estimators
’] )

23
24 rf_2.fit(x_train, y_train)
25 pred_train = rf_2.predict(x_train)
26 pred_test = rf_2.predict(x_test)
27 # compute prediction errors
28 pred_errors_train = (y_train - pred_train).tolist()
29 pred_errors_test = (y_test - pred_test).tolist()
30
31 # create dictionary of complete information for every model
32 row = {’heater_id’: h, ’period’: period, ’y_train’: y_train.tolist

(), ’prediction_train’: pred_train.tolist(), ’y_test’: y_test.
tolist(), ’prediction_test’: pred_test.tolist(), ’max_depth’:
grid_search.best_params_[’max_depth’], ’n_trees’: grid_search.
best_params_[’n_estimators’], ’pred_errors_train’:
pred_errors_train, ’pred_errors_test’: pred_errors_test}

33 results.append(row)

Figure B.1: createDatasetOfResuts-rf.ipynb
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1 from sklearn.metrics import mean_absolute_error,
2 from math import sqrt
3
4 mae_tr, mae_test = [], []
5
6 for index, row in df.iterrows():
7 mae_tr.append(mean_absolute_error(row[’y_train’], row[’prediction_train’]))
8
9 mae_test.append(mean_absolute_error(row[’y_test’], row[’prediction_test’]))

10
11 df[’mae_train’] = mae_tr
12 df[’mae_test’] = mae_test

Figure B.2: calculate_mae.ipynb

1 mean_mae_train_p = []
2 mean_mae_test_p = []
3 sd_mae_train_p = []
4 sd_mae_test_p = []
5
6 for i in df.period.unique():
7 mean_mae_train_p.append(df[df.period==i][’mae_train’].mean())
8 mean_mae_test_p.append(df[df.period==i][’mae_test’].mean())
9

10 sd_mae_train_p.append(df[df.period==i][’mae_train’].std())
11 sd_mae_test_p.append(df[df.period==i][’mae_test’].std())
12
13 three_s_train = np.add(mean_mae_train_p, [element * 3 for element in

sd_mae_train_p])
14 three_s_test = np.add(mean_mae_test_p, [element * 3 for element in

sd_mae_test_p])
15
16 heaters = []
17 for i, n in enumerate(df.period.unique()):
18 temp = df[(df.period==n) & (df.mae_test>three_s_test[i]) & (df.mae_train<=

three_s_train[i])]
19 heaters.append(temp.heater_id.unique())
20
21 flatten_list = [element for sublist in heaters for element in sublist]

Figure B.3: mae_outliers.ipynb
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1 from scipy import stats
2 from random import sample
3 from statsmodels.stats.weightstats import ztest as ztest
4
5 stat = []
6 p_values = []
7
8 stat_z = []
9 p_values_z = []

10
11 for index, row in df.iterrows():
12 if (len(row[’pred_errors_train’])>50) & (len(row[’pred_errors_test’])>50):
13 s_z, p_z = ztest(row[’pred_errors_train’], row[’pred_errors_test’])
14
15 s, p = np.nan, np.nan
16 elif (len(row[’pred_errors_train’])<=50) | (len(row[’pred_errors_test’])

<=50) :
17 s, p = stats.ttest_ind(row[’pred_errors_train’], row[’pred_errors_test’

], equal_var=False)
18
19 s_z, p_z = np.nan, np.nan
20
21 stat.append(s)
22 p_values.append(p)
23
24 stat_z.append(s_z)
25 p_values_z.append(p_z)
26
27
28 df[’stat’] = stat
29 df[’p_value’] = p_values
30
31
32 df[’stat_z’] = stat_z
33 df[’p_values_z’] = p_values_z

Figure B.4: stat_tests.ipynb
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C | Full analysis results

0 1 2 3
heater_id 30497 30497 30497 30497
period 1 2 3 4
y_train [4.96, 9.5, 2.0... [8.52, 7.79, 1.61... [16.6, 0.77, 15.46... [3.25, 18.02, 13.01...
prediction_train [4.72, 8.25, 4.72... [8.4, 4.6, 4.18... [18.09, 1.46, 16.02... [7.86, 12.44, 14.29...
y_test [8.52, 7.8, 1.61... [16.6, 0.77, 15.46... [3.25, 18.02, 13.01... [10.86, 1.19, 5.03...
prediction_test [4.72, 4.72, 4.72... [16.42, 1.29, 16.41... [11.4, 11.87, 11.87... [7.86, 1.99, 6.78...
max_depth 1 3 3 2
n_trees 4 3 6 3
pred_errors_train [0.24, 1.25, 2.71... [0.13, 3.2, 2.57... [1.5, 0.69, 0.57... [4.62, 5.58, 1.27...
pred_errors_test [3.8, 3.07, 3.11... [0.17, 0.52, 0.96... [8.15, 6.15, 1.14339... [3, 0.81, 1.75...
mae_train 2.42 1.82 1.73 2.29
mae_test 3.13 1.93 2.66 2.238157
stat NaN NaN NaN NaN
p_value NaN NaN NaN NaN
stat_z -2.52 -0.65 -5.16 0.27
p_values_z 1.183918e-02 5.152963e-01 2.446828e-07 7.876512e-01

Table C.1: Transposed table of results (first 4 rows)
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