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Preface

Approximate Nearest Neighbour Search

& Similarity Graph Analysis for

Detecting Fraudulent Transactions

The presented document is my thesis on credit card fraud detection which investigates

open source data on how fraudulent transactions relate to further credit card transactions. The

thesis has been written as closing research to graduate from the masters programme Applied

Data Science. The engagement period of the research lasted from April up to July 2022.

The research is undertaken under supervision of Utrecht University whereas the university

provided the topic in advance. The further aim of the research question has been formulated

out of my own interest in underlying patterns in the data of credit card transactions. The

research has been intensive, and the period has been of short duration, yet, the research was

truly engrossing and I felt like I accomplished more than expected in the short period of time.

Therefore, I would like to address special thanks to my supervisors for their equal enthu-

siasm during the process. I both thank Dr. I. Karnstedt-Hulpus and V. Shahrivari Joghan for

their discussions and feedback on my process. You have challenged me and I was happy to

keep learning during the process.

I also thankmy peer students from themasters programme for supportingme and sharing

interest in my research. I appreciate the time spent together during the research process and

of course I hope to keep seeing you as a friend and during our career. I would also like to thank

my family for their stable support and caring when in need. The last year was a bless to me.

I hope the thesis is entertaining and engrossing to read.

Sebastiaan A. M. Kragting

Utrecht, August 2022
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Abstract

Approximate Nearest Neighbour Search

& Similarity Graph Analysis for

Detecting Fraudulent Transactions

Fraudulent transactions of credit cards are a major problem for financial institutions and

continues to grow along digital transformation. A conventional view states that fraudulent

transactions are anomalies. A novel view suggests fraudulent transactions exists within fraud

rings. An anonymous, sizeable, and unbalanced dataset of principal component analysis is

investigated to juxtapose the perspectives on fraudulent transactions. Approximate nearest

neighbour search identifies similar items in terms of Euclidean distance, which is applicable

to create similarity graphs. The similarity graphs yield valuablemetrics for the classification of

fraudulent transactions. The findings in respect to the given approach are as following. First,

the assortative mixing between fraudulent transactions is high in similarity graphs. Second,

no topological difference exists between fraudulent and legitimate transactions. Third, fraud-

ulent transactions are anomalies but also exist in fraud rings. Fourth, the effect of fraud rings

is stronger than the effect of anomalies. Fifth, both perspectives make useful variables for a

classification model which is competitive to the state-of-the-art.
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Nomenclature

The following nomenclature describes the abbreviations and mathematical symbols used.
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...

L2 Euclidean Distance [1]

...

ϕ Fraction of Fraudulent Neighbours [1]

...

A Transaction Amount [€]
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Introduction

Online shopping, streaming, and communication services show us digital transformation is

crucial to our daily life, and so digital transformation is inevitable for businesses to remain

the competitive advantage they strive for. Yet, digital transformation yields various risks, for

instance, businesses struggle with system functionality, control deficiency, and cybersecurity

issues (Schwertner, 2017). Currently, with the universal adoption of credit cards, a prime

concern of financial institutions is fraudulent behaviour frommalicious hackers and scammers

(Gürsoy & Varol, 2021b). Particularly, first-party credit card fraud costs financial institutions

immense capital. Such frauds need to be discerned to avoid charging actual customers for

what they did not procure. According to a global statement from the Nilson Report (2021),

”over the next ten years, the industry will experience losses to fraud totaling $408.50 billion.”

Credit card frauds broadly entail two behavioural traits. First, frauds as anomalies e.g.,

abnormal spending behaviour, frequency of transactions. Transactions also face restriction

over time and space. For instance, a person is impossible to make two transactions within a

short period of time in two different locations which are far apart. Such transactions thus are

outliers (Kou et al., 2004). Second, frauds as part of a fraud ring i.e., at present criminals tend

to collaborate, and therefore fraudulent transactions wire together into clusters of collective

fraudulent behaviour, known as organised crime (Pourhabibi et al., 2020). Especially fraud

rings cause a major loss of capital since they ”behave very similarly to legitimate customers,

until they bust-out, cleaning all their accounts and promptly disappearing”. Concurrently, the

amount of financial theft grows exponentially with the number of criminals involved in the

fraud ring (Sadowski & Rathle, 2014). Notwithstanding, fraud rings are largely overlooked.

Financial institutions aim to invent robust frameworks to detect frauds. Former algorithms

are rather rule-based and thence controversial. Though, with the rise ofmachine learning, cur-

rent algorithms are less deterministic and learn underlying patterns. Therefore, current fraud-

detection systems (FDS) are able to detect real-world fraudulent behaviour through learning

from experience (Dal Pozzolo et al., 2017). The Université Libre de Bruxelles (2018) launched

a Kaggle competition to contestmachine learning algorithms and optimise automatic fraud de-

tection solutions. Ongoing logistic regression (LR) and multilayer perceptron (MLP) models

reach 93% and 97% recall respectively, despite that, precision remains futile.

Yet, frameworks tend to neglect connections and disconnections between transactions and

therefore abandon causal information of the two fraud categories i.e., anomalies and fraud

rings. Moreover, contemporary frameworks detect frauds posterior, but sophisticated algorithms

necessitate exploring credit card transactions and identifying fraud rings a priori, before they

bust-out. Therefore, exploratory research is essential to understand what credit card frauds

constitute in topological means, and how criminals contradict legitimate customers.

1
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1.1. Research Question
Accordingly, this research adopts the perspective of graphs to discern anomalies and fraud

rings. In contradiction to research in the classification of frauds, the emphasis is put on un-

raveling patterns and associations within a network of credit card transactions. Hence, the

research question, from the perspective of a graph, alludes:

How do fraudulent and legitimate transactions contradict in network structure?

To answer the research question a data set of 284,807 credit card transactions entailing

492 (0.172%) frauds is initialised from Kaggle (Université Libre de Bruxelles, 2018). Note, the

data set is anonymous, sizeable, and imbalanced, and therefore various challenges need to be

resolved before being able to do an analysis. First, the data is anonymous through vectorisa-

tion as a consequence of Principal Component Analysis (PCA). Thus, network relations do not

exist yet, but instead, distances between vectors are computable. Second, the data is sizeable,

and therefore computing all distances between each of the vectors is unfeasible due to the ex-

ponential growth in terms of computational complexity. Third, the classes of fraudulent and

legitimate transactions are imbalanced, therefore conversion is requisite for proper analysis.

Fourth, efficient querying is requisite to reduce the computational abundance.

Whilst analysis is initiated as inductive, once intriguing contrasts between fraudulent and

legitimate transactions arise, deductive analysis inclines (Bryman, 2016). On the whole, the

research consists of three parts.

First, approximate nearest neighbor (ANN) search to establish relationships between credit

card transactions with near-linear computational complexity for scalability (J. Wang et al.,

2021). Nonetheless, the data after PCA appears to be highly clustered in high dimensional

space. Altogether, considering the similarity metric, curse of dimensionality, the size and clus-

tering of the data, an appropriate algorithm must accommodate for the nature of the data.

Once a number of neighbours for each node is discerned, a similarity graph structure arises.

Therewith, graph analysis becomes applicable for detecting fraudulent behaviour.

Second, exploratory research to investigate patterns in the similarity graph. Specifically, a

metric to express the existence of fraud rings would be the assortativity coefficient. Further

exploratory research aims to discover clusters of fraudulent transactions. The exploratory re-

search ultimately leads to the formation of hypotheses.

Third, three hypotheses arise from literature and exploratory research. The first two hypo-

theses express that fraudulent transactions are anomalies and exist in fraud rings. The third

hypotheses assumes fraudulent and legitimate transactions differ in topological structure. In

synchrony with the hypotheses, classifications models are built using significant metrics only.

Last but not least, statistical inference is done to juxtapose anomalies with fraud rings.
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1.2. Research Scope
The relevance of research is the prevention of theft and thereby cease loss of both public and

private capital. Thus, solving cybersecurity issues in the domain of finance yields both societal

and organisational relevance. Further organisational relevance lies in changing perspective

from rule-based FDS to understanding connections between frauds, and so reducing depend-

ency on large quantities of historical data. If fraudulent behaviour can be understood well,

then real-time graph traversal is helpful to detect fraud rings, before they are ”burst-out”.

Scientific relevance is contributing to multiple problems in both the research fields of cy-

bersecurity and computational science, but the essence of the research is in data science.

First, fraudulent behaviour is often poorly understood and therefore current algorithms

neglect actual relationships. In other words, current machine learning models such as Artifi-

cial Neural Networks and Random Forests are too deterministic because they are overfitting

to patterns within the black-box.

Second, the preferential tendency of connections within fraudulent behaviour is unknown

and therefore is an open issue. Computing the assortativity coefficient for fraudulent transac-

tions adds to current understanding of assortativemixing. The case of credit card transactions

is remarkable because of the class imbalance and the inherent difference between fraudulent

and legitimate transactions.

Third, ANN-search is a state-of-the-art approach to uncover nearby nodes, which is applic-

able for creating similarity graphs. Researching the viability of similarity graphs is imperative

to initiate widespread adoption of the approach and ultimately leads to novel solutions in data

science. Specifically, the extraction ofmetrics from graphs is novel (in open science) and could

possibly be superior to conventional metrics.

1.3. Structure
The following chapter kicks-off with a literature review on ANN-search, graph theory, and lo-

gistic regression for classification. The chapter finishes with an overview of related work. Sub-

sequently, the data is explored, and discussed in terms of descriptive statistics, visualisations,

and associations with a similarity graph structure. The fourth chapter explains the method-

ology of ANN-search and similarity graph analysis, and how hypotheses occur. The fourth

chapter also explains the approach to statistical modeling. The fifth and the sixth chapters

are the empirical findings and the conclusions drawn. Last but not least is the discussion and

further considerations for future research.



2

Theoretical Foundations

Under fraudulent behaviour within financial institutions exists i.a. credit card, mortgage, and

money laundering fraud. This research focuses solely on credit card frauds. Credit card fraud

signifies unauthorised procurement of a person’s credit card without the person’s consent nor

conscience. Financial institutions are principally responsible for such theft. Fraudulent trans-

actions may arise due to theft or loss of the credit card, online hacking and scamming, or fake

ATM skimming, for instance (West & Bhattacharya, 2016). A regular graph model around the

data of credit card transactions is depicted in Figure 2.1a.

2.1. Similarity Graphs
In this research, relationships between transactions are of interest, which requires the recon-

struction of data. The reconstructed data alternates existence of relationships i.e., relation-

ships do not exist yet, however, similar items are identifiable through searching for nearby

data in vector space. Finding similar transactions in sizeable data is a problem for ANN-search

(J. Wang et al., 2021). The similarity graph model is depicted in Figure 2.1b and is meant to

artificially recreate the graph model in Figure 2.1a as a (distance) similarity graph.

Specifically, once a top-k of nearby neighbours is established through ANN-search, a graph

structure emerges using transactions as nodes with undirected relationships between neigh-

bouring vectors, therefore the graph is unipartite. Each transaction n ∈ N has an equal

amount of relationships to the top-k search, which is theoretically referring to the out-degree

d+n = k. Each relationship carries a weight of the inverse distance 1/L2 between vectors, the

weight represents the similarity between nodes.

(a) Bank account information

(b) Similar transactions

Figure 2.1: Comparison of two graph models (Bastani, 2013).

4
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2.2. Approximate Nearest Neighbour Search
If all similarities between each of all the daily transactions would be calculated (i.e., naive-

kNN) then the computation time O(n2) would range up to 106 seconds i.e., weeks, which is

not feasible. Therefore, ANN-search provides finding a top-k of similar items in near-linear

computational complexity O(n1+ϵ) where ϵ > 0 (Li et al., 2019). To do so, data is considered

in vector space, whereas each transaction represents a vector.

2.2.1. Vectors & Euclidean Geometry
In mathematical terms, a vector is a spatial relationship with a direction and a magnitude. In

computer science, a vector is recognised as an array data structure. Vectors can be similar in

various manners, two accessible methods are cosine similarity cos(θ) and Euclidean distance

L2, those metrics are expressed as, whereas V -dimensions exist of v:

cos(θ) =
A ·B

||A|| · ||B||
=

∑V
v=1 av · bv√∑V

v=1 a
2
v ·

√∑V
v=1 b

2
v

, (2.1)

L2(A,B) =

√√√√ V∑
v=1

(av − bv)2. (2.2)

Clearly, these metrics are inherently different, but since outliers are reliant on the mag-

nitude of the vector, and not the angle, the cosine similarity is detrimental. Figure 2.2a depicts

that vector A⃗ and C⃗ are approximate in distance L2, whilst the angle cos(θ) is larger than for

A⃗ and B⃗. Thus, we consider the Euclidean distance L2 as the similarity metric of interest.

V 1

V 2

B⃗

A⃗

C⃗

(a) Comparison of cosine similarity and Euclidean distance

V 1

V 2

V 3

33
0



30
3



03
3



(b) Curse of dimensionality in vector search

Figure 2.2: Visualisation of vector space.

Figure 2.2b depicts an issue of dimensionality in ANN-search, the distance between vectors

is equal whilst orientations differ (Indyk & Motwani, 1998). If dimensionality and cardinality

is high, then numerous quasi-identical vectors subsist over various dimensions. Consequen-

tially, query performance degrades as dimensionality increases (Weber et al., 1998).
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2.2.2. Hopkins Statistic
Aside from the curse of dimensionality, data can be clustered. Both the curse of dimension-

ality and clustering lead to searching through dense vector space, which is emanating further

complexities. The Hopkins Statistic is a measure of clustering tendency which is applicable to

vectors (Hopkins & Skellam, 1954):

H =

∑n
i=1 u

d
i∑n

i=1w
d
i +

∑n
i=1 u

d
i

(2.3)

Here, a randomsamplen fromdataX with features (i.e., dimensions)xi. For an equal num-

ber of dimensions and entities, a set Y is generated with a uniform but random distribution of

vectors. In Equation 2.3, ui represents the distance of yi ∈ Y to the nearest neighbour in X,

and wi is the distance of the sample xi ∈ X to the nearest neighbour inX. In other words, the

Hopkins Statistic signifies nearby vectors in comparison to the uniform random distribution,

which is 1.00 for complete clustering and 0.00 for an absolute uniform distribution (Banerjee

& Dave, 2004).

2.2.3. Hierarchical Navigable Small-World Graphs
ANN-search relies on vector indexing for efficiently organising data andoptimsing query speed.

Four types of vector indexing exist; quantisation, tree, hash, and graph-based indexing. Espe-

cially, graph-based indexing focuses on high-speed queries with high recall formemory intens-

ive data. The Hierarchical Navigable Small-World (HNSW) graph is an index of ANN-search

which is performing efficiently on clustered data. Herein, a vector index is built on basis of con-

nected neighbourhoods, then greedy heuristics navigate proximity graphs of these connected

neighbourhoods for a certain query (Li et al., 2019).

The structure of the HNSW algorithm is a multi-layer graph whereas the query initiates

vector search in the top-layer. The search in the initial top-layer is highly approximate but

quickly improves over multiple iterations towards lower layers. The structure of the HNSW

graph evolves by inserting unseen vectors successively. After acquiring sufficient connections,

a relative neighbourhood arises (cluster). Extra connections between neighbourhoods are se-

lected to retain connection to a global component. Therefore, the algorithm remains viable

for highly clustered data (Malkov & Yashunin, 2018). The recall of the HNSW algorithm is

dependent on the data structure and the size of the database.

Yet, the recall and query speed performance of HNSW are optimisable over three paramet-

ers: ”maximum degree of nodes on each layer of the graph” (M), search scope of building an

index (efC), and search scope of target retrieval (ef) to define a search range.
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2.3. Assortative Mixing by Enumerative Characteristics
Assortative mixing by enumerative characteristics is a measure of the difference between the

actual number AE and the expected number EE of relationships between nodes of identical

classes (Newman, 2002). The corresponding assortativity coefficient r is a measure of homo-

phily i.e., the tendency to associate with similar entities. The number of actual relationships

between nodes of an identical class is:

AE =
∑

(i,j)∈E

δ(ci, cj) =
1

2

∑
i,j

ai,jδ(ci, cj) (2.4)

whereE is the set of relationships in the graph and ai,j is the number of actual relationships

between node i and j. The factor one-half accounts for the relationships being undirected. The

Kronecker delta mathematically accounts for the nodes to be of identical class:

δ(ci, cj) =

0, if i ̸= j,

1, if i = j.
(2.5)

The expected number of relationships betweennodes of an identical class is amathematical

estimation as if the classes are spread randomly over the graph:

EE =
1

2

∑
i,j

didj
2m

δ(ci, cj) (2.6)

m is the number of edges in the graph. Nodes i and j yield a degree di and dj respectively.

Thus, didjm refers to the expected number of relationships between node i and j. Themodularity

is a measure of difference between the actual and the expected number of relationships1:

Q =
1

2m

∑
i,j

(
ai,j −

didj
2m

)
δ(ci, cj) (2.7)

whereas the maximum possible modularity is the difference between the total and the ex-

pected number of relationships:

Qmax =
1

2m

2m−
∑
i,j

didj
2m

δ(ci, cj)

 . (2.8)

All in all, normalising modularity results in the assortativity coefficient r:

− 1 ≤ r(E) =
Q

Qmax
=

∑
i,j(ai,j − didj/2m)δ(ci, cj)

2m−
∑

i,j(didj/2m)δ(ci, cj)
=

AE − EE

m− EE
≤ 1 (2.9)

In this research the above equations require alteration for class imbalance. Appendix E is

an explanation of how assortative mixing is relevant to this research.

1http://users.dimi.uniud.it/~massimo.franceschet/teaching/datascience/network/assortative.html

http://users.dimi.uniud.it/~massimo.franceschet/teaching/datascience/network/assortative.html
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2.4. Multinomial Logistic Regression
Multinomial Logistic regression (LR) is applicable to model the probability that an observa-

tions belongs to a particular class (James et al., 2013). Hastie et al. (2009) define the probab-

ility for binary classification as following:

log
(

P (X, k)

1− P (X, k)

)
= β0 +

S∑
j=1

Xj · βj (2.10)

P (X, k) =
eβ0+

∑S
j=1 Xj ·βj

1 + eβ0+
∑S

j=1 Xj ·βj

(2.11)

here the probability is a function of a set of variables S. The model coefficients βj and

variablesXj plus the intercept β0 determine the probability of the class for an observation.

2.4.1. Binary Classification
Table 2.1 is an overview of classification, which is not a hard cut between classes. Namely, each

classification is probabilistic P (c = f) = 100% − P (c = l). Conventionally, the boundary T

between a binary class lies at P (c = f) > T = 50%. Though, this boundary is a parameter

to optimise the trade-off between recall and precision. Increasing the boundary would lead to

less TP and FP, but would lead to more TN and FN. Vice versa for decreasing the boundary.

The terminology and derivations from a confusion matrix for evaluation are as following:

PPV (T ) = precision =
TP

TP + FP
(2.12)

TPR(T ) = recall =
TP

TP + FN
(2.13)

TNR(T ) = specificity =
TN

TN + FP
= 1− FPR(T ) (2.14)

The area under the curve (AUC) from Receiver Operating Characteristic (ROC) curves is

for viable model evaluation independent of threshold T . Hand (2009) defines the AUC as:

AUC =

∫ 1

v=0
TPR(FPR−1(v)) · dv =

∫ −∞

+∞
TPR(T )FPR′(T ) · dT (2.15)

Thus formally, recall and specificity are functions of boundary T . The integral defines the

AUC and is straightforwardly interpretable over the whole model.

Table 2.1: Confusion matrix for binary classification.

Predicted

0 1

A
ct
u
al 0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)
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2.5. RelatedWork
The data for credit card fraud detection is open for science and therefore is surrounded by

publications (Université Libre deBruxelles, 2018). Themajor focus lies on solving the problem

of imbalanced data through undersampling and oversampling techniques (Dal Pozzolo, 2015;

Dal Pozzolo et al., 2015; Dal Pozzolo et al., 2014), further focus lies on the nonstationarity

of timely data (Carcillo et al., 2018; Dal Pozzolo et al., 2017). Yet, the core perspective is on

fraudulent transactions as anomalies, not as fraud rings.

For instance, anomalies exhibit in the variants of credit card fraud, mobile phone fraud,

and cyber attacks. Three types of anomalies exist: point anomaly, contextual anomaly, and

collective anomaly (Ahmed et al., 2016). The topical priority of point anomaly detection lies

in detecting outlying patterns using Artificial Neural Network, Support Vector Machine, and

Random Forest (Gürsoy & Varol, 2021b; Kou et al., 2004). Such models are deterministic be-

cause they operate inside the black-box, thus are neglecting underlying causalities. Moreover,

models ordinarily score high on recall but precision is futile, therefore considering the AUC

is crucial (Dal Pozzolo, 2015). Further work argues the Local Outlier Factor (LOF) captures

collective anomalies to a certain extent (Gogoi et al., 2011). kNN algorithms are applicable

for FDS (Gürsoy & Varol, 2021b), particularly, kNN is well established for classification tasks

(Guo et al., 2003; Zhang et al., 2017). Currently, the problem is finding neighbouring vectors

in sizeable data (Deng et al., 2016), and whether the theorem holds on fraudulent credit card

transactions is an open issue. Fortunately, ANN-search is offering new opportunities for size-

able data and may overcome the current barriers of kNN classification (J. Wang et al., 2021).

Graphs support detecting fraud rings in real-time through analysing direct relationships

(Sadowski & Rathle, 2014). For example, social network analysis allows for finding roles and

patterns ofmoney laundering by analysing graph topology and clusters (Dreżewski et al., 2015).

In the case of similarity graphs, C. Wang et al. (2019) propose a measure of anomalies for

small-scale data using kNN as a parameter. Further, community detection methods deem

appropriate to detect fraud rings in similarity graphs (Needham & Hodler, 2018). Howbeit, if

the PCA-data in this research is valid for building similarity graphs is an open issue.

Prior research shows cross-validation constructs useful evaluation of real-time FDS (Chen

et al., 2005; Thennakoon et al., 2019). Namely, a model is trained on prior knowledge and an

assumption made is that credit card transactions enter the database successively. Note, train-

ing models on imbalanced data typically requires undersampling of legitimate transactions to

produce classifications neutrally. Therefore, leave-one-out cross-validation (LOOCV) appeals

for model evaluation utilising an optimum of available resources (Wong, 2015).

All in all, prior research tends to neglect the graph structure of credit card transactions.

This research aims to fabricate a similarity graph in order to extract significant metrics. Sub-

sequently, the metrics are fed to logistic regression models for classification and inference.

Therefore, the models do not operate within the black-box. Besides, Themodels become inter-

pretable and thus yield theoretically relevant information. As a result the perspectives of fraud-

ulent transactions as anomalies and fraud rings can be juxtaposed to assess prior research.



3

Data Description

The dataset is retrieved from Kaggle (Université Libre de Bruxelles, 2018) and consists of

284, 807 credit card transactions over two full days entailing 492 (0.172%) frauds. The data

set is sizeable, anonymous, and imbalanced. The data set contains the following features: a

timestamp, the amount of the transaction, and 28 unidentifiable features as a result of PCA.

The 28 features correlate nil. Solely the distance between the vector representations of these

28 features is meant to seek for similar transactions. Table A.1 in Appendix A indicates de-

scriptive statistics of the dataset, several observations are made:

• The class for legitimate transactions is 0, and the class for fraudulent transactions is 1.

The data is imbalanced with roughly 1 out of 600 transactions being fraudulent.

• Data is non-standardised, but requires a standard deviation σ = 1 and mean µ = 0

before computing distances L2 for equal treatment of vector dimensions.

• The Hopkins Statistic of a random sample after standardisation is consistently 1.00.

* Note, standardisation of data worsens the clustering issue arising from the curse of

dimensionality, increasing the dependence on an appropriate ANN-algorithm.

• The ’Amount’ variable ranges from€0.00 to €25, 691.16, and therefore has a right-skewed

distribution with an immense standard deviation.

• Further investigation in rawdata of the 28 features indicates the classes show remarkable

different distributions. Figure 3.1 depicts three visible cases of anomalous values.

Figure 3.1: Density distributions per class for principal component dimensions four, twelve, and seventeen.
Further visualisation in Figure B.1 in Appendix B shows how the distributions relate in conjunction.

10
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Figure 3.2 visualises the transaction frequency over time. Two fraudulent peak times exist

at 12pm on the first day and 5am on the second day, therefore fraudulent behaviour is non-

seasonal. Yet, the peak indicates discontinuous fraudulent behaviour as of criminals initiate

theft and bust-out before fraudulent transactions are intercepted.

Figure 3.2: Transaction frequency over time per class.

Figure 3.3 visualises the cumulative distribution of transaction amounts. Noticeable is that

fraudulent transactions chiefly consists of several cents, €1.00, and €100.00.

Figure 3.3: Cumulative distribution of transaction amounts per class.

The data in general consists of no missing values, but no statements are disclosed whether

all fraudulent transactions are labelled to their corresponding class orwhether these cases have

not been identified. Since the data set is anonymous no ethical conflicts arise in exploiting the

data (Calvino et al., 2017). The data is widely utilised on https://www.kaggle.com.

https://www.kaggle.com
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3.1. Preliminary Research
The given data after PCA yields 28 features and therefore is considerably high in dimensions.

Moreover, the data is sizeable due to the high amount of transactions each day. The fact that

theHopkins Statistic is equal to 1.00 is remarkable. The properties of the data are unfavourable

for ANN-search. Altogether, considering the similarity metric, curse of dimensionality, the

size and clustering of the data, an appropriate ANN-search algorithm must accommodate for

the nature of the data. Preliminary research through trial and error reveals that the HNSW

graph performs well in comparison to alternative algorithms1 e.g., IVF_FLAT and ANNOY.

See https://github.com/SebastiaanK97/NetworkSimilarity for an explanation on the process.

3.2. Classification for Fraud Detection
Table 3.1 denotes the confusion matrix for binary classification for fraudulent transactions.

The labels are as following. TN: A legitimate transaction classified correctly, FP: A fraudulent

transaction classified as legitimate; FN: A legitimate transaction classified as fraudulent; TP:

A fraudulent transaction classified correctly. The optimisation of the classification is a con-

sequence of boundary T . Increasing the boundary leads to criminals escaping, and decreasing

the boundary leads to a higher workload of correcting legitimate transactions.

Table 3.1: Confusion matrix for binary classification.

Predicted

Legitimate Fraudulent

A
ct
u
al Legitimate True Negative (TN) False Positive (FP)

Fraudulent False Negative (FN) True Positive (TP)

Generally, the financial institutions’ aim is to detect all fraudulent behaviour because the

theft outweighs the remuneration of the workload. Thus, the goal is to strive for high recall

(Awoyemi et al., 2017; Université Libre de Bruxelles, 2018). Yet, the extent of recall optim-

isation is a business decision. Besides, a model may perform decently in recall but poorly in

precision. Therefore, the area under the curve (AUC) from Receiver Operating Characteristic

(ROC) curves is a viablemodel evaluationwhich is independent of threshold T . Though, for op-

timisation, recall needs to be taken into account as a specific evaluation measure to grasp the

actual aim of the model i.e., ceasing fraudulent behaviour (Hand & Anagnostopoulos, 2013).

1https://milvus.io/docs/index.md

https://github.com/SebastiaanK97/NetworkSimilarity
https://milvus.io/docs/index.md
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Methodology

The research proposes analysing credit card transactions from a similarity graph. Figure 4.1

depicts the methodology as a pipeline, which is described throughout this chapter. The meth-

odology yields fourmain purposes; ANN-search, setting up a similarity graph, extracting signi-

ficant metrics from the graph, and fitting statistical learning models using these metrics. The

purposes are executed exclusively, but, progressing requires the data from prior steps.

Start

Data
Description

Vectors

ANN-
Search

Query Speed Optimisation

top-k
Significance
Testing

Graph
Building

Louvain
Clusters

Graph
Analysis

Stop

Topology
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Format
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slow

fast

low

high

Figure 4.1: Flow Chart of the research process. The arrows indicate the flow of the methodology.

4.1. Vector Database
The vectors are inserted to a vector database for efficient ANN-search through vector indexing.

The vector database utilised is Milvus1, which is open-source and cloud-native. Milvus is able

to query multiple vector search for billion-scale data and therefore is state-of-the-art for ANN-

search (J. Wang et al., 2021). Milvus is mounted in the programming language Python as a

software development toolkit (SDK). Python communicates with Milvus’ cloud via Docker.

1https://milvus.io

13

https://milvus.io
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Milvus requires the definition of the database field schema, collection schema, and collec-

tion name. Subsequently, data is inserted into the database and parameters are set in Python

to define the search query. The vector search revolves around finding a set of top-k nearby

neighbours, where k is a parameter on which needs to be decided on. Increasing k increases

the query time linearly (approximately). Milvus enables the specification of a number shard

to divide vectors into buckets, sufficient shards are requisite to ensure load balance over the

vectors. Inadequate shards cause the search-space to be too extensive, but an overabundance

of shards causes an increase in latency in communication to the cloud-database. The effect of

the parameters: number of neighbours (k), number of shards, and number of vectors will be

investigated in reciprocal conjunction to scrutinise query speed.

The type of vector index is detrimental to the search, namely, indexing organises data

favourable for high-speed information retrieval. The types of vector indices are IVF_FLAT,

HSNW, ANNOY, which are quantisation, graph, and tree-based indices respectively. HNSW

handles clustered data efficiently and appears to be non-erroneous for the given data. Further,

HNSW functions best for scenarios of high-speed querying, optimal recall, and large memory

sources2. Three parameters exist withinHNSW to finetune query speed and the recall of ANN-

search. The effect of the parameters: ”maximum degree of nodes on each layer of the graph”

(M), search scope of building an index (efC), and search scope of target retrieval (ef) will be

investigated in reciprocal conjunction to optimise query speed.

The output of the ANN-search is saved into a data frame for export as a comma-separated

values (CSV). As in Figure 4.1, the data on top-k relations for each vector (a.k.a. credit card

transactions) is in functional structure for graph building, graph analysis, and extracting met-

rics for significance testing. For practical implementation and explanation of ANN-search to-

wards creating similarity graphs see https://github.com/SebastiaanK97/NetworkSimilarity.

4.2. Graph Database
When moving from relational data to a graph database the structure alternates on which par-

ticular algorithms are applicable. Specifically, a graph database is in functional structure for

graph clustering and extracting topological metrics. Moreover, a graph database is efficient in

retrieval because nodes are directly linked for perpetuation. The graph database management

system made use of is Neo4j3 which utilises the querying language Cypher. In the graph data-

base, each transaction is a node with a k number of relationships. The distance is a property

of the relationships and e.g., the amount of the transactions is a property of the nodes.

Numerous analyses are applicable on graphs. Up to the present time, nil is published about

the topology of fraudulent behaviour in social networks. Besides, whether the data of credit

card transactions after PCA and ANN-search is valid to build eloquent graphs is unknown.

Accordingly, graph analysis in this research could either be groundbreaking or controversial,

thus, the nature of graph analysis in this research is utmost exploratory. The graph database

requires admin import, consult Appendix C on how to.

2https://milvus.io/docs/v2.0.x/index.md
3https://neo4j.com

https://github.com/SebastiaanK97/NetworkSimilarity
https://milvus.io/docs/v2.0.x/index.md
https://neo4j.com
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4.3. Exploratory Research
The research pursues with exploratory research to induce novel propositions. Subsequently

hypotheses can be build to explain fraudulent behaviour in credit card transactions.

4.3.1. Components, Clustering & Structure
As a first analysis of the graph, the structure of components and clusters is scrutinised. Mul-

tiple graph algorithms are ran. Analysis of weakly connected components is done to invest-

igate individual components whilst thresholding the maximum distance of relationships in

the graph. The aim of investigating components is to separate densely connected fraudulent

transactions from legitimate transactions. Analysis of louvain clustering is done to investigate

densely connected fraudulent transactions in a flexible manner. Also the graph is vectorised

through Node2Vec to exploit features of the graph. Appendix D is partially an overview of the

algorithms for exploratory research.

4.3.2. Assortative Mixing
If fraud rings truly exist, then suggestively fraudulent transactions possess relationships to

further fraudulent transactions. Therefore, the graph asserts homophily i.e., the tendency for

entities to relate to those which are similar to themselves. (McPherson et al., 2001). Thus,

the activity of fraudulent behaviour clusters into fraud rings which can be measured by the

assortativity coefficient r. The distinction between the classes of fraudulent and legitimate

classes is an enumerative characteristic i.e., a finite set of possible values. However, due to the

class imbalance Equation 2.9 necessitates alteration to a sub-graph (see Appendix E).

Prior research by Newman (2003) shows the assortativity coefficient r in social networks

ranges from −0.03± 0.04 for student relationships up to +0.36± 0.00 for coauthorship in the

field of physics. The preferential tendency of connections within fraudulent behaviour is un-

known and therefore is an open issue.

Therefore, as the second analysis of the graph, the assortativity coefficient r is calculated

as a function of the k number of neighbours. The assortativity coefficient r helps understand

the preferential tendency of connections within fraudulent behaviour. If fraud rings truly exist

then r > 0.00. Namely, fraudulent transactions will connect to further fraudulent transactions.

Note, for low numbers of k, assortative mixing is dependent on a smaller neighbourhood of

the nodes. As a consequence, the assortativity coefficient r becomes more local. Equation E.7

is detrimental to the calculations and is easily extractable through Cypher queries, Appendix F

depicts an example query and calculation for k = 256.
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4.4. Explanatory Research
As the research aim is to scrutinise contradictions in network structure between fraudulent

and legitimate transactions, metrics such as the local clustering coefficient (transitivity), eigen-

vector, betweeness, closeness, and (personalised) PageRank yield information on the network

structure. Unguided hypotheses testing helps discover contradictions in such metrics.

Hypothesis 1 (H1) Fraudulent and legitimate transactions differ in topological structure.

Let τi define any topological metric of a node in a graph, then the null-hypothesis would

state there is no contradiction between legitimate and fraudulent transactions:

Hτ0(c, k) : τ(c = l, k) = τ(c = f, k) (4.1)

here the hypothesis is an outcome of topology metrics by class difference cwhich vary over

the top-k. If fraudulent transaction contradict legitimate transactions in a graph then:

Hτ1(c, k) : τ(c = l, k) ̸= τ(c = f, k). (4.2)

4.4.1. Anomalies
A common view on fraudulent behaviour is that their presence is anomalous a.k.a. being an

outlier. According to Gogoi et al. (2011), outliers can either be distance or density-based. In-

dividual outliers are detectable through distance-based methods, such as setting exceeding a

minimum distance, or exceeding a certain percentile of neighbours. Collective anomalies are

more or less detectable through density-based methods, yet these approaches are computa-

tionally intensive and incompatible with ANN-search. In general, the hypothesis is:

Hypothesis 2 (H2) A positive relationship exists between the distance to a set of nearby

neighbours and the classification of a transaction as fraudulent.

The distance L2 to neighbours would be higher for fraudulent transactions in comparison

to legitimate transactions. Whether it is the the maximum, mean, or the standard deviation of

the distance L2 does not matter, although, one metric may be more distinguishable than the

other. The robustness of difference is discernible by significance-levels between the classes.

The null-hypothesis states no difference in distances to neighbours exists between classes:

HL0(c, k) : L2∗(c = l, k) = L2∗(c = f, k). (4.3)

The mathematical formulation of the alternative hypothesis is as following:

HL1(c, k) : L2∗(c = l, k) < L2∗(c = f, k) (4.4)

let theL2∗(k) denote any aggregation of the distancemeasure such as themaximum,mean,

or the standard deviation, the one with highest significance is of interest. The distancemetrics

and thus also the hypotheses are dependent on the k number of nearby neighbours.
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4.4.2. Fraud Rings
A novel view on fraudulent behaviour is that their presence is surrounded by other fraudulent

behaviour a.k.a. fraud rings. Therefore, a set of nearby neighbours of a fraudulent transaction

would entail further fraudulent transactions (Gürsoy & Varol, 2021b). Since credit card trans-

actions enter databases successively, there is high prior knowledge of classification. There-

fore, considering the class of nearby neighbours is feasible. For example, Gürsoy and Varol

(2021a) apply KNN-search to make classifications in clinical data. Expectantly, such an ap-

proach would also persist for ANN-search on a large dataset of credit card transactions:

Hypothesis 3 (H3) A positive relationship between the tendency to connect to fraudulent

transactions exists within fraudulent transactions.

In contrast to assortative mixing, a new metric needs to be defined at the local level as

a characteristic of each node. Theretofore, a nodes’ direct neighbours are considered. The

formal expression of the fraction of fraudulent transactions is as following:

ϕi(j, k) =

∑
j δ(cj = f)

k
(4.5)

here the fraction of fraudulent transactions ϕi of node i is dependent on the neighbouring

nodes j being fraudulent, relative to the total number of neighbours k.

The null-hypothesis states no difference in fractions exists between classes:

Hϕ0(c, k) : ϕ(c = l, k) = ϕ(c = f, k) (4.6)

The mathematical formulation of the alternative hypothesis is as following:

Hϕ1(c, k) : ϕ(c = l, k) < ϕ(c = f, k) (4.7)

4.4.3. Overview of Hypotheses
Figure 4.2 is a visual exemplar of the hypotheses for two individual nodes of each class. Ex-

pectantly, legitimate transactions are surrounded by nearby legitimate nodes, and fraudulent

transactions are surrounded by more fraudulent nodes, whilst being an outlier, relatively.
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Figure 4.2: Exemplar of neighbouring transactions per class for k = 8.
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The two theoretical hypotheses on fraudulent transactions as anomalies and fraud rings

are tested through a one-sided Welch’s t-test for unequal variance. Namely, variances are un-

equal because of the inherent difference between legitimate and fraudulent transactions given

themetrics. For instance, the fraction of fraudulent neighbours ϕ scatters around 0.00 for legit-

imate transactions, and the distance to neighboursL2σ ranges widely depending on how far an

outlying fraudulent transaction is. The hypothesis on legitimate and fraudulent transactions

differing in topological structure is tested through a two-sided Welch’s independent t-test for

unequal variance. Namely, whether a metric would be larger or smaller for the given class is

unknown. All hypotheses are tested over parameter k to investigate the effect of ANN-search.

4.4.4. Statistical Modeling
Classification of legitimate and fraudulent transactions is done through logistic regression.

Model evaluation is key to improving the validity of classification, which is in this case meas-

urable through the AUC and recall. Model evaluation is done by undersampling and LOOCV.

However, undersampling causes the measures of AUC and recall to be case-specific on under-

sampling the training set. Therefore, it is necessary to pool outcomes over multiple iterations

i.e., themean and standard deviation of the AUC and recall are explored over several paramet-

ers considering 50 reiterations. The parameters are the variable input of the model and the

discretisation of the k number of neighbours. Through stepwise logistic regression, three sets

of models come about with the variables: fraction of fraudulent neighbours ϕ, the standard

deviation of the distance to neighbours L2σ, and the transaction amount A. Both a linear and

quadratic polynomial fit is evaluated. A linear fit returns a single coefficient for each variable,

plus themodel intercept. A quadratic fit returns also the quadratic transformation of variables,

plus interaction effects and the model intercept. On top of these models, also the logarithmic

transformations of L2σ and A are considered. Table 4.1 is an overview of the models.

Table 4.1: Overview of logistic regression models. Note, the No. Coefficients includes the model intercept.

Label Model Variables No. Coefficients (Linear) No. Coefficients (Quadratic)

Model 1 P (c = f |ϕ) 2 3
Model 2 P (c = f |ϕ,L2σ) 3 6
Model 3 P (c = f |ϕ,L2σ, A) 4 10

Search parameters for logistic regression modeling are as following. The maximum num-

ber of iterations to settle coefficients is set to 10, 000 (instead of 100) for reaching a global op-

tima. The penalty of the model set to ”none” for consistent treatment of coefficients over vary-

ing models, moreover, the AUC and recall deem to be higher in this case. To ensure justified

variables, an analysis of the variation inflation factor (VIF) is done to track multicollinearity.

As final result, after model evaluation, a theoretically relevant logistic regression model is

fit over all available data to investigate the overall influence of model coefficients. Namely, the

process of statistical inference yields valuable information on the coefficients of the model.



5

Empirical Findings

The following chapter kicks-off with query speed optimisation anddescriptive findings of ANN-

search on the data. Subsequently, findings from exploratory research reveal descriptive ana-

lysis on graphs and proposals for further investigation. Last but not least is explanatory find-

ings on graph analysis. Explanatory research naturally arises out of exploratory findings.

5.1. Approximate Nearest Neighbour Search
First, the computation time of calculating the Euclidean distance is scrutinised to decide on

howdata should be handled. If no ANN-search i.e., naive kNN is performed the computational

complexity scales exponentially. In Table 5.1 the computation time ti formultiple sets of nodes

is tracked over the data sizeN to investigate the computational complexity. Clearly, doubling

the number of nodes results in quadrupling the computation time. The computation time per

node is linear to the the data size N because of the division by N .

Table 5.1: Overview of computation time in seconds [s] for naive kNN.

Data Size N 64 128 256 512 1024 2048

Computation time [s] 0.22 0.91 3.62 14.41 57.49 231.73
Computation time per node [s] 0.0035 0.0071 0.0142 0.0281 0.0561 0.1131
Growth (ti/ti−1) - 4.00 3.96 3.98 3.99 4.03

The computation time per node will be compared to the performance of ANN-search. Ex-

trapolating the time in Table 5.1 to the total 284, 807 nodes leads to an approximation of:

ti = α ·N2
i ≈ 1× 10−5 · 284, 8072 ≈ 1× 106 s. (5.1)

Therefore, the rough approximation estimates computing the Euclidean distance between

all nodes take 1 × 106 s which equals to weeks i.a. months of time. Note, the data only exists

of two days, therefore years of data would straightforwardly be problematic. Namely, if more

nodes enter the database per second than is computationally feasible to process, then there is

no use of the approach. Evidently, ANN-search is requisite to perform kNN and compute the

Euclidean distance to nearby neighbours efficiently.

19
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Table 5.2 yields the query time in seconds for ANN-search over the parameters data size

N and the k number of neighbours set at a fixed number of 4 shards. Overall, the query speed

increases over data size N and over the k number of neighbours. Comparing Table 5.1 and

Table 5.2, ANN-search is overall significantly faster than naive kNN computation, but is at the

cost of an approximate subset. Notable is that quadrapling k in Table 5.2 does not quadruple

the query time, therefore ANN-search is efficient over the k number of neighbours.

Table 5.2: Query time in seconds [s] of ANN-search over k andN considering 4 shards.

No. k Data Size N

256 512 1024 2048 4096 8192 16384 32768 65536 131072

256 4.47 4.83 5.75 7.81 11.46 23.22 54.51 180.52 527.36 1928.69
1024 5.03 6.11 8.83 12.85 24.86 45.25 105.23 251.27 753.43 2496.40
4096 6.76 9.15 15.97 29.61 68.11 135.14 275.08 706.52 1850.24 5309.83

Distinctly, query time is near-linear and is viable over large sets of nodes. Benchmarking

of queries is necessary to investigate optimal query speed and avoid inaccurate parameter se-

lection. Benchmarking is specific to the data set. The effect of the parameters: number of

neighbours (k), number of shards, and number of vectors are investigated in reciprocal con-

junction to scrutinise query speed. Figure 5.1 visualises the trend of query time relatively per

node. Note, the x-axis refers to the data size N as in Table 5.2 and the y-axis is the compu-

tation time per node ti
Ni
. The y-axis ranges roughly from 0.003 seconds per node for k = 256

and N = 4, 096 up to 0.041 seconds per node for k = 4, 096 and N = 131, 072. The query

speed yields a u-curve relationship with the number of nodes. Specifically, the u-curve depicts

the trade-off between latency and data abundance i.e., ANN-search is slow for a few nodes

because of latency to the server, and a high number of nodes causes the query to be complex.

The number of shards does not affect the query speed considering the given data.

Figure 5.1: Query speed as computation time per nodes in relation Table 5.2.
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Further parameters affect the query speed, but may also affect the recall of the query i.e.,

whether the approximation of ANN-search performs rigorously. These parameters are as fol-

lowing. The ”maximum degree of nodes on each layer of the graph” (M), search scope of

building an index (efC), and search scope of target retrieval (ef). The reciprocal conjunction

of these parameters is investigated in Figure 5.2. It transpired that the parameters do not af-

fect the query speed for the given data. Namely, no relation exists between the parameters

and the query speed in Figure 5.2. Furthermore, a brick investigation reveals that the ANN-

search remains stable over the parameters. Namely, the results appear to remain stable over

the parameters as well. Perchance the data is straightforward enough the results are not ap-

proximations but clear-cut kNN. In other words, conventionally ANN-search is implemented

for image and video search, thus array structures. Therefore, the vector search is not complex

and the algorithm decidedly seems to find the exact nearest neighbours.

Figure 5.2: Query speed over HNSW parameters.

All in all, the exact optimisation requires fine-tuning and reconsideration of the parameters

such as the data size N and the k nearest neighbours. A balance needs to be sought for which

is practical for FDS in practice. For example, the selection of data sizeN is a business decision

on how many nodes should be handled over a specific time period.
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It appears that k = 256 for the full data setN = 284, 807 balances the query speed well with

a computation time of 1 × 104 s, about 2,5 hours, for HNSW. Benchmarking for IVF_FLAT

reveals that HNSW is up to twice as fast and less erroneous, which is confirming that data is

clustered. Besides, setting k = 256 prevents conflicts in running Neo4j on an excessively large

graph. Further, processing of data and file sharing becomes inconvenient for larger k.

The total number of relationships is (256+1) ·284, 807 = 73, 195, 399, the extra relationship

stems from the ANN-search finding the closest distance to vectors themselves first. Figure 5.3

depicts the distribution (y-axis) of Euclidean distance L2 to neighbours (x-axis) over varying

k number of neighbours, a higher k results in discovering further neighbourhoods. Interest-

ingly, the distribution depicts peaks which hint toward the existence of clusters in vector space.

Therefore, the next step is exploratory analysis of these clusters in graphs.

Figure 5.3: Distribution of Euclidean Distance over varying k number of neighbours.
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5.2. Exploratory Research
ANN-search establishes nodes’ relationships, subsequently a graph is set-up in a local Neo4j

database. Multiple graph algorithms are ran to investigate the graph structure and propose

objectives for research deduction. Note, the Euclidean distance is often referred to as distance

which is a numerical (float) property of a relationship. See Appendix D for Cypher code.

5.2.1. Weakly Connected Components
Figure 5.3 already depicts the existence of clusters in the data. Therefore, weakly connected

components (disconnections) are investigated over thresholding the distance, which is resem-

bling ”cutting off” distant relationships. The aim of investigating components is to separate

densely connected fraudulent transactions from legitimate transactions.

Through adjusting the distance threshold, Table 5.3 records the quantity of isolated frauds

and sizes of disconnected components. The number of components with a size larger than

10, 100, and 1000 are listed over the thresholds. As a result, fraudulent transactions become

isolated rather quickly compared to legitimate transactions, therefore fraudulent transactions

are outliers. Reducing the distance threshold causes components to fragmentise and addi-

tional components arise, up to a point that the number of nodes per component start to reduce,

thereby components become isolates themselves. The components hint towards the existing

distance between clusters in data in relation to Figure 5.3.

Table 5.3: Overview of unconnected components over distance thresholds.

Threshold Isolate Frauds Clusters N > 10 Clusters N > 100 Clusters N > 1000

1/64 485 568 63 0
1/32 481 760 79 0
1/16 479 933 85 1
1/8 469 1,336 114 1
1/4 456 1,638 155 2
1/2 436 1,776 223 6
1 354 1,344 214 34
2 222 638 150 37
4 100 227 36 12
8 39 73 20 11
16 11 21 2 1
32 3 14 2 1
64 0 4 1 1

Specifically, if cutting off a minimum distance of 64 there are no isolate frauds, though, 4

small clusters arise with a size larger than 10 nodes. Especially after a distance threshold smal-

ler than 1most fraudulent transactions are isolates, yet, themajority of legitimate transactions

remain in clusters with a size larger than 100 nodes. Further investigation in the homophily

within such clusters is necessary to seperate fraudulent from legitimate transactions.
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The homophily within clusters is investigated through counting the number of fraudulent

transactions in a clusters relatively to the size of the cluster. The focus lies on finding compon-

ents which contain a high number of fraudulent transactions i.e., a collective anomaly. Fig-

ure 5.4 depicts the distribution of the number of fraudulent transactions relative to the aggreg-

ation of transactions in each component (y-axis). Figure 5.4 depicts that if cutting off distant

relationships (x-axis), fraudulent transactions remain connected to the large components and

are indistinguishable. But, if also cutting of nearby relationships fraudulent transactions be-

come isolates as well. At the distance threshold between 1 and 8 fraudulent transactions are

not fully isolated, neither remain connected to large components. Although, generally the frac-

tion of fraudulent transactions residues between 0.10%and 1.00%of the total size of the cluster.

However, such fractions are not sufficient for accurate fraud detection. Several clusters reach

a fraction of 10.00% fraudulent transactions, yet, such components are exceptions.

Figure 5.4: Fraction of fraudulent transactions in weakly connected components.

Thus, the threshold indicates fraudulent transactions are either anomalies or either form a

collective anomaly from which at least 0.10% of the component is fraudulent. Hence, a consid-

erable amount of noise (legitimate transactions) are present in the component. Further, the

fraudulent transactions become isolates first, before forming a large component full of fraud-

ulent transactions. Therefore, fraudulent transactions are rather distant among each other

in comparison to legitimate transactions, and thus metrics of density-based outliers (such as

LOF) would a be appropriate measure to detect fraudulent behaviour.
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5.2.2. Louvain Clustering
Analysis of louvain clustering is done to investigate densely connected fraudulent transactions

in a flexible manner Namely, weakly connected components are too determinisitc, contrarily,

Louvain clustering is flexible for aggregation. Since Louvain clustering is a greedy algorithm

modularity optimisation is requisite. Modularity is computed in an equal manner as the as-

sortativity coefficient r, but instead, an algorithm aims to maximise the modularity given the

relationships within clusters. Thus, the clusters are approached as an enumerative character-

istic. Note, the Louvain clustering also considers the weight of relationships.

Figure 5.5 depicts the optimisation of modularity for Louvain clustering with the modular-

ity on the x-axis and the number of clusters on the y-axis. Ten reiterations of louvain clustering

are performed over k = 16, 64, 256. A high k leads to unstable results i.e., no consensus of the

number of clusters, though, modularity hits high. A low k is stable with lower modularity,

however, the number of clusters are unreasonably high considering 284, 807 nodes. Therefore,

Louvain clustering is inconvenient because of the lack of consensus in modularity i.e., it is dif-

ficult to pinpoint an optimum. The analysis is controversial, and due to lack of time, is halted,

arguably the relationships in the graph are too artificial to cluster nodes.

Figure 5.5: Modularity optimisation and stability of number of clusters in Louvain clustering.

In depth-configuration of Louvain clustering would be beneficial since clusters yield im-

portant information. Namely, fraudulent transactions may lie in-between clusters. Therefore,

fraudulent transactions would have a significant higher count of relationships outside their

assigned cluster in comparison to legitimate transactions. Yet, the hypothesis is unfavourable

considering the similarity graphs of the given data.
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5.2.3. Assortative Mixing of Fraudulent Transactions
Finally, the assortativity coefficient r is calculated over a range of k number of neighbours1.

The assortativity coefficient r expresses numerically the amount of fraudulent transactions

possessing relationships to further fraudulent transactions. Figure 5.6 depicts the trend of

assortative mixing. The x-axis represents the k number of neighbours and the y-axis yields

the assortativity coefficient r. A positive value indicates a tendency for connections between

fraudulent transactions exists. The assortativity coefficient ranges from r = 0.66 for k = 2 up

to r = 0.41 for k = 256. Therefore, a positive tendency of assortative mixing exists between

fraudulent transactions.

Figure 5.6: Assortative mixing within fraudulent nodes and their neighbours.

The assortativity coefficient r decreases over k because the neighbourhood of search in-

creases, and more legitimate transactions become involved. For the given range of k, the

tendency is rather large, especially in comparison to what is found for other social networks

(Newman, 2003). The findings are intriguing since 1 out of 600 transactions are fraudulent,

yet, fraudulent transactions tend tomingle. Suggestively, fraud rings do exist in the given data.

Moreover, due to the high assortativemixing, themajority of fraudulent behaviour is probably

stemming from criminal organisations, and not from individual criminal activity.

All in all, exploratory research shows fraudulent transactions exist in clusters and tend to

form relationships between each other. The subsequent step is to test hypotheses and build

classification and inference models as part of explanatory research.

1Refer to Appendix F for details of the calculation.
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5.3. Explanatory Research
The following section tests three hypotheses. Subsequently is the evaluation of the classifica-

tion model and statistical inference of a theoretically relevant model.

Table 5.4: Overview of hypotheses and overall significance.

Metric Formal Definition Result Significance Level

H1 Topology Hτ1(c, k) : τ(c = l, k) ̸= τ(c = f, k) False 0.1 < p

H2 Anomaly HL1(c, k) : L2∗(c = l, k) < L2∗(c = f, k) True p << 1× 10−5

H3 Fraud Ring Hϕ1(c, k) : ϕ(c = l, k) < ϕ(c = f, k) True p << 1× 10−5

Table 5.4 summarises the three hypotheses in concordance to the given data. In simple

words, fraudulent transactions are unalike their neighbours in comparison to legitimate trans-

actions, and thus are anomalies (H2). Also, fraudulent transactions tend to connect to further

fraudulent transactions. Therefore, fraudulent behaviour exists in fraud rings, and credibly,

criminal organisations do exist (H3). The following section explains the hypothesis testing

and depicts the trends of significance in-depth over the k number of neighbours.

5.3.1. Topology
Figure 5.7 depicts the significance of three topological measures by t-value on the y-axis and

the k number of neighbours on the x-axis. The significance test shows no difference between

classes, namely the corresponding p-values range from 10% up to 100%. Therefore, no trends

exist over k neighbours. Note, the graph could be too artificial to extract meaningful metrics.

Extraction of further topologicalmetrics are incomputable due to the size of the graph and thus

are refrained from for research since approximations are inaccurate for hypotheses testing.

Figure 5.7: Two-sided Welchs’ t-test on topological metrics τ .
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5.3.2. Anomalies
A general fact is that fraudulent transactions are anomalies i.e, outliers in terms of data. Un-

surprisingly, the distance to neighbours in vector space is higher for fraudulent transactions

than for legitimate transactions. For all p-values yields p < 1× 10−9, therefore the difference

is highly significant. Figure 5.8 depicts that the significance increases over the k number of

neighbours. The standard deviation over the distance L2 is least significant over a low k, but

exceeds other metrics when k increases. Therefore, L2σ is considered as most appropriate for

classification with a p-value of p ≈ 1× 10−50 at k = 256.

Figure 5.8: One-sided Welchs’ t-test on aggregated distance metrics L2∗.

A further look in Figure 5.9 shows how the distributions ofL2σ becomemore distinct for the

classes over k. A small overlap of distributions remains for a high k, but since the classes are

imbalanced, the overlap is deceiving. In actual, numerous legitimate transactions are outliers.

Figure 5.9: Density Distribution of the (standardised) distances L2σ over classes and k = 16, 64, 256.
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5.3.3. Fraud Rings
A novel (rather qualitative) concept is that fraudulent transactions exist in fraud rings i.e,

clusters in terms of data. In line with the assortativity coefficient r in Figure 5.6, the dif-

ference between classes their neighbourhood sets the classes apart. Specifically, fraudulent

transaction are similar to fraudulent transactions whilst legitimate transactions are not. For

all p-values yields p << 1×10−100, therefore the difference is highly significant. Figure 5.10 de-

picts that the significance decreases over the k number of neighbours. Namely, increasing the

(diameter of the) neighbourhood in vector space, by increasing k leads to finding more trans-

actions of the opposite class. Notwithstanding, ANN-search is highly effective for detecting

fraud rings and therefore is likely to be successful for classifying transactions.

Figure 5.10: One-sided Welchs’ t-test on fraction of fraudulent neighbours ϕ.

Figure 5.11 shows the distribution of ϕ is extremely skewed for legitimate transactions,

which is beneficial, because the distinctness sets legitimate and fraudulent transactions apart.

Figure 5.11: Density Distribution of the (standardised) fraction ϕ over classes and k = 16, 64, 256.
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5.3.4. Classification
The hypotheses confirm which variables are useful for the classification of fraudulent trans-

actions. For classification, three models are evaluated in terms of recall, precision, and AUC

over the parameters k, and polynomial and logarithmic transformations. Table 5.5 is a recapit-

ulation of the three models. The variables are stepwise added in order of improvement. The

fraction of fraudulent neighbours ϕ is key to the models. Concerning Figure 5.12 up to Fig-

ure 5.14, the trend depicts the mean of evaluation scores with whiskers depicting the standard

deviations (uncertainty) over 50 reiterations. Note, undersampling leads to deceiving results

and is not representative for the whole population.

Table 5.5: Overview recapitulation of logistic regression models.

Label Model Variables Stepwise Added Variable

Model 1 P (c = f |ϕ) Fraction of Fraudulent Neighbours
Model 2 P (c = f |ϕ,L2σ) Std. Dev. of Distance to Neighbours
Model 3 P (c = f |ϕ,L2σ, A) Transaction Amount

Figure 5.12 depicts the recall as function of the three parameters. Concerning recall, the

models improve over k. Both the quadratic polynomial and logarithmic transformations lead

to a higher recall with a decrease in uncertainty. The test reveals model 3 with a quadratic

polynomial and logarithmic transformation on k = 128 is optimal with recall = 88.47%.

Figure 5.12: recall as function of k, polynomial transformation, and logarithmic transformation.
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Figure 5.13 depicts the precision as function of the three parameters. Concerning precision,

the models do not necessarily improve over k. Neither does the quadratic polynomial trans-

formation lead to a higher k, in contrary, precision decreases overall whilst the uncertainty

decreases. The test reveals model 1 with a linear polynomial transformation on k = 4 is op-

timal with precision = 99.93%. Yet, all trends approach a maximum of 100.00% at mean.

Figure 5.13: precision as function of k, polynomial transformation, and logarithmic transformation.

Figure 5.14 depicts the AUC as function of the three parameters. Concerning AUC, the

models improve slightly over k on the whole. Both the quadratic polynomial and logarithmic

transformations lead to a higher AUC with a decrease in uncertainty. The test reveals model

3 with a quadratic polynomial and logarithmic transformation on k = 256 is optimal with

AUC = 96.80%. Therefore, in overall, the aforesaid model is highest performing because it is

independent of the threshold parameter. Besides, also the recall appears to be highest for the

corresponding parameters. The precision is consistently adequate, yet, the aforesaid model is

relatively low in precision, but still plausible due to the high overall performance.

The model evaluation shows which parameters are viable and which are not. A general

takeaway is that a low k number of neighbours if not accurate, also, models improve over

logarithmic transformation. The variable selection only leads to slight improvements, though,

precision decreases when including the transaction amount A as third variable, yet, the AUC

is unaffected. Model 2 among logarithmic transformation and a high k is optimal. Fine-tuning

of the threshold to balance precision and recall is a business decision.
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Figure 5.14: AUC as function of k, polynomial transformation, and logarithmic transformation.

The models are ran over 50 reiterations of undersampling, therefore confusion matrices

and ROC-curves are iteration specific, thus controversial. However, a business decision exists

between theft of capital and the workload of restoring FN for which Figure 5.15 is visualising

the trade-off. The theft and FN on the y-axis and the threshold of classification on the x-axis.

A low thresholds leads to a high loss of capital whilst a high threshold leads to a high FN,

therefore precisionmatters moderately to restrain the remuneration of the workload.

Figure 5.15: Trade-off between theft of capital and workload (FN) as function of the classification threshold T .
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Figure 5.16 depicts a comparison over fourmodels. Here, twomodels are popular instances

from Kaggle (Université Libre de Bruxelles, 2018), and two models are part of this research.

The model evaluation depicts the mean and standard deviations over 50 reiterations of under-

sampling and is a zoom (left) of the whole bar plot (right). Themodels from Kaggle operate on

the raw data from PCA and utilise a 70%/30% split of training and test data instead of LOOCV.

The first model is a logistic regression (LR) classifier with a regularisation (L2 penalty). The

second model is a multilayer perceptron (MLP) classifier with 200 hidden layers. Therefore,

the models operating on 28 features of PCA and the transaction amount as 29th feature are

relativly slow and thus less compatible with LOOCV due to their computational complexity.

Figure 5.16: Evaluation of AUC, precision, recall over multiple models (Université Libre de Bruxelles, 2018).

Table 5.6 is an overview and summary of themodel outcomes. The LRmodel performswell

in terms of precision, but less in AUC and recall. The MLP model performs superior in recall

and therefore captures the aim of classification best, yet, AUC and precision are relatively low.

Model 2 and 3 perform superion in AUC and yield high precison whilst the recall is lower

than the MLPmodel but higher than the LRmodel. Foremost, model 2 and 3 are theoretically

relevant because coefficients are interpretable. Concurrently, the LR and MLP model operate

inside the black-box and therefore are fragile to change. Therefore, the LR and MLP yield

rather large standard deviations, yet, model 2 and 3 are relatively steady. In accordance,model

2 and 3 rely less on large quantities of historic data for training the models in comparison to

the LR and MLP model. Thus overall, model 2 and 3 outperform the LR model in multiple

practices. Whether model 2 and 3 are superior to the MLP model is a matter of business.

Table 5.6: Overview of models, variables, their sources, and outcomes of evaluation.

Label Model Variables Source (Hyperlink) High Metric Low Metric

LR Raw PCA Joparga (Kaggle LR) precision AUC, recall
MLP Raw PCA Javier (Kaggle MLP) recall AUC, precision
Model 2 ϕ and L2σ k = 256, quadratic AUC, precision recall
Model 3 ϕ, L2σ, and A k = 128, quadratic AUC, precision recall

https://www.kaggle.com/code/joparga3/in-depth-skewed-data-classif-93-recall-acc-now
https://www.kaggle.com/code/jdelamorena/recall-97-by-using-undersampling-neural-network
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5.3.5. Statistical Inference
A statistical model is fit to the whole data using two variables and their interaction effect: the

standard deviation of the distance to neighbours log(L2σ(k)), the fraction of fraudulent neigh-

bours ϕ(k), and their interaction effect log(L2σ(k)) ·ϕ(k). The aim of the model is to juxtapose

the weight of anomalies and the weight of fraud rings on the classification as fraudulent.

Table 5.8 is an overview of themodel fit over the k number of neighbours. All variables over

all k yield a significant effect on the dependent variable. The coefficientweight of log(L2σ(k)) is

positive and first increases slightly, and then decreases harshly over k. The coefficient weight

of log(L2σ(k)) is positive, and the interaction effect L2σ(k) · ϕ(k) is negative. The latter two
coefficients do not show a particular pattern. To consider the respective weight of the vari-

able coefficients, the distribution2 of the variables needs to be taken into account. Therefore,

Table 5.7 multiplies the maximum value of the variable range with their corresponding coeffi-

cient to calculate the respective weight on the dependent variable being fraudulent.

Table 5.7: Range of (standardised) variables and respective weight over k in conjunction with Table 5.8.

No. k log(L2σ(k)) ϕ(k)

Min. Max. β1(k)·Max. Min. Max. β2(k)·Max.

2 −9.36 3.67 4.63 −0.04 26.37 11.84
4 −10.71 3.99 5.94 −0.04 27.05 13.25
8 −11.44 4.39 6.78 −0.04 28.00 15.18
16 −14.1 4.97 7.33 −0.04 28.98 13.01
32 −15.32 5.49 7.26 −0.05 29.86 11.85
64 −10.86 6.42 7.36 −0.05 30.73 12.54
128 −8.96 7.64 7.35 −0.05 30.13 12.35
256 −4.75 8.71 7.42 −0.05 30.74 20.17

Note, the relations of k are artificially created, thus scepticism is necessary, yet, the respect-

ive weight of ϕ(k) is higher than the respective weight of log(L2σ(k)) and grows further over k.

Therefore, the effect of fraudulent neighbours is stronger than the effect of outliers. In other

words, the effect of being situated in a fraud ring is more determinant on the classification as

fraudulent than the effect of being an anomaly. Conventionally, the view on fraudulent trans-

actions is that they are outliers. However, in contrast to this a priori assumption, the novel

results indicate that fraudulent transactions exist in clusters and thus are collective anomalies.

Note, the interaction effect log(L2σ(k)) · ϕ(k) is negative and strong in respective weight
considering both variables. Therefore, the effect diminishes if both variables increase, though,

log(L2σ(k)) also yields negative values. Thus, if a transaction is a global outlier, but not a

local outlier, then the negative effect of the interaction effect and the negative values of the

log(L2σ(k)) variable become positive together. In other words, fraudulent transactions are

not necessarily outliers within their corresponding fraud ring.

2Also consider the conjunction of Figure 5.9 and Figure 5.11 between the distribution and the respective weight.
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Table 5.8: Logistic regression model on whole data (a sample of credit card transactions over two days) with two variables and their interaction effect.

Dependent variable:

Classification as Fraudulent

k 2 4 8 16 32 64 128 256

log(L2σ(k)) 1.262∗∗∗ 1.489∗∗∗ 1.545∗∗∗ 1.475∗∗∗ 1.322∗∗∗ 1.147∗∗∗ 0.962∗∗∗ 0.852∗∗∗

(0.165) (0.168) (0.135) (0.101) (0.087) (0.068) (0.053) (0.042)

ϕ(k) 0.449∗∗∗ 0.490∗∗∗ 0.542∗∗∗ 0.449∗∗∗ 0.397∗∗∗ 0.408∗∗∗ 0.443∗∗∗ 0.656∗∗∗

(0.013) (0.046) (0.048) (0.040) (0.028) (0.023) (0.024) (0.032)

log(L2σ(k)) · ϕ(k) −0.042∗∗∗ −0.047 −0.089∗∗∗ −0.047∗∗ −0.032∗∗ −0.043∗∗∗ −0.048∗∗∗ −0.083∗∗∗
(0.010) (0.033) (0.027) (0.020) (0.013) (0.008) (0.006) (0.006)

Constant −8.379∗∗∗ −8.587∗∗∗ −8.636∗∗∗ −8.605∗∗∗ −8.509∗∗∗ −8.403∗∗∗ −8.283∗∗∗ −8.168∗∗∗
(0.148) (0.157) (0.151) (0.139) (0.131) (0.123) (0.117) (0.110)

Observations 284,807 284,807 284,807 284,807 284,807 284,807 284,807 284,807
Log Likelihood −994.511 −894.892 −921.593 −965.256 −1,009.150 −1,065.808 −1,102.526 −1,152.981
Akaike Inf. Crit. 1,997.022 1,797.785 1,851.187 1,938.513 2,026.300 2,139.616 2,213.053 2,313.962

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Conclusion

Approximate nearest neighbour (ANN) search is unparalleled faster than a naive approach and

is convenient to set up kNN for sizeable data sets. An optimum exists between the search of

the k number of neighbours and the size of data N which speeds up the process significantly.

Further, tuning of parameters does not affect the outcome and query speed considering the

given data. ANN-search is applicable for the set up of similarity graphs and kNN classification.

The assortativity coefficient r is calculated for similarity graphs. The equations are altered

to ommit the bias of the class imbalance. The assortativity coefficient ranges from r = 0.66

for k = 2 up to r = 0.41 for k = 256. The tendency of within class connection is relatively

high in comparison to supplemental empirical findings. Therefore, the presumption is that

criminals tend to collaborate in fraud rings, and thus fraudulent transactions exist in clusters.

Yet, analyses of weakly connected components and Louvain clusters are unfavourable to dis-

tinguish the fraudulent clusters in similarity graphs. The belief is that the relationships from

a similarity graph are too artificial to be valid for clustering techniques.

The similarity graph is taken to test three hypotheses to contradict fraudulent and legitim-

ate transactions. First, topologicalmeasures such as the local clustering coefficient, PageRank,

and the eigenvector are indifferent over classes. The belief is that the structure of the graph

is futile because the graph is too artificial. Second, fraudulent transactions yield a signific-

antly higher distance to their neighbouring similar transactions and thus are anomalies. Third,

fraudulent transactions connect to a significantly higher amount of further fraudulent transac-

tions and therefore exist in fraud rings. Furthermore, statistical inference indicates the effect

of fraud rings outweighs the effect of anomalies, therefore fraudulent transactions should be

considered as collective anomalies. The variables interaction effect suggests that fraudulent

transactions are no definite local outliers, but are near to further fraudulent transactions.

Thorough model evaluation leads to two creditable logistic regression classification mod-

els. The first model entails two variables; the standard deviation of the distance to neighbours

log(L2σ(k)) and the fraction of fraudulent neighbours ϕ(k). The variables stem from k = 256

number of neighbours. The model includes quadratic polynomials and an interaction effect.

The second model also entails the transaction amount A as third variable. The variables stem

from k = 128 number of neighbours. The model includes quadratic polynomials and interac-

tion effects. The models are compared to ongoing state-of-the-art logistic regression (LR) and

multilayer perceptron models (MLP) from Kaggle. The models achieve a relatively high AUC

and precision, yet, the recall is lower than theMLPmodel. Remarkable is that themodels from

this research are theoretically relevant and do not operate inside the black-box. The fact that a

theoretical relevant model competes with an Artificial Neural Network (MLP) is engaging and

puts emphasis on causal learning over machine learning.
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Discussion

The outline of the discussion is as following. First is a retrospect on validity and usability of

the given data. Second, the methodology is reviewed on what obstacles exist and where oppor-

tunities lie. Third are further suggestion and remarks. All sections also entail a discussion of

future work.

7.1. Data
The data is anonymous and therefore open to use for science. Openness leads to high collabor-

ation e.g., sharing of code. Unfortunately, therefore the data is altered from its original struc-

ture and actual relationships are lost. Establishing a similarity graph through ANN-search is a

workaround, and therefore the data quality diminishes twice. First the transformation to PCA

and second the limited k in ANN-search both cause loss of variance in the data. Therefore the

validity of creating similarity graphs is low. Performing the current research on the original

data may lead to immense improvements of AUC, precision, and recall causing the models

from this research likely to be superior over the MLP model. Besides, the original data yields

actual relationships of fraud rings e.g., fraud rings exist over geographical space and therefore

are straightforwardly identifiable by locations of transactions. Yet, the use of the original data

is unethical to publish. A solution may lie in simulating credit card transactions1.

Notwithstanding, the data is sizeable and therefore various metrics are ought to be non-

extractable i.e., computationally impossible. Furthermore, the data is by nature imbalanced

which hinders the classification process. Both these issues are a universal challenge for data

science and requires advancements within computational sciences in general.

7.2. Methodology
7.2.1. Approximate Nearest Neighbour Search
The ANN-search performs well on the given data i.e., there is no sacrifice of accuracy and the

query does not require optimisation of parameters. Likely the data is simple enough for the al-

gorithm to find the exact neighbours instead of the ANN. Namely, conventionally vector index-

ing is applied onmillion-, billion-, or even trillion-vector data sets for complex data e.g., image

and video search. Therefore, the 1-dimensional data of credit card transactions is straightfor-

wardly scalable. Yet, the implementation of time dependency and expanding similarity graph

for real-time FDS remains an open issue.

1https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_3_GettingStarted/Simula
tedDataset.html
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https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_3_GettingStarted/SimulatedDataset.html
https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_3_GettingStarted/SimulatedDataset.html
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7.2.2. Similarity Graphs
In concordance to the data, the original data exists of explicit relationships. The anonymous

PCAdata and computation of the Euclidean distance alters the view on relationships, therefore

it is unclear what a top-k actually entails. Hence, what does a similarity graph actually entail

and when is it realistic? Computations of the assortativity coefficient r are artificial, yet, the

coefficient is high over numerous k and therefore could be seen as truth. Therefore, the given

data remains as an exceptional case of assortative mixing.

Various metrics could not be extracted due to the size of the graph. Moreover, several

algorithms are computational intensive and incompatible with similarity graphs in general.

Such computational intensive algorithms and queries are analysis of transitivity, betweeness,

closeness, personalised PageRank, and assortative mixing in ego-networks. Making Cypher

and Python communicate would be a solution to query graph algorithms based on feedback

from Python. Due to the lack of time such queries are refrained from.

The extraction of Node2Vec is attempted over various k number of neighbours considering

a varying n number of vector embedding. The data is fed to anMLPmodel (due to flexibility of

fit), however, the AUC, precision, and recall where futile, and therefore Node2Vec is refrained

from. Possibly, if the graph is not artificial there is potential in Node2Vec.

Louvain clustering seems incompatible on the similarity graphs. Scaling parameters such

as ”maxLevels”, ”maxIterations”, and ”tolerance” for thorough search (up to Neo4j crashes)

does not lead to a stable number of communities. Potentially, the Leiden algorithm could

overcome the randomness of Louvain clustering. Last but not least, running Neo4j in the

could on a GPU could increase functionality of algorithms .

7.2.3. Exploratory Research
The assortativity coefficient r required alterations to equate (Appendix E). The alterations are

unconventional and aim to reduce the bias of class imbalance. The alterations focus on a sub-

graph of fraudulent transactions instead of the complete graph of fraudulent and legitimate

transactions. The computation of assortative mixing is straightforward considering a fixed k

number of neighbours (Appendix F). First, whether the alterations are applicable on artifi-

cial similarity graphs deserves scrutiny. Second, whether the alterations of equations hold for

varying data requires further empirical investigation.
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7.2.4. Explanatory Research
Statistical inference explains scientific truths of populations. The data in this research sug-

gests a sample of two days, therefore notable is that the results are not representative for the

population i.e., a year. In other words, shopping (and fraudulent) behaviour differ over the

year, and thus entail different data. Besides, due to the imbalanced data the constant (i.e.,

the intercept) is biased. For these two reasons modeling on the entire given data set is not

applicable for classification of the population.

The fact that no significant difference exists in topological structure between fraudulent

and legitimate transactions does not mean that the hypothesis is untrue. Namely, the graph

is artificially created. Likely, differences do exist, but not considering the approach of this

research. Future research could be done through simulating credit card transactions.

A practical assumption of LOOCV is that transactions enter the database one-by-one and

can be classified successively. Yet, the time order is neglected for ease of model evaluation.

LOOCValso assumes all fraudulent and legitimate transactions are classified, except one. How-

ever, for ease of computation, the variable ϕ(k) is computed over the full data a priori. There-

fore, bias exist due to the fact that several relationships can not be known a priori. The bias is

large for a low k number of neighbours, fortunately, the bias diminishes for k >> 1 since the

error for such computations is 1/k. All in all, a low k number of neighbours is undesirable.

The classification model assumes each fraudulent transactions is equal. But in actual, one

fraudulent transactions weighsmore than another fraudulent transaction because of the trans-

action amount. Cost-sensitive learning could be considered to overcome this issue.

7.3. Further Remarks
In this research the metrics of anomalies L2∗ and fraud rings ϕ are straightforwardly and intu-

itively defined. Further research in L2 could focus on the improvement of these metrics. For

example, the local outlier factor (LOF) is a useful metric for detecting density-based outliers,

so to say, numerous supplementary metrics exist that could enhance the models. In terms of

fraud rings ϕ, further research in (approximate) kNN classifiers is necessitate.

The emphasis of this research is put on theoretically relevant variables. Namely, fraudu-

lent transactions are anomalies and exist within fraud rings. A follow-up research could focus

on how fraudulent behaviour occurs. A research gap remains in questions such as; ”what are

fraud rings?”, and ”how do fraudulent transactions relate in fraud rings?” Therefore, qualit-

atively research in fraudulent behaviour is necessary. Specifically, qualitative understanding

(inductivism) of fraudulent transactions would lead to novel propositions.

Overall, this research is a step closer to causal learning and therefore diverges from ma-

chine learning. The research shows that theoretical understanding is useful because it is less

reliant on algorithms that operate within the black-box. Further understanding in causalities

would reduce the dependency on historic data if coefficients are directly applicable without

training a model. Alas, the class imbalance throws a spanner in the works and coefficients are

only representative to undersampling of the data set.
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A

Descriptive Statistics

Table A.1: Raw Data Descriptive Statistics Summary.

Statistic N Mean St. Dev. Min Max

Time 284,807 94,813.86 47,488.15 0 172,792
V1 284,807 0.00 1.96 −56.41 2.45
V2 284,807 0.00 1.65 −72.72 22.06
V3 284,807 0.00 1.52 −48.33 9.38
V4 284,807 0.00 1.42 −5.68 16.88
V5 284,807 0.00 1.38 −113.74 34.80
V6 284,807 0.00 1.33 −26.16 73.30
V7 284,807 0.00 1.24 −43.56 120.59
V8 284,807 0.00 1.19 −73.22 20.01
V9 284,807 0.00 1.10 −13.43 15.59
V10 284,807 0.00 1.09 −24.59 23.75
V11 284,807 0.00 1.02 −4.80 12.02
V12 284,807 0.00 1.00 −18.68 7.85
V13 284,807 0.00 1.00 −5.79 7.13
V14 284,807 0.00 0.96 −19.21 10.53
V15 284,807 0.00 0.92 −4.50 8.88
V16 284,807 0.00 0.88 −14.13 17.32
V17 284,807 0.00 0.85 −25.16 9.25
V18 284,807 0.00 0.84 −9.50 5.04
V19 284,807 0.00 0.81 −7.21 5.59
V20 284,807 0.00 0.77 −54.50 39.42
V21 284,807 0.00 0.73 −34.83 27.20
V22 284,807 0.00 0.73 −10.93 10.50
V23 284,807 0.00 0.62 −44.81 22.53
V24 284,807 0.00 0.61 −2.84 4.58
V25 284,807 0.00 0.52 −10.30 7.52
V26 284,807 0.00 0.48 −2.60 3.52
V27 284,807 0.00 0.40 −22.57 31.61
V28 284,807 0.00 0.33 −15.43 33.85
Amount 284,807 88.35 250.12 0.00 25,691.16
Class 284,807 0.002 0.04 0 1
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B

Scatter Plot

Figure B.1 shows the distributions in Figure 3.1 distinct into a fraudulent neighbourhood as a

collective outlier. Yet, some fraudulent transactions mingle among legitimate transactions.

Note, the plot depicts 3 out of 28 features and is undersampling the legitimate transactions

(which is vastly deceiving), and therefore is not a holistic view on the data.

Figure B.1: Distribution of data (i.e., vectors) over three-dimensional space for principal component dimensions
four, twelve, and seventeen. Fraudulent transactions is in red, and a sample of legitimate transactions is in blue.
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C

Neo4j Admin Import

The following is an explanation on how to perform Neo4j admin import a.k.a. bulk load-

ing data. The admin import exists of terminal instructions to force a graph database which

either entirely fails to execute or completes flawlessly. The admin import requires a specific

(relational) data structure. The admin import is able to process billions of relationships per

minute and is the only viable import for sizeable data (Robinson et al., 2015).

The importation of a single graph requires four CSVs. Two CSVs for creating nodes and

their properties and two CSVs for creating relationships between nodes and their properties.

One of the two CSVs defines the headers of columns, the other CSV entails the data. The

structure is as following:

node_header.csv

1 id:ID(node-ref), time:int, amount:float , class:int, :LABEL

relationship_header.csv

1 :START_ID(node-ref), distance:float , inverse:float , priority:int, :END_ID(node-ref
), :TYPE

The type of the column and the type of numerical data needs to be clearly specified for a

competent import. The execution is as following. First, create a new Neo4j local database,

namely, it is not allowed to have any entities stored yet because the files will be imported

through an admin command which creates the database from scratch. Second, locate /Users
/{user_name}/Library/ApplicationSupport/Neo4jDesktop/Application/relate-data/
dbmss/dbms-{security_id}, this is the local database (for OS X). Third, locate the files and
move them to the folder /import in the local database directory. Fourth, in terminal, change
directory to the local database and run as a single line:

1 bin/neo4j -admin import --nodes import/creditcard_header.csv,import/creditcard.csv
--relationships import/relations_header.csv,import/relations.csv

Fifth, confirm there’s no errors in the terminal and whether the database yields about all

nodes and relationships. For more information about the admin import consult https://neo4

j.com/docs/operations-manual/current/tools/neo4j-admin/neo4j-admin-import/ and the

instructional book by Robinson et al. (2015).
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D

Cypher Queries & Algorithms

The following is an overview of cypher queries and algorithms in the research process.

First the projection of the graph puts the data in memory on which algorithms are applic-

able. Nodes’ relationships to themselves are removed, and filtering on k is made possible. The

weight is the inverse of the Euclidean distance. The name of the projection is ’transactions’.

1 CALL gds.graph.project.cypher('transactions ',
2 'MATCH (n:Node) RETURN id(n) AS id',
3 'MATCH (f:Node)-[s:SIMILAR_TO]->(t:Node) WHERE s.priority <= 256 AND NOT s.

distance = 0 RETURN id(f) AS source , id(t) AS target , s.inverse AS weight ')
4 YIELD graphName AS graph , nodeQuery , nodeCount AS nodes , relationshipQuery ,

relationshipCount AS rels

The weakly connected components (WCC) is extracted as following:

1 CALL gds.wcc.stream('transactions ') YIELD nodeId , componentId
2 RETURN nodeId , componentId

The statistics of Louvain clustering are as following:

1 CALL gds.louvain.stats('transactions ', {relationshipWeightProperty: 'weight ',
2 maxIterations: 1000, tolerance: 0.000001, maxLevels: 100})
3 YIELD communityCount , modularity , modularities

The topological metrics are called as following:

1 CALL gds.degree.stream('transactions ') YIELD nodeId AS id, score AS degree
2 CALL gds.localClusteringCoefficient.stream('transactions ') YIELD nodeId AS id,

localClusteringCoefficient AS lcc
3 CALL gds.pageRank.stream('transactions ') YIELD nodeId AS id, score AS PageRank
4 CALL gds.eigenvector.stream('transactions ') YIELD nodeId AS id, score AS

eigenvector
5 CALL gds.betweenness.stream('transactions ') YIELD nodeId AS id, score AS

betweenness
6 CALL gds.beta.closeness.stream('transactions ') YIELD nodeId AS id, score AS

closeness

Personalised PageRank is extracted as following:

1 MATCH (f:Node) WHERE f.class = 1 WITH collect(f) AS frauds
2 CALL gds.pageRank.stream('transactions ', {relationshipWeightProperty: 'weight ',

maxIterations: 10, dampingFactor: 0.85, sourceNodes: frauds , tolerance:
0.0001}) YIELD nodeId AS id, score AS PPR

The vector embedding (with e.g., 8 output-dimensions) is extracted as following:

1 CALL gds.beta.node2vec.stream('transactions ', {embeddingDimension: 8,
relationshipWeightProperty: 'weight '}) YIELD nodeId , embedding

2 RETURN nodeId , embedding
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E

Assortative Mixing for a Sub-Graph

The class imbalance between fraudulent and legitimate transactions causes the assortativity

coefficient to be biased. The alteration of Equation E.7 is as following.

The activity of fraudulent behaviour clusters into fraud rings which can be measured by

the assortativity coefficient r. The distinction between the classes of fraudulent and legitimate

classes is an enumerative characteristic i.e., a finite set of possible values. Due to the class im-

balance the equations are altered to be class-specific for a sub-graph of fraudulent transactions.

The number of actual relationships between nodes of an identical class is:

AE =
∑

(i,j)∈E

δ(ci, cj) =
1

2

∑
i,j

ai,jδ(ci, cj) (E.1)

whereE is the set of relationships in the graph and ai,j is the number of actual relationships

between node i and j. The factor one-half accounts for the relationships being undirected. The

Kronecker delta mathematically accounts for the nodes to be of identical class:

δ(ci, cj) =

0, if i ̸= j,

1, if i = j.
(E.2)

The total number of undirected relationships in the sub-graphmf depends directly on the

k number of neighbours and the number of fraudulent transactions Nf :

mf = Nf · k. (E.3)

The expected number of relationships betweennodes of an identical class is amathematical

estimation as if the classes are spread randomly over the graph. The degrees d are reliant on

the top-k and the total possible relationshipsmf as given in Equation E.3:

EE =
1

2

∑
i,j

didj
2mf

δ(ci, cj) =
1

2
· k2

2mf
·Nf · (Nf − 1) =

1

2
· k2

2 ·Nf · k
·Nf · (Nf − 1) (E.4)

conventionally, nodes i and j yield a degree di and dj respectively. But, ANN-search returns

a set number of nearby vectors dn = k, and therefore didj = k2. The total number of class-

specific relationships 2 · mf is considered as all relationships from and to fraudulent nodes.

Since the attributes di, dj , andmf remain constant over all nodes, the sum over the Kronecker

delta is replaceable by the total number of relationships possible between all fraudulent nodes

in a directed graph is equal to Nf · (Nf − 1) (Newman, 2018).
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The modularity of the sub-graph is a measure of difference between the actual and the

expected number of relationships:

Q =
1

2mf

∑
i,j

(
ai,j −

didj
2mf

)
δ(ci, cj) (E.5)

whereas the maximum possible modularity is the difference between the total and the ex-

pected number of relationships:

Qmax =
1

2mf

2mf −
∑
i,j

didj
2mf

δ(ci, cj)

 . (E.6)

All in all, normalising modularity results in the assortativity coefficient r:

− 1 ≤ r(E, k) =
Q

Qmax
=

∑
i,j(ai,j − didj/2mf )δ(ci, cj)

2mf −
∑

i,j(didj/2mf )δ(ci, cj)
=

AE − EE

mf − EE
≤ 1 (E.7)

all in all, the total relationshipsmf ismodified for a class-specific sub-graph, because other-

wise, the assortativity coefficient approaches themaximum r ≃ 1.00due to the class imbalance.

Therefore, only the assortativity between fraudulent nodes is of interest. All the relationships

between fraudulent and legitimate nodes are neglected in the above equations because of the

Kronecker delta. The amount of relationships between legitimate nodes is biased due to class

imbalance, and therefore is not of interest. The amount of relationships between the fraudu-

lent nodes is variable and fabricates an intriguing case for investigating whether fraud rings

exist. Appendix F exemplars a calculation from results for k = 256.

Further assumptions are made. Namely, Neo4j requires relationship to be directed, whilst

a similarity metric is actually undirected. Though, from the perspective of top-k, a certain vec-

tor can be a nearby neighbour of another vector but not vice versa. All nodes have an outdegree

of d+n = k, however, the indegree d−n is variable, thus d+n ̸= d−n . The equation for the expected

number of relationship in a directed graph is:

EE =
1

2

∑
i,j

d+i d
−
j

2mf
δ(ci, cj). (E.8)

Fortunately, rewiring d−n leads to the an equal result as of d
+
n = d−n , because in total an equal

number of relationship remains. Therefore, the equation in Appendix E is stated as in Equa-

tion E.4, which is straightforwardly calculable through the number of fraudulent transactions

mf and number of nearby neighbours k, thus didj = k2.



F

Example Assortativity Coefficient

As following is an example of a calculation on how the assortativity coefficient r is calculated

for a sub-graph considering fraudulent-to-fraudulent transactions for k = 256.

Overall the total number of relationships for the fraudulent sub-graph is:

mf = Nf · k = 492 · 256 = 125, 952 (F.1)

The first step is counting the actual number of relationships between all nodes of identical

class. The Cypher query to count all unidirectional relationships is given below:

AE =
∑

(i,j)∈E

δ(ci, cj) =
1

2

∑
i,j

ai,jδ(ci, cj) =
1

2
· 140, 774 = 70, 387 (F.2)

1 MATCH (from_node)-[s:SIMILAR_TO]-(to_node)
2 WHERE from_node.class = 1 AND to_node.class = 1
3 AND s.priority <= 256 AND NOT s.priority = 0
4 RETURN count(s)

The second step is estimating the expected number of relationships between fraudulent

transactions, note, the latter part of the equation is simplified by deducting k and Nf :

EE =
1

2

∑
i,j

didj
2mf

δ(ci, cj) =
1

2
· k2

2 ·Nf · k
·Nf · (Nf − 1) =

1

2
· 256

2
· (492− 1) = 31, 424 (F.3)

All in all, the assortativity coefficient r is calculable by:

r(E, k) =
AE − EE

mf − EE
=

70, 387− 31, 424

125, 952− 31, 424
= 0.41 (F.4)
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