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1 Introduction

The electrical grid is essential for the functioning of a modern society, and covers a broad
array of engineering, physical and mathematical aspects[1]. Electricity is transported on
power lines with a certain capacity. Exceeding this capacity on a line can lead to the line
breaking down, or being shut down by the grid operator in advance over safety concerns.
In both cases the line is effectively (temporarily) removed from the grid. Without this line,
the power then has to take a different route, changing the power flow on the remaining lines
in the grid. Consequentially, some other lines that were previously safe may now suddenly
be overloaded, resulting in these lines being removed well. As soon as power cannot be
supplied to all customers any more, we have a blackout, with a part of the grid or possibly
even the whole grid going down[2]. The 2003 North American blackout was one of the most
widespread blackouts in recent history and as such is often used as an example in studies[3].
Blackouts can be very damaging to a country and its economy, and also negatively impact
the life of civilians, and therefore it is of great importance to prevent blackouts. A grid
operator is tasked with providing all consumers with the desired power, while limiting the
risk of a blackout as much as possible. The difficulty is in the fact that power demand is not
constant, and therefore neither is the power flow. A network can be safe at one moment,
but it may not be safe anymore when a consumer increases or decreases the power demand.
This is made more difficult by the transition to renewable energy that depends on weather
conditions. As a result power grid operation is currently an important research topic[4].
Another factor for a grid operator is the robustness of the network: it is desirable that a
single line failure does not immediately lead to a blackout. In this thesis we will only focus
on preventing overloads, and not on how overloads can cascade into blackouts.

It is important to note that since the capacity of the network will always be limited, it is
not possible to make overloads impossible while also allowing consumers complete freedom
to use as much power as desired. This means that if we do not constrain consumers, the
probability of an overload is always non-zero1. Conversely, if we can make an estimate of
the power demand, then a grid operator will certainly design a network in such a way that
an overload will not occur under the expected power demand, and make sure that there
is a significant margin for perturbations. This means that the probability of an overload
will be low, but still non-zero. This way, an overload becomes a rare event. Rare events
is a research topic concerning events are highly unlikely, but do have an enormous impact
if they do happen. This field of research is not limited to power grids, but also concerns
events such as extreme weather, heavy earthquakes, or stock market crashes[5]. Since we are
dealing with very small probabilities, observing how often such an event happens (or, in case
of a computer simulation, brute-force sampling) will likely not be able to give us a proper
estimate of the probability. Instead we will be using several methods in rare event analysis.
This way, the grid operator can decide if the chance of an overload is acceptably low given
the network and the behaviour2 of its customers. We will also consider the limiting case
in which the typical deviation from the expected power demand becomes extremely small,

1Since this thesis focuses on the mathematical analysis on a given network, we will ignore any external
factors that can also lead to an overload, such as a power line being destroyed.

2In this context, ’behaviour’ refers to the stochastic power demand.
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Figure 1: The structure of a power grid, simplified. For image credit, see [6].

and hence so does the probability of an overload. To evaluate how the overload probability
evolves in this case we will be using large deviations theory.

1.1 Grid structure

A power grid generally consists of three different levels. Transportation over large distances is
done via the transmission grid. This grid is used to transport power from generators to large
substations. To minimize losses, voltages are kept high (>100 kV) in order to limit losses
due to resistance. The transmission grid spans a very large area, so as to connect regions
with lots of power generators with regions with lots of power demand. The second level is
the distribution grid, which covers a smaller geographic area (like a city or neighborhood).
The voltages here are lower than in the transmission grid (about 10 kV). Finally, the power
is delivered to houses and businesses. A schematic view of a power grid is shown in Figure
1.

1.2 Power-flow study

In an electricity grid, the field of power flow study concerns the analysis of the flow of electric
power. The most frequently used model for a power grid is the alternating current power-
flow model, which will be explained in section 3.1. It consists of a set of non-linear equations
that together describe the power flow through each transmission line. The line losses due to
resistance, as well as the amount of reactive power in lines, are also included. Since power
networks are usually too complex for solving the power flow equations analytically, this is
usually done numerically. An analytic solution is however sometimes possible for either a
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very simple model, or with making various simplifying assumptions (such as assuming that
there is no resistance in the lines).

Since we are studying the mathematical aspect of power networks, we view a power network
as a graph G = (V,E), with vertices (most often called buses or nodes) V and edges (usually
called lines) E. We assume that we have complete information about the network. That
is, we know where all the lines are, we know the resistance and capacity of all the lines,
and also know the total power input at every node. This is not all that natural in practice:
for example, lines may be faulty and therefore have a different resistance or capacity, or a
company may be consuming more electricity than documented, but we ignore such more
social problems in this thesis. With all information, we are tasked to compute the line power
flows.

1.3 Thesis overview

We will first be discussing large deviations theory in section 2. Next, in section 3.1 we will
derive the AC power flow equations and solve them exactly for a two-node model. We will
also explore the DC approximation, which is a list of often made simplifications that are used
to solve the power flow equations exactly for larger networks. In section 4, we will be looking
at a grid shaped as a three-cycle, and solve it analytically without making the assumption
of small angles, and compare the results to the solution of the DC approximation. Next, in
section 5 we discuss a line graph, which represents a street of houses that gets its power from
a single source, and find the most likely realization of an overload. In section 6 we see how
much less (or more) likely an overload is if we make an additional link to transform our line
into a circle. We will look at approximations assuming small perturbations, an upper and
lower bound, and compare the bounds with the actual numerical results. We also present
a semi-definite program that can be used to solve the model exactly if the bounds are not
considered accurate enough.
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2 Rare events analysis and large deviations theory

If we are studying events (such as an overload), the field of probability theory concerns finding
a probability between 0 and 1 for such an event. If we are lucky, such a probability can be
computed exactly, ideally as a function of several parameters (such as line limits, behaviour
of customers, etc.). In practice, however, power networks are usually too complicated to
make such computations exactly. For this reason, we try to estimate the probability. A
method often used to estimate probabilities for complicated models is brute-force sampling.
For example, if we run a simulation 104 times and count the number of times an event occurs,
we can estimate the probability based on this. However, this approach fails when concerning
events that are extremely infrequent (or at least supposed to be), such as overloads. The
field of rare event analysis concerns estimating such probabilities.

2.1 Importance of rare events

Rare events do not just occur in the field of electricity grids, and can be caused by both
anthropogenic and natural factors (or a combination of both). A few other examples of rare
events are:

• Major 8.0+ Richter magnitude earthquakes (natural)

• A nuclear accident resulting in a major disaster that leads to an area becoming unin-
habitable for thousands of years (anthropogenic)

• Dam bursts caused by extreme rainfall (natural and anthropogenic)

The metric to analyze the danger of a rare event is often computed as the frequency of
an event multiplied with its damage. Although these rare events are (as the same states)
uncommon, they do often have a massive impact. For this reason, they are still important
to analyze. One branch of rare events analysis is estimating the probability of such an event,
which is difficult since they do not occur frequently. Another branch is assessing the impact
of such an event. This is probably even more difficult, since the last such event may have
been decades or even centuries ago, meaning that any data on the cost of such a disaster
is likely to be obsolete and hence rather useless. In this paper, we will only be looking at
the probability of overloads happening in several grid models. The analysis of the impact of
such an overload is a totally different problem that cannot be solved with the same methods
used in this paper, which is why they are not analyzed here. Research on this topic can be
found in [8].

2.2 Large deviations theory

Due to the infrequency of rare events, it is difficult to estimate their frequency. An important
tool for doing this is the rate function.
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Definition 2.1 (Rate function) Let X be a Hausdorff topological space. An extended real-
valued function I : X → [0,+∞] is a rate function if it is not identically +∞ and lower
semi-continuous, meaning that the set I−1([0, c]) is closed for any c ≥ 0. If this set is compact
for any finite c, then I is a good rate function.

In this research project, X is always a subset of Rn for some n, usually the solution of a
set of polynomial equations, with the induced topology. This guarantees it to be Hausdorff.
The next important definition is that of a large deviations principle.

Definition 2.2 (Large deviations principle) Let X be a Hausdorff topological space. A
family of probability measures {Pϵ}ϵ>0 on X satisfies a large deviations principle with rate
function I : X → [0,+∞] if for any Borel measurable set E ⊆ X we have

lim sup
ϵ→0

ϵ log(Pϵ(E)) ≤ − inf
x∈E

I(x)

lim inf
ϵ→0

ϵ log(Pϵ(E)) ≥ − inf
x∈E̊

I(x).

Here, E and E̊ denote the closure and interior of E, respectively. The set E is often referred
to as the event that we are analyzing.

In practice, the function I is often not just lower semi-continuous, but actually continuous.
In this case, we know from real analysis that

inf
x∈E

I(x) = inf
x∈E̊

I(x) (1)

and hence we find the much simpler relation

lim
ϵ→0

ϵ log(Pϵ(E)) = − inf
x∈E

I(x). (2)

Note that this means that a small I(x) corresponds to a higher probability density at x. If
we assume to be in the limiting case in which ϵ is very small, then we obtain the relation

ϵ log(Pϵ(E)) ≃ − inf
x∈E

I(x) (3)

where ≃ denotes asymptotic equality. This implies that

Pϵ(E) ≈ exp
[
− inf

x∈E
I(x)/ϵ

]
. (4)

In this thesis, we are working with a power injection that has a mean µ and a noise with
variance proportional to ϵ: the probability measures generated by this will be our Pϵ. We
will later see that these measures indeed satisfy a large deviations principle. If we wish
to analyse the probability of an overload, we let E be the event of an overload. The set
E ⊂ X corresponds to all configurations that lead to an overload. Now there are two
possible situations:
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1. If infx∈E I(x) = 0 then we find that Pϵ(E) ≃ 1. In practice, this happens if the mean
power injection µ already leads to an overload. So in that case an overload would not
be a rare event. Hence, this case is usually excluded. From a practical viewpoint, it
is obvious that no grid operator will allow the average power injection to lead to an
overload, because overloads need to be avoided.

2. If infx∈E I(x) = c > 0, then we find that Pϵ(E) ≃ e−c/ϵ. This happens if µ does not
lead to an overload. In this case, we obtain a direct relation between the variance ϵ
of the noise and the probability of an overload. If the variance ϵ is replaced with ϵ/a,
then the probability of an overload is replaced by e−ac/ϵ = (e−c/ϵ)a.

With all this we can see why the rate function is such a fundamental concept in large
deviations theory, because it allows us to compute the probability of a rare event Pϵ(E) in
terms of ϵ. The number infx∈E I(x) is known as the decay rate and the subset arg infx∈E I(x)
of E is themost likely realization. Note that this implies that in the limit ϵ→ 0, only the most
likely realization (i.e. the x ∈ E with the lowest value I(x)) is important for determining
Pϵ(E). This means that if we consider E to be an overload event, then for small ϵ the
overload will almost certainly happen at a point in or close to arg infx∈E I(x)

2.3 The contraction principle

If we have a transformation from one space to another, we may wonder how a large deviations
principle evolves under this transformation. This can for example be used when we have a
large deviation principle for power inputs, and wish to obtain a large deviations principle
for power flows or voltages. This allows us to estimate the probability of a line overflow if
we only have information about the power inputs.

Theorem 2.1 (Contraction principle) Let X and Y be Hausdorff topological spaces and
let (µϵ)ϵ>0 be a family of probability measures on X that satisfies the large deviations principle
with rate function I : X → [0,∞]. Let T : X → Y be a continuous function, and let νϵ be
the push-forward measure of µϵ by T , defined as νϵ(E) = µϵ(T

−1(E)) for every event E ⊆ Y .
Let

J(y) = inf{I(x) | x ∈ X and T (x) = y} (5)

with the convention that inf(∅) = ∞. Then:

• J : Y → [0,∞] is a rate function on Y

• J is a good rate function on Y if I is a good rate function on X

• (νϵ)ϵ>0 satisfies the large deviation principle on Y with rate function J .

For a proof and further reading on the contraction principle and related concepts, see [9] or
[10]. Effectively, the contraction principle states that a rate function on the space Y can
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be defined pointwise for any y ∈ Y . Equation (5) can intuitively be understood as follows.
Recall that a low rate function corresponds to a higher probability density, and that in the
limit ϵ → 0 the most likely realization of an event becomes dominant. So it roughly states
that in this limit the likelihood of a value y is determined by3 the most likely value x that
T maps on y, i.e. the most likely realization of the point y.

3Note that I avoid writing ’equal to’, since that is unfortunately not necessarily the case. For instance,
if the probability density of the point y is twice as high as that of x, then the rate functions can still be the
same, since the factor 2 drops out in equation (2) when taking the limit.
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3 The AC power flow equations and their simplifica-

tions

A power grid can be seen as a graph G = (N , E) where N is the set of nodes (also referred to
as buses), and E is the set of edges (also referred to as lines). We assume G to be connected,
otherwise we can just consider its connected components. Also, since power can flow in any
direction, the graph G is undirected. The line between k and ℓ is hence denoted as {k, ℓ}.
If their orientation is relevant for a specific situation, then we denote (k, ℓ) for the line from
the perspective of k. For the line (k, ℓ), we denote the power flow from node k to node ℓ by
Skℓ. It is important to remember that in general Skℓ ̸= −Sℓk since there can be power losses
in the line due to resistance. Let n = |N | and m = E be the number of buses and lines.

3.1 The AC model

Power is most often generated and transmitted using Alternating Current (AC), of which
we will give a description in this section, closely following [7]. Let j be the imaginary unit4.
Let Sk(t) be the power injected at node k at time t. Similarly Skℓ denotes the power flow
from node k to ℓ. Write Sk(t) = Pk(t) + jQk(t), with Pk(t) the active power injected, and
Qk(t) the reactive power injected. If node k consumes more power than it produces, then
Pk(t) is negative. We similarly define Skℓ(t) = Pkℓ(t) + jQkℓ(t).

If {k, ℓ} ∈ E , then the complex current injected by node k into line (k, ℓ) is defined as ikℓ(t),
at voltage vk(t). Since we are dealing with alternating current, the voltage leads the current
with a phase δk, so that we have vk(t) = |vk(t)|ejδk . Here |vk(t)| is the voltage magnitude,
and δk is the voltage phase angle. Usually δk is chosen to be in (−π, π] by convention. To
save notation, we no longer write the time dependence of power, current and voltage from
now on.

The AC power flow equations follow from two basic equations: Ohm’s law and Kirchoff’s
law. Ohm’s law states that

zkℓikℓ = vk − vℓ (6)

which means that power flow is proportional to voltage drop and the line impedance zkℓ.
The line impedance is a complex generalization of resistance rkℓ and the two are related by

zkℓ = rkℓ + jxkℓ =
1

ykℓ
=

1

gkℓ + jbkℓ
. (7)

Here, rkℓ, xkℓ, ykℓ, gkℓ, bkℓ are respectively called resistance, reactance, admittance, conduc-
tance, susceptance. Since we will not be using these a lot in this thesis a detailed explanation
or physical interpretation is omitted. It is best to just treat (7) as a definition, and not think
too much about the true meaning of these numbers. If you are interested in learning more,
see for example [11].

4The letter i is used for current, and hence j is used to denote the complex unit.
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Kirchoff’s law states that there is power balance at every node:

ik =
n∑

ℓ=1

ikℓ. (8)

That is, the current injection at bus k is equal to the sum of currents flowing out of bus k.
For combining Ohm’s law with Kirchoff’s law, we would like to substitute ikℓ using equation
(9). For this, we note that (9) is equivalent to

ikℓ = ykℓ(vk − vℓ) (9)

and now we can define the following matrix

Ykℓ =

{
−ykℓ if k ̸= ℓ∑n

l=1 ykl if k = ℓ
. (10)

If {k, ℓ} /∈ E , then we take ykℓ = 0. Now, we get that

ik =
n∑

ℓ=1

ikℓ =
n∑

ℓ=1

ykℓ(vk − vℓ) =
n∑

ℓ=1

Ykℓvℓ. (11)

We can write this in matrix form
i = Yv (12)

where i = (i1, . . . , in)
T and v = (v1, . . . , vn)

T are real vectors. Now the power injected by
bus k into the line (k, ℓ) is known to be equal to

Skℓ = vki
⋆
kℓ (13)

where the star denotes complex conjugation. This implies that

Sk = vki
⋆
k

= vk

n∑
ℓ=1

Y ⋆
kℓv

⋆
ℓ

=
n∑

ℓ=1

|vk||vℓ|Y ⋆
kℓe

j(δk−δℓ).

We can split Y into a real and complex part by writing Y = G+ jB. Then, we obtain the
AC equations

Pk =
n∑

ℓ=1

|vk||vℓ|(Bkℓ sin(δk − δℓ) +Gkℓ cos(δk − δℓ)) (14)

Qk =
n∑

ℓ=1

|vk||vℓ|(−Bkℓ cos(δk − δℓ) +Gkℓ sin(δk − δℓ)). (15)

From this, we can derive the AC power flow equations

Pkℓ = −|vk|2Gkℓ + |vk||vℓ|(Bkℓ sin(δk − δℓ) +Gkℓ cos(δk − δℓ)) (16)
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Qkℓ = |vk|2Bkℓ + |vk||vℓ|(−Bkℓ cos(δk − δℓ) +Gkℓ sin(δk − δℓ)). (17)

Now the classical AC power flow problem is computing the line power flows in equation (16)
and (17) given the power injections and voltages at every node as well as the grid constants
Bkℓ and Gkℓ. However, the AC power flow equations are non-linear and except for very
simple models it is usually not possible to solve them exactly. It seems logical to apply
numerical analysis instead, but due to the complexity of the equations this may take a lot
of time. This is a problem, since a grid operator usually only has limited time to solve the
power flow problem.

3.2 The DC approximation

Since the AC power flow equations are so difficult to solve, the equations are often simplified.
For this, there are four assumptions that are often made:

1. We only consider active power to describe power flow, ignoring reactive power. This
means that equations (15) and (17) are simply removed.

2. The resistance of a transmission line is significantly less than the reactance. This means
that rkℓ ≪ xkℓ. Hence gkℓ ≈ 0 and bkℓ ≈ −1/xkℓ. We can now define the weight of an
edge to be wkℓ = 1/xkℓ, with the convention that wkℓ = 0 if {k, ℓ} /∈ E .

3. The voltage magnitude |vk| is almost the same for all nodes, i.e. |vk| ≈ v for all k. By
using a per-unit system, we may just as well set v to 1. This means that |vk| ≈ 1 for
all k.

4. We assume the voltage angle differences to be small. This means that sin(δk − δℓ) ≈
δk − δℓ and cos(δk − δℓ) ≈ 1.

This set of assumptions is called the DC approximation. If we make all these assumptions,
the AC equations become linear, and can be solved exactly for any network. An analysis of
this can be found in [7]. This approximation is frequently used due to its simplicity. What
we may be interested in is what happens if we make some of these assumptions, but not all.
This is certainly important, as not all assumptions will always be valid. It also allows us to
make a more accurate approximation of the actual solution of the AC power flow equations.
In this thesis, we will be looking at several models that make some, but not all, assumptions
of the DC approximation.

3.3 The two-node model

The simplest model (and one of the few that can be solved exactly without making any of
the DC assumptions) is the two-node model with one line between the two nodes. Hence we
have n = 2 and m = 1. Although rather trivial, this model is useful to demonstrate some
properties of an AC network.
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The power inputs are known, but since there is only one line the summations have only one
term:

P1 = |v1||v2|(B12 sin(δ1 − δ2) +G12 cos(δ1 − δ2))

P2 = |v1||v2|(−B12 sin(δ1 − δ2) +G12 cos(δ1 − δ2)).

The power flow is hence equal to

P12 = P1 − |v1|2G12 = |v1||v2|(B12 sin(δ1 − δ2) +G12 cos(δ1 − δ2))− |v1|2G12

P21 = P2 − |v2|2G12 = |v1||v2|(−B12 sin(δ1 − δ2) +G12 cos(δ1 − δ2))− |v2|2G12.

This essentially solves the power flow equations for this case, but let’s look at some more
results. Note that

P12 + P21 = 2G12|v1||v2| cos(δ1 − δ2))− (|v1|2 + |v2|2)G12

= G12

(
2|v1||v2| cos(δ1 − δ2)− |v1|2 − |v2|2

)
which is generally non-zero. So let’s see if we can find a case when it is zero. We have the
following series of inequalities:

(|v1| − |v2|)2 ≥ 0

⇐⇒ |v1|2 − 2|v1||v2|+ |v2|2 ≥ 0

⇐⇒ 2|v1||v2| − |v1|2 − |v2|2 ≤ 0

=⇒ 2|v1||v2| cos(δ1 − δ2)− |v1|2 − |v2|2 ≤ 0

where the last inequality holds since |v1||v2| > 0 (since we are taking absolute values) and
cos(δ1 − δ2) ≤ 1. Note that we have equality in the last equation only if we both have
cos(δ1 − δ2) = 1 and |v1| = |v2|.

Since G12 ≥ 0 we conclude that P12+P21 ≤ 0, which effectively means that we can only lose
power due to resistance, and never gain it (which makes sense). A next question is when
it occurs that P12 + P21 = 0. One possibility is that G12 = 0, which means that R12 = 0
and hence there is no resistance. The other possibility is that cos(δ1 − δ2) = 1 which means
δ1 = δ2 (i.e. there is no phase difference between both nodes) and |v1| = |v2|. This implies
P12 = P21 = 0, so there is no power flow, which explains why there is no power loss in this
case.

We can also compute

cos(δ1 − δ2) =
P1 + P2

2|v1||v2|G12

sin(δ1 − δ2) =
P1 − P2

2|v1||v2|B12

.

These two equations combined allow us to compute δ1 − δ2. Note that only the phase
angle difference is relevant, so we always have one degree of freedom left for determining
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the phase angles. It is possible to assume that δ1 = 0 and then compute δ2. Note that if
P1 and P2 are chosen, then there is only one possible value for |v1||v2|, since we must have
cos(δ1− δ2)

2+sin(δ1− δ2)
2 = 1. It makes sense that there is such a requirement: since there

is resistance in the system, there must be a certain relation between power injection and
voltages so as to match the resistance. Also note that if the voltage increases by a factor c
then the power increases by a factor c2, which matches the relation P = V 2/R that we know
from grids with direct current.
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4 Analysis of a system without small angles

In this section, we will be analyzing the system in which we make all of the DC approxi-
mations, except the small angle approximation. One reason that this model is relevant is
because we may expect it to show more dynamics than the full DC approximation, as the
AC power flow equations without this assumption are not linear or even polynomial (in their
initial form). At first glance it may seem very difficult to work with due to all the geometric
functions. It turns out that the problem can actually be reduced to a polynomial equation
in a single variable. Although the degree of this polynomial is usually much higher than
4 (and hence the solutions cannot be computed exactly), we can actually approximate the
solutions very well with the concept of near-solutions, which are simple expressions that are
very close to the actual solutions (and in the limit of deviations δ going to zero, they become
exact).

For the most part, we will be investigating the 3-cycle, the simplest non-trivial model. We
will first solve it by full linearization, and then without assuming small angles. We then
move on to approximate the probability of an overflow in the system, assuming given line
limits.

4.1 Solving the three-node cycle

As a first non-trivial model, we take the 3-cycle, so that we have m = n = 3. We also assume
that all lines are identical for simplicity. See Figure 2. Although not very realistic with all
these assumptions, it is still highly useful as an example.

Figure 2: The three-cycle model shown in a diagram. We assume that the lines have no
resistance and have identical reactance. The vertices are labeled V1, V2, V3. At node Vi the
voltage phase angle is δi and the power injection is Pi. The power injections are known,
and due to power balance we must have P1 + P2 + P3 = 0. The problem we try to solve is
computing the power flows P21, P13, P32.

One reason that this model is interesting is because it is the simplest non-tree model. Since
the AC power flow problem is simpler for tree graphs, most research focuses on these instead.
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We will first simplify the power flow equations with the DC approximations that we do still
make. Then we will solve them with the additional assumption that sin(δk−δℓ) ≈ δk−δℓ, so
that we can check against this model later. After that, we move on to solving them without
this assumption.

We make the DC approximations stated in section 3.2, except the small angle approximation.
Since we are ignoring reactive power, the only relevant equation is (16), which states that

Pkℓ = −|vk|2Gkℓ + |vk||vℓ|(Bkℓ sin(δk − δℓ) +Gkℓ cos(δk − δℓ)).

We assume that all voltages are approximately equal to 1. Additionally we assume resistance
to be much less than reactance, so we have Gkℓ ≈ 0. So this simplifies into

Pkℓ = Bkℓ sin(δk − δℓ).

Since Ykℓ = −ykℓ if k ̸= ℓ, we have that Bkℓ = −bkℓ ≈ 1/xkℓ = wkℓ. Since we assume that all
lines are identical, all weights are equal. We may just as well work in a per-unit system and
set this weight to 1. So we get

Pkℓ = sin(δk − δℓ) (18)

and hence we find the power flow equations

sin(δ1 − δ2) + sin(δ1 − δ3) = P1

sin(δ2 − δ1) + sin(δ2 − δ3) = P2

sin(δ3 − δ2) + sin(δ3 − δ2) = P3

(19)

that we need to solve, given the power injections P1, P2, P3.

4.1.1 The full DC approximation

In the full DC approximation, we also assume that sin(δk − δℓ) ≈ δk − δℓ. With this assump-
tion, the system becomes

2δ1 − δ2 − δ3 = P1

−δ1 + 2δ2 − δ3 = P2

−δ1 − δ2 + 2δ3 = P3

(20)

which can also be written as 2 −1 −1
−1 2 −1
−1 −1 2

δ1δ2
δ3

 =

P1

P2

P3

 .

In shorthand, we can write this as
Lδ = p. (21)

Since the matrix L is singular, there is not just one solution to this system. The kernel
of L is spanned by (1, 1, 1)T , which means that if we increase all δi by the same amount,
the power injections do not change. This makes sense since only the phase angle difference
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is relevant for the line power flows. But it does mean that we have to remove a degree of
freedom to solve the system. There are several common choices for this, one of them is to set
δ1 = 0. This deletes the first column of the matrix, and removes δ1 from the vector δ. We
can also remove the third row5 without losing information, since the third equation directly
follows from the first two. This way we get the matrix equation(

−1 −1
2 −1

)(
δ2
δ3

)
=

(
P1

P2

)
. (22)

By taking the inverse, we find the solution(
δ2
δ3

)
=

1

3

(
−1 1
−2 −1

)(
P1

P2

)
=

1

3

(
−P1 + P2

−2P1 − P2

)
. (23)

Since Pkℓ = δk − δℓ and P3 = −P1 − P2 (the total injected power must add up to zero, as
there are no losses in the lines in this model), we find

P13 =
1

3
(P1 − P3)

P32 =
1

3
(P3 − P2)

P21 =
1

3
(P2 − P1)

(24)

as the solution to the power flow equations in the full DC approximation. Note that with
the reintroduction of P3 this becomes cyclic. The point of working this out is that we can
use it as a sanity check. If we take the solutions we find without the full DC approximation
and then apply the approximation on those solutions, we should recover (24). With this in
mind, we are ready to solve the model without the small angles.

4.1.2 The model reduced to a single equation

We return to the model that we originally intended to solve, without the small angle ap-
proximation. Recall that the system then becomes

sin(δ1 − δ2) + sin(δ1 − δ3) = P1

sin(δ2 − δ1) + sin(δ2 − δ3) = P2

sin(δ3 − δ1) + sin(δ3 − δ2) = P3.

First of all, we notice that the three equations sum to zero (since P1 + P2 + P3 = 0) and
hence we can omit the last equation. Secondly, we can set δ1 = 0 without loss of generality,
since only the phase angle differences are relevant. This simplifies the system (19) into

sin(−δ2) + sin(−δ3) = P1

sin(δ2) + sin(δ2 − δ3) = P2.
(25)

5You may wonder why I did not remove the first row. That is also possible, but in the next computation
we get rid of the third row and it is nice to run parallel to this computation.
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The first equation can be written as6

sin(δ3) = −P1 − sin(δ2) (26)

which also means that7

cos(δ3) =
√

1− (P1 + sin(δ2))2 (27)

and with an addition formula the second equation of (19) can be written as

sin(δ2) + sin(δ2) cos(δ3)− cos(δ2) sin(δ3) = P2. (28)

We can now write this as a function of δ2 only, as

sin(δ2) + sin(δ2)
√
1− (P1 + sin(δ2))2 − cos(δ2)(−P1 − sin(δ2)) = P2. (29)

We can define z = sin(δ2) so simplify this into

z + z
√

1− (P1 + z)2 +
√
1− z2(P1 + z) = P2. (30)

All geometric functions have been removed, but now we have square roots in the equation.
So a logical next step in solving the equation is getting rid of the square roots, so as to
obtain a polynomial equation. First, turn the equation into

z
√
1− (P1 + z)2 = P2 − z −

√
1− z2(P1 + z)) (31)

and take the square8

z2(1− (P1 + z)2) = (P2 − z −
√
1− z2(P1 + z))2

z2(1− (P1 + z)2) = (P2 − z)2 + (1− z2)(P1 + z)2 − 2(P2 − z)
√
1− z2(P1 + z)

2(P2 − z)
√
1− z2(P1 + z) = (P2 − z)2 + (1− z2)(P1 + z)2 − z2(1− (P1 + z)2)

2(P2 − z)
√
1− z2(P1 + z) = (P2 − z)2 + (1− z2)(P1 + z)2 − z2 + z2(P1 + z)2

2(P2 − z)
√
1− z2(P1 + z) = (P2 − z)2 + (P1 + z)2 − z2

4(P2 − z)2(1− z2)(P1 + z)2 = ((P2 − z)2 + (P1 + z)2 − z2)2

to obtain the equation

S(z) := 4(P2 − z)2(1− z2)(P1 + z)2 − ((P2 − z)2 + (P1 + z)2 − z2)2 = 0 (32)

which is a polynomial equation of degree 6 in terms of z. Written out, it becomes

4z6 + 8(P1 − P2)z
5 + (4P 2

1 − 16P1P2 + 4P 2
2 − 3)z4 + 4(P2 − P1)(1 + 2P1P2)z

3

+ (2P 2
1 + 2P 2

2 + 4P 2
1P

2
2 + 8P1P2)z

2 + 4(P1 − P2)(P1 + P2)
2z + (P1 − P2)

2(P1 + P2)
2 = 0.

(33)

6I avoid writing δ3 = arcsin(−P1−sin(δ2)), due to the fact that sin(arcsin(x)) is not always x but depends
on the chosen boundary conditions.

7Note that there could be a minus sign here, but as we will square out all of the square roots later this
does not matter. It is possible to do the computation while avoiding this problem altogether, but the reason
I chose not to is to make the process more intuitive.

8All these equations are equivalent. To save writing I do not write ⇐⇒ every line.
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By solving this equation for z given values P1, P2, we can compute all line power flows: we
have P21 = sin(δ2 − δ1) = sin(δ2) = z, then P13 = P21 +P1 and P32 = P13 +P3. This way we
can define a function

F : R3 → R3 : I = F (P ) (34)

where I is the vector of currents, and P the vector of power injections. The function F is
now implicitly defined (using the solution z of an equation of degree 6), so it makes sense to
look for an explicit version of F .

4.1.3 Solving the three-node model equation

After generating the values Pi, we know that z must be a solution of (33). Also, because
z = sin(δ2), we have the constraint that −1 ≤ z ≤ 1. However, this leads us to a new
problem: we can find more than one solution for z between −1 and 1. In fact, all six solutions
are normally real numbers between −1 and 1. The fact that the solutions are in this interval
can be explained as follows9. Since all Pi are much smaller than 1 (as perturbations are
small), we can approximate equation (33) by setting P1 = P2 = 0 which leaves

4z6 − 3z4 = 0 (35)

with solutions z = ±
√

3/4 ≈ ±0.866 and four solutions z = 0. Indeed, in practice we find
one solution that is about 0.866, one that is about −0.866 and four that are very close to 0.
Note that the solutions z = ±

√
3/4 correspond to δ2 and δ3 being approximately 2π/3 and

4π/3.

We have six solutions, and since P12 = sin(δ1− δ2) = − sin(δ2) = −z, all six lead to different
power flows. However, given fixed power injections, we expect the system to have only one
solution. The two solutions with z ≈ ±

√
3/4 are clearly not physically relevant, since they

imply that there is a power flow when there are no power injections, so we can eliminate
these. However, the other four solutions all satisfy that z → 0 when P1, P2 → 0, and hence
it seems that we have four realistic solutions to our system rather than one. And indeed, if
we numerically solve the equation for small values P1, P2, we indeed get four different power
flows, and all of them are in fact physically possible. We will get to how this can be in a
moment: first we need to know more about these four solutions.

To get more information on the location of the zeroes, we may try to interpolate them. If we
find z1, z2, . . . , z7 such that z1, z3, z5, z7 < 0 and z2, z4, z6 > 0, then we know that the interval
(zi, zi+1) contains a zero for every 1 ≤ i ≤ 6, and hence we (approximately) located all zeroes.

9The fact that they are all real under normal conditions will be shown later.
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Figure 3: Zooming in on the polynomial S(z) near z = 0. Zeroes of this polynomial corre-
spond with solutions to the power flow equations, where z is the power flow from node 2 to
node 1. For small perturbations p, the polynomial S(z) always has four zeroes with z close
to 0. They can very accurately (though not exactly) be expressed in terms of the power
injections P1 and P2.

If we plug in several linear combinations of P1 and P2, we get the following outcomes:

S(0) = −(P1 + P2)
2(P1 − P2)

2

S(−P1) = −P 2
2 (2P1 + P2)

2

S(P2) = −P 2
1 (2P2 + P1)

2

S(P2 + P1) = −4P 2
1 (P1 + P2)

2(2P1 + P2)
2

S(P2 − P1) = −4P 2
1 (P1 − P2)

2P 2
2

S(−P2 − P1) = −4P 2
2 (P1 + P2)

2(P1 + 2P2)
2

S(1
3
(P2 − P1)) = − 4

729
(P1 − P2)

2(2P1 + P2)
2(P1 + 2P2)

2.

The difficulty here is that all of these numbers are always negative. In fact, there is no simple
linear combination of P1 and P2 for which S always returns a positive value. So we have
to take a different approach in order to find these values. Is there any difference between
the seven negative outcomes for S that we got? Yes: in the bottom four equations, the
polynomial on the right is of degree 6 in terms of P1, P2. In the top three, it is of degree
4. This means that (assuming that P1, P2 are small) the right hand sides on the bottom
four equations are (in absolute value) a lot smaller than the top three. So, we take the
bottom four equations as our ’guesses’ for the zeroes of S. They are plotted in Figure 3.
The ’near-solutions’ yield remarkable accuracy to the actual solutions (we will compute how
accurate later on). Now it is possible to find our interpolating values z2, z4, z6, using the
following steps:
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1. Order the four near-solutions P2 + P1, P2 − P1,
1
3
(P2 − P1),−P2 − P1 from smallest to

largest (not taking absolute value!): name them a, b, c, d in this order

2. We can take z2 = −1/2 and z6 = 1/2: for small P1, P2 this is always positive

3. We take z4 = (b+ c)/2: now using the fact that we know d > c > b > a we can prove
that S(z4) > 0

With this interpolation, we find that there are indeed always six real solutions, as was
claimed before. We will not prove these statements here since it mostly involves a lot of
not very interesting writing. Note that z4 can always be written as a linear combination
of P1 and P2, however which linear combination depends on P1 and P2 since it depends
on the ordering of the near-solutions. This also explains why we could not find this linear
combination previously.

Using the near-solutions we obtained, we can easily compute the power flows. We distinguish
between the different cases. As an example, we take z = P2 + P1.
In this case, we have P21 = sin(δ2 − δ1) = sin(δ2) = z = P1 + P2 = −P3 (recall that we
already chose δ1 = 0). By load balance, we have P13 = P21 +P1 = 2P1 +P2 = P1 −P3. Also
P32 = P13 + P3 = P1.
I will not work out the other ones here (it is fairly straightforward) but the results are in
the table below.

P13 P32 P21

z = P2 + P1 P1 − P3 P1 −P3

z = P2 − P1 P2 −P1 P2 − P1

z = −P2 − P1 −P2 P3 − P2 P3

z = 1
3
(P2 − P1)

1
3
(P1 − P3)

1
3
(P3 − P2)

1
3
(P2 − P1)

Note that with z = 1
3
(P2 − P1), we recover (24), so we do indeed find this solution again.

However, we also find three new solutions, that do not occur in the DC approximation. The
reason for this is that if the power flows are small, the phase angle differences need not to
be. If z = sin(δ1 − δ2) is small, then either δ1 − δ2 is small, or δ1 − δ2 ≈ π. So instead
of δ2 ≈ 0, we may also have δ2 ≈ π, and the same goes for δ3. This gives us four possible
configurations: (δ2, δ3) ≈ (0, 0), (0, π), (π, 0) or (π, π). Each one of these configurations turns
out to correspond to a solution, not just (δ2, δ3) ≈ (0, 0). This was not taken into account
before, which is why we find these new solutions now. In fact, it is possible to directly derive
all solutions using this idea. We will work this out in detail later in section 4.1.5

4.1.4 Accuracy of the approximations

We already saw that the four solutions near zero could be approximated with P2 + P1, P2 −
P1,−P2 − P1,

1
3
(P2 − P1). One may wonder how accurate this approximation is. Well, we
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see that for all of them the value S(z) is a polynomial of order 6. If we assume P1, P2 to be
of order σ, then we find S(z) = O(σ6). Also, we have that

S ′(z) = 24z5 + 40(P1 − P2)z
4 + 4(4P 2

1 − 16P1P2 + 4P 2
2 − 3)z3 + 12(P2 − P1)(1 + 2P1P2)z

2

+ 2(2P 2
1 + 2P 2

2 + 4P 2
1P

2
2 + 8P1P2)z + 4(P1 − P2)(P1 + P2)

2. (36)

Note that z = O(σ), and therefore the lowest order terms are of order O(σ3). Ignoring all
higher order terms, we get

S ′(z) ≈ −12z3 + 12(P2 − P1)z
2 + 16P1P2z + 4(P1 − P2)(P1 + P2)

2. (37)

We can plug in all 4 solutions, but none of them reduces the polynomial to zero, and hence
we have that the leading order in S ′(z) is exactly σ3, or S ′(z) = Θ(σ3).
If z is a near-solution and z0 is an exact solution, we find that

S ′(z) ≈ S(z)− S(z0)

z − z0

z − z0 =
O(σ6)

Θ(σ3)
= O(σ3)

and hence the error in our estimate is O(σ3), and the relative error is (z − z0)/z0 = O(σ2).
For such a simple approximation this can be considered very accurate. This has two major
benefits:

1. We can couple any exact solution of S(z) = 0 to a near-solution that is a linear
combination of components of p. This means that if P1, P2 are no longer constant we
can track every solution, without confusing it with a different solution, even if the z
values may be the same at one point.

2. If we want to increase the precision of our guess using numerical methods, we already
have a very good initial guess. This also means that there is very little risk of the
numerical algorithm converging to a different solution than intended.

4.1.5 Directly deriving the linear approximations

Now that we know that the additional solutions arise due to δ2, δ3 being approximately π
instead of 0, we can actually linearize the equations around those points instead, in order
to get the near-solutions. We already know what happens if we linearize around the point
(δ2, δ3) = (0, 0) because we did that in section 3.2. We will first linearize around (δ2, δ3) =
(π, 0). In this case, we define δ′2 = δ2 + π. Then equation (19) becomes

− sin(δ1 − δ′2) + sin(δ1 − δ3) = P1

− sin(δ′2 − δ1)− sin(δ′2 − δ3) = P2

sin(δ3 − δ1)− sin(δ3 − δ′2) = P3.
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If we make the small angle approximation now, we get

δ′2 − δ3 = P1

δ1 − 2δ′2 + δ3 = P2

δ′2 − δ1 = P3

or, in matrix form  0 1 −1
1 −2 1
−1 1 0

δ1δ′2
δ3

 =

P1

P2

P3

 . (38)

Once again, we can set δ1 = 0 and eliminate the third equation (since the sum of all three
equations is zero), and simplify this to the system(

1 −1
−2 1

)(
δ′2
δ3

)
=

(
P1

P2

)
. (39)

We can invert the matrix to obtain the solution(
δ′2
δ3

)
=

(
−1 −1
−2 −1

)(
P1

P2

)
=

(
P1 + P2

2P1 + P2

)
. (40)

Hence, we find

P21 = sin(δ2 − δ1)

= sin(δ2)

= − sin(δ′2)

≈ −δ′2
= −P1 − P2

which means that this case corresponds to the near-solution z = −P2 − P1, so the configu-
ration (P13, P32, P21) = (−P2, P2 + P3,−P3)

The computation for the other configurations is similar: we get that δ2 ≈ 0 and δ3 ≈ π yields
the near-solution z = P2 − P1 and (P13, P32, P21) = (P2,−P1, P2 − P1). Finally δ2, δ3 ≈ π
yields z = P2 + P1 and (P13, P32, P21) = (P1 − P3, P1,−P3). So we exactly recover the four
solutions that we found, without having to go through solving a polynomial equation of
degree 6!

Another important benefit of this approach is that it answers an important question that
you may or may not have asked yourself: is it possible that the system ’switches’ between
the four solutions? Suppose that δ2 changes from 0 to π. Then since δ2 is continuous in
time, we at some point have δ2 − δ1 = π/2 and hence sin(δ2 − δ1) = 1 (or δ2 − δ1 = −π/2,
but the argument remains the same). We know that the sines are usually small, hence such
an event is highly unlikely in practice, and can only occur when we at some point in time
are at a boundary point of the domain of all p.
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We can actually apply this method to larger networks as well. A major benefit is that
we still obtain a linear problem, just like in the full DC approximation, and still get all
possible solutions rather than just one. For larger networks we expect the corresponding
polynomial to be of a very high degree (if it is possible to compute it at all), which is why
this approach can be useful. A downside, however, it that it does not grant us insight in
how accurate the approximation is. In the polynomial we could see that the error in the
approximation is of order O(σ2), which is not directly clear now. Also it does not allow us
to improve our approximation. Using the polynomial, we can start at a near-solution and
use any numerical algorithm to find a more accurate approximation, which we cannot do
now either. It would be interesting to find an algorithm that can improve the accuracy of
the near-solutions without computing the entire polynomial, however a big question is if this
would be any faster in a computer.

4.2 Probability of overflow

Using our near-solutions, we are returning to the original question: analyzing the probability
of an overload in a power network.

4.2.1 The probability distribution

To compute such probabilities, we need a probability density function f(P1, P2) (note that
since P3 = −P1 − P2 we do not need P3 as a variable). It makes sense to choose a normal
distribution for this. The only problem is that P1, P2 are not independent, since we have the
constraint P1+P2+P3 = 0. So the question is how we can choose the entries of p according
to a normal distribution while still forcing them to add up to zero. This can be handled
using a multivariate normal distribution. We define r as a vector with three components,
such that R1, R2, R3 are i.i.d. with Ri ∼ N (0, σ2). Then we set

P1 =
2
3
R1 − 1

3
R2 − 1

3
R3

P2 = −1
3
R1 +

2
3
R2 − 1

3
R3

P3 = −1
3
R1 +

2
3
R2 − 1

3
R3.

(41)

This way, we are guaranteed to have P1 +P2 +P3 = 0. And since the sum of several normal
distributions is still a normal distribution, the Pi still follow a normal distribution. If we
were to continue the computation with P3, then the constraint −P1 − P2 means that the
distribution is only defined on a lower-dimensional subspace of R3, necessitating the usage
of Lebesgue integrals to compute the probability of an event. To avoid this, one option is to
perform the integration over R1, R2, R3. But a better strategy at this point is to just forget
about P3 and work with P1, P2 only. Define

P ′ = Ar, P ′ =

(
P1

P2

)
, A =

1

3

(
2 −1 −1
−1 2 −1

)
. (42)

This means that P ′ is also a multivariate normal distribution, and hence we know that its
probability density function is given by

f(P1, P2) =
1√

(2π)2|Σ|
exp

[
− 1

2
P ′TΣ−1P ′

]
(43)
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where

Σ = σ2AAT = σ2

(
2/3 −1/3
−1/3 2/3

)
.

The determinant of this matrix is equal to |Σ| = σ4/3. Note that Σ is positive definite with
eigenvalues σ2/3 and σ2, so that the integral of f over R2 converges.
The definition of f(P1, P2) requires the inverse of Σ: it is equal to

Σ−1 =
1

σ2

(
2 1
1 2

)
(44)

and with this, we find

f(P1, P2) =

√
3

2πσ4
exp

[
− 1

2σ2

(
P1 P2

)(2 1
1 2

)(
P1

P2

)]
. (45)

It will be difficult to even make a proper estimate of such an integral as P1 and P2 are not
independent, since the matrix Σ−1 has off-diagonal entries that are non-zero. To make it
easier to handle, we can apply a coordinate transformation to decouple them.
We define10

T1 =

√
3

2σ
(R1 +R2), T2 =

1

2σ
(R1 −R2)

so that we have

T 2
1 + T 2

2 =
1

4σ2

(
3(P1 + P2)

2 + (P1 − P2)
2
)

=
1

4σ2

(
4P 2

1 + 4P 2
2 + 4P1P2

)
=

1

2σ2

(
P1 P2

)(2 1
1 2

)(
P1

P2

)
.

This way we can write the probability density function as11

g(T1, T2) =
1

π
exp

[
− (T 2

1 + T 2
2 )
]
. (46)

4.2.2 Computing the overload probabilities

Now that we have this distribution, we can compute the overload probabilities. Assume that
all lines have the same capacity aσ. There are two different cases we need to consider.

1. In one case, we can force the system to take the ’safest’ solution z = 1
3
(P2 − P1)

10To save writing I am simply posing this substitution as a result here, rather than explaining how I found
it, since it is not really related to the subject of the thesis.

11The new forefactor can be computed using a Jacobian, or just using the fact that the integral over the
entire space R2 must be 1 for a probability distribution.
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2. In another case we cannot, and then all four physically relevant solutions need to be
safe

In the first case, we have a large number of conditions that need to be satisfied in order for
the system to be safe. Note that the safety of the three solutions z = P2 + P1, z = P2 − P1

and z = −P2 − P1 implies the safety of the fourth solution z = 1
3
(P2 − P1), since the line

flows in this solution are the average of those in the other three solutions. We can take all
conditions from the table in section 4.1.3, and use P3 = −P1 − P2.

−aσ ≤ P1 ≤ aσ

−aσ ≤ P2 ≤ aσ

−aσ ≤ P1 + P2 ≤ aσ

−aσ ≤ P1 − P2 ≤ aσ

−aσ ≤ 2P1 + P2 ≤ aσ

−aσ ≤ P1 + 2P1 ≤ aσ

Note that the top three inequalities can be derived from the bottom three. Hence, we can
reduce this system to the three boundaries

−aσ ≤ P1 − P2 ≤ aσ

−aσ ≤ 2P1 + P2 ≤ aσ

−aσ ≤ P1 + 2P1 ≤ aσ.

We can use the same substitution as before to obtain

−a ≤ 2T2 ≤ a

−a ≤ T1
√
3 + T2 ≤ a

−a ≤ T1
√
3− T2 ≤ a

as boundaries for the domain D. This domain is plotted in Figure 4. Note that these lines
bound a regular hexagon, with side length a/

√
3. This means that we can bound the domain

D by
B(0, a/2) ⊂ D ⊂ B(0, a/

√
3). (47)

We can evaluate the integral

1

π

∫∫
B(0,a/2)

exp

[
− (T 2

1 + T 2
2 )

]
dT1dT2 =

1

π

∫ 2π

0

dϕ

∫ a/2

0

r exp

[
− (r2)

]
dr

= − 1

π
2π

1

2
e−r2

∣∣∣∣r=a/2

r=0

= 1− e−a2/4

and similarly
1

π

∫∫
B(0,a/

√
3)

exp

[
− (T 2

1 + T 2
2 )

]
dT1dT2 = 1− e−a2/3. (48)
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Figure 4: The area of ’safe’ power flows over which we have to integrate, in case we want any
power flow configuration to be safe. We can approximate this integral by drawing a circle
inside of it, or outside of it. If the system only needs to be safe for the DC approximation,
then the hexagon becomes three times larger, and hence the chance of an overflow is reduced
significantly.

Therefore, we obtain

e−a2/3 ≤ P(overload is possible) ≤ e−a2/4. (49)

Recall that the event ’overload is possible’ means that at least one configuration would lead
to an overflow given the power injections.
The problem with this approach is that the two bounds do not converge to each other in the
case a → ∞ and therefore it is not the most useful for large deviations. In order to get a
good approximation in the case a → ∞, we can make use of half-planes. If we consider the
half-plane H defined by the equation T2 ≥ a/2, then we have∫∫

H

1

π
exp

[
− T 2

1 − T 2
2

]
dT1dT2 =

∫ ∞

a/2

1√
π
exp

[
− T 2

2

]
≈ 1

a
√
π
e−a2/4 (50)

using the error function approximation in the limit of large a. We can now view the com-
plement DC of D as the union of six half-planes, one half-plane on the outside of every side
of the hexagon. Label the six half-planes H1, . . . , H6. Then we have∫∫

DC

exp
[
− T 2

1 − T 2
2

]
dT1dT2 ≤

6∑
i=1

∫∫
Hi

exp
[
− T 2

1 − T 2
2

]
dT1dT2

≈
6∑

i=1

1

a
√
π
exp

[
− a2/4

]
=

6

a
√
π
exp

[
− a2/4

]
.
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Note that the ≤ is there due to overlap between hyperplanes, leading to some points being
counted more than once. However, any point counted twice is at least a distance a/

√
3 > a/2

away from the origin, and hence for large a these points become insignificant compared to
points located only a/2 away from the origin for large a. All together we find the approxi-
mation

P(overload is possible) ≈ 6

a
√
π
exp

[
− a2/4

]
(51)

for the overflow probability. We can compare this to numerical results12.

a exact integral approximation

5 0.00118399 0.00130697
10 4.61223 · 10−12 4.70126 · 10−12

25 1.86958 · 10−69 1.87553 · 10−69

50 2.49005 · 10−273 2.49204 · 10−273

It is clear that the approximation gets better in the limit a → ∞, as we expected since the
overlap becomes less important for larger values a. Unfortunately it is quite hard to compute
the exact probabilities for larger values of a, since the integral becomes so small. This is also
exactly the reason that large deviations theory is useful: for estimating probabilities that
cannot be computed otherwise.
Now we move on to the case in which we can force the system to take the (configuration
corresponding to the) DC approximation. In this case the constraints in terms of P1 and P2

are

−aσ ≤ 1

3
(P1 − P2) ≤ aσ

−aσ ≤ 1

3
(2P1 + P2) ≤ aσ

−aσ ≤ 1

3
(P1 + 2P1) ≤ aσ

or, equivalently

−3aσ ≤ P1 − P2 ≤ 3aσ

−3aσ ≤ 2P1 + P2 ≤ 3aσ

−3aσ ≤ P1 + 2P1 ≤ 3aσ.

Note that this is the same system of equations we analyzed earlier, however a is replaced
with 3a. Hence we can get the desired outcomes by replacing a with 3a. We hence get

e−3a2 ≤ P(overload) ≤ e−9a2/4 (52)

12Note that the exact integral is still not the exact overload probability: for this we would need to also
incorporate the fact that the near-solutions are not exact. If we take the limit σ → 0 then it does become
the exact overload probability. The point of this is showing that the approximation converges to the integral
in the limit a → ∞.
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and in the limiting case a→ ∞ we get

P(overload) ≈ 2

a
√
π
exp

[
− 9a2/4

]
. (53)

Note that this is significantly smaller than in (51). So if we can force the system to take this
configuration, we know that the probability of an overload will be reduced significantly as
compared to not taking any action. In practice, this is especially relevant when we restart a
system, because that may lead to the system taking a different configuration that we wish.
So a grid operator must beware that the angles are perfectly aligned when everything starts
up, and not flipped!

4.3 An approach with the contraction principle

We can also try to tackle the problem of finding the evolution of the overload probability
with the contraction principle. This is a way of checking our results, and also a good example
to see how the contraction principle works in practice. To use the contraction principle, we
first need a probability measure on the initial space, the space of power injections. Recall
that the probability density for the power injections is equal to

f(P1, P2) =

√
3

2πσ2
exp

[
− 1

σ2
(P 2

1 + P1P2 + P 2
2 )

]
(54)

with σ the standard deviation in the power injections P1, P2. Hence, we can define the
probability measure in terms of ϵ as

µϵ(K,L) =

√
3

2πϵ
exp

[
− (K2 +KL+ L2)/ϵ

]
. (55)

We let X be the space of all perturbations (K,L) (so X = R2). The rate function becomes

I(K,L) = K2 +KL+ L2. (56)

As the function T , we take the largest line flow in the system (in absolute value, since an
overload can happen regardless of the direction of the current). Let a be the capacity of the
lines. If we assume the system to be in the solution corresponding to the DC approximation,
then the function T is (approximately) equal to

T (K,L) = absmax

(
1

3
(L−K),

1

3
(2K + L),

1

3
(−K − 2L)

)
. (57)

The contraction principle applied to the transformation T states that

J(c) = inf{I(K,L) | (K,L) ∈ X and T (K,L) = c} (58)

is a rate function for the largest line flow c. Computing this function J comes down to
solving the optimization problem

minimize I(K,L)

subject to T (K,L) ≥ c
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and we want to find the probability that T (K,L) ≥ c for some limit c. To solve this, we can
apply Lagrange multipliers:

2K⋆ + L⋆ = λ⋆
∂T

∂K

∣∣∣∣
K=K⋆,L=L⋆

K⋆ + 2L⋆ = λ⋆
∂T

∂L

∣∣∣∣
K=K⋆,L=L⋆

T (K⋆, L⋆) = c.

For notational simplicity, we omit the condition K = K⋆, L = L⋆ at the derivatives from
now on. The derivative cannot be computed that easily, but we can distinguish between
three cases:

• 1
3
(L−K) is the largest (in absolute value). In that case, we have

∂T

∂K
= −1

3
,

∂T

∂L
=

1

3
.

Note that if 1
3
(K − L) were negative, this would only invert the sign of λ⋆ and not

change K⋆ or L⋆. We get the system

2K⋆ + L⋆ = −1

3
λ⋆

K⋆ + 2L⋆ =
1

3
λ⋆

1

3
(L⋆ −K⋆) = c.

The first two equations added together yields K⋆ = −L⋆. Then the final equation
becomes 2

3
L⋆ = c, and hence L⋆ = 3

2
c and K⋆ = −3

2
c. Hence, we get

I(K⋆, L⋆) =
9

4
c2

• 1
3
(2K + L) is the largest (in absolute value). In that case, we have

∂T

∂K
=

2

3
,

∂T

∂L
=

1

3
.

We get the system

2K⋆ + L⋆ =
2

3
λ⋆

K⋆ + 2L⋆ =
1

3
λ⋆

1

3
(2K⋆ + L⋆) = c.

Subtract the second equation twice from the first one: this yields −3L⋆ = 0, hence
L⋆ = 0. Then the final equation becomes 2

3
K⋆ = c, and hence K⋆ = 3

2
c and L⋆ = 0.

Hence, we get

I(K⋆, L⋆) =
9

4
c2
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• 1
3
(−K − 2L) is the largest (in absolute value). In that case, we have

∂T

∂K
= −1

3
,

∂T

∂L
= −2

3
.

We get the system

2K⋆ + L⋆ = −1

3
λ⋆

K⋆ + 2L⋆ = −2

3
λ⋆

1

3
(−K⋆ − 2L⋆) = c.

Subtract the first equation twice from the second one: this yields −3K⋆ = 0, hence
K⋆ = 0. Then the final equation becomes −2

3
L⋆ = c, and hence L⋆ = −3

2
c and K⋆ = 0.

Hence, we get

I(K⋆, L⋆) =
9

4
c2.

Unsurprisingly, every line returns the same answer: this makes sense as the system is sym-
metric, and hence every line has the same probability of exceeding flow c. In every case, we
get I(K⋆, L⋆) = 9

4
c2. Hence, we get

J(c) = inf{I(x) | x ∈ X and T (x) = c} =
9

4
c2 (59)

Recall that in section 4.2 we got the following result (equation (53)):

P(overload) ≈ 2

a
√
π
exp

[
− 9a2/4

]
Recall that in that computation, the line limit was aσ instead of c. So to compare this result
we change a into c/σ, and also turn σ2 into ϵ (because we did that in defining the probability
measure in equation (55)). Then, it becomes

Pϵ(overload) ≈
2
√
ϵ

c
√
π
exp

[
− 9c2

4ϵ

]
. (60)

And if we now take the limit

− lim
ϵ→0

ϵ log(Pϵ(E)) = − lim
ϵ→0

ϵ

[
log(2)− log(c

√
π) +

1

2
log(ϵ)− 9c2

4ϵ

]
=

9c2

4

we see that J(c) is indeed a rate function for the most likely overload. So the result found
by the contraction principle is confirmed by our earlier, more algebraic computation.

Both of these approaches have advantages and disadvantages. A major advantage of the
direct computation is the forefactor besides the exponential: we cannot recover this if we
only have the rate function. A downside of the direct computation is that it is only feasible
for specific models: for more complicated networks, it quickly becomes difficult or even
impossible to compute the function P(overload) exactly.
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4.4 Results for the general model

We have now studied the three-cycle in detail, found the (approximate) power flows and the
overflow probabilities. It is now time to move on and focus on a general power network, and
see what we can find in that case. However, we will still be referring to this simple model in
order to check our more general results.

4.4.1 Continuity of power flows

The first question is how the power flows changes as a function of the power injections. Does
the power flow f vary continuously as a function of the power injection p? In the three-node
case, the near-solutions certainly do, but that does not imply that the actual solutions also
vary continuously! So we need a different approach. Note that the exact solutions can be
found by solving a polynomial equation of degree 6. The coefficients of this polynomial vary
as a continuous function of the power injection p. It is a known result that the roots of a
polynomial are a continuous function of its coefficients[12]. So we find that the power flows
must be continuous in terms of the power injections for the three-cycle network. For a larger
network, this strategy does not immediately work, since we first have to reduce it to a single
polynomial in order to use this theorem.

Now we look at a general network. We assume that we have full information about the
present state: we know the power injection p, the phase angles δ and the power flow f . Our
goal is to figure out how f varies in terms of p. For this, we first turn to δ. Unfortunately
we do not have an explicit function of δ in terms of p. We do, however, have an explicit
function J of p in terms of δ:

[J(δ)]i =
∑
j ̸=i

wij sin(δi − δj). (61)

We want to know what happens to δ if p0 = µ is replaced by µ + ϵq. Unfortunately the
function J is not easy to invert, so we turn the process around. If we change δ → δ+ ϵθ, we
get the following change in p:

[J(δ + ϵθ)]i =
∑
j ̸=i

wij sin
(
(δi + ϵθi)− (δj + ϵθj)

)
=

∑
j ̸=i

wij sin
(
(δi − δj) + ϵ(θi − θj)

)
.

For notational shorthand, define δij = δi − δj and θij likewise. Assuming that ϵ is small, we
can make the following expansion:

=
∑
j ̸=i

wij sin
(
δij + ϵθij

)
=

∑
j ̸=i

wij

(
sin(δij) + ϵθij cos(δij)

)
= µ+ ϵ

∑
j ̸=i

θijwij cos(δij).
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This is a linear system in θ. Remember that δ is known, hence cos(δij) is also known and
can be left in the resulting expression. We now have

Qi =
∑
j ̸=i

θijwij cos(δij) (62)

and hence we can write

q =Mθ, Mij =

−wij cos(δij) if i ̸= j∑
i ̸=j

wij cos(δij) if i = j. (63)

Note that the sum of every row in M is zero, and hence θ = (1, 1, . . . , 1) yields q = 0, as
expected. In order to solve θ and in terms of q, we can replicate the strategy of solving the
power flow equations in [7]. To find θ as a function of q, we would like to write θ = M−1q,
but that is not possible since M is not invertible. For this reason, we use the Moore-Penrose
inverse of the matrix, which is a generalization of the inverse that exists for any matrix13.
In this case, it is equal to

M+ = (M +
1

n
J)−1 − 1

n
J (64)

where J ∈ Rn×n is the all-ones matrix. Now we have that θ =M+q solves14 equation (63).
If we have found θ, then we can compute the power flow changes as follows.

Pij + ϵQij = wij sin
(
δi + ϵθi − (δj + ϵθj)

)
Pij + ϵQij = wij sin(δij) + ϵθijwij cos(δij)

Qij = θijwij cos(δij).

We can write this in matrix form too. Suppose that if p = µ + ϵq, then f = ψ + ϵg. Then
we can write

g = Nθ, Nei =


wij cos(δij) if e = (i, j) for some j

−wij cos(δij) if e = (j, i) for some j

0 otherwise.

(65)

Now we can write
g = NM+q (66)

as the relation between the power injection and power flow. The matrix V = NM+ is known
as the Power Transfer Distribution Factor (PTDF). We have now found a total derivative
of the transformation p → f in the point (µ, ψ). Does that mean that the transformation is
always continuous and even differentiable? Well, in the vast majority of cases it is, but there
are situations in which our argumentation fails. Specifically, it goes wrong when we try to
compute the Moore-Penrose inverse of a matrix M of dimension lower than n− 1. Suppose
that we have dim(M) ≤ n − 2 and try to apply this procedure. We can still compute the

13If you are interested in learning more about it, see [13].
14This implicitly picks θ1 + . . . + θn = 0, which does no harm, since only phase angle differences are

important.
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Moore-Penrose inverse M+ and choose θ =M+q: we now hope that q =MM+q. But now
rank(MM+) ≤ rank(M) ≤ n− 2, which means that q has at most n− 2 degrees of freedom,
contradicting the fact that it should have n−1: it means that we can no longer freely choose
the power inputs! What happens here?

It is known that if δi = 0 for all i then M always has rank n − 1 as long as the graph is
connected. So how can it happen that rank(M) ≤ n−2? Well, we have the additional cosine
factors, and it could be that a cij is equal to 0. Mathematically this would be equivalent to
setting wij = 0, or removing the edge {i, j}, disconnecting the graph. However, in practice
it is very unlikely that cij = 0, since it would require that |δi− δj| = π/2, which is very large
and hence corresponds to a very strange configuration: it would also imply that |sij| = 1,
while sij is usually close to 0. So except for these unlikely cases, the power flow vector f is
continuous, and actually locally Lipschitz continuous in terms of q.

4.4.2 Probability of overflow

Using the relation between power injections and power flows we can compute the probability
of overloads. Assume that at first we have known power injections µ and line power flows f .
After a perturbation, we find new power injections µ+ ϵq and power flows f + ϵg. The line
limits are summarized in the vector fmax. So if the component-wise inequality |f | ≤ fmax is
satisfied then the power flow is safe15.

The perturbation q cannot simply be chosen as a normal distribution, since we need to have∑n
i=1Qi = 0. So instead we choose (as generally as possible) a vector r ∝ N (0,Σ). Then,

we can define the transformation matrix A ∈ Rn×n by Aij = − 1
n
+δij. We then have q = Ar.

We can now compute the probability that a specific line i fails. Recall that line i fails if
|Fi + ϵGi| > Fmax

i , which we can also write as |Fi + ϵ(V Ar)i| > Fmax
i . So we have

ϵ(V Ar)i > Fmax
i − Fi or ϵ(V Ar)i < −Fi − Fmax

i . (67)

Note that both of these equations define a half-space for r, and hence the probability of
overflow becomes an error function16, which is easy to approximate.

What we are more interested in is the probability that at least one line fails. The set of all
points r for which there are no line failures can be defined as an intersection of 2m half-
spaces (two for every line i), and hence this is a polytope H. Hence we have to compute the
probability that the point r, which follows a multivariate normal distribution, is inside H.
This corresponds to computing the integral∫

H

exp[−rTΣr] dr, Σ = diag(σ2
1, σ

2
2 . . . , σ

2
n), H = {r ∈ Rn : |f + V Ar| ≤ fmax}. (68)

15Note that we assume that the limit of a line is the same in both directions. The approach if direction
matters is similar, but does not add much insight and to keep things simple we make this assumption.

16The fact that the dimension of the half-space is not necessarily 3 (which it was in the three-node model)
does not change this fact.
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Note that in contrast to in the three-node case we integrate over r instead of P1, P2, so we
integrate over n variables instead of17 n − 1. This integral can be computed numerically if
we know the network structure and parameters. We can also try to make an approximation
of the probability. For this, we start with the fact that

P(the line most likely to fail overloads) ≤ P(there is an overload) ≤
∑
i

P(line i overloads).

(69)
This is simply a result of

P(H1) ≤ P(H1 ∪H2 ∪ . . . ∪H2m) ≤ P(H1) + P(H2) + . . .+ P(H2m). (70)

The reason that this might work is best seen with the following thought experiment. There
are 2m possible overloads, two for every line (the upper and lower limit of line flow). The
likeliness of one of these overflows is determined by the number of standard deviations an
overflow is away. As ϵ gets very small (which is the case for rare events), the standard
deviations get larger. At some point, the overflows with larger standard deviations become
increasingly unlikely as compared to the smallest standard deviation, and hence the left and
right side of the inequality will be very close to each other.

Let’s make this exact. We are going to compute the right hand side of equation (69). The
distances from the boundaries before the perturbation are given by:

d+ = fmax − f , d− = fmax + f . (71)

For the initial solution to be safe, we need both d+ ≥ 0 and d− ≥ 0. To compute the chance
of ϵgi > d+i we need to know the standard deviation of gi. Since g = V Ar we have that g
follows a normal distribution with mean 0 and variance Σg. Note that for individual lines
we can ignore correlation between components of g, so we only need the diagonal elements,
let τ = diag(Σg). Then we can collect all information in the matrix

T =
[
d−/τ d+/τ

]
. (72)

The division here is component-wise, so d−/τ = (d−1 /τ1, . . . , d
−
m/τm)

T . By defining a new
random variable N ∝ N (0, 1), we can write

P(line i overloads) = 1− P(−Ti1 ≤
√
ϵN ≤ Ti2)

= P (
√
ϵN < −Ti1) + P (

√
ϵN > Ti2)

= P (N > Ti1/
√
ϵ) + P (N > Ti2/

√
ϵ).

Note that the smaller Tij is, the more likely the overload is. Letting Tmin be the smallest
element of matrix T , equation (69) becomes

P(N > Tmin/
√
ϵ) ≤ P(there is an overload) ≤

∑
1≤i≤m
1≤j≤2

P(N > Tij/
√
ϵ). (73)

17Note that changing r → r + c1 with 1 the all-ones vector does not change q. So if we change the
coordinates to make one coordinate parallel to 1, we can integrate out this coordinate and are left with an
integral over n− 1 variables.
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And since we have P(N > Tij/
√
ϵ) ≤ P(N > Tmin/

√
ϵ) for any i, j, we get∑

1≤i≤m
1≤j≤2

P(N > Tij/
√
ϵ) ≤ 2mP(N > Tmin/

√
ϵ) (74)

and hence P(there is an overload) = Θ
(
P(N > Tmin/

√
ϵ)
)
. Note that we takem (the number

of edges in the graph) to be a constant, since we consider the same graph for all ϵ. Using an
error function, we can compute

P(N > Tmin/
√
ϵ) =

1

2
erfc

(
Tmin/

√
2ϵ
)

≈ 1

2

exp

[
− T 2

min

2ϵ

]
Tmin√

2ϵ

√
π

=

√
ϵ

Tmin

√
2π

exp

[
− T 2

min

2ϵ

]
.

We find the final result that

P(there is an overload) = Θ

(√
ϵ exp

[
− T 2

min

2ϵ

])
. (75)

Note that this is still the same dependency on ϵ as for the three-cycle!
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5 Analysis of a system with variable voltages

In this model, we drop the assumption that all voltages are approximately the same, and we
no longer ignore resistance in the network. We do make the assumption that phase angle
differences are small (in fact, we set all phase angle differences to zero), and ignore reactive
power inputs or outputs. We assume the network to be a line graph. This gives us the
Distflow power flow model. It is not as artificial as it may seem, as it corresponds to an
important practical problem: a street of houses that is supplied from a single point. The
problem is now to determine the probability of an overload, given a probability distribution
for the power consumption at every house (including possible correlations between houses).
Despite the assumption of a specific and relatively simple graph, the problem has not been
solved yet for a line of arbitrary length. Earlier research did manage to solve it by ignoring
the active power loss[15]. Our goal is to solve it without that assumption.

First, we will describe the model, and derive a recursive relation for the voltages (assuming
the power consumption to be known), allowing us to compute the voltages as a function of
the power consumption vector p. Then, we suggest a semidefinite program that can be used
for exactly finding the most likely overload configuration (i.e. the most likely distribution of
power consumption that still leads to an overload), as well as an explicit upper and lower
bound for the probability of an overload.

5.1 Model description

We consider a line graph consisting of N +1 points. The root node, labeled as 0, is the only
source that provides power for the entire street. The other nodes are labeled 1, 2, . . . , N ,
where node 1 is the closest to the source. These nodes represent houses that consume
electricity18. For simplicity we assume all lines to have the same resistance r. We also
assume that the voltage phase angles are very small, so that we can take all voltage angle
differences to be zero and hence the complex voltage Ṽj is a positive real number for all j.
See Figure 5. We want to avoid large voltage differences with the source: we require that
Ṽj ≥ (1 − ∆)Ṽ0 for all 1 ≤ j ≤ n. Our goal is to find out for which power consumption
configurations this constraint is violated. Such a violation is the rare event that we are
interested in. We assume that if every house consumes the expected amount of power (by
the probability distribution), then there is no violation. Then, we assume the variance in
the power consumption to become very small, so that an overload becomes increasingly rare,
and we are interested in the evolution of this probability.

Define S̃j = P̃j+ iQ̃j as the power consumed at node j. Since nodes can only consume active

power, Q̃j = 0. As we assumed that houses consume power, we have P̃j > 0. We let Ij−1,j

and S̃j−1,j be the complex current resp. power flow from node j − 1 to node j. Let I denote

18It is possible that houses generate electricity (e.g. with solar panels), but for now we assume that houses
consume more power than they generate.
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Figure 5: The line model, representing a street that receives its power from a single source.
The root node that supplies the entire street is Ṽ0. We can prove a recursive relation that
describes Ṽj−1 in terms of Ṽj and Ṽj+1. To turn this into a normal recursive relation that

starts at j = 0 we reverse the order and define Vj = ṼN−j and Pj = P̃N−j.

complex conjugation. Now, we have the following three equations:

S̃j−1,j − r|Ir−1,r|2 = S̃j + S̃j,j+1 (power balance)

Ṽj−1 − Ṽj = rIj−1,j (Ohm’s law)

S̃j−1,j = Ṽj−1Ij−1,j (definition of complex power).

(76)

Combining all of this yields the following recursive relation (see [15] for a proof):

ṼN−1 = ṼN +
rP̃N

VN

Ṽj−1 = 2Ṽj − Ṽj+1 +
rP̃j

Ṽj
.

Now we can define Vj = Ṽn−j, Pj = P̃n−j and Xj = rPj to obtain the recursion

V1 = V0 +
X0

V0

Vj+1 = 2Vj − Vj−1 +
Xj

Vj
.

What this reversing of order physically means is that we now consider the voltage of the leaf
node V0 to be fixed, and the voltage of the source node VN has to accommodate this. It is
important to note that VN is increasing in Xj for any 0 ≤ j ≤ N − 1, since extracting more

power requires a higher voltage. Previously we had the condition that Ṽj ≥ (1 − ∆)Ṽ0 for
all 1 ≤ j ≤ n. This becomes Vj ≥ (1−∆)VN for all 0 ≤ j ≤ n− 1. We can actually reduce
this to a single condition:

Lemma 5.1 Vj is an increasing sequence: we have Vj > Vj−1 for all 1 ≤ j ≤ n.
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Proof. Note that since we assumed that Pi > 0, we find that Xi > 0 for all i. Hence
V1 > V0. We can now proceed by induction. Assume that Vj > Vj−1. Then we find

Vj+1 = 2Vj − Vj−1 +
Xj

Vj

= Vj + (Vj − Vj−1) +
Xj

Vj

> Vj + 0 + 0.

□
This implies that if V0 ≥ (1 −∆)VN , then Vj ≥ (1 −∆)VN for any j ≥ 0, so we only need
to check the first. We may just as well work in a per-unit system with V0 = 1. Then, the
condition reduces to

VN ≤ 1

1−∆
(77)

All together, we find the following recurrence relation

V0 = 1

V1 = 1 +X0

Vj+1 = 2Vj − Vj−1 +
Xj

Vj

(78)

and we are interested in the value VN . The numbers X0, X1, . . . , XN−1 follow some stochastic
distribution. We assume that if allXi are equal to their expected value, then VN ≤ 1/(1−∆),
and want to approximate the probability of the rare event

P

(
VN >

1

1−∆

)
. (79)

For notational simplicity, we define

Λ =
1

1−∆
(80)

and, similar to in section 4, we define V = (V1, . . . , VN) and X = (X0, . . . , XN−1).

5.2 A semi-definite program for the line

For the line model, we suggest a semi-definite program that can be used for numerical
analysis. This is useful because we can program it to work until a desired accuracy is
achieved, but the downside is that it does not yield a simple approximation. We are now
analyzing the case that X = µ +

√
ϵY, where µ is the expected value of X and

√
ϵY is a

perturbation. If X = µ then there is no overload, but the perturbation
√
ϵY may cause this.

As ϵ approaches zero, an overload will be increasingly unlikely: we would like to know how
the probability evolves. An approximation in the limit of X → 0 is made later.
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5.2.1 The rate function

To compute overload probabilities, we need the contraction principle, and for that we need a
transformation function that transforms X (of which the probability distribution is known)
into V. A first guess may be to define

T1(X) = VN(X). (81)

After applying the contraction principle, we would obtain the following rate function for VN :

J(v) = inf{I(X) | VN(X) = v}. (82)

If we could compute this, then since J is a rate function we know that (by equation (2))

lim
ϵ→0

ϵ log(Pϵ(VN ≥ Λ)) = − inf
v≥Λ

J(v) (83)

which means that we can approximate the probability of an overload directly. The problem
is that there is not really a direct way to work J out beyond this implicit definition. So we
have to take a different approach, and for this we need a different transformation. We define
the transformation T : RN → RN as

T (X) = V(X) (84)

so the output of the transformation is the entire vector V = (V1, V2, . . . , VN). This function
is continuous and well-defined, so we can apply the contraction principle. We also need a
probability density function for X: assume that all Xi are i.i.d. ∝ N (µj, 1) (we will later
relax the assumption that all standard deviations are equal to 1, this is just to make the
computation simpler). So the rate function for X is

I(X) =
1

2

j−1∑
i=0

(Xi − µi)
2. (85)

Recall that a lower I corresponds to a higher probability. So for the most likely overload
configuration, we wish to find the X with the lowest I(X) that still satisfies VN(X) ≥ Λ.
Although we are essentially solving an optimization problem now, we will continue to use
capital letters for X and V to avoid confusion. By the contraction principle, we obtain the
rate function

IN(V) = inf{I(X) | T (X) = V} (86)

or, written out,

IN(V) = inf
X:T (X)=V

1

2

j−1∑
i=0

(Xi − µi)
2. (87)

There is in fact only one X that satisfies T (X) = V. This is because we have the relation

Vj+1 = 2Vj − Vj−1 +
Xj

Vj
(88)
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which can also be written as

Xj = VjVj+1 + VjVj−1 − 2V 2
j (89)

which holds for all j ≥ 1. For j = 0 we have X0 = V1 − 1.
This means that the rate function IN is equal to

IN(V) =
1

2
(V1 − 1− µ0)

2 +
1

2

N−1∑
j=1

(VjVj+1 + VjVj−1 − 2V 2
j − µj)

2. (90)

It may seem that this rate function is rather pointless, as in equation (86) we take the
infimum over just one value. The first reason it is of interest is because of the following
theorem.

Theorem 5.2 In order to find the infimum for the rate function over all possible V sat-
isfying VN ≥ Λ, the constraint V1 ≤ V2 ≤ . . . ≤ VN is redundant assuming that V > 0.
Equivalently:

inf
V:VN≥Λ

IN(V) = inf
V:VN≥Λ

V1≤V2≤...≤VN

IN(v). (91)

Proof. Suppose that we have a configuration of voltages in which the list of inequalities
is not satisfied. Then there is an j such that Vj > Vj+1: take the smallest such j for
convenience. Since this j is the smallest, we have Vj > Vj−1 and hence

Vj > Vj+1 = 2Vj − Vj−1 +
Xj

Vj
≥ Vj +

Xj

Vj
.

Since Vj > 0 this implies that Xj < 0. Since VN is increasing in x and there is an overload,
there must also be at least one k such that Xk > µk.

The point is now that we can find a different configuration with the same VN , but lower IN .
For this, we choose two δi, δk such that if we replace Xi by Xi + δi and Xk by Xk − δk to
obtain x′, the voltage VN remains unchanged (this is possible since VN is increasing in both
Xi and Xj). Since Xi − µi < 0 we find

(Xi − µi)
2 > (Xi + δi − µi)

2 = (X ′
i − µi)

2

and since Xj − µj > 0 we find

(Xj − µj)
2 > (Xj − δj − µj)

2 = (X ′
j − µj)

2

provided that δi, δj are sufficiently small. Hence, if we replace the initial V = T (X) by
V′ = T (X′) then we find that IN(V

′) < IN(V), while VN = V ′
N . Hence any configuration

with V not satisfying V1 ≤ V2 ≤ . . . ≤ VN can be improved upon. We conclude that this
constraint is redundant for finding the infimum. □
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The reason why this result is useful is that (90) gives us a function of IN(V) in terms of V
only. However, for a network to be realistic, we need to have V1 ≤ V2 ≤ . . . ≤ VN . But now
we know that if we want to compute infVN≥Λ IN(V) we can actually remove this constraint,
since any V not satisfying it can never yield the lowest possible value of IN(V). Hence,
in order to compute the infimum in equation (91), we can solve the following optimization
problem:

minimize IN(V)

subject to Vi > 0 for all 1 ≤ i ≤ N − 1

VN ≥ Λ.

The solution of this optimization problem will provide us with the most likely overload
configuration X. Note that this means (by definition) that this optimization problem is
equivalent to computing J(VN) in (82). In order to simplify this problem even further,
we can try to get rid of the constraint Vi > 0 as well. Note that any configuration with
Vi < 0 is not physically possible due to the definition of our model, but this does not
prevent such ’solutions’ from arising mathematically. Since I could not find any concrete
proof that a configuration with Vi < 0 cannot give a smaller IN(V) but also did not find any
counterexamples, for now, we will just assume that the constraint that Vi > 0 is redundant:
further research would be needed to either confirm or disprove this conjecture. This leaves
us with the problem to minimize IN(V) given by (90), with the constraint VN ≥ Λ. It is
easy to see that the minimum will occur at a configuration with VN = Λ, so we can replace
the inequality with an equality if we wish.

5.2.2 The standard approach to make a semidefinite program

We would like to solve the polynomial optimization problem

minimize IN(V)

subject to Vi > 0 for all 1 ≤ i ≤ N − 1

VN = Λ.

As stated before, we will assume that the constraint Vi > 0 is redundant. The problem is
that the objective function IN(V) has degree 4. For this reason, the problem cannot be
solved exactly. So what we do instead is create an equivalent semidefinite program.

Definition 5.1 Let Sn be the space of symmetric n × n-matrices. Let A1, . . . , Ak, C ∈ Sn,
b1, . . . , bk ∈ R and define the inner product

⟨A,B⟩Sn =
∑

1≤i,j≤n

AijBij.

Then the optimization problem

min
X∈Sn

⟨C,X⟩Sn

subject to ⟨Ak, X⟩Sn ≤ bk

X ⪰ 0
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is a semidefinite program. Here X ⪰ 0 means that X is positive semidefinite.

Any program satisfying this definition is a semidefinite program, or SDP in short. So we
would like to write our optimization problem as an SPD. A method often applied in similar
problems is defining

Wi,j = ViVj

for every edge {i, j}, so that we can now write

IN(v) =
1

2
(W0,1 − 1− µ0)

2 +
1

2

N−1∑
j=1

(Wj,j+1 +Wj−1,j − 2Wj,j − µj)
2. (92)

It is important to note that the Wi,j are not independent now. For every edge {i, j}, we
have the relation

Wi,iWj,j = W 2
i,j (93)

which can also be written as

det

(
Wi,i Wi,j

Wj,i Wj,j

)
= 0. (94)

So now, we get the optimization problem

minimize IN(W)

subject to det(W (eij)) = 0 for every edge e

W0,0 = 0,WN,N = Λ.

We would like to relax the condition that the determinant has to be zero, in order to create
a semidefinite program. Look at the formula (92) and recall that this formula is in fact∑N−1

i=0 (Xi − µi)
2/2 written out. In case of the most likely overload, all Xi − µi are positive

(or at least non-negative), due to the same argument as in Lemma 5.1. This means that if
Wj,j+1 is higher than the lowest value allowed by the constraints, then we can reduce IN(V)
by replacing Wj,j+1 with a lower value. Hence we can relax the determinant constraint to

det(W (eij)) ≤ 0 (95)

without changing the optimal solution.

So we obtain the following optimization problem:

minimize IN(W)

subject to det(W (eij)) ≤ 0 for every edge e

W0,0 = 1,WN,N = Λ2

where the objective function IN(W) is of degree 2 instead of 4, a considerable improvement.
The problem, however, is that it cannot be written as an SDP since the determinant is
smaller than zero, not larger. This means that we do not obtain the SDP that we were
looking for.
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5.2.3 Full linearization

A strategy that does work is the full linearization: we assign a new variable to every term
of degree 4. To work this out we need some more definitions.
Notation. We take N = {0, 1, 2, . . .} as the set of non-negative integers. Define Nn

t as all
n-tuples α ∈ Nn such that |α| =

∑
i |αi| ≤ t. For every α ∈ NN−1

4 , we define

yα := Vα = V α1
1 V α2

2 · · ·V αN−1

N−1 . (96)

Note that every α ∈ NN−1
4 corresponds to a monomial V α of degree at most 4. Now we can

write out all the squares in the sum IN(V) and fill in VN = Λ, then every term is a monomial
of the form Vα for some α ∈ NN−1

4 . Let the coefficient of Vα be fα, then we can write

IN(V) =
∑

α∈NN−1
4

fαyα. (97)

With these new variables, IN(V) becomes a linear function. As constraints, we first have
that α = ∅ = (0, 0, . . . , 0) yields yα = Vα = 1. Second, the NN−1

2 ×NN−1
2 -matrix19 M defined

by
Mα,β = yα+β (98)

must be positive semidefinite. Essentially, this constraint guarantees that after solving the
SDP and finding yα, we can find a V.

As an example, we take the case N = 3. In this case we start with

I3(V) =
1

2
(V1 − 1− µ0)

2 +
1

2
(V1V2 + V1 − 2V 2

1 − µ1)
2 +

1

2
(V2Λ + V1V2 − 2V 2

2 − µ2)
2.

19This means: the matrix has a row and column for every element of NN−1
2 .
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This gives us the coefficients

f(0,0) =
1

2
(1 + µ0)

2 +
1

2
(µ2

1 + µ2
2)

f(1,0) = −1− µ0 − µ1

f(0,1) = −Λµ2

f(2,0) = 1 + 2µ1

f(1,1) = −µ1 − µ2

f(0,2) =
1

2
Λ2 + 2µ2

f(3,0) = −2

f(2,1) = 1

f(1,2) = Λ

f(0,3) = −2Λ

f(4,0) = 2

f(3,1) = −2

f(2,2) = 1

f(1,3) = −2

f(0,4) = 2

and the matrix

M(y) =


y(0,0) y(1,0) y(0,1) y(2,0) y(1,1) y(0,2)
y(1,0) y(2,0) y(1,1) y(3,0) y(2,1) y(1,2)
y(0,1) y(1,1) y(0,2) y(2,1) y(1,2) y(0,3)
y(2,0) y(3,0) y(2,1) y(4,0) y(3,1) y(2,2)
y(1,1) y(2,1) y(1,2) y(3,1) y(2,2) y(1,3)
y(0,2) y(1,2) y(0,3) y(2,2) y(1,3) y(0,4)

 (99)

that is required to be positive semidefinite. Remember that y(0,0) = 1, which we can already
fill in. Plugging this linear problem into a computer with some test values for µ0, µ1, µ2,Λ
yields the same answer as a ’normal’ polynomial optimization program, so this strategy is
indeed correct. See Appendix 1 for a numerical experiment.

What this means is that we found an SDP to compute the most likely overload configuration.
This is useful if we have specified parameters and want to analyze the overload probability,
because an SDP can usually be solved more quickly than a general polynomial optimization
problem. This means that we can relatively quickly compute J(Λ) and then apply equation
(83) to compute the evolution of the overload probability.

5.3 Approximating the solutions

We now move on to a different way of looking at the problem. Instead of making an algorithm
to numerically solve the problem, we approximate the solution in the limit of small deviations
in X. We start by assuming that µ = 0 and that N is very large. Later we will relax these
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two assumptions, but in this case we can find a nice and simple relation, which is why we
do this first.

5.3.1 A conjecture if µ = 0

If we compute all Xi for the most likely overload case, then all Xi appear to be on a straight
line that intersects with the horizontal axis at i = N . This leads us to the wild guess

Figure 6: All values Xi in the most likely overload case, for N = 100 and Λ = 1.01. Note
that all points are on a line, and that the line intersects with the horizontal axis almost
precisely at i = N = 100. This gives us a good guess of the values of Xi and hence Vi for
the optimal solution.

Xi = (N − i)x (100)

for a fixed value x. We will prove this guess later: first we will see what this result means
for IN(V). Using the recurrence relation we can now write Vi as a function of x only. After
some computation we get the expression

Vi = 1 +
1

6
i(i+ 1)(3N + 1− i)x+O(x2) (101)

Note that since Λ is close to 1, x is very small, and hence we can ignore higher order terms.
We can now compute Λ in terms of x as follows:

Λ = VN

= 1 +
1

6
N(N + 1)(2N + 1)x.

This implies that

x =
6(Λ− 1)

N(N + 1)(2N + 1)
≈ 3(Λ− 1)

N3
(102)
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Figure 7: A plot of all infV IN(V) for 100 ≤ N ≤ 200, with Λ = 1.01. Since we expected a
relation of the form IN(V ) ∝ N c for some constant c, we made a log-log plot, which shows
all points on a straight line, confirming that expectation. The relation that we numerically
find is infV IN(V) ∝ N−3.011, in agreement with our conjecture that it is proportional to
N−3.

where the latter approximation is valid if N is large. Assuming that the solution we guessed
is indeed optimal we get

inf
V
IN(V) =

N−1∑
i=0

1

2
X2

i

=
1

2
x2

N−1∑
i=0

(N − i)2

=
18(Λ− 1)2(

N(N + 1)(2N + 1)
)2 · 1

6
N(N + 1)(2N + 1)

=
3(Λ− 1)2

N(N + 1)(2N + 1)

≈ 3(Λ− 1)2

2N3
.

This gives us the conjecture that IN(V) ∝ N−3. We can again check this against compu-
tational results. In Figure 7, we can clearly see that in a log-log plot the points are indeed
on a line, suggesting that we do indeed have a relation of the form infV IN(V) ∝ N c for
some constant c. And since the line is decreasing, we find c < 0, as we also found in our
computation.

Recall that we typically use rate functions for probabilities that tend to zero, in which case
the rate function becomes very large. So the rate function tending to zero means that we
are not really in the terrain of rare events anymore. The reason that this happens is because
we set all standard deviations to be 1. So when we want to make some actual estimates, we
will choose a more realistic standard deviation instead.
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5.3.2 A conjecture if µ ̸= 0

To make the conjecture we just found more universal, we now drop the assumptions that
µ = 0 and that N is very large. We do still assume µ to be relatively small, so that we can
set µj = O(µ). The problem is that we no longer have the relation Xj ≈ (N − j)x in this
case. To solve this, we define Yj = Xj −µj, so that the mean of Yj is 0 for all 0 ≤ j ≤ N −1.
If we perform some computations, we now still seem to find that Yj = (N − j)y. Taking this
as our guess again, we find that

Vi = 1 +
1

6
i(i+ 1)(3N − i+ 1)y +

i−1∑
j=0

(i− j)µj +O(y2, µy, µ2). (103)

This gives us

y =

6

(
Λ− 1−

N−1∑
j=0

(N − j)µj

)
N(N + 1)(2N + 1)

.

Hence, we get

inf
V
IN(V) =

N−1∑
i=0

1

2

(
(N − i)y

)2
=

1

2
y2

N−1∑
i=0

(N − i)2

=
1

2

36

(
Λ− 1−

N−1∑
j=0

(N − j)µj

)2

(N(N + 1)(2N + 1))2
· N(N + 1)(2N + 1)

6

=

3

(
Λ− 1−

N−1∑
j=0

(N − j)µj

)2

N(N + 1)(2N + 1)
.

If we fill in µ = 0 and assume that N is large, we get N(N + 1)(2N + 1) ≈ 2N3 and we
recover our previous formula.

A special case to consider is if all µj are equal. In this case, we choose µj = a/N2, because
it is known that Xj = a/N2 leads to VN becoming a constant in the limit N → ∞[15]. In
this case, we get the simpler formula

inf
V
IN(V) =

3

(
Λ− 1− N+1

2N
a

)2

N(N + 1)(2N + 1)
. (104)

5.4 Proof of the conjecture

In the case µ = 0 and the limit of small X, we can actually prove that Xi = (N − i)x for
some constant x. If µ ̸= 0, then our guess turns out to be a little bit off.
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5.4.1 The case µ = 0

The proof is rather surprising, as it involves differentiation of V with respect to X, and the
Cauchy-Schwarz inequality. To get started we need this theorem.

Theorem 5.3 The first order derivatives of V around X = 0 are given by

∂Vn
∂Xi

∣∣∣∣
X=0

= n− i (105)

for all 1 ≤ i < n. If i ≥ n then the derivative is 0. The second order derivatives are given
by

∂2Vn
∂Xi∂Xj

∣∣∣∣
X=0

= −(n− i)(i− j) (106)

if j ≤ i < n. Again, if i or j is ≥ N then this derivative is 0.

If we make a Taylor expansion, this yields the following expressions:

V0 = 1

V1 = 1 +X0

V2 ≈ 1 + 2X0 +X1 −X0X1

V3 ≈ 1 + 3X0 + 2X1 +X2 − 2X0X1 − 2X0X2 −X1X2

V4 ≈ 1 + 4X0 + 3X1 + 2X2 +X3 − 3X0X1 − 4X0X2 − 3X0X3 − 2X1X2 − 2X1X3 −X2X3.

Proof. First of all, note that Vn can be written as a function of X0, . . . , Xn−1, and hence any
derivative with respect to Xi with i ≥ n is obviously 0. Now for the non-trivial derivatives.
We can prove the identities by induction on n: first we prove (105). As an induction basis,
the identity is (rather trivially) true for n = 0 and n = 1. Now assume (as induction
hypothesis) that (105) is true for V0, . . . , Vn: we will prove it for Vn+1. To save notation we
omit the point of differentiation X = 0 from now on. We have

Vn+1 = 2Vn − Vn−1 +
Xn

Vn
. (107)

If i ≤ n− 1 we find

∂Vn+1

∂Xi

= 2
∂Vn
∂Xi

− ∂Vn−1

∂Xi

− Xn

V 2
n

∂Vn
∂Xi

= 2(n− i)− (n− 1− i)− 0

= n+ 1− i

which proves the induction step in this case. If i = n we find

∂Vn+1

∂Xn

= 2
∂Vn
∂Xn

− ∂Vn−1

∂Xn

− 1

Vn

= 2 · 0− 0 +
1

Vn
.
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And since Vn = 1 if X = 0, this means that the final outcome is 1. This proves the induction
step, and hence the proof of (105) is completed. Now on to the second order derivatives. We
have that

∂2Vn+1

∂Xi∂Xj

= 2
∂2Vn

∂Xi∂Xj

− ∂2Vn−1

∂Xi∂Xj

+
∂2

∂Xi∂Xj

Xn

Vn
. (108)

First, suppose that i < n. Then this becomes

= −2(n− i)(i− j) + (n− 1− i)(i− j) +Xn
∂2

∂Xi∂Xj

(
1

Vn

)
= −2(n− i)(i− j) + (n− 1− i)(i− j)

= −(2n− 2i− n+ 1 + i)(i− j)

= −(n+ 1− i)(i− j).

The term Xn drops out since we are differentiating in the point X = 0. This proves the
induction step in this case. Now suppose that i = N and j < i. Then (108) is equal to

= 2 · 0− 0 +
∂2

∂Xn∂Xj

(
Xn

Vn

)
=

∂

∂Xj

(
1

Vn

)
= − 1

V 2
n

∂Vn
∂Xj

= −1 · (n− j)

= −(n+ 1− i)(i− j).

The last inequality holds since n = i. In this case the induction step is also proven. Now for
the final case that i = j = n. In this case (108) is equal to

= 2 · 0− 0 +
∂2

∂Xn∂Xn

(
Xn

Vn

)
=

∂

∂Xn

(
1

Vn

)
= 0

= −(n+ 1− i)(i− j)

again proving the induction step. This means the induction step is true in all cases and the
proof is complete. □

In the case µ = 0, it is sufficient to go until the first order of X (since we are assuming the
limit Λ to be just above 1 and N to be large, hence X will be very small). Then we find

VN = 1 +
N−1∑
i=0

(N − i)Xi. (109)
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We want to minimize IN(V) over all configurations with VN = Λ. This means that we have
to solve the optimization problem20

minimize
N−1∑
i=0

X2
i

subject to
N−1∑
i=0

(N − i)Xi = Λ− 1

where Λ− 1 > 0 is a constant. There is an elegant way to solve this problem. Since we have
the conjecture that that Xi = (N − i)x, it makes sense to define

Zi = XN−i/i (110)

so that our conjecture becomes that all Zi are equal. The minimization problem becomes

minimize
N∑
i=1

i2Z2
i

subject to
N∑
i=1

i2Zi = Λ− 1.

This can be solved by applying the Cauchy-Schwarz inequality to the vectors

A = (Z1, 2Z2, . . . , NZN)

B = (1, 2, . . . , N).

Now Cauchy-Schwarz tells us that

(A ·A)(B ·B) ≥ (A ·B)2( N∑
i=1

i2Z2
i

)( N∑
i=1

i2
)

≥
( N∑

i=1

i2Zi

)2

= (Λ− 1)2

N∑
i=1

i2Z2
i ≥ (Λ− 1)2∑N

i=1 i
2

which gives us a lower bound for
∑N

i=1 i
2Z2

i that is only attained if the vectors A and B are
parallel. Now A and B are parallel exactly if Z1 = Z2 = . . . = ZN . So the solution to the
optimization problem can be found by setting Zi = x for all i. Hence we have Xi = (N− i)x,
as was claimed.

5.4.2 What if µ ̸= 0?

We assumed that µ = 0 in the entire proof, so the question is what happens if µ ̸= 0. For
this, we ignore any terms of order O(µ2) or higher, to keep things simple. The first order

20I left out the factor 1
2 in IN (V) since it does not change the solution for X.
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relation in theorem 5.3 becomes

∂Vn
∂Xi

∣∣∣∣
X=µ

= (n− i) +
∑

0≤j≤n−1

µi
∂2Vn

∂Xi∂Xj

∣∣∣∣
X=0

(111)

which can also be written as

∂Vn
∂Xi

∣∣∣∣
X=µ

= (n− i)−
∑
0≤i<j

(n− j)(j − i)µi −
∑

j<i≤n−1

(n− i)(i− j)µi. (112)

We can prove this by taking the second-order Taylor expansion around X = 0, differentiating
with respect to Xi, and then fill in X = µ. This is also where the second-order derivatives
come in. Introducing the notation

cni =
∑

0≤j≤n−1

µi
∂2Vn

∂Xi∂Xj

∣∣∣∣
X=0

(113)

the optimization problem becomes

minimize
N−1∑
i=0

Y 2
i

subject to
N−1∑
i=0

(N − i− cNi)Yi = Λ− 1.

And with the same trick as before with the Cauchy-Schwarz inequality, we find that Yi =
(N − i− cNi)y. Note that this is not the (N − i)y that we guessed! Does this mean we have
to redo the computation? Well, cNi will usually be a lot smaller than N − i, due to the µ
in cNi. However we cannot just eliminate this term as being of order O(µ), since the factor
(N − i)(i − j) can compensate for this. This factor is O(N2), and since there are N such
terms (for every 0 ≤ i ≤ N − 1 it is O(N3). For example, if µi = a/N2 for all i, then

cNi =
a(n− i)

6n2

(
3i(i+ 1) + (n− i− 1)(n− i+ 1)

)
= O(N)

unless we fix i to be small. We will see that cNi is proportional to N with a very small
factor, so leaving it out is certainly not a bad approximation, but this does mean that our
approximation does not become exact in the limit N → ∞. Unfortunately the expressions
become very long and complicated if we do take this into account, and for that reason I was
not able to do it for this project. Further research would be needed to work out this case.
In the rest of the thesis we will just approximate the most likely overflow configuration with
Yi = (N − i)y in the case µ ̸= 0.

Another question that we haven’t considered so far is what happens if not all nodes have the
same standard deviation. The derivatives will not change, so in the optimization problem
the constraint will be the same. What will change is the function IN(V): here every term
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X2
i is replaced by X2

i /σ
2
i . So we get a very similar optimization problem, that we can solve

in a similar way. Let’s do this: we want to solve

minimize
N−1∑
i=0

X2
i /σ

2
i

subject to
N−1∑
i=0

(N − i)Xi = Λ− 1.

This time, we can make the substitution Xi = σ2
i (N − i)Zi, to obtain the new system

minimize
N−1∑
i=0

(N − i)2Z2
i σ

2
i

subject to
N−1∑
i=0

(N − i)2Ziσ
2
i = Λ− 1.

And by again applying the Cauchy-Schwarz inequality, we find that all Zi need to be equal.
Hence Xi = σ2

i (N − i)x with x some constant in this case. So the derivation will be
proportional to the variance σ2. Note that this strategy relies on there being no correlation
between components of X: if there was then this strategy does not work anymore. In that
case, we can solve it by find a vector Z that makes the covariance matrix Σ diagonal, and
then apply this strategy.

5.5 A lower and upper bound

For the case µ = 0, we can actually make a lower and upper bound for infV IN(V), that
converge to each other in the case Λ ↓ 1.

The upper bound. There are two ways to create an upper bound. The first one is by
finding the solution that satisfies Xi = (N − i)x, such that VN = Λ. To do this, we define

fN(x) = VN(X0 = Nx,X1 = (N − 1)x, . . . , XN−1 = x). (114)

Now fN(x) is strictly increasing in terms of x. This means that there is a unique x which
satisfies fN(x) = Λ. We can find this x using numerical methods (such as Newton-Rhapson’s
algorithm). Next we compute IN(V). This bound is valid since the infimum of IN(V is
at most the value attained for this particular V. Although this method by solving for 1
unknown is computationally much more friendly than the exact method of optimizing for N
unknowns, it is unfortunately still not an explicit formula.

Another approach is the following. Rather than choosing values for X, we choose Vi =
1 + 1

6
i(i+ 1)(3N + 1− i)x and define our X to match that. Since VN = Λ, we have that

x =
6(Λ− 1)

N(N + 1)(2N + 1)
. (115)

54



We have Xi = ViVi+1 + ViVi−1 − 2V 2
i , which becomes

Xi = (N − i)x
[
1 +

1

6
i(i+ 1)(3N + 1− i)x

]
. (116)

Plugging all of this in, we find that

inf
V
IN(V) ≤

N−1∑
i=0

1

2
X2

i .

This is an extremely long expression, here it is posted in two lines:

U :=
3(Λ− 1)

N(N + 1)(2N + 1)

[
1 +

(N − 1)(N + 2)

(2N + 1)2
(Λ− 1)

+
(N − 1)(N + 2)(17N4 + 34N3 + 35N2 + 18N + 36)

105N2(N + 1)2(2N + 1)2

]
. (117)

Note that in the limit Λ = 1 this reduces to the result we found in section 5.3.1. This
expression is our upper bound.

Before we continue with the lower bound, we need the following lemma.

Theorem 5.4 Suppose that for a certain X ≥ 0 leads to VN(X) as voltage of the last node.
Then

VN(X) ≤ 1 +
N−1∑
i=0

(N − i)Xi. (118)

Proof. This theorem is inspired by the Taylor expansions: since all second order derivatives
are negative this statement seems very likely. Still we now require a more solid proof. First,
we prove a small lemma:

Vn − Vn−1 ≤
n−1∑
i=0

Xi. (119)

This can be proved using induction. For n = 1, the statement is clearly true (it is in fact an
equality). Suppose now that it is true for a certain n. Then we have

Vn+1 − Vn = Vn − Vn−1 +
Xn

Vn
≤

n−1∑
i=0

Xi +
Xn

Vn
≤

n−1∑
i=0

Xi +Xn =
n∑

i=0

Xi (120)

which proves the induction step and thereby this small lemma. We can now prove the
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theorem using a telescopic sum:

VN = V0 +
N−1∑
j=0

(VN−j − VN−j−1)

≤ 1 +
N−1∑
j=0

N−j−1∑
i=0

Xi

= 1 +
N−1∑
i=0

(N − i)Xi.

□

The lower bound. We prove that if we take

x =
6(Λ− 1)

N(N + 1)(2N + 1)
(121)

then

L :=
1

2

N−1∑
i=0

((N − i)x)2 ≤ inf
V:VN=Λ

IN(V). (122)

We can do this as follows. Define X0 = (Nx, (N − 1)x, . . . , x). Suppose that (122) does not
hold, then there is a V1 with IN(V) < L. Let X1 be the corresponding vector of deviations.
Using our theorem 5.4, we have

VN(X
1) ≤ 1 +

N−1∑
i=0

(N − i)X1
i . (123)

Also by definition we have that VN(X
1) = Λ, and hence

Λ ≤ 1 +
N−1∑
i=0

(N − i)X1
i . (124)

This implies that there exists a λ ∈ [0, 1] such that

Λ = 1 + λ

N−1∑
i=0

(N − i)X1
i . (125)

But then λX1 satisfies the following two equations:

N−1∑
i=0

(N − i)(λX1
i ) = Λ− 1

N−1∑
i=0

(λX1
i )

2 <
N−1∑
i=0

(X0
i )

2
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which contradicts the fact that X0 is known to be the the optimal solution to this optimiza-
tion problem. Hence, our assumption that such an X1 exists is false and hence the inequality
in (122) holds.

All together, we have the following definite bounds:

3(Λ− 1)2

N(N + 1)(2N + 1)
≤ inf

V
IN(V) ≤ 3(Λ− 1)

N(N + 1)(2N + 1)

[
1 +

(N − 1)(N + 2)

(2N + 1)2
(Λ− 1)

+
(N − 1)(N + 2)(17N4 + 34N3 + 35N2 + 18N + 36)

105N2(N + 1)2(2N + 1)2

]
. (126)

In the case µ ̸= 0, these same strategies can both be applied to compute bounds as well.
However, in this case the formulas will become even longer than they are now, so this will
not be done here.

5.6 Accuracy of the approximations

We have found an approximation in the case µ = 0 that is exact if X → 0, and an approx-
imation in the case µ ̸= 0. We will now analyze the accuracy of these approximations, and
of the lower and upper bound that we found. This is also the point where we will get rid
of the assumption that all standard deviations are 1, since that would lead to ridiculously
low values of IN(V). Instead, note that if the standard deviation is replaced by σ, then (85)
becomes

I(X) =
1

2

j−1∑
i=0

(Xi − µi)
2

σ2
. (127)

5.6.1 The bounds if µ = 0

We have found two explicit bounds in (126), so let’s see how close they are to the actual
value of infV:VN=Λ IN(V). As a sanity check, we can also see if the exact value is always
between the bounds. For σ we choose (Λ − 1)/104, to hopefully make an overload a rare
event. Note that this is not relevant for how well the bounds work (it simply adds a factor
to I) but it does make for results that are a lot more sensible.

infV:VN=Λ IN(V) lower bound exact value upper bound

N = 10,Λ = 1.1, σ = 10−5 1.2987 · 105 1.33017 · 105 1.33103 · 105
N = 100,Λ = 1.1, σ = 10−5 1.47776 · 102 1.51433 · 102 1.51529 · 102
N = 10,Λ = 1.01, σ = 10−6 1.2987 · 105 1.30188 · 105 1.30189 · 105
N = 100,Λ = 1.01, σ = 10−6 1.47776 · 102 1.48145 · 102 1.48146 · 102

The sanity check is successful, since the exact value is between the bounds in all cases. What
we can clearly see is that the upper bound is extremely tight, especially for the limiting case
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N → ∞ and Λ ↓ 1. The much simpler lower bound is not bad at all, and also gets closer as
we approach the limits.

5.6.2 In the case µ ̸= 0

The strategies that we have developed can also be used for the case µ ̸= 0, but the expressions
become even longer making the analysis more difficult. So for now, we will be comparing
the actual results to the results we got from the guessed relation of Yi = (N − i)y. We will
be taking µi = a/N2 for the average power output, since this leads to a constant VN if[15]
X = µ. Again, we take σ = a/104.

infV:VN=Λ IN(V) exact value estimate

N = 10,Λ = 1.1, a = 0.1, σ = 10−5 2.80178 · 104 2.62987 · 104
N = 100,Λ = 1.1, a = 0.1, σ = 10−5 3.83711 · 101 3.62088 · 101
N = 10,Λ = 1.01, a = 0.01, σ = 10−6 2.64707 · 104 2.62987 · 104
N = 100,Λ = 1.01, a = 0.01, σ = 10−6 3.64254 · 101 3.62088 · 101

The approximation is not as accurate as the upper bound we found in the case µ = 0, but still
appears to give descent results. Note that while decreasing the values of a and Λ does yield
a considerably better approximation, increasing N has hardly any effect on improving the
relative error. This makes sense, as we already saw that the error in the relation Yi = (N−i)y
is proportional to µ, hence to a. Despite the fact that the approximation can certainly be
improved upon, it is still not bad: it always has the right order of magnitude, and the
relative error is less than 10% in all cases, even less than 1% in the bottom two cases. It
is however likely that this approach is not very accurate if Λ became much larger, since the
approximation Yi = (N − i)y we used will become much less accurate. Luckily all practical
systems satisfy ∆ < 0.5, hence Λ < 2, so the order of magnitude is still likely to be correct.

5.7 Making IN(V) converge

In the line model as we studied it, we have the relation IN(V) ∝ N−3. However, from a
practical standpoint we would like to see IN(V) converging to a fixed value as N → ∞, so
let’s see if we can make that happen in a realistic system. One idea would be to change the
resistance values. Since Xi = rpi, changing the resistance will change the variance in Xi. So
if ri is changed into ri/N , then the variance would change from σ2 into σ2/N2. So in that
case, the rate function would become

IN,r/N(V) =
N−1∑
i=0

1

2
(NXi)

2 (128)

and hence we have IN,r/N(V) ∝ 1/N in this case.

The most likely overload configuration now involves that X0 > X1 > . . . > XN , which
means that some nodes have a larger impact than others. To counter this, we can replace
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the covariance matrix Σ of X by diag(1/N, 1/(N − 1), . . . , 1) (i.e. not every node has the
same variance). Then, the rate function would become IN(V) =

∑N−1
i=0

1
2
(N − i)X2

i and the
optimization problem would become

minimize
N−1∑
i=0

(N − i)X2
i

subject to
N−1∑
i=0

(N − i)Xi = Λ− 1

By the Cauchy-Schwarz inequality the optimal solution is attained when X0 = X1 = . . . =
XN−1. This means that Xi =

2(Λ−1)
N(N+1)

, and hence

IN(V) =
2(Λ− 1)2

N(N + 1)
(129)

which is proportional to 1/N2. So if we combine these two ideas and take the covariance
matrix Σ = 1

N2diag(1/N, 1/(N − 1), . . . , 1) (corresponding to all resistances divided by N
and nodes further away having lower variance), then IN(V) would converge to the constant
2(Λ− 1)2 as N → ∞. Although this does meet our goal, it is rather artificial. So although
it is possible to make IN(V) constant as N → ∞, it is difficult to find non-artificial models
in which this happens.
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6 Circular model

For this model, we make the same assumptions as in the line graph, except that we now
take a cycle graph rather than a line. Intuitively, this corresponds to building a line from
the last house on the street back to the supply point, with the same resistance. There are
N + 1 nodes labeled 0 through N . Node 0 is the source node of our network. We work in a
per-unit system where node 0 has voltage V0 = 1 and the power output X0 at this node is
exactly such that there is power balance in the network. We require that Vi ≥ 1−∆ for all
1 ≤ i ≤ N . Since power is injected at node 0, we have X0 < 0. Note that X0 is not simply
−(X1 + . . . + XN), since there is also power loss through resistance in the network. Since
we don’t know X0 on beforehand, we define X = (X1, . . . , XN). The power output Xi at
every node other than 0 is known, and the problem is to now determine the values Vi. The
equation

Vi+1 = 2Vi − Vi−1 +
Xi

Vi
(130)

that we had for the line model still applies here, and applies to every node in the cycle, with
the periodic boundary conditions V−1 = VN and VN+1 = V0. For i = 0 it is rather useless
since we don’t know X0. So we have a total of N equations, with N unknowns V1, V2, . . . , VN .
This means that the system should be solvable. Written out, it is

V2 = 2V1 − 1 +
X1

V1

V3 = 2V2 − V1 +
X2

V2

V4 = 2V3 − V2 +
X3

V3
. . .

1 = 2VN − VN−1 +
XN

VN

Note that I filled in that V0 = VN+1 = 1. Since the system is not linear we have very
little hope of solving it exactly. If we were to solve it numerically, then we could apply the
following plan:

1. The first equation states V2 as a function of V1

2. Filling this in, the second equation states V3 as a function of V1

3. Filling in V2 and V3, the third equation states V4 as a function of V1

4. Continue this until the semi-last equation, which now states VN as a function of V1

5. Now the final equation can be written in terms of V1 only

It is easily seen by induction that the final equation becomes a rational function of V1, which
can then be written as a polynomial equation q(V1) = 0, with q a polynomial of degree

60



2N . This means that we get 2N different solutions for V1. However, as it turns out, only of
these solutions is physically relevant, for the following reason. It is natural to require that
if X = 0, then we have V = 1. However, if we compute all 2N zeroes of q at X = 0 with
a computer, we find that the solution V1 = 1 (corresponding to V = 1) is a simple (i.e.
non-multiple) root. All other solutions of q(V1) = 0 in fact lead to at least one Vi being
equal to zero. These ’solutions’ exist due to turning the rational function into a polynomial
when computing: they cannot exist in the original system of equations, since we divide by
Vi there. However, when we perturbate X by a little, these ’solutions’ also get perturbed,
so that Vi is no longer zero, and then they may suddenly be physically possible solutions.
Despite this, they are not the solutions we are looking for, since the solutions we look for
require Vi ≥ ∆ for any i. Since we assume the system to start at V = 1, it is highly unlikely
that we accidentally end up in one of these unwanted solutions.

Now that we have a way of exactly computing X, we would also like to have an approxima-
tion. Like in the linear mode, we can linearize around X = 0. We find the derivatives

∂Vi
∂Xj

∣∣∣∣
X=0

=

{
− (N+1−i)j

N+1
if i ≥ j

− (N+1−j)i
N+1

otherwise.
(131)

This way, we can find the Jacobian matrix. Since all elements are negative, we define this
matrix as −M . As an example, for N = 5 we find that

M =
1

6


5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

 (132)

and then we have
V ≈ 1 −MX (133)

as the approximate relation. From now on, we will be using this approximation to evaluate
rare event probabilities and find the most likely overload case.

6.1 Evaluation of rare event probabilities

We now want to find the most likely overload case X (i.e. the X with the lowest IN(X) such
that Vi(X) ≤ 1−∆ for some 1 ≤ i ≤ N). Assuming a Gaussian probability distribution, the
rate function is again equal to IN(X) = XTX/2 (the fact that we use a different network
does not change the probability distribution for X). So to find the most likely overload case,
we need to solve the optimization problem

minimize XTX/2

subject to 1 −MX ≯ (1−∆)1.
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The ≯ can be handled by splitting this into the N separate optimization problems

minimize XTX/2

subject to MT
i X ≥ ∆

where MT
i is the i-th row of M . Now all of these problems yield a minimum for XTX/2,

and if we pick the lowest of these N numbers, we find the overall minimum.

Using the Cauchy-Schwarz inequality, we can prove that the optimal solution for the op-
timization problem i is attained when X is parallel to Mi. So we write X = λMi. The
optimum is attained when the constraint inequality becomes an equality, yielding

λ =
∆

||Mi||2
(134)

and hence we find that the minimum to optimization problem i is equal to

XTX/2 = λ2MT
i Mi =

∆2

2||Mi||2
. (135)

So to solve the optimization problem we need to find the i with the largest ||Mi||. Looking
at the matrix in (132), we expect this i to be in the middle between 1 and N , which would
yield i = (N +1)/2. Since we have the exact elements of the matrix, we can compute ||Mi||2
for every i: it is equal to

||Mi||2 =
i(N + 1− i)(2i(N + 1− i) + 1)

6(N + 1)
. (136)

In order to find the maximum we can differentiate this with respect to i, which yields

∂

∂i
||Mi||2 =

1

6(N + 1)
(N + 1− 2i)(4i(N + 1− i) + 1) (137)

which is zero if i = (N +1)/2, or if 4i(N +1− i)+ 1 = 0 but the solutions of the latter have
either i < 0 or i > N +1, which eliminates them. We find that i = (N +1)/2 is a maximum,
and the other two zeroes (outside [0, N + 1]) are minima, and hence i = (N + 1)/2 is the
maximum that we are looking for. However, i needs to be an integer, and while (N + 1)/2
is an integer for odd N , it is not for even N . So for even N the optima is attained at either
i = N/2 or i = N/2 + 1. As it turns out, both of these i yield the same XTX/2.

Assuming that N is odd and hence (N + 1)/2 is an integer, we find that

||M(N+1)/2||2 =
1

48
(N + 1)(N2 + 2N + 3) (138)

and hence

XTX/2 =
24∆2

(N + 1)(N2 + 2N + 3)
. (139)
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Like in the line model, this is proportional to N−3. In the line model, it was proportional to

(Λ− 1)2 =

(
1

1−∆
− 1

)2

=

(
∆

1−∆

)2

≈ ∆2

so assuming that ∆ is small the proportionality to ∆ is the same as well. Even though the
proportionality relations are the same, the constant is different. Instead of a factor 3/2 we
obtained in section 5.3.1, we now have a factor 24, which is 16 times higher. Effectively, this
means that

inf
V
IN,circ(V) ≃ 16 inf

V
IN,line(V). (140)

If we assume that the covariance matrix of X is equal to ϵI with I the identity matrix, the
probability of an overload event E evolves as

Pϵ(E) = exp[−IN(V)/ϵ]. (141)

Hence, we have that
Pϵ,circ(E) ≃ (Pϵ,line(E))

16 (142)

meaning that the chance of an overload for the circle model is far smaller than for the linear
model. From a practical standpoint, it means that adding an additional power line to create
a cycle makes overloads far less likely. This might be a cost-effective measure to prevent
overloads.

6.2 The case µ ̸= 0

If µ ̸= 0, we can approach the problem as follows. The optimization problem for row i of
the matrix becomes

minimize (X− µ)2

subject to MT
i X ≥ ∆.

Set X = µ+Y, with Y averaging zero. Then this problem translates into

minimize Y2

subject to MT
i (Y − µ) ≥ ∆

or, equivalently,

minimize Y2

subject to MT
i Y ≥ ∆−MT

i µ.
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Note that by applying the Cauchy-Schwarz inequality we now still find Y to be parallel to
Mi. We find that Y = λMi, with

λ =
∆−MT

i µ

||Mi||2
. (143)

We assume that λ > 0 (since otherwise an overload is not a rare event), hence we require
that ∆ >MT

i µ for every 1 ≤ i ≤ N . We now have

YTY/2 = λ2MT
i M/2

=
(∆−MT

i µ)
2

||Mi||4
· ||Mi||2

2

=
(∆−MT

i µ)
2

2||Mi||2
.

We need to find the i for which this is minimal. Note that this is not necessarily the node
furthest away from the origin anymore! For example, if we take µ = (a, 0, 0, . . . , 0), it is
possible that node 1 will overload for the smallest a, and hence XTX/2 would be the lowest
for i = 1. This means that we cannot know i without further information about µ. So if µ
is not specified then this is as far as we can go.

6.2.1 Assuming that µ is constant on the circle

If we assume that µ is the same everywhere, the lowest XTX/2 is attained when i is closest
to (N + 1)/2. This is easy to see, since ∆ −MT

i µ is decreasing in Mi, and so is 1/||Mi||2.
So the highest Mi yields the lowest X

TX/2. If we take µ = c/(N +1)2 for every node, then
we find

MT
(N+1)/2µ =

c

(N + 1)2

N∑
j=1

Mij =
c

(N + 1)2
· 1
2

(
N + 1

2

)2

=
c

8
. (144)

Hence, we have that

V(N+1)/2 ≈ 1− c

8
. (145)

Since this approximation becomes increasingly accurate ifN → ∞, we find that limN→∞ inf1≤i≤N Vi
is a constant, just like in the line model.

The rate function for the most likely overload case can be computed by plugging this in:

YTY/2 =
(∆−MT

i µ)
2

2||Mi||2
=

24(∆− c/8)2

(N + 1)(N2 + 2N + 3)
. (146)
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7 Conclusion and outlook

7.1 Conclusion

In this thesis, we analyzed AC power flow networks without full linearization. We first
studied a three-node cycle without the small angle assumption in depth. The solutions are
the roots of a polynomial of degree 6. There are multiple realistic solutions, which turns out
to be caused by phase angles being offset by π. The solutions cannot be computed exactly,
but can be approximated very well by ’near-solutions’, which become exact in the limit of
small deviations. Next, we looked at the probability of an overload in this system, for which
we could find an explicit function. After studying this model, we derived several results for
a general power network, such as continuity of power flows in terms of power injections, as
well as explicit bounds on the overflow probability in this case.

Next, we looked at a system with variable voltages and non-zero resistance. We first assumed
a line graph, known as theDistflow model, corresponding to a street with one source node and
N houses that are supplied by this source. The constraint here is that the voltage differences
may not be too large. This model had previously only been solved by full linearization. First,
we present an SPD that allows us to quickly compute a solution with a computer, if we wish
to solve the problem exactly. Next we try to find a good approximation assuming small
deviations. We show that in the most likely overload configuration, the power output at a
node is proportional to how far this node is away from the source node. This means that
the further a node is away from the source node, the larger its impact, and the more likely
it is to cause an overload. We went on to compute explicit bounds on the likelihood of the
most likely overload configuration, with very tight bounds that converge to each other in the
limiting case of an extremely large line with almost no voltage difference allowed. The results
were confirmed with numerical experiments. We also noted that the most likely overload
situation becomes increasingly likely as the line becomes longer, even if we also decrease the
resistance of lines.

Next, we looked at a slightly different configuration, where the expected power output at
houses is not 0 but instead equal to a fixed constant. In this case, we can still apply the
same strategies but the exact expressions become very complicated, which is why we only
made an estimate in this thesis. Further research would likely be able to establish explicit
bounds in this case as well.

The strategy that we used can be applied to other networks as well. As an example, we
added a power line to turn the model into a cycle. In this case, we can prove that overloads
become far less likely than for the line graph, using a similar technique. It is likely that
many other interesting models can also be analyzed using the techniques used in this thesis.
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7.2 Outlook

7.2.1 The rate function for a general network

We analyzed a two networks for a system with variable voltages: a line and a circle. Can we
also get any results for a general model? Well, we need to redo the computation. Applying
the contraction principle relies on:

1. A Large Deviations Principle for the power consumption, with a rate function I(X)

2. A continuous transformation T

The LDP for the power consumption relies on what distribution we choose for X, which
means that I does not change if we still assume a normal distribution. The transformation
T will change. It is important to note that this model is fundamentally different from
what we discussed in section 4, since we are now not looking at a transformation of power
injections to line power flows, but from power injections to voltages. So we cannot really use
the analysis we did there.

Since we are assuming small angles now, the power flow equations reduce to

Pkm = −V 2
k Gkm + VkVmGkm

Qkm = V 2
k Bkm − VkVmBkm.

We removed the absolute values since all voltages are assumed to be positive anyways. Even
though all lines are equivalent, we cannot assume Gkm = G, since the network is not a
complete graph and hence Gkm is zero for any line {k,m} not in the network. So we just
leave it like this. It is quite difficult to extract V from these equations, but we can work the
other way around. If we change V by a bit, then we can compute the change in P. Initially

Pk =
N∑

m=0

GkmVk(Vm − Vk).

Suppose V → V + ϵW, then we get

Pk + ϵ∆Pk =
N∑

m=0

Gkm(Vk + ϵWk)(Vm + ϵWm − Vk − ϵWk)

=
N∑

m=0

Gkm

(
VkVm − V 2

k + ϵ(VkWm − VkWk +WkVm −WkVk) + ϵ2(WkWm −W 2
k )
)

and ignoring higher order terms of ϵ we get

∆Pk =
N∑

m=0

Gkm(VkWm − 2VkWk +WkVm).
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We can collect all of this into a matrix M , such that δP = MW. To find this matrix, we
collect the terms Wi for every i:

∆Pk =
N∑

m=0

(GkmVk)Wm +

( N∑
m=0

Vm − 2Vk

N∑
m=0

Gkm

)
Wk.

Hence we have

Mkm = GkmVk + δkm

( N∑
m=0

Vm − 2Vk

N∑
m=0

Gkm

)
. (147)

Note that unlike in section 4, this matrix M is invertible. So by computing the inverse, we
have a mapping that sends ∆P to W, which is continuous (as it is linear). We conclude
that we may apply the contraction principle in this case.

We now assume that X follows a Gaussian distribution, so that I(X) = XTΣX/2. Then we
can either send δP to W, or to mini Vi(X). If we choose to do the first, the rate function
becomes trivial, like in Section 5 and 6. In this case, we could try to apply a strategy
similar to what we did for the line and circle model: differentiating. A big question is if it
is still possible to compute the derivatives exactly for a more complicated network. Further
research would be needed to see if this is possible: if it is, then this would certainly be a
promising strategy. Another idea is to try and make a semidefinite program to compute the
solutions, but this may be more difficult since our implementation for the line model relied
on having a simple expression for X in terms of V.

The second, more direct choice for the rate function yields

J(∆) = inf{I(X) | min
0≤i≤N

Vi(X) ≤ 1−∆}. (148)

If we can compute this function then we have an explicit large deviation principle. The
problem is that J can usually not be computed: we only have this implicit definition. It is
hard to see a way to continue from here for a general network: for a specific network one
could try splitting this into N + 1 different problems, one for every i, and then finding an
expression for every Vi. But that relies on having a simple expression of Vi in terms of X,
which we do not even have for the line model. So this choice seems to be not as promising
as the first one.
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Appendix 1: full linearization checked by computer

To check the linearization progran we made, we need a computer, since this cannot be solved
exactly by hand. The easiest way to do this is by computing the objective function I3(V)
and then replacing Vα by yα. This can be done more elegantly than just writing all terms yα
(as was done in the code), but the point of this example is to be simple and clear. Next, we
minimize the objective function while the matrix has to stay positive definite. As a check,
we can also compute the optimal values V1, V2 directly by minimizing I3(V). First of all,
we expect both optimization problems to have the same optimal value. Second, the value
of y10 found in the first problem should be the same as V1 in the second problem, as we
substituted y10 for V1: similarly the value of y01 should be the same as V2. All of these
results are confirmed by the test.

Note that the optima are not exactly the same, which is most likely due to rounding errors.
Another thing that you may have noticed is that this is not following the formal definition
of a semidefinite optimization problem. In the formal definition there is a matrix X with all
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entries free that needs to be positive semidefinite, here it is a matrix of a specific form (for
example the top left entry is specified, and some other entries are equal). So is this even
an SPD after all? Well, it is possible to rewrite this optimization problem so as to match
the form of definition 5.1. For that, we would first need to write the objective function as
⟨C,X⟩, which is easy. Next, we need to force X to take the specific form that it takes in our
optimization problem. This can be achieved by choosing matrices Ak and adding conditions
⟨Ak, X⟩ = 0. For example, to enforce the fact that X41 = X22, one could choose

A1 =


0 0 0 1 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (149)

Recall that the matrix X is required to be symmetric (as all positive semidefinite matrices
are), so ⟨A1, X⟩ = 0 implies that X41 = X22. So with a number of additional equations, we
can rewrite our optimization problem in the form of definition 5.1. In practice, however, it
is not expected that rewriting the problem this way speeds up computations: although it
removes constraints on the matrix, it induces new constraints in the form of ⟨Ak, X⟩ = 0.
So for the best computational results it is likely the best idea to use the matrix M(y) .

To see if this semidefinite program is actually faster than the normal polynomial optimization
one would need to choose a much larger value N and compare the computation times then.
As there was no time to do this in this research project, this would be a good idea for further
research.
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