
Dutch written review sentiment
classification with a deep learning

LSTM-model

Utrecht University

Master of Science in Applied Data Science

Supervisor: Rense Corten

Bas van Dalsum
9488561

July 1st 2022

Abstract

The online marketplace relies heavily on reviews to establish trust
between the customer and the seller. These reviews are often both in
written and star-rating form. In this paper, I use reviews scraped from the
site werkspot.nl, a Dutch online market platform for small construction
work, to analyse the sentiment reflected in the written review, and to
predict the rated amount of stars. This study aims to investigate if the
rating system can be improved by recommending star ratings based on
the written review. I train a deep learning-based Bi-directional Short and
Long Term Memory (LSTM) model to predict both the multi-class (5-
star rating) and the binary sentiment (positive or negative) rating. The
results suggest that this method has the potential to be of use for this
application, but there are some issues to be resolved before this is possible.
For instance, both models suffer from overfitting on the training data,
resulting in lower model performance scores when testing the model on
untrained data. One of the likely reasons for this is the extreme disparity
between high and low ratings in the data. I elaborate more on this further
in this paper. Overall, the main finding is that while the training results
for both binary and multi-class are good, improvement is necessary to
implement the model in real-world applications.

1

Contents

1 Introduction 3
1.1 Current study . 5

2 Existing works 5
2.1 Sentiment analysis . 5
2.2 Binary and multi-class classification 6
2.3 Deep learning models . 6
2.4 Long and short term memory models 7

3 Methods 7
3.1 Data . 8
3.2 Data preparation . 8

3.2.1 Remove missing data . 8
3.2.2 Prepare strings . 9
3.2.3 Stars . 9

3.3 Model . 10
3.3.1 Architecture . 11
3.3.2 Cross validation . 13
3.3.3 Hardware and software . 13

3.4 Performance metrics . 14

4 Results 15
4.1 Training . 15

4.1.1 Accuracy and loss . 15
4.1.2 Performance metrics . 16

4.2 Validation . 16

5 Conclusion 17

6 Discussion 18

7 Bibliography 20

8 Appendices 22

A Data preparation 22

B Models 25

C Data exploration, plots and miscellaneous 32

2

1 Introduction

The online marketplace is a hugely popular entity on the web, where many enjoy
the convenience of being able to buy and sell whatever they desire. The site
Werkspot.nl is a dutch marketplace where customers can post small-construction
type jobs (e.g. plumbing, painting, flooring), and then tradespeople can respond
by sending an offer. Then, the customer can see the reviews for the trades-
person, to aid the customer in deciding which offer to take up. The reviews of
the plumbing section of the site will be used for the analysis in this paper, in an
attempt to explore the relation between the written reviews and the star-based
review scores. This is useful to aid in the betterment of the review system, as
these reviews are the basis on which a customer decides to trust an offer or not.

In the online marketplace, there is a trade-off between trust and convenience
which is different from offline transactions. In the traditional offline marketplace
(i.e. shops) buyers and sellers are able to meet face-to-face during a transac-
tion, which instils a level of trust and accountability between both parties which
benefits the transaction. In contrast, the online marketplace offers varying lev-
els of anonymity between the parties, ranging from transactions on the Dark
Web where illegal substances may be sold and bought completely anonymously
(Norbutas et al., 2020), to sites like e-bay.com where profiles are much more
visible. How customers decide to make a transaction is commonly found to be
a factor of trust and reputation (Bolton et al., 2004; Dellarocas, 2003; Teubner
and Glaser, 2018). In the online marketplace, trust is especially important as
buyers and sellers cannot be sure of each other’s intentions and the quality of
the product delivered. A potential customer’s trust in a seller will determine
whether or not they will make the purchase, as sellers with a higher trust score
are perceived as more likely to honour the purchase agreement (Bolton et al.,
2004; Norbutas et al., 2020).

The way this trust is determined is generally a combination of first and third-
party experiences. Here first-party experiences are the dyadic relations, between
the customer and the shop. This relation is formed by previous purchases., and
directly influences the likelihood of a future purchase (Norbutas et al., 2020).
Additionally, the third-party experiences are the reviews left by other customers,
there is indirect reciprocity as the satisfied customer can positively others to
purchase. Conversely, a dissatisfied customer can prevent others from making
the same purchase by leaving a negative review (Bolton et al., 2004). The way
this is often achieved in online market systems is a system of star ratings and a
brief written review left by the customer.

The 5-star rating is a very useful system for getting an idea of whether
a seller is trustworthy at a glance. These stars have an intrinsic meaning as
most people will intuitively assume that 5 stars are the best and one star is the
worst rating you can receive. There are however also some more well-laid-out
definitions of the meaning of each star. Liu and colleagues, (Liu, 2017) propose
that each star has a meaning beyond good or bad. In their paper, they propose
that there is an emotional and rational rating system attached to the rating
levels. They state that the 3 stars is a neutral rating, and 2 and 4 stars are

3

rationale-based ratings. Meaning that they convey more information on the
attributes of the good or service. Whereas, the 1 and 5-star ratings are aimed
to convey emotional qualities (Liu, 2017).

This way of looking at star ratings is useful, as it provides more information
about the rated. But there are some caveats to the rating system as a whole.
Firstly, not every customer leaves a rating. Approximately 63.9 per cent of
customers leave reviews, and 72.6 per cent of customers read reviews (Cambria
et al., 2017; Su and Shen, 2022). This complicates the research done on online
review systems, as there is always a problem of missing data. Furthermore, in
systems with both a star rating and a written review, there can be a level of
discrepancy between the two. For instance, a 5-star rating with a complaint in
the written text. This could diminish the effectiveness of the rating system as
this causes the ratings to be less informative.

In addition, the reviews are almost never normally distributed. There is
a wealth of research attempting to explain why this is the case (Teubner and
Glaser, 2018). Generally, there is a large proportion of reviews that are 4 stars
or higher, with lower ratings being far less common. In previous literature, there
are many explanations given for why this happens. Filipas et al. (2017) propose
that these high averages are the result of an interplay of factors. They found
that review averages are likely influenced by the publicity and openness of the
reviews, where review averages increase when the review is public. While the
review was more candid, and lower scored, when the review was private (Filippas
et al., 2017). Another reason for this skewness is found to be survivorship in the
marketplace, which is highly influenced by negative ratings. As a negative rating
is a direct predictor of exiting the market since offerings with negative reviews
are less likely to be chosen by prospective customers (Teubner and Glaser, 2018).

Interestingly, this means that the system works well. However, there is a
danger that the system works too well. When looking at the review scores in
my data, and throughout the literature, it becomes clear that reviews that are
not 5 stars are generally seen as negative (Bolton et al., 2004; Filippas et al.,
2017). This causes the reviews to become less informative, as the average scores
become increasingly high. Therefore, the average rating for a product or service
starts to rise. Eventually, this reaches a point where the customer has a hard
time again making an informed purchasing decision based on these scores.

Another factor to consider is that the focus of written reviews can differ
vastly within the realm of product or service they are evaluating. This means
that in the data we use there are reviews more focused ad hominem, describing
more the plumber and his personal characteristics. But there are also reviews
that are more descriptive of the quality of the product. Here I give two brief
examples taken from the original dataset, with their English translations as the
original reviews are in dutch.

Ontzettend aardige man.[Really nice guy]

Prima werk uitgevoerd en goede communicatie.[Good work deliv-
ered, and good communication]

4

1.1 Current study

Combined the problems of extreme skewness and the ratings being hard to
interpret make the online rating system is flawed. The purpose of this paper is
to increase the informational quality of the review scores, by trying to make the
written reviews and the star rating more connected. I will make use of natural
language processing techniques to process the written reviews of customers in
order to make a model that is capable of generating a recommended number of
stars based on the written review. I hope to achieve this by using a Long and
Short Term Memory (LSTM) based deep learning approach in an attempt to
predict the star ratings given based on the written text. Besides looking at the
star rating I will also investigate the efficacy of this approach when trying to
classify the text into positive or negative sentiment scores.

RQ1. Can I use a deep learning model to improve the informational quality
of the star rating system by recommending a rating based on the users’
written reviews?

RQ2. How does my LSTM classification model perform on both binary and
multi-class sentiment classification?

RQ3. Is an LSTM model capable of doing text-based sentiment analysis on data
with 5 labels?

2 Existing works

2.1 Sentiment analysis

Answering the research question will require my model to make use of sentiment
analysis, which will allow the model to interpret written text into a rating score.
Sentiment analysis is the task of analyzing people’s sentiments taken from their
written text data (Minaee et al., 2021). Minnaee et al. (2021) describe this as
a classification task that often uses data with binary labels, usually positive or
negative, for the classification (Minaee et al., 2021).

Most traditional methods of sentiment analysis are based on valence-aware
dictionaries, which contain a score signifying the positive or negative quality of
each word (Liu, 2017). Most sentiment analysis tasks are limited to polarity
analysis and are not robust against things like negation or disjunction in texts
(Liu, 2017). Liu (2017) describes several qualities of sentiment analysis that are
important to the quality of the analysis when doing this kind of task. First,
is sentiment orientation (positive, neutral, negative) which is the core scoring
system. Then there is sentiment intensity (good vs. excellent), which can be
determined by modifier words such as ”very” or ”dreadfully”. Lastly, Liu (2017)
names sentiment rating, a discrete rating system to represent the sentiment
numerically or categorically (5 stars) (Liu, 2017).

This is related to my research question as often there are star-based systems
in place next to the written reviews on platform marketplaces. But, these

5

are often seen as separate systems. Which can cause a disconnect between the
sentiment reflected in the written review and the rated number of starts. In this
paper, I aim to create a model with which a site or platform can recommend
a number of stars based on the written review that is given. This will create
a more connected system of reviews, which will likely increase the quality of
information that can be gained from the rating systems.

2.2 Binary and multi-class classification

As stated in the previous section sentiment analysis is often done using binary
labels. This is what studies like that of Shamrat et al (2021) use in order to
determine whether tweets about COVID-19 vaccines had a positive or negative
affect. They found that out of the examined tweets slightly less than half were
classified as positive, with a smaller portion of the data points being classified
as negative. Additionally, a small portion of the tweets was classified as neutral
as they were not significantly positive or negative, according to the K-nearest
neighbours classifier that was used (Shamrat et al., 2021).

Another example of binary classification is the paper by Shen and Su (2022)
who looked at text analysis in order to determine the real sentiment of online
product reviews. The caveat here is that the researchers did not only include
real reviews, as they argue that with online reviews comes fraud. Meaning that
the model they created was not online aimed at determining the sentiment, but
also to filter out the fake reviews. Su and Shen (2022) achieved this using a
Convolutional Attention Long and Short Term Memory model (CA-LSTM). I
will elaborate more on these types of deep learning models in the next section.
They found that using this model they were able to achieve an accuracy of 83.3
per cent, which was higher than all the models the authors compared it to (Su
and Shen, 2022).

2.3 Deep learning models

In sentiment analysis, deep learning-based neural networks have been used to
great success (Kim, 2014; Zhou et al., 2015), but there are many types of neural
network architectures. But there are a few types of networks that are especially
popular when it comes to using deep networks on classification tasks on written
data. Two of these main architectures are the convolutional neural network
(CNN) and the recurrent neural network (RNN). The CNN architecture makes
use of pooling layers in order to capture correlations that allow the model to
identify combinations of words in an input sentence. An example of this model
is Kim et al. (2014) who in their paper make use of multiple filter layers in their
CNN in order to allow the model to identify the relations of different words
(Zhou et al., 2015). However, CNN might have issues when there are variable-
length inputs and longer-term dependencies in the data. Here the RNN might
be more suited, as the recurrency (information travelling back and forwards) in
the model can allow the model to store and access historical information over
time, meaning that there is an improvement over CNN models when the data

6

contains more dependencies over time-steps. This is useful when processing tex-
tual data, as the meaning of the full sentence is in itself a dependency (Zhou
et al., 2015). However, the RNN starts to struggle when these dependencies as
the time (distance) becomes greater. This is due to the fact that learning to
store information over increasingly long periods of time takes up a lot of mem-
ory. Which is caused by insufficient decay of backwards error. In an attempt to
address this issue Hochreiter and Schmidhuber (1997) proposed a novel architec-
ture they named Long and Short-Term Memory (LSTM). The main difference
here is that the decay of backwards error is dealt with by using special units
that can retain information of data that has already passed through the model
(Hochreiter and Schmidhuber, 1997).

2.4 Long and short term memory models

Tai et al. (2015) use various LSTM models in order to tackle two types of
classification tasks on the Stanford Experimental Treebank database. This is a
hugely popular database for classification tasks and is made up of over 11.000
fully parsed-out sentences. Completely labelled into a binary and a 5 class
sentiment labels (Socher et al., 2013). Using these two sets of labels Tai et
al. (2015) is capable of comparing the robustness of their model in classifying
text sentiments into either positive/negative or a 5-label system. They do this
in order to compare several models found in the literature, such as DCNNs
(Kalchbrenner et al., 2014), CNN-Multichannel (Y. Chen, 2015). As well as
some of their own models, which include: LSTM, bi-directional LSTM, and the
Dependency Tree model. In their findings, they summarize that from all the
models they tested the performance of the models on the multi-class (5-label)
classification task the mean accuracy scores ranged from 43.2 to 51.0, with the
highest scoring model being their own Constituency Tree-LSTM with tuned
glove vectors. Reaching a mean accuracy of 51.0 per cent. This is quite good as
it is higher than all the other models they tested it against (Tai et al., 2015).

However, this result means that there is still a huge discrepancy between the
performance of classifying multi-class labels versus binary. This can easily be
seen as the results of all the models Tai et al. (2015) tested greatly outperformed
the best multi-class score when they were tested on the binary labels. In this
task, the mean accuracy scores were in the range of 82.4 and 88.1. This time
the best performing model was the CNN-Multichannel (Kim, 2014), with a 0.1
point lead over the authors’ own best performing model (Tai et al., 2015).

3 Methods

In order to answer the research questions, I will take the following steps. First,
I will have a look at the data. From here I will do some cleaning of the reviews
where there are missing entries or other problems. Then, I will prepare the
data for passing it through the model. After this, I can train the model on the
cleaned data, and validate the results.

7

3.1 Data

The data I will use was scraped from www.werkspot.nl, a platform where the
customer can post an advert for a job they need to do at their house. There are
several categories, such as; painting, renovating and gardening. When the job is
posted tradesmen are able to send their offers to the customer. Here is where the
review system will play an important role, as the prospective customer is able
to look at the accounts of the tradesmen and see their star ratings, as well as
the written reviews they have received from previous customers. This is to help
the customer to make an informed decision when choosing which tradesman to
take up on their offer.

In this study, I use the data from a selected subsection of this platform, the
plumbing section. The data has been anonymized to protect the customers’
identities as well as the plumbers’. It contains the following; plumber id, date,
star rating, the title of the review, written review, and customer id. In totality,
there are 29.265 entries in the set, before cleaning. This is made up of 2267
unique plumbers and 19835 unique reviewers. There is some missingness in
the data, with 726 entries without the star rating. In addition, there are 7213
entries where no written review has been entered. This comes to 24.6 per cent
of customers who did not leave a written review. This is less than the averages
found in the literature, where on average 36.7 per cent of customers do not leave
a review (Cambria et al., 2017; Su and Shen, 2022).

In my data, the average star rating over all the entries is 4.63 stars, with the
maximum possible rating being 5 stars. The skewness is −2.319, this is a very
high level of right-sided (high rating) skew. This is to be expected, as this is a
fundamental problem in the type of data that is being used.

3.2 Data preparation

3.2.1 Remove missing data

Data manipulation is a crucial step when dealing with written text data, in order
to prepare the data for sure in my analysis. Here, I will give a short description
of each step I take to prepare my data for the modelling phase, along with a
short explanation of why I choose to do so.

First, I remove all the reviews where the rated amount of stars is missing.
This is because upon further inspection these entries are all completely empty.
I.e. all columns contain NA. Along with the reviews without star ratings, I also
remove the entries where there was no written text left in the review. Although
these rows in the data contain information on the rated number of stars, they
are of no interest to my model. Which will be focused on processing the written
text, in order to determine the number of stars that will be the most closely
associated with the sentiment of the text. This is not possible when there is no
text to process. This deletion makes the analysis easier, but also causes the loss
of many points of data. Which is something to make note of. Additionally, the
matter of what has to be done in the situation does not enter a written review

8

when leaving a new review will be addressed further in the discussion section of
this paper.

3.2.2 Prepare strings

After all the missing entries are deleted, it is time to prepare the strings for
feeding them into the model. First, all punctuation needs to be removed from
the sentence, this is because these things have no intrinsic value in the model
that I built. I do this using the ’punctuation’ function of the ’string’ package
in python. This package contains a full list of all types of punctuation so that
I can delete all items that are in this package.

The second step is to tokenize the string. Tokenization is the process of
creating a separate string for each word in the sentence rather than having the
whole sentence in one string. This is necessary in order to be able to analyze
each word as a separate entry in the model. Without this, the model will analyse
each entry as a full sentence, and will not be able to properly learn to assign
the positive and negative weights to each word in the review.

The next step I take is to remove all Dutch stop-words, which are words we
use in our text and speech which do not have a meaning of themselves. The
meaning of these words is generally fully dependent on the context surrounding
them. Therefore, these words are not useful to attach sentiment values to, and
should be removed. To do this I make use of the ’dutch-words’ package. Which
contains a list of Dutch stop words, such as; ’de’, ’het’ and ’om’. With this, I
can delete all the tokens that are in this list. Creating a much more concise set
of words, where each word is valuable to the model.

Review Model-input Stars Sentiment
Goed, duidelijk en snel. Ik
ben er blij mee

[”, ’goed’, ’duidelijk’,
’snel’, ’ben’, ’blij’, ’mee’,
”]

5 1

Na in eerste instantie uit-
stekend en snel geholpen
te zijn met een storing

[”, ’na’, ’eerste’, ’in-
stantie’, ’uitstekend’,
’snel’, ’geholpen’, ’zijn’,
’storing’,”]

2 0

Table 1: A snippet from the cleaned data, containing the original review, the
review after the data cleaning and preparation, the star reviews and the senti-
ment score.

3.2.3 Stars

The last bit of data manipulation I perform is to reclassify the star ratings in
two ways. In the collected data the customer was able to give whole and half
stars in their reviews. However, this leads to having 10 classes in the data, as
there are 10 possible ratings. Which, as I explained previously, is a lot to train

9

(a) All star ratings (b) Cleaned star ratings (c) Sentiment scores

Figure 1: Distributions of the rating scores before and after the data prepara-
tion. Figure 1a shows the complete data, before doing any cleaning or manip-
ulations. Figure 1b shows the distribution of the star ratings after redividing
them into whole-star only. Lastly, figure 1c shows the distribution of the reviews
when they are rated as 0 (negative) or 1 (positive).

a classification model on. Therefore, I have decided to bring this back to 5
classes, one for each of the whole stars. I do this by rounding down the reviews
to their previous whole, so 4.5 becomes a 4, 3.5 becomes a 3 etc. This achieves
two things, one is that the model now has to train for classification on 5 labels,
which will make it easier to fit the data. The second thing this achieves is that
it reels in a little of the skewness in my data. As previously described, there is a
very high level of skew in the data with a high percentage of the reviews being
4 stars or higher. This is possible problematic, as it is harder for the model
to train on the lower ratings. Simply because there is a lack of data, which is
exacerbated by the high number of high ratings. Knowing this, I decided to
round the half-star ratings (i.e. 4.5) down. In an attempt to deal with some of
this skewness. As this is likely to help my model with the performance.

The other way I reclassified is into binary labels, taking every star rating
of 4 and under as 0 (negative) and the rest as 1 (positive). My reasoning here
is that in the literature previously discussed, it has been shown that neural
network classification performs better with binary labels, which brings me back
to my second research question on the performance of the model for binary and
multi-class classification. Doing my analysis on both the 5-class and the binary
system allows me to compare the performance of my model side-by-side, which
will provide me with some valuable information on how well the classification
model performs.

3.3 Model

To achieve a model that is capable of natural language processing for sentiment
analysis, I use a Bi-lateral Long-Short-Term Memory network with a convolu-
tional layer (LSTM hereafter). I based this architecture on some of the pre-
viously discussed literature. Shen and Su (Su and Shen, 2022), have a similar
network in their paper, with which they achieve good accuracy scores. There-
fore, I will follow their network design, with some alterations based on other
literature.

10

3.3.1 Architecture

The layers I use in my model are as follows;

• Embedding

• Dense

• Dropout

• Bi-Directional LSTM

• Dense

Figure 2: A visual representation of the model architecture. Starting with
Embedding, then a Dense layer. Followed by a Dropout layer and then the
Bidirectional LSTM layer. The last layer is a Dense layer again, to give the
predicted output.

The first layer, Embedding, serves as a way to make all the inputs uniform.
Here it makes all the arrays of the input sentences a length of 250 items, and it
creates an embedding dimension matrix per word of 100 by 100. With this, the
model can set weights for each of the 100 words that are the closest relations
to the target word. Using this the model is able to identify combinations of
words that have textual relations. The second layer is a fully-connected layer of
100 neurons this means that each of the 250 input layers is connected to each
of the 100 neurons. Where the weights of each connection are altered during
the training to create the most optimal activation mapping, this process creates

11

for each neuron a feature map, telling it to activate (or not) based on a certain
threshold of inputs. The activation function I choose for this is ’Softmax’.

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (1)

The Softmax activation function, equation 1, is a common activation when
dealing with multiple input structures. It works by taking as input a vector of
real values and turning it into probabilities that sum to 1. Where large values
get large probabilities and small values get small probabilities. Equation 1 shows
the formula of the Softmax activation. Where each value in the input vector is
divided by the sum of the full vector, to determine the probability of activation.
This is useful for multi-class classification, as this function helps to divide the
input layer into multiple classes (Su and Shen, 2022; Tai et al., 2015; Young
et al., 2018.

σ(z) =
1

1 + e−z
(2)

While softmax works quite well in the multi-class model it is important to
note that this activation function does not function well in the binary model.
In this model, I make use of the ’Sigmoid’ activation. Which is a nonlinear
continuous function, that outputs values between 0 and 1. This gives the prob-
ability that a node is active or not, meaning that the last layer is quite good at
determining whether the review is positive or not.

The next layer is a one-dimensional spatial dropout layer (SpatialDropout1D)
function in keras. The purpose of this layer is to randomly delete a set amount
of data with each pass of the model. The amount of data to be dropped is
determined by a set value p, for which I chose p = 0.2 This is done to prevent
the model from becoming overly focused on features that are only relevant for
select parts of the training data, i.e. overfitting. The reason I use the Spatial-
Dropout1D and not the ’regular’ dropout is that the SpatialDropout1D drops
the entire feature maps instead of the individual element. This is important in
convolutional networks as there is often a high correlation between the elements
and simply dropping the element might not be enough to prevent overfitting
(Tompson et al., 2015.

Following this layer is the Bi-Directional Long and Short Term Memory
Layer (Bi-LSTM). This layer, adapted from various literature, among which:
(T. Chen et al., 2017; Hochreiter and Schmidhuber, 1997; Su and Shen, 2022;
Tai et al., 2015), will do most of its learning by taking the input reviews and
identifying the structures that make up a negative or a positive review. This
is done by using a hidden layer that preserves the inputs that have already
passed it, in order to increase its learning efficiency. Here I choose to use a
Bi-Directional form as, contrary to a Unidirectional one, the LSTM can use
information from before and after the score, it is trying to predict. This is
quite abstract, but conceptually it will look like the following. I will use an
example provided by Kalchbrenner et al. (2014), where the target word is; ’on’.
A unidirectional LSTM will take as information:

12

”The cat sat...

This leaves a lot of open room for the model to come up with possible in-
terpretations, so we take the bi-directional approach. Which gives the following
pieces of information:

”The cat sat...”

And it takes:

”... the red mat.”

Using both the part of the sentence that comes before and what comes after
makes predicting the target easier. As it makes use of the context around the
target. The Bi-LSTM in my model functions similarly, by trying to assign
sentiment values to a target, making use of the information that comes before
and after the target value.

The output of this layer is sent to the final layer, which is a convolutional
filter layer. This layer takes all the weights of the previous layer and uses an
activation function to determine the activity of the nodes. This means that for
the multi-class model the Softmax activation function is applied to calculate
an activation probability for each of the 5 possible star labels. For the binary
model, this process is slightly different. In this variant, the sigmoid activation
function is applied to determine the probability of the final node becoming active
(i.e. a positive rating).

3.3.2 Cross validation

To train this model I use the cross-validation method. Which is a training
technique for model selection which helps to prevent overfitting by making use
of a k-fold train-test split. This is done by splitting the data into train and test
sets k number of times, to prevent the model from overfitting on a certain train
set. And then for each split training the model, and measuring its accuracy
using the corresponding test set. After this is done the scores of each fold
are averaged into the final accuracy score. To train my models I use a k-fold
validation of 10 folds, which is a commonly chosen amount in the literature
(Minaee et al., 2021). In combination with 100 epochs of training per fold. To
do this cross-validation I use 85% of the original data while reserving the other
15% for the final validation. To make sure that I test the model on data that it
has not processed during training.

3.3.3 Hardware and software

The specifications of the hardware I used to run the modelling on is as follows;

• CPU: AMD Ryzen 5800H

• GPU: Nvidea GeForce RTX 3050ti Laptop

• RAM: 16GB at 4233mHz

13

3.4 Performance metrics

After constructing the models I trained them, using the cross-validation method
described earlier. The metrics I used to evaluate the model were accuracy, loss,
recall, precision and the F1-score. Here, I will give the formula and a brief
description of each of these. Keep in mind that these scores all have a range
of [0, 1], with 1 being the maximum, as that means each predicted class is the
correct class.

Accuracy is defined by taking the number of True Positives (TP) classifica-
tions (i.e. the classification is the same as the true class) and adding the number
of True Negative (TN) classifications and dividing this by the total amount of
classifications made. Both correct, and incorrect. This is useful for giving an
overview of the models’ performance, but it is hard to tell where the model
could improve.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

One of the metrics that can give more information is precision, which is
calculated by taking the number of True Positives and dividing that by the
total number of positive classifications in the model. Therefore using both the
true and the false positives. Therefore, the precision tells us the ratio of correct
positive classifications in relation to the false negatives.

Precision =
TP

TP + FP
(4)

Closely related to precision is recall. The recall is calculated by taking the
number of True Positives and dividing this by the number of True Positives
added to the number of False Negatives. This metric gives information on the
capabilities of the model to accurately classify positives as positive, as False
Negatives should have been positive.

Recall =
TP

TP + FN
(5)

The last metric I use is the F1-score, which is the harmonic mean of both the
recall and the precision. This measure is commonly used to give an overview of
the classification capabilities of a model (Minaee et al., 2021). In the application
of this paper, I will calculate the F1-score in two ways. For the multi-class model,
I will use the weighted F1-score, as this accounts for the imbalance in the full
review data. For the binary sentiment model, I will use the standard formula,
as this is made to be used in binary classification.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(6)

14

4 Results

In this section, I will discuss the performance of both models based on their
respective performance after training the model and using a previously unused
part of the data for validation. The measures used to determine the performance
of the models have been discussed previously.

4.1 Training

After the cross-validation is finished I have the scores of the performance metrics
for each fold. In table 2 the averages of each metric are reported. The averages
of these metrics are commonly reported to give a good idea of the overall per-
formance of the trained models (Minaee et al., 2021; Su and Shen, 2022). The
average accuracy and loss of the models for each fold in the training step are
shown in Figure 3a and Figure 3b.

4.1.1 Accuracy and loss

Looking at Figure 3a There is a clear trend visible with the Binary model
performing better from the start. Both with having a higher accuracy score
and the speed with which the model improves. Of interest is that the Binary
model stops improving around fold 4, with further folds providing only marginal
improvements. This is different in the multi-class model, where the improvement
is much more gradual. This means that the model took a longer time to improve,
as the model took smaller steps. Interestingly, both models end up with similar
accuracy scores at the end of the training. These scores can be found in Table
2, with the binary model scoring 0.92 and the multi-class model scoring 0.87.

(a) Accuracy scores over the 10-fold
training period.

(b) Loss scores over the 10-fold training
period.

Figure 3: Average testing accuracy and model loss of the 10-fold cross-validation
training.

The inverse of this trend can be seen in Figure 3b, which shows the model loss
over the folds. This score is a cumulative of the errors made by the classification,
which means that a lower score is better Here, the Multi-class model starts with
a higher loss score but drops more rapidly than the Binary model. Interestingly,

15

the loss scores of both models end up very similarly. With Table 2 showing that
the Binary model has a slightly lower score; 0.56 versus 0.65 of the Multi-class
model. Thus, the Binary model outperforms the Multi-class model here too.

4.1.2 Performance metrics

After looking at the average accuracy and loss of the model, it is time to look
at the rest of the performance metrics. Looking at Table 2, it is evident that
the Binary model consistently scores high on recall, precision, and F1-score.
These scores are 0.94, 0.93, and 0.93 respectively, which means that the Binary
classification model performs well with a few wrong classifications (both false
positive and negative). These values provide evidence that this model is suited-
well for the analysis of the overall sentiment in the text.

Measure Binary Multi-class
Accuracy 0.92 0.87
Loss 0.56 0.65
Recall 0.94 0.87
Precision 0.93 0.87
F1-score 0.94 0.84

Table 2: A table reporting the average scores of the folds in the cross-validation
training step. These are computed by taking the model evaluation scores for
each fold.

Furthermore, Table 2 also contains the average metrics for the Multi-class
model. The average scores for this model are lower on all the metrics (smaller
loss is better) than the scores for the Binary model. This is to be expected, as
generally, the classification model will perform worse with each added class to
classify. Regardless, the model performs well with a score of 0.87 on both the
precision and recall and an F1-score of 0.84. In this situation, the F1-score is
not in between precision and recall, because of the skewness in the data. In
combination with the fact that this score is calculated for each class separately
and then averaged. This way of calculating the F1-score gives a better, more
complete, view of the models’ actual performance (Minaee et al., 2021).

4.2 Validation

The model averages after the cross-validation training step give a very rosy
picture of the performance of the classification capabilities for both models.
But, these are likely too positive. In this I report the performance of the models
on the validation data I set aside before the model training, making sure to use
data that the model has not been trained on at all. These values are reported
in Table 3.

As can be seen when comparing tables 2 and 3 there is a big difference
in the scores for each reported performance metric. The recall for the binary

16

Measure Binary Multi-class
Recall 0.694 0.559
Precision 0.669 0.562
F1-score (binary) 0.681 –
F1-score (weighted) – 0.559

Table 3: The final classification scores of my validation data, after the model
was trained. The F1-score is reported separately as this measure was calculated
with the weighted group sizes in the multi-class model. This makes it different
from the normal form, and therefore not directly comparable.

model drops from 0.94 to 0.69, and the precision falls from 0.93 to 0.669. A
similar trend is observed in the multi-class model. With recall going from 0.87
to 0.559, and precision declining from 0.86 to 0.562. This is a worrying trend, as
this means that there is likely some degree of overfitting in my model training.

As discussed before; overfitting means that the model trains too much on
attributes in the train data, and therefore it is not generalizable enough to use
with new data. There are other explanations that might have contributed to
the model performing worse on the validation set, but I will discuss these more
in the discussion section. Before I do that I will conclude what these results
mean for my research question in the next section.

5 Conclusion

In order to answer my research questions using my results, I will give a quick
recap of the relevant results per research question. In order to look at the ques-
tion of whether a deep learning model can be used to improve the informational
qualities of the star rating system, I refer back to the results section. Here we
see that indeed it is possible to train a deep learning model on the written re-
views. Using this it is conceivable to build a system that asks the user to first
leave a written review. Then input this review into the model, and let the model
predict a number of stars. This prediction can then be displayed as a guideline
for the customer so that they have an idea of what an appropriate amount of
stars would be based on the review they wrote. Admittedly, this is all highly
theoretical, and I will discuss some of the caveats in the discussion section. But,
I would argue that if the model predicts the same number of stars for similar
reviews then it will be successful in adding to the informational qualities of the
star-rating system.

However, this is more of a theoretical answer. The answer differs somewhat
when looking back on the results of the model tested in this thesis. As the
validation section shows that there are more steps needed to achieve a model
that is fully capable of implementation in this capacity. Looking back at the
results in Table 3, I must conclude that there are still some issues to work out.
Not least of which is the large difference in the scores reported in the validation

17

and after the training stage. Effectively, these differences mean that the trained
model is not generalizable. In other words, this means that the model will not
be capable of handing written text that is very different from the reviews that
are present in the data as of now.

This leads us to the second research question. How does the proposed LSTM
model perform on binary and multi-class sentiment classification? As reported
in the results section, both models scored high in the training stage but lost
performance in the validation. However, it becomes clear that the binary model
scores higher on every metric in the training, and loses less in validation. There-
fore, I argue that while both models are capable of doing sentiment analysis, the
model performs better when the labels are either positive or negative. This is
in line with the reviewed literature, which consistently finds that classification
performance is better for binary labels than it is for multi-label problems (Kim,
2014; Shamrat et al., 2021; Su and Shen, 2022). This does not mean that the
proposed model should not be used for the classification of star ratings, as the
nature of this problem is a multi-class problem. But, it does mean that further
optimizations are needed in order to improve the classification capability of the
model. One way that would likely increase the model performance is having
more balanced data, in particular having the data be more equally divided over
the classes.

With that, the final research question can be answered. In the results sec-
tion, it has been shown that indeed the LSTM network can be used to classify
text-based sentiments into 5 labels, where each label represents a star rating.
Especially reviewing the performance of the model after the training there is
strong evidence that the LSTM model is capable of performing well in this task.
Looking back on the results from Table 2, the model scores well on all the per-
formance metrics. The scores of the model on the precision (0.87), recall (0.87)
and the F1-score (0.84) are all close to 1.00, which is the maximum score for
each of these metrics. Based on this, I conclude that an LSTM-based model has
the potential to be of use in a text-based classification task.

6 Discussion

Overall, the performance of my model was quite good. But, when comparing it
with other models, such as the CA-LSTM (Su and Shen, 2022), it becomes clear
that it could have been better. It is however hard to compare the scores of my
model with those found in the literature because all the other models are not
trained on my data. In fact, many studies on deep learning-based approaches
to sentiment analysis use the Stanford Sentiment Treebank. Which makes these
papers convenient to compare to one another, but hard for me to compare my
model too. The solution to this seems straightforward enough, either use the
models from the literature and train them using my data. Unfortunately, this is
infeasible within the scope of this thesis, but perhaps this will be an interesting
follow-up paper.

Another point of interest is the skewness in the data. As this may have had

18

an effect on the training results of the data. The problem with this data is that
the extremely high level of high ratings versus the very low level of low ratings
makes it so that balancing the data is virtually impossible. This is easy with a
curated data set, but with real-world data, this is a problem. Of course, I have
already talked about this previously, as this was one of the main problems I
was trying to improve upon in this thesis. In review data, there will always be
some level of skewness, as this is the point of the review system where quality
is rewarded

Lastly, another issue with the data I use is that there many reviews with
no written text. Which, as previously described, I decided to remove from the
data set as there is no text to train the model with. Nor is there text to classify.
However, in real-world applications, a system must be in place to deal with
customers who do not wish to leave a written review. One option to deal with
this is to recommend a 3-star rating to all users without a written review. This is
in line with the idea that if a user does not want to leave a review they are likely
neutral about the product or service delivered (Liu, 2017). Alternatively, the
recommendation could also be the current mean stars of the product or plumber
in my case. These options could conceivably help with combating skewness, as
the customer who gets recommended to give 3 stars might be less inclined to go
for the 5 stars, but this is highly speculative and would be an interesting topic
for further research.

19

7 Bibliography

References

Bolton, G. E., Katok, E., & Ockenfels, A. (2004). How effective are electronic
reputation mechanisms? an experimental investigation. Management
science, 50 (11), 1587–1602.

Cambria, E., Poria, S., Gelbukh, A., & Thelwall, M. (2017). Sentiment analysis
is a big suitcase. IEEE Intelligent Systems, 32, 74–80. https://doi.org/
10.1109/MIS.2017.4531228

Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via
sentence type classification using bilstm-crf and cnn. Expert Systems
with Applications, 72, 221–230.

Chen, Y. (2015). Convolutional neural network for sentence classification (Mas-
ter’s thesis). University of Waterloo.

Dellarocas, C. (2003). The digitization of word of mouth: Promise and chal-
lenges of online feedback mechanisms. Management science, 49 (10),
1407–1424.

Filippas, A., Horton, J. J., & Golden, J. (2017). Reputation in the long-run.
Available at SSRN 3103688.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9 (8), 1735–1780.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neu-
ral network for modelling sentences. arXiv preprint arXiv:1404.2188.

Kim, Y. (2014). Convolutional neural networks for sentence classification. Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/
D14-1181

Liu, B. (2017). Many facets of sentiment analysis. A practical guide to sentiment
analysis (pp. 11–39). Springer.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao,
J. (2021). Deep learning–based text classification: A comprehensive re-
view. ACM Computing Surveys (CSUR), 54 (3), 1–40.

Norbutas, L., Ruiter, S., & Corten, R. (2020). Believe it when you see it: Dyadic
embeddedness and reputation effects on trust in cryptomarkets for ille-
gal drugs. Social Networks, 63, 150–161.

Shamrat, F., Chakraborty, S., Imran, M., Muna, J. N., Billah, M. M., Das,
P., & Rahman, O. (2021). Sentiment analysis on twitter tweets about
covid-19 vaccines using nlp and supervised knn classification algorithm.
Indones. J. Electr. Eng. Comput. Sci, 23 (1).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., &
Potts, C. (2013). Recursive deep models for semantic compositional-
ity over a sentiment treebank. Proceedings of the 2013 conference on
empirical methods in natural language processing, 1631–1642.

20

Su, Y., & Shen, Y. (2022). A deep learning-based sentiment classification msen-
timent classification real online consumption. Frontiers in Psychology,
1705.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic represen-
tations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075.

Teubner, T., & Glaser, F. (2018). Up or out—the dynamics of star rating scores
on airbnb.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Effi-
cient object localization using convolutional networks. Proceedings of
the IEEE conference on computer vision and pattern recognition, 648–
656.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in
deep learning based natural language processing. ieee Computational
intelligenCe magazine, 13 (3), 55–75.

Zhou, C., Sun, C., Liu, Z., & Lau, F. (2015). A c-lstm neural network for text
classification. arXiv preprint arXiv:1511.08630.

21

8 Appendices

A Data preparation

1 # Import the necessary modules

2 import pandas as pd

3 import string

4 import re

5 import stopwords

6

7

8 def main():

9 # Import the data

10 m_cols = ['Plumber_ID', 'Stars', 'Title', 'Review', 'Date',

'Reviewer_ID']↪→

11 df = pd.read_csv('loodgieter_reviews.csv', sep=',',

names=m_cols, skiprows=1, encoding='ISO-8859-1')↪→

12

13 # Transformations

14 df.dropna(subset=["Stars"], inplace=True) # Drop rows where

Stars is missing↪→

15 # Delete or not? Need literature

16 df.dropna(subset=["Review"], inplace=True) # Drop rows where

Review is missing↪→

17

18 df['Reviewer_ID'].replace(to_replace='Anoniem', # Translate

the Dutch word 'Anoniem' English↪→

19 value='Anonymous', inplace=True)

20

21 # call the function to prepare the strings

22 df_prepped = prepare_strings(df, "Review")

23 print(df_prepped.head())

24

25 # Create a clean dataset

26 df_clean = df_prepped[['Date', 'Stars', 'Review',

'rev_no_punc_split_stop']]↪→

27 df_clean.rename(columns={'rev_no_punc_split_stop':

'Review_Clean'}, inplace=True) #

.reset_index(inplace=True)

↪→

↪→

28

29 # Add a binary sentiment label that is positve or negative

with 5 stars being 1 (positive) and all else being 0 (↪→

30 # negative)

31 df_clean['Sentiments_Binary'] =

df_clean['Stars'].apply(lambda x: 0 if x <= 4 else 1)↪→

22

32 print(df_clean['Review_Clean'][4])

33

34 # Save the cleaned dataset as plumber_clean

35 df_clean.to_csv('plumber_clean.csv')

36

37

38 def prepare_strings(data_frame, target_column):

39 # Step 0: initialize the data

40 df = data_frame

41 column = str(target_column)

42

43 # Step 1: remove all punctuation

44 df['rev_no_punc'] = df[column].apply(lambda x:

remove_punctuation(x))↪→

45

46 # Step 2: Tokenize and convert into lowercase

47 df['rev_no_punc_split'] = df['rev_no_punc'].apply(lambda x:

tokenization(x.lower()))↪→

48

49 # Step 3: Remove stopwords

50 df['rev_no_punc_split_stop'] =

df['rev_no_punc_split'].apply(lambda x:

remove_stopwords(x))

↪→

↪→

51

52 # Step 5: reclassify the stars to 5 labels

53 df['Stars'] = df['Stars'].apply(lambda x: round_stars(x))

54

55 return df

56

57

58 def remove_punctuation(text): # Function to remove all

punctuation in a string↪→

59 no_punct = [words for words in text if words not in

string.punctuation]↪→

60 words_wo_punct = ''.join(no_punct)

61 return words_wo_punct

62

63

64 def tokenization(text): # Function to tokenize the words

65 split = re.split("\W+", text)

66 return split

67

68

69 def remove_stopwords(text): # Function to remove the

stopwords↪→

70 # nltk.download() Use this to download the stopwords package

23

71 stop_words = stopwords.get_stopwords("dutch")

72 text = [word for word in text if word not in stop_words]

73 return text

74

75

76 def round_stars(star): # Function to round down the star-ratings

77 x = star

78 if x <= 1.5:

79 star = 1

80 return star

81 elif x in [2.5, 2.0]:

82 star = 2

83 return star

84 elif x in [3.5, 3.0]:

85 star = 3

86 return star

87 elif x in [4.5, 4.0]:

88 star = 4

89 return star

90 else:

91 star = 5

92 return star

93

94

95 if __name__ == "__main__":

96 main()

24

B Models

1 # Import the modules

2

3 import numpy as np

4 import pandas as pd

5 import tensorflow as tf

6 import tensorflow_addons as tfa

7 import visualkeras

8 from keras.utils import np_utils

9 from keras_preprocessing.sequence import pad_sequences

10 from keras_preprocessing.text import Tokenizer

11 from keras.models import Sequential

12 from keras.layers import Dense, Embedding, SpatialDropout1D,

CuDNNLSTM↪→

13 from sklearn.metrics import recall_score, precision_score,

f1_score↪→

14 from sklearn.model_selection import KFold, train_test_split

15 from sklearn.preprocessing import LabelEncoder

16 from keras.metrics import Precision, Recall, categorical_accuracy

17

18

19 def main():

20 # Import the data

21 df = pd.read_csv('plumber_clean.csv')

22

23 physical_device = tf.config.list_physical_devices("GPU")

24 tf.config.experimental.set_memory_growth(physical_device[0],

True)↪→

25

26 # Call the functions

27 # Get the data, and save to the required variables

28 x, y_sentiment, y_stars = get_data(df)

29 # Get the multi-class model

30 model_stars = get_model_multiclass(x)

31 # Get the binary model

32 model_sentiments = get_model_binary(x)

33 # Use the data and the mode to train and validate the model.

34 stars_recall, stars_precision, stars_f1_score =

cross_validation(model_stars, x, y_stars, 10, 'stars')↪→

35 senti_recall, senti_precision, senti_f1_score =

cross_validation(model_sentiments, x, y_sentiment, 10,

'sentiments')

↪→

↪→

36

37 # Print the performance metrics of the runs

38 print('___')

25

39 print(f'The validation values for the multiclass model

are:\n'↪→

40 f'Recall: {stars_recall}\n'

41 f'Precision: {stars_precision}\n'

42 f'F1 score: {stars_f1_score}')

43 print('___')

44 print(f'The validation values for the sentiment class model

are:\n'↪→

45 f'Recall: {senti_recall}\n'

46 f'Precision: {senti_precision}\n'

47 f'F1 score: {senti_f1_score}')

48 print('___')

49

50

51 def get_data(data):

52 df = data

53 max_words = 50000

54 max_seq_len = 250

55

56 # Tokenize the strings

57 tokenizer = Tokenizer(num_words=max_words)

58 tokenizer.fit_on_texts(df['Review_Clean'].values)

59 word_index = tokenizer.word_index

60 print('Found %s unique words.' % len(word_index))

61

62 # Truncate and pad sequences to make input all the same

lengths↪→

63 X = tokenizer.texts_to_sequences(df['Review_Clean'].values)

64 X = pad_sequences(X, maxlen=max_seq_len)

65 print('Tensor data shape: ', X.shape)

66

67 # Convert the star values to label variables

68 encoder_stars = LabelEncoder()

69 encoder_stars.fit(df['Stars'])

70 encoded_y_stars = encoder_stars.transform(df['Stars'])

71 y_stars = np_utils.to_categorical(encoded_y_stars)

72

73 # Covert the sentiment variables

74 encoder_sent = LabelEncoder()

75 encoder_sent.fit(df["Sentiments_Binary"])

76 y_sentiment = encoder_sent.transform(df['Sentiments_Binary'])

77

78 return [X, y_sentiment, y_stars]

79

80

81 def get_model_multiclass(x):

26

82 max_words = 50000

83 embed_dim = 100

84 X = x

85 f1score = tfa.metrics.F1Score(average='weighted',

num_classes=5)↪→

86

87 # Construct the model

88 model_multi = Sequential()

89 model_multi.add(Embedding(max_words, embed_dim,

input_length=X.shape[1]))↪→

90 model_multi.add(Dense(100, "softmax"))

91 model_multi.add(SpatialDropout1D(0.2))

92 model_binary.add(tf.keras.layers.Bidirectional(CuDNNLSTM(100,

93

recurrent_initializer='orthogonal',

kernel_initializer='glorot_uniform',

bias_initializer='zeros')))

↪→

↪→

↪→

94 model_multi.add(Dense(5, activation='softmax'))

95

96 model_multi.summary()

97

98 # Compile the model

99 model_multi.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=["accuracy",↪→

100 Precision(),

101 Recall(),

102 f1score,

103 categorical_accuracy])

104 # Save the visualization

105 visualkeras.layered_view(model_multi,

to_file='Multiclass_model.png', legend=True, max_xy=500,

scale_z=10,

↪→

↪→

106 draw_funnel=True, spacing=10)

107

108 return model_multi

109

110

111 def get_model_binary(x):

112 max_words = 50000

113 embed_dim = 100

114 X = x

115 # Function to calculate the F1-score

116 f1score = tfa.metrics.F1Score(average='none', num_classes=1)

117

118 # Construct the model

119 model_binary = Sequential()

27

120 model_binary.add(Embedding(max_words, embed_dim,

input_length=X.shape[1]))↪→

121 model_binary.add(Dense(100, "relu"))

122 model_binary.add(SpatialDropout1D(0.2))

123 model_binary.add(tf.keras.layers.Bidirectional(CuDNNLSTM(100,

124

recurrent_initializer='orthogonal',

kernel_initializer='glorot_uniform',

bias_initializer='zeros')))

↪→

↪→

↪→

125 model_binary.add(Dense(1, activation='sigmoid'))

126

127 model_binary.summary()

128

129 # Compile the model

130 model_binary.compile(loss='binary_crossentropy',

optimizer='adam', metrics=["accuracy",↪→

131 Precision(),

132 Recall(),

133 f1score,

134 tf.keras.metrics.BinaryAccuracy()])

135

136 # Save the visualization

137 visualkeras.layered_view(model_binary,

to_file='Binary_model.png', legend=True, max_xy=500,

scale_z=10,

↪→

↪→

138 draw_funnel=True, spacing=10)

139

140 return model_binary

141

142

143 def cross_validation(model, X, y, k_folds=10, model_name=""):

144 # Get and set the variables

145 # Split the data into train and validation

146 X_train, X_val, y_train, y_val = train_test_split(X, y,

147

test_size=0.15,

random_state=111,

stratify=y)

↪→

↪→

↪→

148 inputs = X_train

149 targets = y_train

150 batch_size = 64

151 epochs = 100

152 verbosity = 1

153

154 # Define the K-fold Cross Validator

155 kfold = KFold(n_splits=k_folds, shuffle=True)

28

156

157 # K-fold Cross Validation model evaluation

158 # Define per-fold score containers

159 acc_per_fold = []

160 loss_per_fold = []

161 pre_per_fold = []

162 rec_per_fold = []

163 f1_per_fold = []

164 cat_bin_acc_fold = []

165 data_dict = {"Accuracy": acc_per_fold,

166 "Loss": loss_per_fold,

167 "Precision": pre_per_fold,

168 "Recall": rec_per_fold,

169 "F1 Score": f1_per_fold,

170 "Categorical_Binary accuracy": cat_bin_acc_fold}

171

172 fold_no = 1 # Set fold number to 1

173 # Begin cross-validation

174 for train, test in kfold.split(inputs, targets):

175 model = model

176

177 # Generate a print

178

print('--')↪→

179 print(f'Training for fold {fold_no} ...')

180

181 # Fit data to model

182 history = model.fit(inputs[train], targets[train],

183 batch_size=batch_size,

184 epochs=epochs,

185 verbose=verbosity)

186

187 # Generate generalization metrics

188 scores = model.evaluate(inputs[test], targets[test],

verbose=0)↪→

189 print(

190 f'Score for fold {fold_no}: {model.metrics_names[0]}

of {scores[0]}; {model.metrics_names[1]} of

{scores[1] * 100}%')

↪→

↪→

191

192 loss_per_fold.append(round(scores[0], 3))

193 acc_per_fold.append(round(scores[1], 3))

194 pre_per_fold.append(round(scores[2], 3))

195 rec_per_fold.append(round(scores[3], 3))

196 f1_per_fold.append(round(scores[4], 3))

197 cat_bin_acc_fold.append(round(scores[5], 3))

29

198

199 # Increase fold number

200 fold_no = fold_no + 1

201

202 # == Provide average scores ==

203

print('--')↪→

204 print('Score per fold')

205 for i in range(0, len(acc_per_fold)):

206

print('--')↪→

207 print(f'> Fold {i + 1} - Loss: {loss_per_fold[i]} -

Accuracy: {acc_per_fold[i]}%')↪→

208 if i == (len(acc_per_fold) - 1):

209 print(

210 f'Values:\n'

211 f'Precision: {pre_per_fold[i]}\n'

212 f'Recall: {rec_per_fold[i]}\n'

213 f'F1 score: {f1_per_fold[i]}\n'

214 f'Categorical accuracy: {cat_bin_acc_fold[i]}\n'

215)

216 values = pd.DataFrame(data_dict)

217 values.to_csv(f"{model_name}_values.csv")

218

219

print('--')↪→

220 print('Average scores for all folds:')

221 print(f'> Accuracy: {np.mean(acc_per_fold)} (+-

{np.std(acc_per_fold)})')↪→

222 print(f'> Loss: {np.mean(loss_per_fold)}\n'

223 f'> Precision: {np.mean(pre_per_fold)}\n'

224 f'> Recall: {np.mean(rec_per_fold)}\n'

225 f'> F1 Score: {np.mean(f1_per_fold)}')

226

print('--')↪→

227

228 # Use the validation data to generate prediction

229 # Use that prediction to calculate the model performance

metrics↪→

230 if model_name == 'stars':

231 y_pred = model.predict(X_val)

232 rec_score = recall_score(y_pred=np.argmax(y_pred,

axis=1), y_true=np.argmax(y_val, axis=1),↪→

233 average='weighted')

234 pre_score = precision_score(y_pred=np.argmax(y_pred,

axis=1), y_true=np.argmax(y_val, axis=1),↪→

30

235 average='weighted')

236 f1_measure = f1_score(y_pred=np.argmax(y_pred, axis=1),

y_true=np.argmax(y_val, axis=1),↪→

237 average='weighted')

238

239 print(f'the recall score for the {model_name}')

240 print(f'recall: {rec_score}')

241 print(f'precision: {pre_score}')

242 print(f'F1 score: {f1_measure}')

243

244 return [rec_score, pre_score, f1_measure]

245

246 else:

247 y_pred = model.predict(X_val)

248 y_pred = (y_pred > 0.5)

249 rec_score = recall_score(y_pred=y_pred, y_true=y_val,

250 average='binary')

251 pre_score = precision_score(y_pred=y_pred, y_true=y_val,

252 average='binary')

253 f1_measure = f1_score(y_pred=y_pred, y_true=y_val,

254 average='binary')

255

256 print(f'the recall score for the {model_name}')

257 print(f'recall: {rec_score}')

258 print(f'precision: {pre_score}')

259 print(f'F1 score: {f1_measure}')

260

261 return [rec_score, pre_score, f1_measure]

262

263

264 if __name__ == "__main__":

265 main()

31

C Data exploration, plots and miscellaneous

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4

5 # Load the cleaned dataset, and the original data

6 df_clean = pd.read_csv('plumber_clean.csv')

7 m_cols = ['Plumber_ID', 'Stars', 'Title', 'Review', 'Date',

'Reviewer_ID']↪→

8 df_original = pd.read_csv('loodgieter_reviews.csv', sep=',',

names=m_cols, skiprows=1, encoding='ISO-8859-1')↪→

9 df_clean.head()

10

11 # Values of interest for Data Exploration

12 print(f'the size of the original dataset is: {len(df_original)}')

13 print(f'the size of the clean dataset is: {len(df_clean)}')

14 column = df_original['Review'].isnull().sum()

15 print(f'the number of ratings with missing stars is: {column}')

16 print(f'percentage missing is: {column / len(df_original) *

100}%')↪→

17 print(f'the skwewness is: {df_clean.Stars.skew()}')

18 print(df_original.Stars.describe())

19

20 # Load the datasets of the cross-validation steps

21 df_senti = pd.read_csv("sentiments_values.csv")

22 df_senti['F1 Score'] = round(

23 2 * ((df_senti['Precision'] * df_senti['Recall']) /

(df_senti['Precision'] + df_senti['Recall'])), 3)↪→

24 df_senti['Folds'] = df_senti['Unnamed: 0'] + 1

25 df_senti.head(10)

26

27 df_stars = pd.read_csv("stars_values.csv")

28 df_stars['Folds'] = df_stars['Unnamed: 0'] + 1

29 df_stars.head(10)

30

31 # Mean of the cross-validation folds

32 print(np.mean(df_stars))

33 print(np.mean(df_senti))

34

35 # Plots of the accuracy and loss of the training

36 # Variables

37 acc_stars = df_stars['Accuracy']

38 acc_senti = df_senti['Accuracy']

39 los_stars = df_stars['Loss']

40 los_senti = df_senti['Loss']

32

41 folds = df_senti['Folds']

42

43 acc = plt.figure(figsize=(6, 4))

44 plt.plot()

45 # Accuracy subplot

46 plt.suptitle('Model Accuracy')

47 plt.plot(folds, acc_stars, 'k', label='Muliclass')

48 plt.plot(folds, acc_senti, 'k-.', label='Binary')

49 plt.legend()

50 plt.xlabel('Fold')

51 plt.xticks(folds)

52 plt.ylabel('Accuracy')

53 acc.savefig('fold_accuracy.png')

54 # Loss subplot

55

56 loss = plt.figure(figsize=(6, 4))

57 plt.plot()

58 plt.suptitle('Model Loss ')

59 plt.plot(folds, los_senti, 'k', label='Multiclass')

60 plt.plot(folds, los_stars, 'k-.', label='Binary')

61 plt.legend()

62 plt.xlabel('Fold')

63 plt.xticks(folds)

64 plt.ylabel('Loss')

65 loss.savefig('fold_loss.png')

66

67 acc.show()

68

69 # Figure that contains all 3 histograms

70 fig, (star_half, star, sent) = plt.subplots(3, 1, figsize=(10,

10), sharex=True)↪→

71

72 fig.suptitle('Distribution of the rating values')

73 star.set_title('Star values after cleaning')

74 star.hist(df_clean.Stars, color='k', density=False, bins=10,

edgecolor='white')↪→

75

76 sent.set_title('Sentiment values')

77 sent.hist(df_clean.Sentiments_Binary, color='k', density=False,

bins=5, edgecolor='white')↪→

78

79 star_half.set_title('Star values before cleaning')

80 star_half.hist(df_original.Stars, color='k', density=False,

bins=10, edgecolor='white')↪→

81

82 fig.show()

33

83

84 # Create histogram of data: Change values to fit the needed value

85 fig = plt.figure()

86 plt.plot(figsize=(10, 10))

87 plt.suptitle('Sentiment values')

88 plt.hist(df_clean.Sentiments_Binary, color='k', density=False,

bins=2, edgecolor='white')↪→

89 plt.xticks([0, 1])

90 plt.show()

91 fig.savefig('hist_sentiment.png')

92

93 # Sentiment

94 # Average scores for all folds:

95 # > Accuracy: 0.8703999999999998 (+- 0.11123147036697843)

96 # > Loss: 0.6660999999999999

97

98 # Star Rating

99 # Average scores for all folds:

100 # > Accuracy: 0.8846 (+- 0.12261745389625411)

101 # > Loss: 0.5745999999999999

34

