
Automatic Grading of CITO Mathematics Tests:

Multiple Choice Classification

Arend-Jan Tissing

Student number: 7642245

Date: July 1, 2022

UU supervisors:
First supervisor:
Prof. dr. Arno Siebes
Second examiner:
Dr. Thijs van Ommen

CITO supervisors:
First supervisor:
Tjeerd Hans Terpstra
Second supervisor:
Laura Kolbe

MSc Applied Data Science
Utrecht University

Abstract

This thesis attempts to discover whether it is possible to do automatic
grading of CITO mathematics tests using Optical Character Recognition
(OCR) methods, among others. It is part of a cooperation between three
students, where this thesis focuses on the extraction and labeling of ques-
tions, as well as classifying the multiple choice questions. It turns out
that with the methods discussed in this thesis, it is not possible to ex-
tract questions and classify multiple choice questions with high accuracy.
Also, there are some robustness concerns discussed in this thesis. In this
research, the classification of multiple choice questions turns out to be
most successful with a convolving measure of dissimilarity as defined in
this paper, in combination with a decision tree classifier, to an accuracy
of 99.49%. However, due to an accuracy of the preprocessing of 91.14%,
the accuracy of the total process is insufficient to be applicable, since it
is 90.68%. In conclusion, it is not advised for CITO to implement the
methods discussed in this research for the automatic grading of multiple
choice questions.

1

Contents

1 Introduction 3
1.1 Motivation and context . 3
1.2 Literature overview . 3
1.3 Research question and task division 4

2 Data 6
2.1 Obtaining the data . 6
2.2 Data preparation . 6

2.2.1 Student details . 6
2.2.2 Selecting the separate questions 6
2.2.3 Improving the question selection 9
2.2.4 Locating the answer line 11

2.3 Ethical and privacy considerations for the data 12

3 Methods 14
3.1 Translation of the research question to a data science problem . . 14
3.2 Selection of methods . 14

3.2.1 Labeling . 14
3.2.2 Tesseract method . 16
3.2.3 Convolving measure of dissimilarity method 17
3.2.4 Tree based methods . 22

4 Results 25
4.1 Tesseract method . 25
4.2 Convolving measure of dissimilarity with tree based methods . . 26

4.2.1 Decision Tree Classifier 26
4.2.2 Random Forest Classifier 27

5 Conclusion and Discussion 28
5.1 Tesseract method . 28
5.2 Convolving measure of dissimilarity with tree based methods . . 28
5.3 Performance multiple choice classification 29
5.4 Answer to the data science problem 30
5.5 Answer to the research question 31
5.6 Implications for the proper domain settings 31
5.7 Ethical considerations . 31
5.8 Additional discussions . 32

A Appendix: Decision tree figure 37

B Appendix: Logistic regression performance 38

C Appendix: Python scripts 39

2

1 Introduction

1.1 Motivation and context

In the field of data science, automatically scanning documents is one of the tech-
niques that can automate manual inspection processes. One of these processes
that could be improved in such a way, is the scanning of tests. CITO, a Dutch
organisation that develops and distributes tests and exams, has requested to
see whether it is possible to automate the process of grading mathematics tests.
These tests are made for primary school students and are used as practice tests,
to monitor the education level of students in general. However, if automating
such tests turns out to be succesfull, the decision could be made to extend this
to other mathematics tests for students.

These tests consist of two types of questions: open and multiple choice. Open
questions consist of one answer line, on which a number should be written by
the student. Multiple choice questions consist of answers A to D, of which the
chosen letter should be encircled. Lastly, there is an area for drafts on the right
of the page, which should be disregarded.

The problem at hand has a few obvious challenge. These challenges are
recognising the location of the answer on the scanned page, finding which ques-
tion numbers the answers belong to, where it is possible that multiple questions
are on one page, and lastly recognising the handwriting or encircled letter to see
what answer is given. With this last point, a challenge may be that handwritings
are not always so clear, especially when belonging to children.

1.2 Literature overview

On the topic of scanning documents, a lot of literature has been written, even
though it remains to be a challenging subject. This literature can of course also
be applied to mathematics tests.

For extracting separate questions, the computer vision library called OpenCV
Itseez [2022] can be used, together with Tesseract Hegghammer [2021]. Then,
YOLOv5 can be useful to extract the answer line, as it is known to be used
for extracting regions of text from images, as described by Prajwal et al. [2019].
Lastly, there are the challenges of recognising handwritten numbers for the open
questions and recognising the encircled letters for the multiple choice questions.

For the open questions, a well-known solution that is known to work rel-
atively well for these types of problems, is the use of Convolutional Neural
Networks (CNN). This is described by Prajwal et al. [2019], among others, to
achieve an accuracy of over 99% on testing data. However, there are more ap-
proaches that are interesting to consider and to compare. For example, much
simpler algorithms such as K-nearest neighbours [Babu et al., 2014], Random

3

Forests [Bernard et al., 2007] and Support Vector Machines [Tuba et al., 2016]
are other valid approaches that could be considered. When looking further
in these handwritten digit recognition algorithms, it is to be expected that the
CNN is superior to other methods, as it has a much lower error rate in literature.
All other algorithms seem to have troubles working in more than 95% of the
cases, while the CNN has the potential to reach 99.87% accuracy on clean data,
as described by Prajwal et al. [2019]. However, it interesting to investigate this
further in the context of this research, where the digits are produced by children.

For recognising multiple choice questions, there are usually simpler methods
required, as the letter in the multiple choice box should be recognised. One
well-known method that is able to recognise such letters is the existing OCR
model Tesseract [Hegghammer, 2021]. However, there of course many more op-
tions, which is why this research will also explore other possibilities to recognise
multiple choice answers.

1.3 Research question and task division

Based on the question presented by CITO, the research question that should be
answered is stated as follows.

How should CITO approach automatically scanning mathematics tests and
is this approach reliable enough to implement in practice?

This question is researched in a team of three students, each with their own
focus. However, there is overlap between the topics and the preprocessing is
done only once, to generate one method of extracting the answers. Once this is
done, the team members individually tackle the problem of either recognising
the numbers or classifying the multiple choice questions. For this, the methods
are divided as follows, to ensure that multiple approaches are explored. This
should generate at least one method that is a good benchmark for CITO to see
whether this product is viable.

This thesis covers the following parts.

• Extracting the student information, separate questions and question num-
bers.

• Classifying multiple choice questions.

When extracting the questions, of course it is still necessary to recognise
where on the page the actual answer is written. Recognising these locations
of the question lines and encircled letters from the individual questions can be
found in Schreurs [2022], a thesis written in the same research team. Classifica-
tion of the handwritten open question answers are also not part of this thesis.
For the methods and corresponding results for these questions, one would have
to consult the theses Klopper [2022] and Schreurs [2022]. For this reason, this

4

part of the research question is not answered in this thesis and therefore the
only focuses of this research are on the initial extraction of questions and the
classification of multiple choice questions. Any steps necessary for the processes
in this research that are performed by the other team members are briefly ex-
plained in this research as well. However, for a thorough explanation, one would
have to consult the other theses [Schreurs, 2022, Klopper, 2022].

5

2 Data

2.1 Obtaining the data

The data consists of 73 scans of tests, where each test contains 15 pages and a
total of 30 questions. 10 of these questions are multiple choice, the remaining
20 are open questions. This data was scanned by CITO and delivered into pdf
format. The scans are in black and white. During the process of obtaining this
data, it turned out that the recognising of numbers required a higher resolu-
tions, since the pictures of numbers were rather noisy.

After obtaining the files in higher resolution, these are converted to jpg image
files and structured into separate directories to access them one by one. The
quality of these images is 600 dots per inch (dpi), which is high enough for the
purpose of this research, and the scanning quality is consistent.

2.2 Data preparation

2.2.1 Student details

On the first page of all tests, the student information is given. To be able to
automatically link a test to a student, a unique identifier should be extracted
from the page. For this, the student number and school number are chosen, since
there are no two students in the same school having the same student number.
The process of extracting these numbers is done using Tesseract. This method
works in most cases where the student information is available, but in case the
method is unable to recognise these numbers or in case this information is not
on the page, then the method will output ‘unknown’, after which a manual
inspection can be done by the teacher. It would also be possible to link the
observed student numbers to an existing list of student numbers, to see whether
every student number actually represents a student or whether an error was
made.

2.2.2 Selecting the separate questions

In handling the questions, the first step that is taken, is to separate the ques-
tions from each other and place them on a separate page. This is convenient,
because this means that there is only one answer that should be found per page
and that it is immediately clear to which question the answer belongs.

To split the questions, the following approach was taken. Since any ques-
tion has a question number on the left, this allows for easy recognition of the
starting locations of any new questions. The approach described below relies
heavily on OpenCV Itseez [2022], an open source computer vision library that
allows for extracting information about the shapes and structures present in the
pixels, which can be useful for tackling this problem. OpenCV images are stored
as NumPy arrays, which allows for fast computations. For these reasons, this

6

method is used for the extraction of questions. The following steps are taken to
split using the question numbers.

1. Extract the left bar. Careful inspection showed that taking the left 17%
of the page contains all question numbers and no extra noise. This part
is extracted, as only the vertical coordinates are required to split the
questions, together with the question numbers themselves.

2. Set a binary threshold of 100 out of 255 to create an image of only black
and white, where all gray is, depending on its intensity, is converted to
either black or white. This means that all values below 100 are set to 0
and all values above 100 are set to 255. Careful inspection has shown this
to be an appropriate threshold that does not make the numbers disappear,
while removing any noise.

3. Erode the image, to obtain blocks for every individual question. This is
shown in for example Figure 1a. As explained by the official OpenCV
documentation [Itseez, 2022], eroding an image means taking the mini-
mum value across an area that is specified using a shifting kernel matrix,
which means that when eroding the image, black areas are expanded. For
this case, a 9x9 square kernel consisting of ones is used. This process is
repeated for a total of 8 iterations. This is useful to create one larger box
around the number. The 9x9 size of the kernel matrix and the 8 iterations
are not exactly required, as the goal is simply to create a box around the
number, but careful inspection has shown that numbers much smaller or
larger lead to either images where the box does not cover the entire image,
or to a box that far exceeds the limits of the individual question number.

4. Determine the coordinates around the eroded block to be able to ex-
tract a cropped image, as shown in for example Figure 1b. This is done
with OpenCV’s findContours function, which is performed on the in-
verse of the eroded image, as the function detects white blocks. There
are two settings selected in this function. First of all the mode is set
to RETR_EXTERNAL. This is an indication that no smaller contours within
contours should be returned. Although this will not have much of an
influence, due to the nature of question numbers, it is clear that any sub-
contours would be noise. Second, for the method, CHAIN_APPROX_NONE
is selected. This simply means that the entire contour is stored, instead
of only the boundary points. However, choosing a different setting will
not have a large influence on the result, as the only thing of interest is
the bounding rectangle, as seen in the following step. Next to hierarchy
information, which will not be used here, the result of this function is a
list containing all contours around the blocks obtained from the erosion.
The following steps are performed for each contour on a page, by iteration
using a for loop. It should be noted that all information of this function
and its settings are taken from Itseez [2022].

7

5. Using each contour, the boundingRect [Itseez, 2022] function is used, to
find the smallest horizontal rectangle around the contour, which indicates
the coordinates of a rectangle around the question number and is used for
the extraction of this number.

6. There are some issues with the numbers, mostly visible in Figure 1h. To
solve this, small horizontal white stripes through the number should be
fixed. This is done using OpenCV’s morphologyEx function. According to
the OpenCV documentation Itseez [2022], this can be interpreted as doing
an erosion, followed by a dilution (which is the opposite of the erosion). In
other words, first black areas are expanded, after which they are shrunk.
When doing this expansion and shrinking vertically, this means that the
horizontal lines are filled up, after which everything is decreased to its
normal size. Since the horizontal gaps have closed in the expansion, these
horizontal white lines cease to exist. They will then not reappear in the
dilution phase, as they are no longer on the outsides of the shapes. The
result is that small horizontal gaps are closed. To achieve this vertical
expansion and shrinking, the kernel matrix consists of only a vertical line,
as the objective is to expand and shrink vertically, to only solve these
horizontal lines. This is done to avoid closing vertical white lines that
should not be closed. Also, the kernel is only of size 3x3, as larger sizes
could cause closing larger vertical gaps that are actually meant to be in
the number, while this size turns out to be large enough to fix the errors
in the scans. The order of performing the erosion and the dilution, is done
by setting the operation to be MORPH_OPEN. Using different settings would
only be used when closing for example black stripes in the numbers. The
result of this correction of the image can be seen in for example Figure 1i.

7. The image of the question number should be clear at this point, therefore
the number is recognised using Tesseract, an program for Optical Charac-
ter Recognition (OCR). The following configuration is used to recognise
single line answers only containing 0 to 9:

config = ’-c tessedit_char_whitelist=0123456789 --psm 7’.

Then, the confidence level is set to 20, where lower means a higher cer-
tainty and the confidence is on a scale from 0 to 100. In the Python script,
as can be seen in Appendix C, this is indicated as a threshold of 0.8. This
is done by testing out multiple thresholds to minimise the number of mis-
classifications. The result is that less question numbers are recognised,
but also that less incorrect classifications are done. This obviously still
causes issues, but this is solved in Section 2.2.3.

8. Lastly, using the coordinates of the observed question numbers, the images
are split up 130 pixels above the question numbers, where this specific
number was chosen by carefully inspecting the cutoffs at multiple tests.

8

This ensures that no answer lines are cut off if a student has a large
handwriting. In case no number is found, no cutoff is done, since the area
is then considered to be noise. These separate questions are all saved in
a separate image, so that they can be treated separately and the found
question number is stored.

(a) Eroded 1 (b) Cropped 1 (c) Corrected 1

(d) Eroded 2 (e) Cropped 2 (f) Corrected 2

(g) Eroded 3 (h) Cropped 3 (i) Corrected 3

Figure 1: Question numbers from left to right: eroded image, cropped image,
corrected image

2.2.3 Improving the question selection

Even though the questions are mostly recognised correctly, there are some issues
with this procedure. Most tests contain at least one number where a question
is recognised incorrectly. This is an issue that also impacts the other questions.
Consider the case where two questions are on an image. If the second question

9

is not recognised to be a question for example, then the image is not cut off.
The result of this is that question 2 is not in the list of questions, but also that
question 1 suddenly has two questions on the page, as no cut-off happened. This
gives difficulties further along the processing stream.

Since this problem occurs too frequent to be acceptable as an error margin,
the following solution is used. A condition for this solution is that all tests
in one batch of tests have the same layout, so that no two different types of
tests are processed at once. This is not ideal, since it makes the solution less
flexible. However, it is not much of an issue, as CITO can choose to do so when
processing tests. Also, multiple tests are required to make the process work, so
scanning an individual test would not work with this approach.

Then, the following process is performed. All tests are processed in one
batch to determine the coordinates of the cutoffs between questions, before ac-
tually cutting off the questions on an individual basis. All these coordinates
are attached to their respective question number. Then, iterate over all tests
to see whether the question number is a valid set. This is defined as follows: if
there are 30 question numbers found, then all numbers from 1 to 30 should be
present. After removing the sets that are not valid, a set of tests is remaining,
all containing a valid set of question numbers. To avoid a scenario where the
last number is missed (in the case of 30 questions, if question 30 is missed, then
the remaining questions 1 to 29 still form a valid question set), a majority vote
is taken on which valid question set is most present. In this program, when
iterating over all tests, if the program finds at least 5 tests that have the same
valid question list and if this is indeed the majority question list, then this is
chosen to be the correct one. An issue that one could think of is the theoretical
scenario where all last numbers are difficult to read, but this is assumed to be
rather unlikely.

In the last step, using these chosen question lists with their attached vertical
separation coordinates, the coordinates are averaged per question. In this way, a
good separation should be found that should work in almost all cases, especially
given the consistent quality of the scans. To give some indication of how well this
separation performs, a manual inspection of the first ten tests was done, giving
300 questions, of which 100 are multiple choice. In all cases, the answer is on the
page and can be easily identified when classifying by hand, so all the necessary
information should be on there. In two of the ten tests, the cutoff sometimes
goes slightly through the answer in one or a few open questions, as they have a
rather large handwriting. However, when taking another cutoff location, there
are larger issues such as having the multiple choice answer completely at the
wrong page, so it does seem that this cutoff is the ideal balance.

10

2.2.4 Locating the answer line

Using YOLOv5, the answer is located. This model was trained as described by
Schreurs [2022], which is why it is further elaborated in that thesis. The model
extracts the images of the handwritten answers, which can be uses for further
processing. The resulting images are shown for a multiple choice question and
an open question in Figure 2, of which the multiple choice question is most
relevant for the purpose of this research.

(a) Multiple choice question
(b) Open question

Figure 2: Example of an extracted multiple choice question and open question
answer.

It is important to discuss how accurate these results are. In Schreurs [2022],
a different metric of accuracy is used, as that is specifically designed to look at
the quality of the cutouts. This metric is not useful for the purpose of this re-
search. For this thesis, as it focuses on multiple choice questions, it is important
to know how many of the cutouts actually contain the letter that the student
meant to give as an answer, from A to D. It should be noted that when deter-
mining this, in the settings of YOLOv5, the option is selected to only extract
the output with the highest assigned probability. Further notes on that choice
can be found in Section 5.3.

Most errors being made are due to mistakes of the student, for example
when they circle the number after the letter, instead of the letter from A to D
themselves. Other cases are when a student crossed out an answer, as it is then
harder to recognise for the model. Also, there are cases when there are multiple
letters from A to D on the cropped image, which is also considered to be an
incorrect classification. In classifying mistakes, four categories are used. These
are found in Table 1, together with their counts. It should be noted that this
check for mistakes was only done on all the multiple choice questions that the
model was not trained on, which is the testing data.

Note here that the categories ‘Correctly identified’ and ‘Missing answer cor-
rectly identified’ are the two categories that indicate the model worked as ex-

11

Category Count
Correctly identified 596
Incorrectly identified 36
Missing answer correctly identified 42
Incorrectly no answer identified 26

Table 1: Counts indicating whether answers were correctly found on the question
images.

pected, the other categories indicate that the model has made a mistake. For
that reason, the accuracy can be calculated as follows.

accuracy =
596 + 42

596 + 42 + 36 + 26
= 0.9114 (1)

In Equation 1, it can be seen that the accuracy of YOLOv5 for the multiple
choice questions is 91.14%. In a later stage, this accuracy can be multiplied with
the accuracy of multiple choice classification method, to obtain an accuracy for
the full process.

2.3 Ethical and privacy considerations for the data

Specifically looking at ethical and privacy considerations for the data, it is im-
portant to realise the consequences of faulty data. If for example by a machine
error the scans are useless, the methods applied should ideally be able to realise
this. The outcome of a test, and specifically final tests such as the ones that
CITO takes from students, can be very influential for a student’s future. For
that reason, CITO should be very hesitant to implement a system that comes
without safeguards for faulty data. It should be noted that this specific test is
used to determine the overall level of students in the Netherlands, which means
that the results of this test would not influence a student’s future. However,
this thesis does attempt to show a proof of concept that could be applied on
similar mathematics tests in general, so any ethical issues should still be kept
into consideration.

In this research, an optimal scanning quality is assumed, as provided by
CITO in the current state. For that reason, these safeguards as mentioned be-
fore are not implemented and therefore caution is needed when considering to
implement the methods described in this research.

Lastly, on the contents of this report, no full example tests are shown. This
is both for privacy issues, as the tests were made by real students, as well as to
prevent the tests from spreading, since these are the property of CITO. These
tests include the first names of the students, as well as a school number and
a student number. This information is useful for determining which student a

12

test belongs to, but this also means that caution is required when working with
these tests, as they could potentially be traced back to an individual student.

13

3 Methods

3.1 Translation of the research question to a data science
problem

After the data preparation, the resulting dataset consists of the answers in a
format that is displayed in Figure 2. The data science problem at hand is to
classify the handwritten numbers and multiple choice answers. In this research
specifically, the classification of multiple choice questions is the problem of in-
terest.

It is crucial that not too many mistakes are made. There is no specified accu-
racy or other metric of success on beforehand that should be reached. However,
in case of 30 questions, an accuracy of 99% would mean that still almost one
in every three students receive an incorrect grade. For that reason, to make a
viable product, it is evident that very high performance is essential.

As previously described when describing the research question, within the
team of students, a split was made to explore different parts of the research
question, which can also be linked to the data science problem. After prepro-
cessing, which is described in Section 2, Klopper [2022] and Schreurs [2022]
explore methods of classifying handwritten numbers. This paper focuses on the
other side of the problem, which is the classification of multiple choice questions.

3.2 Selection of methods

There are many different approaches possible for this problem. During the
exploration to find the best solution for this problem, multiple of them were
attempted. These are discussed in this subsection.

Before solving this issue, let’s once again see what the multiple choice answers
look like. Having an intuition of the pictures to classify can help with finding
a good method. The examples can be found in Figure 3. This selection was
chosen to show the variety in how answers are given. Note that, as described in
Section 2.2.4, there are also incorrect cutouts to begin with, but that this is due
to the preprocessing steps. For that reason, when classifying, only the cutouts
that actually display a single letter from A to D are taken into consideration for
both training and when deciding how well a method performs. This means that
there should be a single letter from A to D on the cutout and that the presence
of any numbers is allowed.

3.2.1 Labeling

Before describing methods to classify multiple choice answers, the dataset needs
to be labeled. In order to do this, a script was written that displays the images
one by one, where one of the four options A to D can be selected, after which

14

(a) Example A (b) Example B

(c) Example C (d) Example D

Figure 3: Examples of correctly cropped multiple choice questions, showing the
variety in tidiness.

the images are placed in an assigned directory. A fifth option was also available,
which was used when no clear letters from A to D are present or when there
are multiple on one image. This means that the output from the YOLOv5
preprocessing step was incorrect. Almost all instances that were put in the
fifth category were cases where students misunderstood the assignment. They
for example circle the number instead of the letter or they would circle both.
The amount of instances per category is given in Table 2. Here it becomes
clear that there are no huge imbalances, even though there are some differences
between the categories. The only category that has a very different count is the
category with unknown images. However, this is not an issue, as these are not
used during training, as they do not contain the necessary information and any
errors coming from faulty crops should be considered in the discussion of the
YOLOv5 model, which is described by Schreurs [2022].

Label A B C D unknown
Count 125 187 195 118 29

Table 2: Number of instances per label in labeled dataset.

15

3.2.2 Tesseract method

Since this problem boils down to classifying a printed letter, a good solution
could be to use existing models and existing software in the attempt to classify
the letters. One example of such software is Tesseract. Smith [2007] mentions
that Tesseract is a useful open source OCR tool that can be used to recognise
text in pictures, specifically non-handwritten text. This tool has also been used
in the preprocessing.

The most important challenge here is that there is in most cases a circle
around the letter, or sometimes there are stripes through the letter. For that
reason, the crops are not instantly classified, but some preprocessing is per-
formed. The objective of this preprocessing is to filter any pencil writing, in
order to only keep any printed text (preferably only letters from A to D). The
steps to do this are described below.

1. Open the image as a NumPy array using OpenCV and convert it to
grayscale.

2. Set a threshold of 60 out of 255 for the image. Since a simple binary
threshold is used, lower numbers are set to 0, higher numbers are set to
255. Since the circles around the letters are written using a pencil while
the letters are not, this can remove much of the pencil already. Some
examples of this result are shown in Figure 4.

3. Use the morphologyEx function to remove further noise. This function
was previously explained in Section 2.2.2. This is again done to remove
as much of the pencil writing as possible, but also to improve the quality
of the letters themselves as well. A square 5x5 kernel is used this time,
as there is more noise compared to the situation where this function was
previously used. The function is used twice, first with the MORPH_OPEN

operator, second with the MORPH_CLOSE operator, to remove both black
areas that should not be present, as well as white gaps in the numbers
that should not be in the images, respectively. Examples of this are found
in Figure 5.

After the preprocessing is done, it becomes clear that not all letters were
extracted perfectly, but that the majority is. An imperfection can be seen from
the gap that is present in the D of Figure 5. This are caused by removing too
much of the black areas, but this is necessary to prevent a scenario where too
much of the pencil writing left in the images after thresholding. However, in
the majority of cases, clear letters are extracted. Using these processed images,
Tesseract can be used to do predictions on the labels. This is done by setting
the configuration in such a way that only the characters A, B, C and D are
permitted in Tesseract. After predictions are done, if a multi-letter answer is
given, the first letter is extracted, as the answer is always a single letter. Also,

16

Figure 4: Examples of multiple choice questions after thresholding.

Figure 5: Examples of multiple choice questions after the morphology operator,
the last example shows a case where the extraction has a clear imperfection.

if no answer is given, it is classified as ‘other’. This is useful to know for the
teacher, since they will know that a manual check is required.

One property of this method that is generally an advantage, is that Tesseract
is rather robust, as it does not assume any resolution, size of the letters on the
page or any font that is used. However, in the current scenario where CITO can
simply choose to use the same resolution, font and letter size, it is not a major
limitation if a method does not have these properties. Also, conditions on the
resolution were already set in the preprocessing in Section 2, which means that
this condition not cause any new problems.

Since this method does not do any training on the cropped multiple choice
answers, all data can be used to determine how well the method performs,
meaning that no splitting of training and testing data is required. Testing the
model is discussed in Section 4.1.

3.2.3 Convolving measure of dissimilarity method

In order to tackle the problem using a different approach, the following method
was developed. At the basis of this method, the condition is set that every A, B,

17

C and D has the same font, size and made in the same resolution. As discussed
before, this should be a fair assumption.

From the multiple choice crops, the letters are cleaned as previously de-
scribed in Section 3.2.2 and one clear example for each of the four letters is
chosen in such a way that there is no noise in the letters and that the letters are
clear. The objective is to see for each ideal letter, as seen in Figure 6, whether
there is a location on the multiple choice cutout that matches the letter well.
This is done using a dissimilarity measure.

(a) Ideal A (b) Ideal B (c) Ideal C (d) Ideal D

Figure 6: Ideal letters used to see whether the letters are matched well.

Definition of dissimilarity measure
At every location of the cropped image, the ideal images can be placed. At this
location, the idea is to slice the image and find a measure of dissimilarity to
determine how similar the images are. One method to determine the similarity
would be to simply use the Euclidean distance and do this for all the slices.
However, this would be computationally inefficient and since many comparisons
are required, one for every location, this would be infeasible.

For that reason, the convolution operation is used. This idea is inspired
by the filter in a Convolutional Neural Network. The convolution operation is
explained to be the following, according to Chollet [2021]. One can think of
the convolution operation as sliding a smaller matrix over a larger matrix. For
every location, the values of the smaller matrix are multiplied element-wise with
the values of the corresponding slice of the larger matrix and the sum is taken
over all these values. Contrary to the Convolutional Neural Network, no filter is
calculated, but the ideal letters are slided across the cropped image, as if these
images are the filters. The settings are set such that the ideal letters only take
positions where the ideal letter is fully on the cropped image, meaning that some
border locations are disregarded. The convolutional operator is done using the
convolve2d function from the Scipy package, as this allows for two-dimensional
matrices as an input.

Before doing this operation, both the cropped image and the ideal letter are

18

preprocessed by setting a threshold and normalising the pictures to an interval
from 0 to 1. The result is then that at every location in the images, which are
in fact matrices, the value is either 0 or 1. Then, at every location (which is
achieved using the convolutional operator) and for each individual ideal letter,
the following calculations are done.

• Multiply the ideal letter with the slice of the cropped image element-wise
and take the sum of all values. For the ideal letter, all values outside the
letter are equal to 1 (white areas) and all values inside the letter are equal
to 0 (black areas). A perfectly matching position would have the same
properties. For that reason, this multiplication is in the case of a perfect
match equal to the sum of all values in the ideal letter image. The worse
the match, the lower the actual multiplication is. A good and bad match
are illustrated in Figure 7a and Figure 7b, respectively.

• Multiply the inverse of the ideal letter with the slice of the cropped image
element-wise and take the sum of all values. This inverse has all values
within the letter equal to 1 and all values outside equal to 0. If multiplying
this with a perfect match, this element-wise multiplication results in 0, as
all values are opposite. The worse the match, the higher this multiplication
is. A good and bad match are illustrated in Figure 7c and Figure 7d,
respectively.

(a) Good match
using the ideal
letter A and a
cropped image of
an A.

(b) Bad match
using the ideal
letter B and a
cropped image of
an A.

(c) Good match
using the in-
verted ideal
letter A and a
cropped image of
an A.

(d) Bad match
using the in-
verted ideal
letter B and a
cropped image of
an A.

Figure 7: Overlaying the ideal images with locations on the crops. Green areas
indicate locations where the element-wise multiplication results in a 1. This
comparison shows how A’s match with each other and how A’s match with B’s.

It should be noted that since this multiplication is performed at every lo-
cation, the power of such a convolutional operator really comes to use. This is
much more efficient compared to doing a Euclidean distance for all slices.

19

To obtain a measure of how good of a match an ideal letter gives with the
cropped image, it is necessary to do both calculations above and combine them.
This is because a completely white area would give the ideal value in the first
multiplication and a completely black area would give the ideal value in the sec-
ond multiplication. Hence, both are combined by squaring the distance to the
ideal value and summing those, again for every location. This gives a measure
of dissimilarity to the ideal letter at every location.

The formula explained previously can be described as given in Equation 2.
It should be noted that this calculation is only for one separate location and
that this is repeated efficiently using the convolutional operator.

image dissimilarityid =(sum(imgid · imgcrop)− sum(imgid))
2+

(sum(inv(imgid) · imgcrop)− 0)2
(2)

In this equation, imgid is the image of an ideal letter and imgcrop is the
image slice, at the set location, of the cropped image. These are both in matrix
format. inv is a function taking the inverse, setting all 0’s to 1’s and vice versa.
The multiplication sign is an element-wise multiplication of matrices. This for-
mula achieves the goals described above and can be seen, for any location in the
convolutional operator, as the dissimilarity between the ideal letter and that
slice of the image.

When applying the procedure above for a single ideal letter and a single
cropped image to classify, the result is that at each location where the ideal
letter is placed at the cropped image, a number is given for the dissimilarity.
That means that the result is a matrix, where each entry in this matrix indi-
cates the dissimilarity at one of these locations. When doing this for all four
ideal letters, A to D, this gives four matrices, all indicating the dissimilarities to
the one cropped image at each location. The minimum of each matrix is taken,
since this should represent the dissimilarity at the location of the best match
for each ideal letter. This makes sense, as one is interested to know the best
match, as that is likely a candidate location for the letter. The result of this full
measure of dissimilarity calculation, is that a number can be assigned for the
dissimilarity between the cropped image and any of the four letters, represented
by their respective ideal images.

Lastly, it should be noted why this calculation is in fact a measure of dis-
similarity and not a metric. A metric has a very specific definition. As stated
by Chen et al. [2009], the conditions that should be satisfied are non-negativity,
symmetry, the triangle inequality and identity of indescernibles. These are not
mathematically stated in this paper, as they would require a broader introduc-
tion into all elements used in this definition. However, as a smaller matrix is
convolved over a larger matrix, after which the minimum value is taken, it is
clear that there is no symmetry present. It is not possible to do this operation

20

Class Precision Recall F1-score Support
A 0.99 0.95 0.97 125
B 1.00 0.97 0.98 187
C 0.60 1.00 0.75 195
D 0.00 0.00 0.00 118

accuracy 0.79 625
macro avg 0.65 0.73 0.68 625

weighted avg 0.69 0.79 0.72 625

Table 3: Classification report of convolving measure of dissimilarity method.

in the reverse order, as one cannot move a larger matrix over a smaller matrix
using the convolving operation. Even though other conditions are also not sat-
isfied, showing that there is no symmetry is enough to show that a measure of
dissimilarity is required instead of a metric.

Application of method
Now that a measure of dissimilarity is known, this can be applied to the crops.
This measure of dissimilarity is applied in a straightforward way at first, simply
taking the letter with the minimum dissimilarity. To measure its performance,
the labeled crops from Section 3.2.1 are used.

As the results of this method are not good at this point and as this result
is necessary for the further improvement of this method, they are already dis-
cussed in this section. There are very large differences in the performance of
each of the letters. Interestingly, on the data, all A, B and C are classified in
a rather good way. However, every occurrence of D is classified as a C. This
becomes clear from Table 3 and Table 4.

Correct Predicted label
label A B C D
A 119 0 6 0
B 1 181 5 0
C 0 0 195 0
D 0 0 118 0

Table 4: Confusion matrix of Tesseract method.

Here it is clear that the method definitely has some predictive power, but
that it runs into troubles with the C and D. This means that in its current state
the model is useless, as it is completely unable to recognise any D’s. However,
it can be interesting to see whether there is any ‘hidden’ predictive power in
these dissimilarity values for all four labels. It can be the case that there are
patterns within these dissimilarity values that allow for correct classification of

21

the labels. This option is explored below.

3.2.4 Tree based methods

For the classification of the labels using the minimum dissimilarities per label,
multiple methods were attempted. Since this problem could turn out to be a
simple classification problem, the Logistic Regression was used at first to at-
tempt to solve the problem. The performance of the simple Logistic Regression
model’s performance can be found in Appendix B. Without using interaction
terms, this method is unable to discover more complex patterns, which seems
to be the case in this situation. Adding interaction terms would mean that the
model would increase in size significantly. To avoid using too many useless pre-
dictors and to avoid overfitting with so many variables, one solution would be
to use penalty terms, as for example done in the LASSO regression. [Ranstam
and Cook, 2018] However, instead of exploring this option completely, simpler
approaches are attempted.

Since specific combinations of the minimum dissimilarities could be deter-
mining the label to classify, tree based methods can be a good choice for this
classification problem. Below, two of these algorithms are tried. First of all the
decision tree, which is a rather simple model, able to discover simple patters
only. However, it could be the case that the patterns are much more complex,
which is why the random forest could be a good classifier as well.

It should be noted that the information on tree based methods that the text
below is based on, can be found in James et al. [2021].

Decision Tree Classifier
The decision tree classifier is an algorithm that splits the data into classes that
are as much alike as possible. So in this case, the decision tree splits the data
in groups containing majorities of A, B, C and D with as little impurity as
possible. The decisions on when to split are based on a cutoff value, where all
instances with a value below the cutoff value are split into one group and all
instances with a value above the cutoff are split into another group. A thorough
explanation of this algorithm is outside of the scope op this thesis, as only the
main idea behind the algorithm is relevant for this process.

Random Forest Classifier
A more complex method is the random forest classifier. This method is a tree
based method, as it is built using many decision trees. By sampling from both
the data as well as the predictors and by doing many runs, this model becomes
a good predictor in a large amount of cases. A more technical explanation can
again be found in James et al. [2021], but for the scope of this research, a basic
understanding is all that is required.

Both the decision tree and random forest are implemented using Scikit Learn

22

[Pedregosa et al., 2011]. For the decision tree, a maximum depth of 3 is used
to achieve good results. For the random forest, the standard settings are used,
since no hyperparameter tuning is required to obtain good results, which is
shown in Section 4.

Comparison of tree based methods
In general, a good habit in the field of data science is to use models as simple
and as interpretable as possible. When comparing these two tree based models,
the decision tree classifier is clearly the simplest model, as the random forest
is made using many decision trees. Also, the decision tree classifier is easy to
interpret, an advantage that the random forest does not have. However, in this
case this last point is not much of a benefit, since the input consists of the
minimum dissimilarities with the ideal letters, which is already not too trivial
to understand to begin with.

James et al. [2021] states that “trees generally do not have the same level
of predictive accuracy as some other regression and classification approaches”.
Therefore, it will be interesting to see whether the random forest is indeed bet-
ter at classifying the labels, or whether the underlying pattern is simple enough.
Keep in mind that the maximum tree depth is set to 3, which means that the
trees used for this research are really simple.

A risk of using trees, according to James et al. [2021], is that trees can be
very sensitive to small changes in data. Therefore, it is important to see whether
the results coming from trees are stable enough. This will be assessed with K-
fold cross-validation.

Repeated K-fold cross-validation
To determine which model performs best at classifying the labels among the
two presented tree based models, training and testing data should be separated
and the performance should be tested on the testing data. However, when test-
ing this, there is some instability in the results that should be overcome, as in
different runs different models are preferred. This could be caused by a lack of
testing data. One way to overcome this, is by taking different combinations of
training and testing data, which can be done with K-fold cross-validation. Ac-
cording to James et al. [2021], this means splitting the data in K parts. Every
part serves once at the testing data, where the rest of the data is the training
data.

One example of this goes as follows. If K = 5, that means that the data is
split up into 5 parts, each containing 20% of the data. In the first run, the first
part is the testing data and the other 80% is the training data. Then, the same
happens with all the other parts one by one. This means that it is possible to
use the whole dataset for testing using the 5 splits, either by keeping 5 metrics
of success, or by concatenating all parts again and checking the performance on
the whole dataset. Note that in this case, it is possible to check performance

23

on the whole dataset, while the model used to predict on a testing instance has
never ‘seen’ that specific instance before.

For this research, 10-fold cross-validation is used. This is done using the
RepeatedKFold function from Scikit Learn [Pedregosa et al., 2011]. Note that
repeated K-fold cross-validation differs from normal K-fold cross-validation by
repeating the process a number of times. In the context of this research, this
means that next to doing the 10-fold cross-validation, this function also repeats
the process, in this case 10 times. In any of the 10 runs, the 10 folds are different
random selections. This increases the stability of the performance assessment
and allows for making good inferences about the performance of the two models.

Lastly, keep in mind that, as already discussed in Section 3.2.2, no valida-
tion with training and testing data is required for the Tesseract method, as no
training is done on the data. For that reason, K-fold cross-validation is also not
used on this method.

24

4 Results

4.1 Tesseract method

As a result of applying the method discussed in Section 3.2.2, the classification
report can be found in Table 5. In this classification report, a few things should
be noted. First of all, the precision is very high, but the recall is lower. This
is because in some of the pictures, no letter from A to D was discovered, which
means that it was classified as ‘other’. For that reason, other has all 0’s in the
classification report, as there was no cropped image labeled as ‘other’ in the
labeled dataset. This also becomes clear from the confusion matrix, which can
be found in Table 6. This table shows more clearly where the mistakes are being
made and it also shows the situation with the label ‘other’.

Class Precision Recall F1-score Support
A 1.00 0.97 0.98 125
B 1.00 0.97 0.99 187
C 0.99 0.92 0.95 195
D 0.99 0.92 0.95 118

other 0.00 0.00 0.00 0
accuracy 0.94 625
macro avg 0.80 0.75 0.77 625

weighted avg 0.99 0.94 0.97 625

Table 5: Classification report of Tesseract method.

Correct Predicted label
label A B C D other
A 121 0 0 0 4
B 0 182 0 1 4
C 0 0 179 0 16
D 0 0 2 108 8

other 0 0 0 0 0

Table 6: Confusion matrix of Tesseract method.

When discussing the performance, the category ‘other’ deserves special at-
tention. The presence of ‘other’ is two-sided, because of the following. On one
hand, having a category that shows that no classification was found can be es-
sential for determining when a teacher should review the test. On the other
hand, the category ‘other’ should ideally only be used when an error took place
at selecting the crop. In this relatively clean dataset one letter from A to D
should be present in any of the images, so selecting ‘other’ shows that the model
is not able to find a letter in some cases while it is present in the cropped image.

25

In Table 5, it can be seen that the accuracy is 94%. It is preferred to see
an improvement there, as this error margin is too large for implementation.
Although referring some questions to the teacher is not problematic for im-
plementation, it is preferred to be able to classify a higher percentage of the
multiple choice questions.

4.2 Convolving measure of dissimilarity with tree based
methods

4.2.1 Decision Tree Classifier

When performing the decision tree as described in Section 3.2.4, the results
are shown in Table 7 and Table 8. Recall that this is done using a 10 times
repeated 10-fold cross-validation, which is the reason why the numbers in the
confusion matrix and in the support of the classification report are much higher
for this method. To get an idea of what such a decision tree looks like in this
scenario, an example is added in Appendix A with a short explanation of what
this example entails.

Class Precision Recall F1-score Support
A 1.00 1.00 1.00 1250
B 1.00 1.00 1.00 1870
C 0.99 0.99 0.99 1950
D 0.98 0.99 0.99 1180

accuracy 0.99 6250
macro avg 0.99 0.99 0.99 6250

weighted avg 0.99 0.99 0.99 6250

Table 7: Classification report of convolving measure of dissimilarity method
with decision tree.

Correct Predicted label
label A B C D
A 1245 0 0 5
B 0 1869 0 1
C 0 0 1934 16
D 0 0 10 1170

Table 8: Confusion matrix of convolving measure of dissimilarity method with
decision tree.

In these tables, it becomes clear that this model has a much better perfor-
mance. The accuracy of this method is equal to 99.49%. Although there are
still some mistakes being made, this is much lower than in the model based on
Tesseract. Note that in the confusion matrix, the total values are 10 times as
high compared to Tesseract, meaning that the errors are relatively much lower

26

than in the Tesseract-based model.

As a result, it can clearly be said that the method based on the convolving
measure of dissimilarity with a decision tree outperforms the approach with
Tesseract, when doing a short comparison. The model’s performance is further
discussed and compared with the other models in Section 5.

4.2.2 Random Forest Classifier

When performing the random forest that was also described in Section 3.2.4,
the results are found in Table 9 and Table 10.

Class Precision Recall F1-score Support
A 1.00 1.00 1.00 1250
B 1.00 1.00 1.00 1870
C 0.99 0.99 0.99 1950
D 0.99 0.99 0.99 1180

accuracy 1.00 6250
macro avg 1.00 0.99 0.99 6250

weighted avg 1.00 1.00 1.00 6250

Table 9: Classification report of convolving measure of dissimilarity method
with random forest.

Correct Predicted label
label A B C D
A 1245 0 0 5
B 0 1870 0 0
C 0 0 1940 10
D 0 0 14 1166

Table 10: Confusion matrix of convolving measure of dissimilarity method with
random forest.

This model also clearly performs very well. The accuracy of this method is
99.54%. When doing a short comparison with the decision tree based model,
this model seems to do slightly better. In Section 5, these methods are compared
more thoroughly to determine whether one model is preferred over the other.

27

5 Conclusion and Discussion

Based on the findings in Section 4, the following comparison of the methods can
be made.

5.1 Tesseract method

First, the Tesseract model is discussed. As described in 3.2.2, an advantage of
this method compared to the other methods, is that the model indicates when
no solution has been found. This could be useful for the teacher, so that they
know that manual inspection is required. However, when looking at the confu-
sion matrix, it becomes clear that this is not enough of an advantage, for the
following reason.

The ideal situation would be that the cases that the other models classify
incorrectly, are classified as ‘other’ in this model. However, this is not the case.
In the confusion matrix of the Tesseract based model, 3 misclassifications take
place when ignoring the category ‘other’. If the ideal situation is taking place,
this number should be lower than the misclassifications in the tree based meth-
ods using the convolving measure of dissimilarity. To compare this to these
other methods, this number has to be multiplied by 10 (making 30 in total),
as the sample size of the tree based methods is 10 times as large, caused by
the repeated cross-validation process. However, when this comparison is done,
the decision tree classifier misclassifies 32 labels and the random forest classifier
misclassifies 29 labels. Since there are no large differences, it must be concluded
that the Tesseract based method simply classifies letters to be ‘other’ in cases
where the tree based methods does make the correct prediction.

Even though there are some more advantages previously discussed, relating
to the fact that Tesseract has a better flexibility and robustness compared to
the other models, it can be concluded that the Tesseract based method does not
have sufficiently high performance compared to the other methods and that it
should not be used for the final solution to classify multiple choice questions.

5.2 Convolving measure of dissimilarity with tree based
methods

Since the Tesseract based method seems to have clear disadvantages, the tree
based methods using the convolving measure of dissimilarity can be compared
with each other.

At first, notice the very high values in the classification reports found in
Table 7 and Table 9. Almost all metrics are either 99% or 100%, except for the
precision of class D in the decision tree classifier. This is what is required for a
good solution. Of course, metrics being even closer to 100% would be better in
both cases, but is does appear that both models are very well able to distinguish

28

the classes from each other.

Note that all mistakes are made in the confusion matrices with labels includ-
ing a D, whether there is a correct label D that is not predicted or whether there
is a predicted label D that is not correct. This makes sense, as one can recall
that the original problem with the convolving measure of dissimilarity was with
classifying the D’s.

If one is to closely compare the precise values in the confusion matrices,
the decision tree based method makes slightly more mistakes. On these 6250
attempts for labeling crops, coming from the repeated cross-validation, the de-
cision tree based method makes 32 mistakes, where the random forest based
method makes 29 mistakes. In terms of accuracy, the decision tree based method
has an accuracy of 99.49%, where the random forest based method has an ac-
curacy of 99.54%. This difference is so small, that this difference could even be
due to random chance. For this reason, it is more important to consider other
properties of both methods, although both methods can be considered to be
good candidates.

It can be said to be somewhat surprising that the decision tree method per-
forms so well. As previously discussed, trees do not tend to have the same
predictive accuracy. The fact that this method still has such a high accuracy,
likely means that the underlying patterns in the data are very simple, especially
considering that a maximum tree depth of 3 is used. This means that a method
such as the random forest classifier would be unnecessarily complex, especially
since there is not a significant gain in performance. The concern about a lack of
robustness can also be disregarded for the decision trees. The cross-validation
shows that for many subsets of training data, the predictive power remains high.
For this reason, it can be concluded that there is a high generalisability of the
decision trees in this specific use case.

After seeing all the advantages of the decision tree based method when com-
paring it to the random forest based method, it becomes clear that the decision
tree based method is the preferred one of all methods to classify multiple choice
questions.

5.3 Performance multiple choice classification

It is now clear that the performance of the method using the convolving measure
of dissimilarity with the decision tree is preferred, with an accuracy of 99.49%.
However, it must be noted that this method’s performance cannot be consid-
ered to be the total performance of classifying multiple choice questions. If any
mistakes are made in the process or extracting the crops, these lower the total
accuracy of the multiple choice classification.

In Section 2.2.4, it is discussed that YOLOv5’s accuracy is 91.14%. This

29

means that in order to obtain the accuracy of the total process of extracting
the answers and classifying them into options from A to D, the two accuracies
must be multiplied, as it is known that for the correctly extracted 91.14% of
the answers, 99.49% is correctly classified. This was previously introduced in
Section 2.2.4. In Equation 3, the total multiple choice accuracy is calculated.

accuracytot = 0.9114 · 0.9949 = 0.9068 (3)

The total accuracy of the multiple choice questions is 90.68%. Unfortunately,
this is much lower than the accuracy of classifying correctly extracted multiple
choice questions, but this is a realistic number describing many questions can
be correctly classified when taking the full process into account.

Lastly, note that in the settings of YOLOv5, when determining the accuracy
of YOLOv5 on the multiple choice questions, the feature was selected that
allows only one answer to be classified. This was described in Section 2.2.4.
This is done to ensure that only one answer is selected, which is the answer
with the highest assigned probability, which is one of the outputs of YOLOv5.
However, it should be kept in mind that this answer with the highest probability
is not necessarily the correct answer. It could for example be the case that this
is an answer that was erased. For that reason, when implementing YOLOv5
with the multiple choice questions, a more critical look at finding the correct
answer is necessary, instead of simply finding any handwritten text. This could
improve the performance of YOLOv5, meaning that this accuracy is possibly an
underestimation of the maximum accuracy that can be achieved with YOLOv5.
However, as this thesis focuses on classifying multiple choice questions, this is
outside of the scope of this research. More detailed discussions can therefore be
found in Schreurs [2022].

5.4 Answer to the data science problem

In Section 3.1, the data science problem was formulated. The goal of this re-
search was to see whether it is possible to classify the handwritten numbers and
multiple choice answers. The classification of handwritten numbers was touched
upon by other team members, which is why this will not be answered in this
thesis.

When taking the steps as described in this research, it turns out not to be
feasible to grade multiple choice answers automatically in the provided format.
As previously discussed, this is due to difficulties with extracting the multiple
choice questions correctly. Every test in the provided format contains around
10 multiple choice question. This means that the found accuracy that is close to
90% implies that on average, it is expected that the methods described in this
research incorrectly classify 1 question. This could mean that most students
would not get the correct grade on the multiple choice part of the test, or

30

possibly that some students get a grade that is very far off their actual grade.
This is of course not an acceptable margin of error.

5.5 Answer to the research question

Recall from Section 1.3 that the research question was formulated as follows.

How should CITO approach automatically scanning mathematics tests and
is this approach reliable enough to implement in practice?

Based on the answer of the data science question, taking only the multiple
choice questions into consideration, the answer to this research question can be
given as follows. Multiple choice questions cannot be reliably classified with a
convolving measure of dissimilarity in combination with a decision tree classifier
and YOLOv5 as preprocessing. The approach is not reliable enough to imple-
ment in practice, due to a high error rate. For that reason, if no improvements
are made to the extraction process, CITO should keep checking mathematics
tests manually.

To answer this research question for the handwritten open questions, please
refer to the theses Klopper [2022] and Schreurs [2022].

5.6 Implications for the proper domain settings

The implications for the domain of automatic test recognition is as follows. With
this thesis, it has been shown that with the methods described in this research,
it is difficult to classify multiple choice answers correctly. If one is to attempt
implementing an automatic grading of tests, the preprocessing and extraction
of the given answers are processes to improve, as these are the main limiting
factors. However, even when these issues would be solved, it is not possible to
simply apply the methods without considering any implications regarding errors
and their consequences. For this reason, any organisation that is in doubt,
should very carefully describe the possible consequences and how influential
incorrectly classified test answers are.

5.7 Ethical considerations

One of the most important ethical considerations, is that it is crucial to un-
derstand the implications of misclassifications. Since no true context is known
for where these tests would be implemented, as these tests are practice tests,
it is not possible to discuss the implications of misclassifications in this report.
However, CITO or any party implementing such methods for tests that the stu-
dents depend on should be aware that misclassifying the answers in only a small
amount of cases could lead to large consequences for some students, especially
if their level of future education or the decision on whether to graduate is de-

31

pendent on it.

For that reason, even systems that have an accuracy well above 99% should
be carefully considered before implementation. To avoid any unethical prac-
tices by negatively influencing students, one could for example think of doing
a manual check for all edge cases, such as students who are on the border of
getting a different advice for their future education or students who are on the
edge of graduation. In that way, the consequences can be managed relatively
well. However, even then it is the question whether saving the manual work is
worth the risk of making mistakes on the classification of answers.

5.8 Additional discussions

There are a few additional notes to make on the contents and the implications
of this research.

First of all, one thing to discuss is the preprocessing, specifically the first
part where the individual questions are recognised and where a question number
is attached. Even though a lot of the focus of this research is on recognising the
answers, the preprocessing is a thorough process and there are disadvantages
there that have not been discussed yet. In future attempts to solve this prob-
lem, the methods should become more robust and more flexible. The selection of
questions is very dependent on the layout of the page, so scanning the document
in a different resolution would require adaptions to the preprocessing process.
Also, to determine the locations on the page, many scans are used. Of course,
ideally a preprocessing method would be able to classify individual tests with
high accuracy without the context of other similar tests. Lastly, imagine the
scenario that a student or teacher lost a page of a test. In that case, prefixing
the locations of the questions could result in failing to recognise questions on all
successive pages after the missing page. So in general, improving these concerns
would be important to allow for the practical implementation of this method.

Second, as mentioned before, the methods applied in this thesis should not
be compared on their own, but should ideally be compared with the status quo.
For that reason, there should be some metrics available on how this method
performs in comparison with manual inspection. It should not be forgotten
that these methods are in practice not intelligent, as they simply follow a set
of learned instructions. If a student changes their mind, crosses out an answer,
puts an arrow at a new one, changes their mind again and makes a mess for
that reason, teachers are still able to interpret what the student meant, where
automated systems are usually not. For that reason, it is important to recognise
such cases, as teachers will still be needed to do a manual check in these sce-
narios. Also, teachers are much more flexible in understanding the intentions
of a student in case the student failed to understand how to fill in the test,
where these methods are not so flexible. All these limitations contributed to
the lower accuracy of recognising the right answer, but even if a higher accuracy

32

is achieved in future research, it is still important to keep such considerations
in mind.

One consideration that could benefit future attempts to solve this research
question, is to critically look at the instructions given to students. Students
were supposed to circle the correct letter in the multiple choice questions. How-
ever, many students did not do so. They chose to cross out all wrong answers,
circled both the letter and the attached number, or sometimes only circled the
number. If it turns out that the instructions were indeed unclear, providing
students with better instruction about how to fill in the test and how to cor-
rect their own mistakes, could solve some of the issues with the preprocessing.
Another way to decrease the influence of this issue, it that teachers do a very
brief initial check whether a student actually used the right format, as it should
immediately stand out when students did not understand the instructions.

When looking at the method of recognising the multiple choice letters, as
was already briefly touched upon in Section 5.1, a disadvantage is that both
tree based methods are unable to determine a confidence level for the predicted
label. An ideal situation would be that edge cases are separately classified for
a teacher to do a manual inspection. This would be something to implement in
future research.

Lastly, it should not be forgotten that this thesis is part of a broader re-
search with two other students, whose research is described in Klopper [2022]
and Schreurs [2022]. The applicability of this method goes together with their
ability to classify handwritten answers. For that reason, all three theses should
be considered to determine the total feasibility of the automatic grading of
mathematics tests.

33

Acknowledgements

I would like to express my gratitude to all those who helped me with the con-
struction of this thesis. First of all, my thanks goes out to prof. dr. Arno
Siebes, who has provided our team with weekly support and guidance, to know
whether we were still on the right track. Also, I would like to thank my CITO
supervisors, Tjeerd Hans Terpstra and Laura Kolbe, for their weekly support
and for providing us with the problem statement.

Lastly, my special thanks goes out to my team members, Tom Klopper and
Aico Schreurs. I have enjoyed working with you and I believe that we managed
to learn a lot from each other.

34

References

U Ravi Babu, Y Venkateswarlu, and Aneel Kumar Chintha. Handwritten digit
recognition using k-nearest neighbour classifier. In 2014 World Congress on
Computing and Communication Technologies, pages 60–65. IEEE, 2014.

Simon Bernard, Sébastien Adam, and Laurent Heutte. Using random forests for
handwritten digit recognition. In Ninth international conference on document
analysis and recognition (ICDAR 2007), volume 2, pages 1043–1047. IEEE,
2007.

Shihyen Chen, Bin Ma, and Kaizhong Zhang. On the similarity metric and the
distance metric. Theoretical Computer Science, 410(24-25):2365–2376, 2009.

Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

Thomas Hegghammer. Ocr with tesseract, amazon textract, and google docu-
ment ai: a benchmarking experiment. Journal of Computational Social Sci-
ence, pages 1–22, 2021.

Itseez. Open source computer vision library. https://docs.opencv.org/4.x/,
2022.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. Statisti-
cal learning. In An introduction to statistical learning, pages 15–57. Springer,
2021.

TS Klopper. Automatic grading of handwritten math tests: A convolutional
neural network approach (unpublished master’s thesis). Utrecht University,
2022.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

MJ Prajwal, KB Tejas, V Varshad, MM Murgod, and R Shashidhar. Detection
of non-helmet riders and extraction of license plate number using yolo v2 and
ocr method. Int. J. Innov. Technol. Exploring Eng.(IJITEE), 9(2), 2019.

J Ranstam and JA Cook. Lasso regression. Journal of British Surgery, 105(10):
1348–1348, 2018.

A Schreurs. Automatic school handwriting detection and classification based on
yolo and vision transformers models (unpublished master’s thesis). Utrecht
University, 2022.

Ray Smith. An overview of the tesseract ocr engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE, 2007.

35

https://docs.opencv.org/4.x/

Eva Tuba, Milan Tuba, and Dana Simian. Handwritten digit recognition by
support vector machine optimized by bat algorithm. 2016.

36

A Appendix: Decision tree figure

In Figure 8, an example of a decision tree made for the convolving measure
of dissimilarity model can be found. It should be noted that this is just one
example, in fact it is the last example of the 10 times repeated 10-fold cross-
validation. For this reason, the example might differ from other folds and runs
in this cross-validation method.

Figure 8: Example of decision tree made for the classification of multiple choice
labels.

37

B Appendix: Logistic regression performance

Table 11 and Table 12 display the classification report and the confusion matrix
of a 10 times repeated 10-fold cross-validation run of a simple Logistic Regression
on the dissimilarity values to predict the labels. It can be concluded that the
performance is too low to accurately predict the labels, as half of the images
containing a D are still classified as a C.

Class Precision Recall F1-score Support
A 0.99 1.00 1.00 1250
B 1.00 1.00 1.00 1870
C 0.77 1.00 0.87 1950
D 1.00 0.49 0.66 1180

accuracy 0.90 6250
macro avg 0.94 0.87 0.88 6250

weighted avg 0.93 0.90 0.89 6250

Table 11: Classification report of convolving measure of dissimilarity method
with logistic regression.

Correct Predicted label
label A B C D
A 1250 0 0 0
B 0 1870 0 0
C 0 0 1950 0
D 10 0 586 584

Table 12: Confusion matrix of convolving measure of dissimilarity method with
logistic regression.

38

C Appendix: Python scripts

All code used in this thesis can be found in this project’s GitHub repository, by
clicking this link. In this repository, all code from the three team members in
this research project is present.

39

https://github.com/ADS-thesis-CITO/CITO-thesis

	Introduction
	Motivation and context
	Literature overview
	Research question and task division

	Data
	Obtaining the data
	Data preparation
	Student details
	Selecting the separate questions
	Improving the question selection
	Locating the answer line

	Ethical and privacy considerations for the data

	Methods
	Translation of the research question to a data science problem
	Selection of methods
	Labeling
	Tesseract method
	Convolving measure of dissimilarity method
	Tree based methods

	Results
	Tesseract method
	Convolving measure of dissimilarity with tree based methods
	Decision Tree Classifier
	Random Forest Classifier

	Conclusion and Discussion
	Tesseract method
	Convolving measure of dissimilarity with tree based methods
	Performance multiple choice classification
	Answer to the data science problem
	Answer to the research question
	Implications for the proper domain settings
	Ethical considerations
	Additional discussions

	Appendix: Decision tree figure
	Appendix: Logistic regression performance
	Appendix: Python scripts

