UTRECHT UNIVERSITY

AW
WS

FACULTY OF SCIENCE

‘W
AA\X

Applied Data Science

Final Thesis Project

Using LSTM and XGBoost for
streamflow prediction based on
meteorological time series data

Maryam Afshari Hemmatalikeykha

ADVISORS

Dr. Edwin Sutanudjaja
Prof. dr. Derek Karssenberg
Youchen Shen

JULY,2022

Abstract

Streamflow prediction, as one of the most critical issues in hydrological stud-
ies, plays a crucial role in water resources management namely reservoir opera-
tion, water allocation, and flood control. In this study, daily streamflow prediction
(obs) for Basel and Lobith stations at Rhine Basin for the years 1996-2000 were
derived from three Machine Learning (ML) models based on meteorological time
series such as precipitation(p), temperature (t), and reference potential evapotran-
spiration (et) covering 1981-1996. A Recurrent Neural Network, Long-Short Term
Memory (LSTM) as a time series model along with two non-time-series models; Ex-
treme Gradient Boosting (XGBoost) and Multiple Linear Regression (MLR), have
been developed to carry out. The latter was used as the ML benchmark of the
former models. Moreover, a hydrological model, PCR-GLOBWB was applied as
the second benchmark. It is found that ML models could fail in predicting stream-
flow from only meteorological variables in the absence of past values of streamflow
due to the lagged relationships between streamflow and meteorological variables.
To overcome this problem, we investigated the optimal time-lag value between pre-
dictors and streamflow combining the statistical method cross-correlation with the
implementation of the LSTM model. The optimal time-lag value indicated the time
window parameter in the LSTM model and the number of lagged variables to be
included in the non-time-series models. Consequently, two possible input scenarios
were considered in developing the non-time-series models (i) using solely meteoro-
logical predictors and (ii) using lagged predictors equal to the optimal time-lag value
in addition to the meteorological predictors. The results demonstrated that overall,
ML models can achieve satisfactory results in predicting streamflow based on me-
teorological features. However, using only meteorological variables non-time-series
models cannot provide high accuracy. Only when prior records of meteorological
parameters were combined did their accuracy noticeably increase. Among ML mod-
els, the LSTM model outperforms other models in the Lobith station and shares a
similar performance with the lagged version of the MLR model in the Basel station.
Regarding the performance consistency in streamflow prediction, the LSTM is the
superior model in both locations.

Contents

[1__Introduction| 1
2_Literature Review| 4
(1 Streamflow prediction using meteorological datal 4
RLSTM . oo 4

3 XGBoostl. . . . 5

{4 Time-lag value, oo 6
3__Data and Methods 7
M Dafalo 7
(1.1 Study areal.o 8

(1.2 Scaling and transtormation|. 8

9

2.1 PCR-GLOBWHBI 9

[2.2 Streamflow prediction| 9

[2.2.1 Dataset splittingl 9

[2.2.2 Time-lag value, 10

[2.2.3 Long-Short Term Memory (LSTM) 10

[2.2.3.1 The LSTM’s parameters| 12

2232 Fpsembleruns 13

[2.2.4 Multiple Linear Regression| 13

[2.2.5 Extreme Gradient Boosting (XGBoost)|. 14

[2.2.6 Model setup and evaluation| 15

4 Results] 17
(1 Time-lag value, oo 18

[2 Architecture of the optimal LSTM networkl 20

[3 Architecture of the optimal XGBoost model| 21
4 Performance of the models 22

[Performance consistency| oL 25

B Conclus;) =0l 28
[Discussionl 28

2 Conclusionsl 29
B Dimitationsl 30

6 Appendix| 31

(1 Time series plots]o 31
[2 Hyperparametes tuning of the LSTM modell 32
[3 Model performance]o 33
[4 Feature importancelo 36

Chapter 1

Introduction

Streamflow prediction is an undeniably important agent for water resources man-
agement [I, 2]. As climate change is predicted to cause frequent extreme events in
the future, the accuracy and skill of streamflow prediction models are of not only
scientific value but also great societal importance.

The two common approaches in streamflow prediction are hydrological models
and machine learning (ML) models [3]. As the former approach has limitations such
as high computational demand and vulnerability to the model structure errors, re-
cently, ML models are increasingly being employed for streamflow prediction. Rather
than directly simulating physical processes, ML models imitate physical rules from
historical data to form a functional relationship between inputs and outputs. They
are generally faster to train and can work with any predictors [4]. Several studies
have demonstrated that ML models outperform conventional methods based on hy-
drological models [5, 6] [7, 4]. Yaseen et al. [§] reviewed papers from 2000 to 2015
on the application of ML models for streamflow prediction and found that they had
made significant progress in this area.

Although there are many ML prediction models, not all can be directly employed
for long-term streamflow prediction [9]. The Autoregressive (AR) models, for ex-
ample, perform well in time series forecasting, but they heavily rely on observed
streamflow from the previous time steps and thus grant accurate estimates for fore-
casting with a relatively short lead-time [I0]. To be able to predict streamflow over
longer time spans, and/or overtime spans that lack observed streamflow data, these
methods cannot be used. In these cases and to enhance accuracy, non-linear meth-
ods that explain the nonlinear interaction between the input variables and the target
are recommended [I1].

Moreover, the architecture of the model should be capable of capturing the tem-
poral features that are vital for time series prediction. Among ML models, Recurrent
Neural Networks (RNNs) have the ability to take into account the sequential nature
of time series explicitly and learn more efficiently. Therefore, they are frequently
used or included as components of the deep learning frameworks of time series models
[12]. In streamflow prediction, for example, RNNs are being increasingly employed
to recognize time-dependent features [13 14]. According to Duan et al. (2020)
among RNNs, the most commonly used network is the Long-Short Term Memory
(LSTM) [9]. Compared to other types of RNNs, LSTMs do not have a problem with
exploding and/or vanishing gradients and can learn long-term dependencies between
input and output features [4]. Numerous studies applying LSTM approve its capa-

1

bility in streamflow prediction [15], 9, 4] 16} 13|, 17]. Therefore, LSTM appears to be
an eligible model for streamflow prediction.

On the other hand, although LSTMSs typically produce passable results in predic-
tion accuracy; computational time of prediction and a high degree of data demand
are important aspects to be considered. Given that discharge data are often limited
in many parts of the world [I7], we looked for another ML method, a less data-hungry
algorithm. Compared to other ML methods Decision Tree (DT) is computationally
cheaper. Also, DT-based models offer the advantage of being easy to interpret and
visualize [I8]. More importantly, DT-based models perform well when provided
with limited training data in certain domains[19]. Lately, a DT-based model, Ex-
treme Gradient Boosting (XGBoost), introduced by Chen and Guestrin (2016)[20],
has become popular in ML competitions since this fast, efficient, scalable model
yields promising results in many domains [21, 22] 23]. Gauch et al. (2021) aimed
to evaluate XGBoost and LSTM-based models to limited training data in predict-
ing streamflow. Their results show that XGBoost and LSTM-based models provide
similarly accurate predictions on small datasets, while LSTM is superior when more
training data are available [I7]. Given that for many regions, sufficient meteoro-
logical records are generally not available and/or not feasible to record [24, [17], we
think XGBoost is an attractive but less known ML model in streamflow prediction.

Accordingly, this study documents the development of two different ML meth-
ods in predicting streamflow based on meteorological predictors in Basel and Lobith
stations at Rhine Basin; LSTM and XGBoost. While LSTM as a time series model
takes into account the temporal dependencies in the data, XGBoost is a more compu-
tationally efficient model that works well when provided with small data. Although
it is not explicitly designed for time-series prediction, it is proven to work well in
time-series problems [25], 26], 27, 28]. To realize if the use of these ML models is
advantageous, we benchmarked them to two other models: (i) Multiple Linear Re-
gression (MLR) as an ML benchmark (ii)and PCR-GLOBWB, a global hydrology
model, as the hydrological benchmark [29].

It is acclaimed that ML models could fail in predicting streamflows from only me-
teorological variables in the absence of past values of streamflow. The main reason
for this could be low and lagged relationships between streamflow and meteorological
variables[30]. To overcome this problem, we investigated the lagged relationship be-
tween predictors and streamflow combining the cross-correlation statistical method
with the implementation of LSTM. The optimal time-lag value indicates the time
window parameter in the LSTM model and the number of lagged variables to be
included in the non-time-series models of XGBoost and MLR. To check the effect
of the time-lag value we will consider different input scenarios in developing the
non-time-series models (i) using only meteorological predictors and (ii) using lagged
predictors equal to the optimal time-lag value in addition to the meteorological
predictors.

Shen et al. (2022) conducted a study on streamflow prediction of Rhine Basin in
which to improve hydrological streamflow predictions, an updating procedure was
implemented[10]. In order to correct predictions of the PCR-GLOBWB, researchers
included simulated streamflow in addition to the meteorological data as predictors
of a Random Forest (RF)-based model. Interestingly, their results show that using
input meteorological variables along with their lag time of 10 days can elicit results
that are equivalent to error-correction procedures in Basel stations and slightly lower

2

in Lobith and Cochem stations.

Although the performance of the RF model is noticeably better than the PCR-
GLOBWB model, their approach has some limitations that this study aims to ad-
dress: (i) by using simulation variables, their approach still relies on a hydrological
model. We aim to predict streamflow in an efficient manner by excluding the simu-
lation variables, taking into account that physically based models typically require
significant computational expense. (ii) they employed a limited time lag. Con-
sidering the memory of catchment, discharge may take up until several months to
even several years [31] and therefore this time is too short for streamflow prediction.
Thus, higher lag times were examined in our analysis. (iii) they did not investigate
the optimal time-lag value. We deliberately sought to determine the best time-lag
value for each station. (iv) finally, LSTM and XGBoost appear to be superior can-
didates to Random Forest employed by Shen et al. As previously noted, LSTM is a
time series model which takes into account the temporal dependencies in the data.
On the other hand, we believe XGBoost would be a good fit here because the time
period of data available for this investigation is constrained.

In a nutshell, this study aims to predict streamflow exclusively from meteoro-
logical data using LSTM and XGBoost. The outcomes will be compared with those
of the error-correction procedure described in Shen et al paper. Consequently, the
following is the main research question and its sub-questions:

e Using meteorological variables, how do other ML methods such as LSTM,
XGBoost, and MLR perform compared to the error-correction procedure de-
scribed in Shen et al. paper?

1. Until which lag, past information of each predictor is correlated with
streamflow in each station? In other words, what is an appropriate time-
lag value for each station?

2. How does the performance of LSTM differ from the performance of XG-
Boost in predicting streamflow?

3. How does including lagged variables affect the performance of XGBoost
and MLR models?

To accomplish the described objectives, the cross-correlation method was used
to obtain insight into the correlation period between each predictor and streamflow.
We then trained many LSTM models using the same structure but different time
windows within the correlation period to gain the ideal time-lag value. The predic-
tion accuracy of all methods is validated using Nash-Sutcliffe efficiency (NSE) and
Original Kling-Gupta Efficiency (KGE). To take into account the stochastic nature
of this algorithm and increase the accuracy of the results, We ran the LSTM model
ten times on each time window and presented the average validation metrics. The
time window of the LSTM model with the highest KGE value is chosen as the op-
timal time-lag value. Regarding XGBoost and MLR models, different sets of input
variables were tested to inspect the effect of including lagged variables. Finally, we
analyzed how well these models performed in comparison to the benchmarks.

Chapter 2

Literature Review

1 Streamflow prediction using meteorological data

Several studies employed the idea of predicting streamflow from solely mete-
orological data using ML methods in different parts of the world. Adnan et al.
(2019) investigated different ML models in modeling monthly streamflow using pre-
cipitation and temperature inputs at Swat River Basin in Pakistan. Their results
show that monthly streamflows of Kalam Station can be predicted using only tem-
perature data. Moreover, only precipitation inputs also provide good accuracy for
Kalam Station while they produce inaccurate predictions for the Chakdara Station
[24]. Tongal and Booij (2018) compared ML methods such as MLPNN, SVM, and
RF using precipitation, temperature, and evapotranspiration, in streamflow model-
ing using data from four rivers in USA [30]. Their results confirm that employing
meteorological data can lead to accurate predictions of streamflow.

2 LSTM

LSTM is a ML model for time-series prediction [32]. It takes a time series as
input and updates internal memory at each time step to calculate the output value.
The way output value is calculated is driven by a set of parameters, or weights,
that are learned during training (hydrologists would refer to this training process as
calibration).

LSTMs are being increasingly employed for streamflow prediction [9] [16] 4] [14]
13]. According to Duan et al. (2020) among such models, LSTM is the most com-
monly used RNN in streamflow prediction [9]. Duan et al. (2020) document the
development of an ML-based modeling system for estimating future daily streamflow
in California. Comparing Temporal Convolutional Neural Network (TCNN) model
with other commonly used ML models, their study indicates that there are some
important temporal features that ANNs struggle to capture, contrary to TCNNs
and other RNNs such as LSTMs and GRUs. Moreover, they conclude that overall,
the TCNN model performs better in the high-flow regime, whereas the LSTM model
performs better in the low-flow regime[d]. Kratzert et al. (2019) used LSTM and
Catchment Attributes to predict streamflow over CONUS. They benchmarked the
LSTM model against several high-quality existing hydrological models. Their results
demonstrate that LSTM with catchment attribute outperformed multiple locally-
and regionally-calibrated benchmark models by a large margin. Interestingly, the

4

results show LSTM without static catchment attributes (only trained on meteoro-
logical forcing data) outperformed both regionally calibrated models consistently as
a single model and even more so as an ensemble [4]. Feng et al. (2020) added the
lagged observations among inputs as data integration, which elevated the prediction
accuracy of the LSTM model. They also employed a convolution data integration
method in which a time-series segment of recent observation passes through a CNN
unit, however, the resulting model did not outperform feeding observations directly
into the LSTM model. Intriguingly, their study points without any data integra-
tion, the LSTM model already provided predictions that were competitive with other
models. Yan et al. (2019) used LSTM to forecast streamflow in a small watershed.
Their results make evident that LSTM can effectively focus on hidden flood factors
from previous hydrological sequences [I3]. Ma et al. (2019) investigated the compe-
tence of LSTM to predict water levels up to 10 days ahead in Oestrich and Cologne
gauges of Rhine Basin using historical data from 2008 to 2015. They ran several
tests afterward to test the model between July 2018 to December 2018. The results
show LSTM capability in forecasting water level[15].

3 XGBoost

While LSTM as a time-series prediction model is an appropriate fit here, XG-
Boost might seem like a less suitable option due to the flat input vectors condition.
Over the last few years, however, researchers have employed XGBoost with signifi-
cant success in numerous time-series prediction tasks [25] 26, 27, 28].

Regarding streamflow prediction, Gauch et al. (2019a) found the XGBoost model
to perform more accurately than LSTMs [19]. However, what makes XGBoost ad-
vantageous is computational efficiency and capability to perform well on limited
data. Gauch et al. (2021) aimed to evaluate XGBoost and LSTM-based models
to limited training data, both in terms of geographic diversity and different time
spans in predicting streamflow. They trained both models on meteorological obser-
vations of the CAMELS dataset while individually restricting the training period
length, the number of training basins, and input sequence length. Their results
show that XGBoost and LSTM-based models provide similarly accurate predictions
on small datasets, while LSTM is superior given more training data [I7]. In an-
other study, Gauch et al. (2019b) compared a physically-based model VIC-GRU
with ML methods such as XGBoost and Ridge in predicting the streamflow of a
gauging station given five years of meteorological data. Their results indicate that
XGBoost provides the most accurate predictions of the three examined models on
such a small training data [7]. Additionally, XGBoost is said to exploit out-of-core
computation and enables the researcher to process hundreds of millions of examples
on a desktop[20], 22 23]. Phankokkruad and Wacharawichanant (2019) compared
XGBoost with a CNN_LSTM model for service demand forecasting. Their study shows
that XGBoost operates faster, takes a lower-performing time also has lower CPU
consumption compared to the CNN-LSTM model[33].

5

4 Time-lag value

In the literature, most of the methods suggest choosing the optimal time-lags
throughout the experiments, which may not always be sufficient in real-world prob-
lems [34] 35, 36]. Some papers, however, proposed methods other than an experi-
ment in the literature to explore the proper selection of time-lag value. Surakhi et al.
(2021) applied a comparative study between three methods to investigate the effect
of selecting an optimal time-lag value on the performance of the prediction model.
These methods include a statistical autocorrelation function, an LSTM model along
with a heuristic algorithm to optimize the choice of time-lag value, and a parallel
implementation of LSTM that dynamically chooses the best prediction based on the
optimal time-lag value. Their study shows that the statistical method is precise and
gives a good indication of the behavior of data correlation and it can be used to
suggest an appropriate time-lag value that will be used later as a parameter of the
deep learning prediction model [37]. In another study, Yaseen et al. (2016) used
auto-correlation for monthly streamflow prediction, ultimately choosing a time lag
of 5 months [3§].

As mentioned above, ML models could fail in predicting streamflows from only
meteorological variables in the absence of historical values of streamflow possibly
due to lagged relationships between streamflow and meteorological variables[30)].
There have been studies that overcame this challenge by investigating the proper
time-lag value. Adnan et al. (2019) used different ML methods in modeling monthly
streamflow using precipitation and temperature inputs at the Swat River Basin in
Pakistan. To find the lagged relationship, the cross-correlation method was applied.
They chose a time lag of 5 and 2 months for precipitation and temperature input,
respectively [24]. Tongal and Booij (2018) compared ML methods using precip-
itation, temperature, and evapotranspiration, in streamflow modeling using data.
They used a simulation framework by coupling a base flow separation method to
the ML methods to account for the lagged relationship between the meteorological
input variable and streamflow[30].

Chapter 3

Data and Methods

1 Data

Daily streamflow data from Basel and Lobith stations from 1981 to 2000 in the
Rhine Basin obtained from GitHub repository related to Shen et al. paper [10]. The
dataset contains daily streamflow with three meteorological variables: precipitation
(p), temperature (t), and reference potential evapotranspiration (et). These are
values for the upstream area (i.e. average over the catchment of the streamflow
measurement location). These features are commonly used for streamflow prediction
in the literature [9,[39] The data set includes 7305 records of 4 columns (three inputs
and one output). The target variable is the streamflow and the input variables are
the remaining meteorological variables. The data has high quality, and there is no
noise nor are there missing values. Figures 1 and 2 in the Appendix section show
time series of observed streamflow and the predictors.

1.1 Study area

Basel station’s streamflow, located in the Alpine region of the upper Rhine, has
a nival regime that is dominated by snow and glacier melt in spring and summer.
Whereas Lobith station’s streamflow, located in the lower Rhine, has a pluvial regime
characterized by high streamflow in winter and minimum in late summer.

Elevation
-218

1,000

2,000
3,000
4,498

1 Basin

= River

Countr
[— — = 4
0 50 100 150 km

Figure 3.1: Digital elevation map from SRTM 90m digital elevation database
(http://srtm.csi.cgiar.org/) of the Rhine Basin with Lobith and Basel stations indi-
cated by red dots.

1.2 Scaling and transformation

The data transformation is influential in some ML models’ training. It ensures
that variables that are measured at different scales contribute equally to the model
fitting. In this study, data was transformed for the LSTM and MLR models using the
MinMaxScaler normalization (defined in Eq. 3.1) provided by Sklearn Preprocessing

library [40].

x_scaled = x_value * (max — min) + min, (3.1)

where x_scaled is the new scaled value, x_value is the original value, max is
the maximum value of a given variable in the dataset observation and min is the
minimum value in the dataset.

Regarding the XGBoost model, input variables do not require any normalization
[41]. Tt is because the XGBoost model is not sensitive to monotonic transformations
of its input variables. The model only needs to pick ”cut points” on input variables
to split a node. i.e. defining a split on one scale has a corresponding split on the
transformed scale [42]. As a result, we skipped this step for the XGBoost model.

8

2 Methods

2.1 PCR-GLOBWB

The result of this study is compared to the PCR-GLOBWB model. Therefore,
we briefly describe this model in this section. The PCR-GLOBWDB model is a global
hydrology and water resources model that can predict streamflow as well as state
variables used in Shen et al. paper. It has a spatial resolution of 30 arcsec (about 1
km at the equator) and operates based on daily water balance [29]. PCR-GLOBWB
model weigh not only natural processes but also human water use [43], [44], [45]. This
model provides satisfactory streamflow predictions throughout the world [43]. In
some cases, however, the PCR-GLOBWB model fails to simulate the streamflow as
a result of an error in model structure, drivers, and parameters[10]. In this study,
uncalibrated version of this model was used.

2.2 Streamflow prediction

In this study, we have a time series model, LSTM, and two other ML models,
XGBoost and MLR which are not specifically designed for time series modeling. We
started by exploring the optimal time-lag value. This serves two purposes:

e Regarding the LSTM model, the time window (also known as input batch size/
input sequence length) is one of the most critical hyperparameter optimizations
in designing an LSTM model. Hence, by exploring optimal time-lag values we
ensured the development of optimal configurations in the LSTM model.

e Regarding XGBoost and MLR (non-time series model) lagged variables equal
to time-lag value were created to incorporate time-series information into them.

To see if the lagged relationship between variables increases the performance of
the MLR and XGBoost models, we tested different sets of input variables. First, we
trained these models only with meteorological input variables. We then trained them
with meteorological input variables plus the lagged variables equal to the optimal
time-lag value. Additionally, all time steps between the furthest time backwards
were employed in generating lagged variables.

In order to have comparable results to Shen et al. (2022) paper, we fed all the
variables in all ML models mentioned, and no method regarding variable selection
was employed.

In the following sections, we will explore the dataset splitting, the time-lag value,
the structure of models used, and the evaluation metrics.

2.2.1 Dataset splitting

In training all models, the dataset is split into two parts before the training
process: the training set and the testing set. The training set is used to build the
model and fit it to the available data with known inputs and outputs. The testing
set is used to estimate the model performance on unseen data (data not used to
train the model). 75 percent of the dataset is allocated for the training set and 25
percent of the dataset is allocated for the testing set.

As we have time-series data, we performed a time-series split. We kept the first
15 years as the training phase and the last 5 years as the testing set.

9

2.2.2 Time-lag value

As mentioned earlier, a proper time window parameter in the LSTM model is
essential to create a set of training examples to be used for the next prediction
which is exceptionally critical for model performance. On the other hand, feeding
the optimal time-lag value to the XGBoost and MLR models, we introduce time-
series information to these models.

To explore the optimal time-lag value, the cross-correlation function (defined in
Eq. 3.2) provided by Scipy library[40] is used to get an indication of the correlation
between the input and output variables.

ll] -1

Ak = (xy) (k= N+1)= Y oy ins (3.2)
1=0

for k=0,1,.....0|z|| + ||y]| — 2
where ||z|| is the length of x, N = max(||z||, ||y]|)-

We then plotted the cross-correlation of different predictors and streamflow for
each station to get an idea about the correlation period between the predictors
and streamflow. Following that, many LSTM models were trained with the same
structure but different time windows within the correlation period to gain the ideal
time-lag value. To take into account the stochastic nature of the LSTM algorithm
and increase the accuracy of the results, we ran the model 10 times on each time
window. The time window of the LSTM model with the highest KGE value is chosen
as the optimal time-lag value.

In determining optimal time-lag two points were considered: model complexity
and computational power needed. Regarding model complexity, the value of time-lag
should be large enough to account for all historical information relevant to predicting
streamflow, however large time-lag can yield increased model complexity and thus
reduce model performance [9]. Therefore in determining time-lag value, the trade-
off of complexity and performance should be taken into account. Besides the model
complexity, we were concerned with our limited computational power and time.
Therefore we defined the scope of the search for optimal time-lag withing 0 to 205
lags.

2.2.3 Long-Short Term Memory (LSTM)

The LSTM architecture is a special type of RNN, developed to overcome the
inability of the traditional RNN to learn long-term dependencies. Bengio et al.
(1994) have proved that the traditional RNNs can rarely remember sequences length
of over 10[47]. Considering the memory of catchment, discharge may take up until
several months to even several years. Hence, this time is too short for streamflow
prediction[31]. LSTM has three gates- the update gate u, the forget gate f, and the
output gate o as depicted in figure 1.

10

Figure 3.2: The interiors of an LSTM cell, where f stands for the forget gate (Eq.
3.2), i for the input gate (Eqgs. 3.3-4), and o for the output gate (Eqs. 3.6-7). ¢
denotes the cell state at time step t and h; the hidden state.

Forget gate developed by Gers et al. (2000), controls which elements of the cell
state vector Cy_; will be forgotten(to which degree):

ft = U(WffL't + Ufht_l + bf), (33)

where f; is a resulting vector with values in the range (0,1), o(.) denotes the
logistic sigmoid function and Wy Uy and by stand for the set of learnable parameters
for the forget gate, i.e. two versatile weight matrices and a bias vector. In the
following step, an update vector for the cell state is calculated from the current
input (x;) and the last hidden state (h;_;) illustrated in this equation:

ft = tanh(WgsL’t -+ Uéht,1 -+ bg), (34)

where ¢ is a vector with values in the range (-1, 1),tanh(.) is the hyperbolic tan-
gent and W3, Uz, bz are another set of learnable parameters. In addition, the second
gate is compute, the input gate, depicting which (and to what extent) information
of ¢; is passed down to update the cell state in the current time step:

it = O'(ml't + Uiht—l ‘l— b,L), (35)

where #; is a vector with values in the range of (0,1) and W;, U;, b; are a set of
learnable parameters, defined for the input gate. With the results of Eqs. (2)-(4)
the cell state ¢; is updated by the subsequent equation:

Ct = ft Oc1+19 O 67&, (36)

where ® represents element-wise multiplication. Since the vectors f; and ¢; have both
inputs in the range (0, 1), Eq. (5) can be inferred in the way that it determines,
which information stored in ¢;_; will be forgotten (values of f; of approx. 0) and
which will be stored (values of f; of approx. 1). Likewise, i, determines which new
information stored in ¢ will be added to the cell state(values of i; of approx. 1)
and which will be disregard (values of 7; of approx. 0). Similar to the hidden state
vector, the cell state is initialized by a vector of zeros in the first time step. Its
length match up the length of the hidden state vector.

The third and last gate is the output gate, which inspect the information of the
cell state ¢; that runs into the new hidden state h;,. The output gate is computed
by the next equation:

11

O = U(Woxt + Uoht—l + bo), (37)

where o; is a vector with values in the range (0,1), and W, U,,b, are are a set
of learnable parameters, assigned for the output gate. From this vector, the new
hidden state h; is computed by combining the results of Eqgs. (5) and (6):

hy = tanh(¢;) © oy. (3.8)

The cell state ¢; in particular makes it possible to learn long-term dependencies
effectively. Owing to its relatively simple linear interactions with the remaining
LSTM cell, it can retain information unchanged over a long period of time steps.
During training, this characteristic aids to avoid the problem of the exploding or
vanishing gradients in the backpropagation step [32]. In addition, we can stack
several layers on top of one other. The output from the final LSTM layer at the last
time step (h;) is connected through a dense layer to a single output neuron, which
calculates the last streamflow prediction. The following equation gives the dense
calculation:

y = Wyh,, + bq, (39)

where y represents the final streamflow, h, denotes the output of the final LSTM
layer in the last time step inferred from Eq. (3.7), Wy is the weight matrix of the
dense layer, and b, is the bias term. Finally, the pseudocode of the whole LSTM
layer is given in the following algorithm:

ht = g(WIt + Uhtfl + b), (310)

Where g(.) denotes the activation function, W and U are moveable weight matrices
of the hidden state h and the input x, and b represents a bias vector. The inputs
for the entire sequence of meteorological observations x = [x1,...,x,], where z; is
a vector comprising the meteorological inputs of time step t, is analyzed time step
by time step and in each time step Eqgs. (3.2)—(3.7) are repeated. When there are
several stacked LSTM layers, the next layer gains the output h = [hy, ..., h,] of the
first layer as input. The final output, the streamflow, is then computed by Eq. (3.9),
where h,, is the final output of the last LSTM layer.

2.2.3.1 The LSTM’s parameters As tuning of the model parameters is very
critical to ensure the optimal structure and thus highest prediction accuracy, there-
fore, before training this network, we first search for the optimal hyperparameters.
While there are other methods to effectively search for plausible hyperparameters,
the hyperband optimizer from the KerasTuner[48] has several advantages for our
setting: it offers a higher speed up, it is a general-purpose technique that makes
minimal assumptions contrary to prior configuration evaluation approaches [49].
Hyperband uses early-stopping and adaptive resource allocation to speed up the
hyperparameter tuning process on a high-performing model. The algorithm trains a
large number of models for a few epochs and carries forward only the top-performing
half of the models to the next round. Hyperband determines the number of models
to train in the next phase by computing 1 + [0gfetor(max_epoch) and rounding it
up to the nearest integer [50, [49].

12

first, a tuner was defined to determine which hyperparameter combinations
should be tested. We then trained 30 hyperband trials (one for each station) of
optimizing the following parameters:

e number of layers between 1 to 4 layers

e input unit: the range is from 32 to 512 inclusive. When sampling from it, the
minimum step for walking through the intervals is 32.

e hidden layers units: the range is from 32 to 512 inclusive. When sampling
from it, the minimum step for walking through the intervals is 32.

e last layers neurons: the range is from 32 to 512 inclusive. When sampling
from it, the minimum step for walking through the intervals is 32.

e dropout rate: the range is between 0 to 0.5 inclusive. When sampling from it,
the minimum step for walking through the intervals is 0.1.

e dense layer’s activation: to sample between Rectified Linear Unit (Relu) and
Hyperbolic Tangent Function (Tanh) while default value is set to Relu.

For the remaining parameters, alternative but computationally efficient approaches
were preferred. These parameters include optimizer and number of epochs. Adam
optimizer was chosen based on previous literature on streamflow prediction [9],
however learning rate was decided using the hyperparameter tuning approach as
explained above. Regarding the number of epochs, in order to avoid overfitting and
training the model with a high epoch, we used the Early Stopping method. We
trained the model for 1000 epochs with the batch size set to 32. Once using early
stopping, during training, the model is evaluated on a holdout validation dataset (the
last 20% of the training set) after each epoch. If the performance of the model on
the validation dataset decreases after a certain time (here specified to be 7 epochs),
the training process is stopped.

2.2.3.2 Ensemble runs Neural networks use a gradient-based method to opti-
mize the loss function. Since the networks allow for local minima, different initial
weights can potentially lead to different models with different performances. In
order to overcome this problem, we run the LSTM model 10 times and report an
ensemble distribution of NSE and KGE values. In order to show the variance in
the model performance, the Standard Deviation (SD) of NSE and KGE over 10
runs is reported. Hence, results and conclusions are based on the statistical dis-
tribution of model performance across the ensemble runs. Moreover, to ensure the
accuracy of prediction, each of these 10 models makes a prediction and the mean of
all predictions is reported as the final prediction.

2.2.4 Multiple Linear Regression

Multiple Linear Regression (MLR) introduced by Galton [51] and developed by
Pearson [52] rule out nonlinear relationships between input and output variables.
The equation of this algorithm is shown in Eq. 3.10.

y= 0o+ brix1 + ...+ Bpxn + € (3.11)

13

Where y, is the predicted value of the dependent variable, n refers to the number of
predictors, Bz is the regression coefficient 3; of the first independent variable x;.
Bnx, represents the regression coefficient [, of the last independent variable x,, and
€ is the model error.

In this study, we trained two MLRs with different input variables. In the first
one, we refer to as MLR_s, we fed the meteorological variables of "t”, "et”, and "p” to
the model as predictors and defined streamflow as the dependent variable. Wheres
in the second model, we refer to it as MLR_lag, in addition to the meteorological

variables, the lagged variables of them were included.

2.2.5 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting is a tree-based algorithm that makes a prediction
model in the form of a group of weak prediction models. The training procedure
creates a tree structure, where every leaf node refers to a predicted value. Every
path to a leaf reflects conjunction of input features that outcome the prediction
of the leaf value. The final prediction is then calculated as the sum of each tree’s
prediction (depicted in Eq. 10) [20].

K

i =Y Ju(X0), fr € F, (3.12)

k=1

F = f(x) = wya)(¢: R™ = T,w € R represents the space of regression trees
and g stands for the structure of each tree that maps a leaf index with an example.
T is how many leaves there are on the tree. Each fj refers to an independent tree
structure and leaf weights w.

Alike the LSTM model, before training this model, we first search for the optimal
hyperparameters. To do so, the GridSearchCV function from the Scikit-learn library
was used to optimize the following parameters [53]:

e learning rate: sampling from [.01, .05, .1]

e maximum tree depth per tree(max_depth) : sampling from [7, 9]

the fraction of observations to be sampled for each tree (subsamples) :sampling
from [0.8, 0.9]

the fraction of columns to be sampled randomly for each tree (colsample_-
bytree) : sampling from [0.7, 0.9]

the number of trees in our ensemble(n_estimators): sampling from [800, 1000]

A Grid Search is an exhaustive search over every combination of specified pa-
rameter values[53, 22]. For example, if 2 possible values are specified for one hy-
perparameter and 3 possible values are specified for another one, Grid Search will
iterate over 6 possible combinations. That is to say, Grid Search creates several
models, each with a different combination of hyper-parameters. Each of these com-
binations of parameters, which correspond to a single model, can be said to lie on a
point of a "grid”. The goal is then to train each of these models and evaluate them.
To do so, Grid Search uses Cross-validation (CV) in the evaluating phase. The

14

best-performing model in the evaluation phase determines the best combination.
An advantage of Grid Search is that by brute-forcing all possible combinations, it
ensures finding the best combination of hyperparameters.

In our case, we defined a 5-fold cross-validation. i.e. we had 5 folds for each of
48 candidates which resulted in totaling 240 fits (one for each station). As for min_-
child_weight parameter, its value has been defined manually. min_child_weight
refers to the minimum sum of instance weight needed in a child. By default, its value
is set to one. If the tree splitting results in a leaf node with the sum of instance
weight less than min_child_weight, then the tree forming process will continue.
As a result, a larger value assigned to this parameter makes the algorithm more
conservative[54]. This parameter can be used to control over-fitting. Higher values
restrict a model from learning relations that might be very specific to the particular
sample selected for a tree. In our setting to prevent over-fitting, we specified it to
be 4.

Similar to the MLR model, we trained two XGBoost models with different input
variables. In the first one, referred to as XGB_s, we fed meteorological variables of
"t7, "et”, and "p” to the model as predictors and streamflow is the target variable.
Wheres in the second model, referred to as XGB_lag, in addition to these meteoro-
logical variables, the lagged variables of them were included. Noteworthy, to have
comparable results to Shen et al. paper, we fed all the variables in the model and
no method regarding variable selection was performed.

2.2.6 Model setup and evaluation

As mentioned above, two different setting of input variables were explored in

non-time-series models. Different models and their configurations are explained in
table 3.

Abbreviations of models name Concurrent meteorological variables Lagged meteorological variables

LSTM Yes Yes
XGB_s Yes No
XGB_lag Yes Yes
MLR s Yes No
MLR _lag Yes Yes

Note: LSTM model takes a sequence of input data and this is denoted by lagged variables
for this specific model here

Table 3.1: Overview of models and their different setups

Model performance is quantified by the Nash-Sutcliffe model efficiency (NSE)
and the Kling-Gupta efficiency (KGE). Both metrics are widely used in the hydrol-
ogy domain but the latter offers a better indication of streamflow seasonality [10].
Hence, in determining the time-lag value, we considered the KGE value, however,
both values were reported.

Equations (11) and (12) show how the coefficients are calculated,

15

NoE -1 Tt —a) _ | MSE
Zle q(f} - (jo>2 JZ

KGE =/(r—1)2+ (a —1)2+ (B — 1),

- — oo L Go)
(Om-00)

Om

o= —

Oo

= Hm

Lo

(3.13)

(3.14)

where ¢ represents streamflow with a unit of st in daily time step ¢, T refers
to the total number of days, ¢ is the standard deviation and p is the average with
subscript o depicting observations and subscript m represents the predictions made

by the model.

16

Chapter 4

Results

Here, we discuss the optimal time-lag value, the structure of the better-performing
models discussed in the previous sections and, the performance of each model and
its configuration for the test set.

17

1 Time-lag value

The figures below reflect the correlation between the input variables and stream-
flow in the Basel and Lobith stations up until lag 200.

Basel(Rhine)

et

0 25 50 75 100 125 150 175 200
Lag

Figure 4.1: cross-correlation (CC) of the predictors and streamflow of Basel station

Lobith(Rhine)

N
2, 9, 0, a,

S
o
£

N
%

et

0 25 50 75 100 125 150 175 200
Lag

Figure 4.2: cross-correlation (CC) of the predictors and streamflow of Lobith station

18

We attained the highest correlation period, which we refer to as the correlation
period, for each station by checking the figures manually. As for Basel station,
between 50 to 110 lags were considered as the correlation period. All 3 predictors
have a positive correlation with streamflow in this period, while the correlation of
"t” and "et” variables with streamflow is at its highest values within this period.
Whereas for the Lobith station, considering all predictors, the optimal time-lag value
lies between 10 to 70 lags.

But a question soon arises, which lag within this period is the optimal time-lag
value? To answer this question, we trained different LSTM models with the same
structure but different time windows. As for Basel station, the models were trained
with twelve-time windows including 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and
205. As mentioned in the method section, we trained each model 10 times for each
of these time windows and calculated the ensemble value of KGE and NSE. The
standard deviation over 10 times running model can be seen in figure 4. Regarding
Lobith station, the models were trained with fourteenth-time windows including 10,
15, 25, 35, 45, 55, 60, 65, 70, 75, 80, 90, 100, and 205. Although the correlation
period was mentioned to guide us in selecting time windows, we looked at lower and
higher values to fact-check our approach. Figure 3 shows the ensemble values of
KGE and NSE resulting from examining different time windows.

Basel (Rhine) Lobith (Rhine)
——— || — KGE
0.8 NSE
gU? /_——/
©
>
w
Q
¥
206
T
w
wn
=
0.5
0.4
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Lag Lag

Figure 4.3: The ensemble values of KGE and NSE resulted from training the LSTM
model with different time windows

As shown in figure 3, the highest KGE value for Basel was gained at lag 60,

whereas for Lobith it was earned at lag 55. The same plot with standard deviation
across a 10-time running model is shown in Figure 4.

19

Basel (Rhine) Lobith (Rhine)
0.9

— KGE
S NSE
0.8
g e
= 0.7
>
w
[v]
»
T o6
(1]
w
wn
=2
0.5
0.4
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Lag Lag

Figure 4.4: The ensemble values of KGE and NSE and their standard deviation
(SD) resulted from training the LSTM model with different time windows. The SD
is shown with a shadow around each line.

2 Architecture of the optimal LSTM network

The LSTM model was optimized using Keras Tuner for each station separately.
The hyperparameters tuned and their corresponding values are listed in table 1 in
the Appendix. To provide an overall view of the architecture of the optimal LSTM
network (i.e.from the tuned hyperparameters and those that were chosen using other
methods) tables (1, 2) were created.

Input Previous 2-month daily meteorological variables of Basel station
Output Daily streamflow at Basel station
Time period From first January 1981 to 31st December 2000
Dataset distribution Training set (75%), validation set (15%), testing set (10%)
Structure A visible layer by 128 input unit +

a hidden layer + second layer with 128 neurons +
drop out layers at each layer with 0.1 rate +
Dense layer with one output

Activation function Rectified Linear Unit (Relu)
Learning Rate 0.001
Loss function Mean Square Error (MSE)
Number of epochs 1000 but depending on the condition to cease training
Batch size 32

Table 4.1: Information regarding the structure of the better performing LSTM net-
work in Basel station

20

Input Previous 55 daily meteorological variables of Lobith station

Output Daily streamflow at Lobith station
Time period From first January 1981 to 31st December 2000
Dataset distribution | Training set (75%), validation set (15%), testing set (10%)
Structure A visible layer by 64 input unit +

two hidden layers + second layer with 480 neurons +
drop out layers at each layer with 0.1 rate +
Dense layer with one output

Activation function Hyperbolic Tangent Function (tanh)
Learning Rate 0.001
Loss function Mean Square Error (MSE)
Number of epochs 1000 but depending on the condition to cease training
Batch size 32

Table 4.2: Information regarding the structure of the better performing LSTM net-
work in Lobith station

3 Architecture of the optimal XGBoost model

As explained in the method section, both configurations of the XGBoost model XGB_-
s and XGB_lag were optimized using Grid Search for each station separately. The
hyperparameters tuned for the XGB_s model and their corresponding values are listed
in table 4 and 5.

XGB_s Parameter Configuration

colsample_bytree 0.7
learning rate 0.01
max_depth 7
min_child_weight 4
n_estimators 800
subsample 0.9

Table 4.3: Information regarding the optimal XGB_s hyperparameters of Basel

XGB.s Configuration
colsample_bytree 0.7
learning_rate 0.01
max_depth 7
min_child_weight 4
n_estimators 800
subsample 0.8

Table 4.4: Information regarding the optimal XGB_s hyperparameters of Lobith

21

Similarly, we performed Grid Search for XGB_lag and the results are shown
in the tables below. Interestingly, the optimized parameters of XGB_s and XGB_-
lag are identical in both stations. That is to say, adding lagged variable did not
change the optimal hyperparameters for Basel and Lobith stations. Moreover, the
set of hyperparameters for both stations are identical and the only difference is the
subsample hyperparameter which is 0.9 for Basel and 0.8 for Lobith.

XGB_lag Parameter Configuration

colsample_bytree 0.7
learning_rate 0.01
max_depth 7
min_child_weight 4
n_estimators 800
subsample 0.9

Table 4.5: Information regarding the optimal XGB_lag hyperparameters of Basel

XGB_lag Configuration
colsample_bytree 0.7
learning rate 0.01
max_depth 7
min_child_weight 4
n_estimators 800
subsample 0.8

Table 4.6: Information regarding the optimal XGB_lag hyperparameters of Lobith

4 Performance of the models

The performance of each model and its configuration are shown in figure 4.
Among models discussed in this study, the LSTM outperformed other models for
the Lobith station with an NSE value of 0.79 and KGE value of 0.84. Regarding
Basel station, this network has a good performance but shares the first place with the
MLR_lag model. Both models scored 0.68 in NSE and 0.72 in KGE. This is somewhat
surprising, as the linear model said not to capture the non-linear relationship of the
predictors and streamflow.

Interestingly, including lagged variables in the non-time-series model consider-
ably improved their performance. The NSE value for Basel station improved from
0.12 to 0.68 and the KGE improved from 0.12 to 0.72. The same holds for Lobith
station. The performance of MLR_lag is significantly higher than the performance
of MLR_s. When including lagged variables NSE value improved from 0.037 to 0.67
and KGE improved from -0.047 to 0.76. Similarly, the XGBoost model performance

22

improved when adding lagged input variables. Regarding Basel station, NSE im-
proved from 0.15 to 0.61 and KGE improved from 0.21 to 0.60. In the case of
Lobith station, NSE improved from 0.029 to 0.69 and KGE boosted from 0.094 to
0.67. However, in the end, the LSTM network trained on the same time window (55)
outperformed non-time-series models in the case of the Lobith station, the change in
the performance of non-time-series models shows that once time series information
is introduced to them, they are capable of discharge prediction and in some cases,

they may reach the RNNs performance such as LSTM.

0.8

0.6

KGE value
(=]
s

0.2

0.0

Basel (Rhine)

Lobith (Rhine)

ISTM MLR lag XGB_lag PCR

Basel (Rhine)

XGB S MLR_s

ISTM MLR lag XGB_lag PCR

Lobith (Rhine)

XGB s MLR_ s

LSTM
MLR_lag
XGB_lag
PCR
XGB_s
MLR s

LSTM
MLR_lag
XGB_lag
PCR
XGB_s
MLR_s

NSE value
=] = o =
N w = w

o
i

e
o

LSTM MLR_lag XGB_lag PCR XGB s MLR_s LSTM MLR_lag XGB_lag PCR XGB s MLR_ s

Figure 4.5: Model performance at different locations for the validation period
(1996-2000)

In both stations, the LSTM, XGB_lag and MLR_lag models outperformed the
PCR-GLOBWB model. Among these models, the LSTM outperformed other mod-
els for the Lobith station and performed equally well as the MLR_lag model in Basel
station. Information regarding coefficients of MLR models is provided in the Ap-
pendix.

Finally, the standard deviation of ensemble values of NSE and KGE for the
LSTM model at Lobith Station are 0.026 and 0.042, respectively. In the Basel
station, the standard deviation of the NSE is 0.024, whereas KGE’s is 0.035. It
indicates the model is relatively stable.

Figures 5 and 6 show the time series of discharge and the LSTM model prediction
along with PCR-GLOBWB streamflow prediction.

Basel (Rhine) from 1996 to 2000

3000 — obs
— LSTM

5 20 PCR
£ 2000
=
3
£ 1500
-
e
& 1000

500

1996-04 1996-07 1996-10 1997-01 1997-04 1997-07 1997-10 1998-01 1998-04 1998-07
(1996-1998)

4000
o)
E 3000
z
3
E 2000
@
b

1000

1998-07 1998-10 1999-01 1999-04 1999-07 1999-10 200001 2000-04 2000-07 2000-10 200101

(1998-2000)

Figure 4.6: Performance of the LSTM model compared to PCR on test set in Basel
station

Lobith (Rhine) from 1996 to 2000

— obs
— LST™M
— PCR

Streamflow (m3/s)

1996-04 1996-07 1996-10 1997-01 1997-04 1997-07 1997-10 1998-01 1998-04 1998-07
(1996-1998)

6000

4000

Streamflow (m#/s)

2000

1998-07 1998-10 1999-01 1999-04 1999-07 1999-10 2000-01 2000-04 2000-07 2000-10 2001-01
(1998-2000)

Figure 4.7: Performance of the LSTM model compared to PCR on test set in Lobith
station

Figures 7 and 8 show the time series of discharge and the XGB_lag model pre-
diction along with PCR-GLOBWB streamflow prediction.

24

Streamflow (m3/s)

Streamflow (m3/s)

2500

2000

1500

1000

500

Basel (Rhine) from 1996 to 2000

1996-01 1996-04 1996-07 1996-10 1997-01 1997-04 1997-07 1997-10 1998-01 1998-04 1998-07
(1996-1998)

1998-07 1998-10 1999-01 1999-04 1999-07 1999-10 2000-01 2000-04 2000-07 2000-10 2001-01
(1998-2000)

— obs
—— XGB_lag
— PCR

Figure 4.8: Performance of the XGB_lag model compared to PCR on test set in
Basel station

Streamflow (m3/s)

Streamflow (m3/s)

6000

4000

2000

Lobith (Rhine) from 1996 to 2000

1996-01 1996-04 1996-07 1996-10 1997-01 1997-04 1997-07 1997-10 1998-01 1998-04 1998-07
(1996-1998)

1998-07 1998-10 1999-01 1999-04 1999-07 1999-10 2000-01 2000-04 2000-07 2000-10 2001-01
(1298-2000)

— obs
—— XGB_lag
— PCR

Figure 4.9: Performance of the XGB_lag model compared to PCR on test set in
Lobith station

5 Performance consistency

In the context of the climate change, performance consistency is an important
factor beside performance accuracy. A model that can predict well high and low
streamflow can increase flood and drought control. To obtain insight into the con-
sistency of each model’s performance and compare them to the PCR model, their
cumulative frequency curves are plotted against actual observations over the test
period in figures 9 and 10. Regarding Basel station, the performance consistency of
LSTM is higher than other ML models, and in this case, it outperforms the MLR_lag

25

model for two reasons: first, it can predict streamflow values higher than 2200 up to
3000 m?3/s. Second, it can capture very low streamflow values, up to approximately
500 m?/s. The only model that can capture streamflow higher than 3000 m3/s
values in the Basel is the PCR model. However, this model performs very well at
low values of streamflow up to 500 m?/s (the LSTM does well here as well) and high
values but it fails to capture the trend in the normal range of streamflow (between
500 to 3200 m?/s) where most of the data falls in.

Basel (Rhine)

LSTM XGB_lag
—— LSTM —— XGB_lag
4000 —— oObs —— obs
3000
2000
1000
MLR_lag PCR
—— MLR_lag — PCR
4000 —— obs — obs
a
E 3000
3
o
E 2000
©
4
n
1000
XGB_s MLR s

—— XGB_s —— MLR s
4000 —— obs —— obs
3000
2000
1000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

CDF

Figure 4.10: Cumulative Frequency Function (CDF) of the observations compared
to the performance of ML and the PCR model in Basel station over test period
(1996-2000).

Regarding Lobith station, the LSTM model outperforms other ML models in ad-
dition to the PCR model. The consistency of its performance in predicting stream-
flow in all low, high and normal streamflow periods is impressive. It is notable that
in this station, the LSTM model is the only model to fit well during high streamflow.
It is also interesting to see that in this case, XGB_lag performs more consistently
than MLR_lag overall and especially in low streamflow.

Lobith (Rhine)

LSTM XGB_lag
— ISTM —— XGB_lag
8000 —— o©bs —— obs
6000
4000
2000
0
MLR_lag PCR
—— MLR_lag — PCR
8000 —— Obs — obs
z
£ 6000
H
2 4000
£
o
o
& 2000
0
XGB_s MLR_s
—— XGB_s —— MLR s
8000 —— Obs —— obs
6000
4000
2000
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

CDF

Figure 4.11: Cumulative Frequency Function (CDF) of the observations compared
to the performance of ML and the PCR model in Lobith station over test period
(1996-2000).

Overall, in both locations, the LSTM is the superior model ML model in perfor-
mance consistency. Performance consistency is also visible in the observed against
predicted streamflow plots provided in the Appendix section.

Chapter 5

Conclusion and Discussion

1 Discussion

Previous works employed ML models in the streamflow prediction but in most
cases, it is based on the historical records of streamflow or simulation variables from
a hydrological model. A few studies employed ML models in predicting streamflow
based on solely meteorological variables. We, therefore, aimed to predict stream-
flow from three input meteorological variables using LSTM, and XGBoost models
in Basel and Lobith stations. To determine if the use of these ML models is advan-
tageous, we benchmarked them to two other models: (i) MLR as an ML benchmark
(ii) and the PCR-GLOBWB as a hydrological benchmark.

We found that using input meteorological data, the LSTM model performs well in
predicting streamflow. It outperforms other models in the Lobith station and shares
a similar performance with the lagged version of the MLR model. The XGBoost
model, on the contrary, works well only when lagged predictor variables are added
to the model. Similarly, the MLR_lag performance increased significantly compared
to the MLR_s in both locations such that it achieved a similar accuracy as the LSTM
model in the Basel. The MLR_s and XGB_s models perform poorly and can not
achieve KGE or NSE of greater than 0.2 in both stations. Interestingly, in the case
of the Lobith station, non-time-series models advanced more when adding lagged
predictor variables.

Regarding performance consistency, the LSTM is the superior model in both
locations among ML models. In Basel station, for example, the LSTM and MLR_lag
share the same accuracy but the LSTM performance is much better in low and high
streamflow. It also constantly performs well in different values of streamflow in the
Lobith. In the context of climate change, it is of vital importance to have a model
that is capable of predicting high and low flow accurately to prevent extreme events
such as floods and drought and the LSTM model proved to be a good fit in this
case.

Surprisingly, including lagged variables in the MLR model results in better per-
formance accuracy than the XGBoost model in both locations. However, in the
case of Lobith station XGB_lag has a better performance consistency overall and in
particular in low streamflow.

We conclude that although the MLR_lag performs rather well in terms of ac-
curacy, it struggles in capturing high and low streamflows. A hydrological system
responds to its drivers in a relatively simple manner. While not linear, it is also not

28

overly chaotic. Thereby, including a high number of input lagged variables helps the
MLR_lag model to pick up some variation but eventually it fails to predict high and
low streamflow.

Shen et al. (2022) found a similar result using the same data. They show that by
employing historical meteorological data the RF model can correct the predictions
from a simulation model in the study area. As they only used 10 input lagged
variables and assigned a smaller training set to the RF model than that of us, no
definite conclusion can be drawn from comparing the results of these two studies.
Nonetheless, the NSE and KGE values in the Lobith station improved from 0.72 to
0.79 and from 0.82 to 0.84 respectively as a result of this study. In Basel station,
this was not the case. However, the NSE value improved from approx 0.53 to 0.68,
KGE value gained by Shen et al. is higher (from 0.72 to 0.76). Also, as indicated
earlier, we discovered that introducing the lagged predictor variables in the Lobith
station improved non-time-series models further than the Basel. It might be due
to the larger catchment of Lobith station compared to the Basel. Discharge from
larger catchments responds slower to drivers as the travel time to the outlet of
the catchment is longer for streamflow. Therefore, adding higher lagged predictor
variables is more crucial here.

In comparison to the scenario of combining input simulation variables for the
error correction procedure in Shen et al. paper, the NSE value in the Basel station
is slightly higher and the KGE value is slightly lower than their results. Our results
in the Lobith station are slightly lower than those in Shen et al. paper. Even
though our results are less favorable, our approach demonstrates that adding optimal
time-lag values as predictors may be an alternative to including the simulation
predictor variables in ML models. Given the limitations of a hydrological model,
the performance-efficiency trade-off should be taken into account when including
input simulation variables. Future research is needed to further shed light on the
application of hydrological models. The result of this study can serve as a benchmark
for a scenario of adopting an updating procedure with additional simulation input
variables using ML models with the same architecture to improve PCR-GLOBWB
prediction.

Moreover, drawing on the success of streamflow predictions solely based on his-
torical meteorological variables for gauged catchment, our approach has the potential
for efficiently estimating streamflow at ungauged locations. In this potential appli-
cation, the ML model such as LSTM or lagged version of MLR or XGBoost should
be first trained by data from other stations with different characteristics so that the
model can be generalized. This generalized model, then, can be used for streamflow
prediction at ungauged stations.

2 Conclusions

Our research demonstrates that a time series RNN model, such as LSTM, per-
forms convincingly in streamflow prediction given only input meteorological infor-
mation. However, if a non-time-series ML model is used since it is typically more
computationally efficient and less data-hungry, then adding the ideal quantity of lag
variables dramatically improves prediction accuracy. The performance consistency
may not be as good as when a time series RNN model is used, though. The most
important thing is to determine the ideal time-lag value. This is crucial because

29

including the optimal time-lag input predictors in MLL models might be an alterna-
tive solution to including the simulation predictor variables in ML models from a
hydrological model.

Additionally, the fact that the LSTM model outperforms the XGBoost in every
way, demonstrates the number of data points present here (of the 7305 total data
points, 75% were assigned to the training set) is enough for an LSTM model to
produce decent results. Future research is required to evaluate the performance of
these models with smaller data sets.

3 Limitations

In this study, we did not define the optimal time-lag value individually for each
predictor, rather we selected a period in which all predictors seemed to have a
positive correlation with streamflow. A predictor-specific time lag might decrease
the complexity of the model and result in a better performance.

Moreover, in this study despite using Google Colab Pro to speed up the process,
we were limited in three areas because of a lack of computational power and time.

1- We ran the LSTM models 10 times to take into account the stochastic nature
of this model. It is while experts advise running a deep network between 30 to 100
times.

2- We were limited in hyperparameter tuning and a limited set of search space
was chosen. A wholesome hyperparameter tuning will greatly affect the performance
accuracy.

3- Investigating higher time-lag values required running an LSTM model 10 times
with different time windows in this study. As the bigger the time window, the longer
the training phase, it was not feasible for us to look for higher lags than 205 days.
Investigating higher lags is highly recommended in future studies.

4 Code availability

the code used in this study, can be found at [this repository on GitHub.

30

https://github.com/Maryam-Afshari/thesis

Chapter 6

Appendix

1 Time series plots

Figures 1 and 2 show time series of observed streamflow and the predictors.

Basel (Rhine)

Streamflow (m?3/s)
% %

2
’ooo 000"%2 %

)

temperature
o

evapotranspiration
o

precipitation
o

%

QF 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Year

Figure 6.1: Time series of the observed streamflow and the predictors in Basel station
between 1981 to 2000

31

Lobith (Rhine)

Streamflow (m?3/s)
2. Y
3, %,
% %

%, %,
%2 %

temperature

N N
% 0 0 o0 %o v

%,

0,
07

[2)
%

evapotranspiration
o o

7

2, 9, "o
D % 9

)
%

precipitation

%

o

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Year

Figure 6.2: Time series of the observed streamflow and the predictors in Lobith
station between 1981 to 2000

2 Hyperparametes tuning of the LSTM model

Table 1 shows hyperparametes tuning for the LSTM model in both locations.

32

Network Parameter Configuration

Number of layers 1
Number of input units 128
Number of neurons in second layer 128
Number of units in layers 192, 128, 128, 352
Dropout rate 0.1
Learning rate 0.001
Activation function relu

(a) Information regarding the optimal hyperparameters in Basel station

Network Parameter Configuration
Number of layers 2
Number of input units 64
Number of neurons in second layer 480
Number of units in layers 192 | 448, 288, 352

Dropout rate 0.1

Learning rate 0.001

Activation function tanh

(b) Information regarding the optimal hyperparameters in Lobith station
Table 6.1: The optimal hyperparameters of the LSTM

3 Model performance

Scatter plots of model performance are shown in the Figures 3 and 4.

33

Basel (Rhine)

LSTM MLR lag
0 0
4000 4000
3000 3000
2000 2000
1000 1000
0
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500
XGB_s XGB_lag
= 2 o
'E 4000 4000
E . s .
; . .
o
= 3000 3000
g
2000 2000
T
(1)
£ 1000 1000
wn
Qo
o 0
600 800 1000 1200 1400 1600 1800 500 750 1000 1250 1500 1750 2000 2250
PCR MLR s
5 T
4000 4000
. * S
0L
3000 3000
2000 2000
1000 1000
1000 2000 3000 4000 800 1000 1200 1400 1600

Predicted streamflow (m?/s)

Figure 6.3: observed streamflow against predicted streamflow in different models in
Basel station

34

Lobith (Rhine)

LSTM MLR lag
L 0
L)
8000 8000
6000 6000
4000
4000
2000
2000
0
0 1000 2000 3000 4000 5000 6000
XGB_s XGB_lag
7 . S
Egooo . . 5 8000
LI
z
S
EGOOO 6000
(]
4
7 4000 4000
o
:
2000 2000
v
Q
o
1000 2000 3000 4000 5000 6000
PCR MLR s
E o
5 . 4 d
8000 8000
6000 6000
4000 4000
2000 2000
1000 2000 3000 4000 5000 6000 1750 2000 2250 2500 2750 3000 3250 3500

Predicted streamflow (m?3/s)

Figure 6.4: observed streamflow against predicted streamflow in different models in
Lobith station

35

4 Feature importance

In this section, we will explore the coefficients of the MLR models to get an
idea about feature importance. As seen in the previous section, the MLR_lag model
has satisfactory results and we are specifically keen on knowing the coefficients of
this model to further investigate the time-lag values. To do so, the coefficients of
predictors for both models are plotted in Figures 11 and 13.

In both stations, ¢ variable provides a negative coefficient for the MLR_s whereas
et and p features have positive coefficients and are equally important in streamflow
prediction.

Regarding the MLR_lag model, in Figures 12 and 14, the predictors with negative
coefficients in both stations are shown. In Basel station, up until t_lag_6 lag, the
lagged variables of ¢ feature, lags have positive coefficients. Whereas in Lobith
station, up until t_lag_12, lags have positive coefficients in predicting streamflow,
and lags above these values provide negative coefficients. In both stations, variable p
and its lagged values have positive coefficients in predicting streamflow. Regarding
lagged variables of et feature, the majority of its lagged variables have negative
coefficients in both stations. These findings are against the results gained from
the correlation plots above where lags of the variables ¢ and et have high positive
correlation and lags of the variable p have low correlation within the correlation
periods mentioned.

36

et lag 51
t lag 51
pl a§_5 1

et lag 41
t lag 41
p_la 'g_4 1

etﬁla'gj 1
t lag 31
p_la 'g_3 1
Predictors

Basel (Rhine)

et lag 21
t lag 21
p_la 9_2 1

et lag_11
tlag 11
pl aé_l 1

Figure 6.5: coefficients of the MLR models in Basel station

et lag 1
t lag 1
p_la'g_l

MLR_lag

100
—-100
—200

300

200

100
—-100

1000

800

600

400

200

65_bel 3
8g_be|]
GG bery
vS_bel
€G_be|)
16 _be
6v_be}
8v_be|)
Ly _Ber
Sv_bel
€v_bely
zv_bel}
ov_be}
8¢ be
9€_bel
Ge_be|)
ze be
1€_bel
Gz bery
vz_bey
0z_bel3
61 _bely
81_be|}
11 bers
9bery wn
66_6e| 19 S
LG be 190
95 0e[3®°g
GG e[1e 5
€5 bel P g
zs_bel39.2
16 be 39 ©
05 be| 10 &
8y_be| 1=
9t7_be| 19
Sv_be|1e
vv_be| 19
Tv_bel 3
6€_bel 1
L€ be[19
ve_be| 39
gg_be| 1
1€ _bej s
o€_be| 19
62 _bel 19
8z _be| 1
L7 Bel 39
9z be[®
€z_6e|"1®
ez be @
1Z_6e| 1
L1 Pel3
91_be 1@
GT_be| 38
v1 bel e

€ be| @

Z be e

1 be 30

AT

Figure 6.6: negative coefficients of the MLR _lag model in Basel station

—200
0,

n o n o n
~ n o~ o ~ n o
.I_. .I_. | | |

[SUETRIITERCYMEETN]

37

Lobith (Rhine)

MLR_lag

p_! ag';_z 1 p_la'g_3 1 p! a§_41 p_la 'g_5 1
Predictors

p! a'g_l 1

p| a'g_l

—
—
5, 5,
o
r ro
b, b
o o
—~
-
d., 4,
o L
r o
k) B
© !
—
—
3, 3,
o
L ro
= E
@ o
Iy —
2, 2,
[=1) L
r o
h, [
& o
—~
—~
.I., .I.,
o
L ro
k) B
© !
.I., .I.,
[=)]
L LD
= 8
@ o
o o o o (=] o o o [=] o o
n o n n (=] [Ta] n o [=} o (=]
~ n ~ M~ n ™~ ~ 'al n o n
I I | | I — —
® d

Figure 6.7: coefficients of the MLR models in Lobith station

it |

o
o
7

0

©o <
| |

SUETITEW N ELETY)

0
0
—200

vS_be|3
€5_be|3
15 _bel3
6v_be| 3
8y_be|}
Ly_Be
Zy_be}
ov_be| 1
6€_bel 3
8g_be|}
L€ bey
9¢_be| 1
Ge_be3
ve_bell
ze_be3
1€_bey
0€_be|1
6z_be|}
8z_bel)
Lz Bely
9z be| 3
qz_be| 3
vz_be1
€7 be|
zz_bel
1Z_be3
0z_bel 3
6T_be1
81_be| 3
L1_6e]
91_be| 3
S1_be| 3y
v1_bel1
€1_be|3
Z1_ber3
vS_be| 39
z5_be| 3
16_be| 39
05_be| 19
67_be| 19
8v_be|19
Lv_Be1®
9v_be| 39
Sv_be| 3o
ri_be|19
£v_be| 1o
Tv_be 1o
ve_be 39
£€_be| 3o
ze_be| 39
1€_be 1o
0€_be|19
6¢7_be|3
0z_bel 1@
11_be| 30
01 b3
6_be| 10
8_be|3
L_Be P
9_be| 1
S_be| "1
v be| 1

Negative predictors

Figure 6.8: negative coefficients of the MLR _lag model in Lobith station

38

Bibliography

1]

[5]

[9]

[10]

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel,
and T. L. Veith, “Model evaluation guidelines for systematic quantification of
accuracy in watershed simulations,” Transactions of the ASABFE, vol. 50, no. 3,
pp- 885-900, 2007.

C. A. Guimaraes Santos and G. B. L. d. Silva, “Daily streamflow forecasting
using a wavelet transform and artificial neural network hybrid models,” Hydro-
logical Sciences Journal, vol. 59, no. 2, pp. 312-324, 2014.

C. Shen, “A transdisciplinary review of deep learning research and its relevance
for water resources scientists,” Water Resources Research, vol. 54, no. 11, pp.
8558-8593, 2018.

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing,
“Benchmarking a catchment-aware long short-term memory network (Istm) for
large-scale hydrological modeling,” Hydrology and Earth System Sciences Dis-
cussions, pp. 1-32, 2019.

Y. B. Dibike and D. P. Solomatine, “River flow forecasting using artificial neural
networks,” Physics and Chemistry of the Farth, Part B: Hydrology, Oceans and
Atmosphere, vol. 26, no. 1, pp. 1-7, 2001.

M. J. Best, G. Abramowitz, H. Johnson, A. Pitman, G. Balsamo, A. Boone,
M. Cuntz, B. Decharme, P. Dirmeyer, J. Dong et al., “The plumbing of land
surface models: benchmarking model performance,” Journal of Hydrometeorol-
ogy, vol. 16, no. 3, pp. 1425-1442, 2015.

M. Gauch, J. Mai, S. Gharari, and J. Lin, “Data-driven vs. physically-based
streamflow prediction models,” in Proceedings of 9th International Workshop
on Climate Informatics, 2019.

Z. M. Yaseen, A. El-Shafie, O. Jaafar, H. A. Afan, and K. N. Sayl, “Artificial
intelligence based models for stream-flow forecasting: 2000-2015,” Journal of
Hydrology, vol. 530, pp. 829-844, 2015.

S. Duan, P. Ullrich, and L. Shu, “Using convolutional neural networks for
streamflow projection in california,” Frontiers in Water, vol. 2, p. 28, 2020.

Y. Shen, J. Ruijsch, M. Lu, E. H. Sutanudjaja, and D. Karssenberg, “Ran-
dom forests-based error-correction of streamflow from a large-scale hydrologi-
cal model: Using model state variables to estimate error terms,” Computers &
Geosciences, vol. 159, p. 105019, 2022.

39

[11]

[12]

[13]

[16]

[18]

[19]

[20]

[21]

22]

23]

A. Mosavi, P. Ozturk, and K.-w. Chau, “Flood prediction using machine learn-
ing models: Literature review,” Water, vol. 10, no. 11, p. 1536, 2018.

L. Faik. (2021) Deep learning for time series forecasting: Is it worth it?
(part i). [Online]. Available: https://medium.com/data-from-the-trenches/
deep-learning-for-time-series-forecasting-is-it-worth-it-bfc95alc9ded

L. Yan, J. Feng, and T. Hang, “Small watershed stream-flow forecasting based
on Istm,” in International Conference on Ubiquitous Information Management
and Communication. Springer, 2019, pp. 1006-1014.

X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long short-term
memory (Istm) neural network for flood forecasting,” Water, vol. 11, no. 7, p.
1387, 2019.

M. Yueling, E. Matta, M. Dennis, S. Hanno, H. Reinhard et al., “Can ma-
chine learning improve the accuracy of water level forecasts for inland naviga-
tion? case study: Rhine river basin, germany,” in 38th IAHR World Congress
Panama City 2019, Water-Connecting the world. Lucas Calvo, 2019, pp. 1979—
1989.

D. Feng, K. Fang, and C. Shen, “Enhancing streamflow forecast and extracting
insights using long-short term memory networks with data integration at con-
tinental scales,” Water Resources Research, vol. 56, no. 9, p. e2019WR026793,
2020.

M. Gauch, J. Mai, and J. Lin, “The proper care and feeding of camels: How
limited training data affects streamflow prediction,” Environmental Modelling
& Software, vol. 135, p. 104926, 2021.

M. M. Ghiasi and S. Zendehboudi, “Decision tree-based methodology to select
a proper approach for wart treatment,” Computers in biology and medicine,
vol. 108, pp. 400409, 2019.

M. Gauch, J. Mai, S. Gharari, and J. Lin, “Streamflow prediction with limited
spatially-distributed input data,” in Proceedings of the NeurIPS 2019 Workshop
on Tackling Climate Change with Machine Learning, 2019.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, 2016, pp. 785-794.

L. Ni, D. Wang, J. Wu, Y. Wang, Y. Tao, J. Zhang, and J. Liu, “Stream-
flow forecasting using extreme gradient boosting model coupled with gaussian
mixture model,” Journal of Hydrology, vol. 586, p. 124901, 2020.

C. Wade, Hands-On Gradient Boosting with XGBoost and scikit-learn: Perform
accessible machine learning and extreme gradient boosting with Python. Packt
Publishing Ltd, 2020.

B. Sjardin, L. Massaron, and A. Boschetti, Large scale machine learning with
Python. Packt Publishing Ltd, 2016.

40

https://medium.com/data-from-the-trenches/deep-learning-for-time-series-forecasting-is-it-worth-it-bfc95a1c9de4
https://medium.com/data-from-the-trenches/deep-learning-for-time-series-forecasting-is-it-worth-it-bfc95a1c9de4

[24] R. M. Adnan, Z. Liang, S. Heddam, M. Zounemat-Kermani, O. Kisi, and
B. Li, “Least square support vector machine and multivariate adaptive re-
gression splines for streamflow prediction in mountainous basin using hydro-
meteorological data as inputs,” Journal of Hydrology, vol. 586, p. 124371, 2020.

[25] Z. Luo, J. Huang, K. Hu, X. Li, and P. Zhang, “Accuair: Winning solution
to air quality prediction for kdd cup 2018,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, pp. 1842-1850.

[26] (2015) Rossmann store sales, winner’s interview: Ist place,
gert jacobusse. [Online]. Available: https://medium.com/kaggle-blog/
rossmann-store-sales-winners-interview- 1st-place-gert-jacobusse-al4b271659b

[27] (2016) Grupo bimbo inventory demand, winners’ interview: Clusti-
fier alex andrey. [Online|. Available: https://medium.com/kaggle-blog/
grupo-bimbo-inventory-demand-winners-interview-clustifier-alex-andrey- 1le3b6cec8a20

[28] (2016) Rossmann store sales, winner’s interview: 2nd place,
nima shahbazi. [Online]. Available: https://medium.com /kaggle-blog/
rossmann-store-sales-winners-interview-2nd-place-nima-shahbazi-ad7a4eb65629

[29] E. Sutanudjaja, L. Van Beek, S. De Jong, F. Van Geer, and M. Bierkens, “Cali-
brating a large-extent high-resolution coupled groundwater-land surface model
using soil moisture and discharge data,” Water Resources Research, vol. 50,
no. 1, pp. 687-705, 2014.

[30] H. Tongal and M. J. Booij, “Simulation and forecasting of streamflows using
machine learning models coupled with base flow separation,” Journal of hydrol-
ogy, vol. 564, pp. 266-282, 2018.

[31] F. Kratzert, D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger, “Rainfall-
runoff modelling using long short-term memory (lstm) networks,” Hydrology
and Farth System Sciences, vol. 22, no. 11, pp. 6005-6022, 2018.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735-1780, 1997.

[33] M. Phankokkruad and S. Wacharawichanant, “A comparison of extreme gra-
dient boosting and convolutional neural network-long short-term memory for
service demand forecasting,” in The International Conference on Natural Com-
putation, Fuzzy Systems and Knowledge Discovery. Springer, 2019, pp. 547—
556.

[34] Y. Wang, K. Lin, Y. Qi, Q. Lian, S. Feng, Z. Wu, and G. Pan, “Estimating brain
connectivity with varying-length time lags using a recurrent neural network,”
IEEE Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 1953-1963,
2018.

[35] Y. B. Lim, I. Aliyu, and C. G. Lim, “Air pollution matter prediction using
recurrent neural networks with sequential data,” in Proceedings of the 2019
3rd International Conference on Intelligent Systems, Metaheuristics € Swarm
Intelligence, 2019, pp. 40—44.

41

https://medium.com/kaggle-blog/rossmann-store-sales-winners-interview-1st-place-gert-jacobusse-a14b271659b
https://medium.com/kaggle-blog/rossmann-store-sales-winners-interview-1st-place-gert-jacobusse-a14b271659b
https://medium.com/kaggle-blog/grupo-bimbo-inventory-demand-winners-interview-clustifier-alex-andrey-1e3b6cec8a20
https://medium.com/kaggle-blog/grupo-bimbo-inventory-demand-winners-interview-clustifier-alex-andrey-1e3b6cec8a20
https://medium.com/kaggle-blog/rossmann-store-sales-winners-interview-2nd-place-nima-shahbazi-ad7a4eb65629
https://medium.com/kaggle-blog/rossmann-store-sales-winners-interview-2nd-place-nima-shahbazi-ad7a4eb65629

[36]

[38]

[39]

[44]

[45]

[46]
[47]

[48]
[49]

P. L. Fung, M. A. Zaidan, O. Surakhi, S. Tarkoma, T. Petaja, and T. Hussein,
“Data imputation in in situ-measured particle size distributions by means of
neural networks,” Atmospheric Measurement Techniques, vol. 14, no. 8, pp.
5535-5554, 2021.

O. Surakhi, M. A. Zaidan, P. L. Fung, N. Hossein Motlagh, S. Serhan,
M. AlKhanafseh, R. M. Ghoniem, and T. Hussein, “Time-lag selection for time-
series forecasting using neural network and heuristic algorithm,” Electronics,
vol. 10, no. 20, p. 2518, 2021.

Z. M. Yaseen, O. Jaafar, R. C. Deo, O. Kisi, J. Adamowski, J. Quilty, and
A. El-Shafie, “Stream-flow forecasting using extreme learning machines: a case
study in a semi-arid region in iraq,” Journal of Hydrology, vol. 542, pp. 603—614,
2016.

C. Gao, M. Gemmer, X. Zeng, B. Liu, B. Su, and Y. Wen, “Projected stream-
flow in the huaihe river basin (2010-2100) using artificial neural network,”

Stochastic Environmental Research and Risk Assessment, vol. 24, no. 5, pp.
685-697, 2010.

Sklearn preprocessing library. [Online]. Available: https://scikit-learn.org/
stable/modules/generated /sklearn.preprocessing. MinMaxScaler.html

F. G. Toro and A. Tsourdos, UAV or drones for remote sensing applications.
MDPI-Multidisciplinary Digital Publishing Institute, 2018.

Introduction to boosted trees. [Online]. Available: https://xgboost.
readthedocs.io/en/latest /tutorials/model.html#the-structure-score

E. Sutanudjaja, R. Van Beek, N. Wanders, Y. Wada, J. Bosmans, N. Drost,
R. Van Der Ent, I. De Graaf, J. Hoch, K. De Jong et al., “Pcr-globwb 2: a 5

arcmin global hydrological and water resources model, geosci. model dev., 11,
2429-2453,” 2018.

L. Van Beek, Y. Wada, and M. F. Bierkens, “Global monthly water stress: 1.
water balance and water availability,” Water Resources Research, vol. 47, no. 7,
2011.

L. Van Beek and M. Bierkens, “The global hydrological model pcr-globwb: con-
ceptualization, parameterization and verification,” Utrecht University, Utrecht,
The Netherlands, vol. 1, pp. 25-26, 2009.

Scipy library. [Online|. Available: https://scipy.org/

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IFEFE transactions on neural networks, vol. 5,
no. 2, pp. 157-166, 1994.

Keras tuner. [Online|. Available: https://keras.io/keras_tuner/

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: A novel bandit-based approach to hyperparameter optimization,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6765-6816, 2017.

42

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html#the-structure-score
https://xgboost.readthedocs.io/en/latest/tutorials/model.html#the-structure-score
https://scipy.org/
https://keras.io/keras_tuner/

[50]

[51]

[52]

[53]

[54]

Hyperband method in keras tuner. [Online]. Avail-
able: https://www.tensorflow.org/tutorials/keras/keras_tuner#:~:
text=Hyperband%20determines%20the%20number%200f, value%20for%

20the%20validation7%20loss.&text=Run%20the%20hyperparameter%20search.

F. Galton, “Regression towards mediocrity in hereditary stature.” The Journal
of the Anthropological Institute of Great Britain and Ireland, vol. 15, pp. 246—
263, 1886.

K. Pearson, “Vii. mathematical contributions to the theory of evolution.—iii.
regression, heredity, and panmixia,” Philosophical Transactions of the Royal
Society of London. Series A, containing papers of a mathematical or physical
character, no. 187, pp. 253-318, 1896.

Gridsearchev in scikit learn library. [Online]. Available: https://scikit-learn.
org/stable/modules/generated /sklearn.model_selection.GridSearchCV.html

Xgboost parameters. [Online]. Available: https://xgboost.readthedocs.io/en/
latest /parameter.html

43

https://www.tensorflow.org/tutorials/keras/keras_tuner#:~:text=Hyperband%20determines%20the%20number%20of,value%20for%20the%20validation%20loss.&text=Run%20the%20hyperparameter%20search.
https://www.tensorflow.org/tutorials/keras/keras_tuner#:~:text=Hyperband%20determines%20the%20number%20of,value%20for%20the%20validation%20loss.&text=Run%20the%20hyperparameter%20search.
https://www.tensorflow.org/tutorials/keras/keras_tuner#:~:text=Hyperband%20determines%20the%20number%20of,value%20for%20the%20validation%20loss.&text=Run%20the%20hyperparameter%20search.
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html

	Introduction
	Literature Review
	Streamflow prediction using meteorological data
	LSTM
	XGBoost
	Time-lag value

	Data and Methods
	Data
	Study area
	Scaling and transformation

	Methods
	PCR-GLOBWB
	Streamflow prediction
	Dataset splitting
	Time-lag value
	Long-Short Term Memory (LSTM)
	The LSTM's parameters
	Ensemble runs

	Multiple Linear Regression
	Extreme Gradient Boosting (XGBoost)
	Model setup and evaluation

	Results
	Time-lag value
	Architecture of the optimal LSTM network
	Architecture of the optimal XGBoost model
	Performance of the models
	Performance consistency

	Conclusion and Discussion
	Discussion
	Conclusions
	Limitations
	Code availability

	Appendix
	Time series plots
	Hyperparametes tuning of the LSTM model
	Model performance
	Feature importance

