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Abstract

Globally, climate change causes glaciers to retreat. Driving mechanisms at local scales are poorly un-
derstood. This study aims to discover which climatical and morphological variables most contribute to
explaining the Specific Mass Balance (SMB) variability of 9098 individual glaciers in High Mountain Asia
(HMA). We separate the data into 15 regions assumed climatically homogeneous. We calculated correla-
tions between the selected variables and the SMB. Additionally, we calculated a multivariate linear model
and assessed a linear combination of the variables that best explain the SMB variability. We exclude all
predictor-predictor correlations > |0.7|. We concluded that in the heterogeneous climate setting (HMA),
the selected variables explain 30.7% of the glaciers’ SMB variability, with the most important predictors
being the presence of a lake, the slope and the mean temperature and precipitation in 2000-2020. All
predictors, except for the slope, are found to be associated with negative SMB. In the subregions, we
conclude that the selected variables explain 18.1% to 50.0% of the SMB variability, with generally the
most important predictors being the morphological variables: the presence of a Lake, the slope, and the
median elevation. The slope and the median elevation are found to be associated with positive SMB.
In all analyses, we observed a large influence of glacial lakes on the SMB. We expect this partly results
from unobserved correlations between the variables lake and slope. Only the subregion West Kun Lun
was associated with positive SMB. Here, we expect this contrasting behaviour to result from the dry and
cold climate settings. A major limitation of this study is the use of a linear model for non-linear data.
This resulted in relatively low model performance in the climatically heterogeneous region HMA.
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1 Introduction

1.1 Relevance

Globally, glaciers are extensively impacted by climate change. Glacier retread has accelerated in recent
decades (Viviroli et al., 2011; Bolch et al., 2012). Evidence suggests that the rate of warming is amplified
in higher mountain environments (Pepin et al., 2015). The threat of global warming is even more appar-
ent in High Mountain Asia (HMA), where the warming rates are significantly higher than in the Northern
Hemisphere and global averages (Yang et al., 2014). Climate change affects glaciers and their crucial role in
the global water cycle (Viviroli et al., 2007) as glacier ablation contributes to global sea-level changes and
regional water supplies (Bojinski et al., 2014). Accumulation and ablation dynamics are being disturbed,
and precipitation and evaporation patterns are shifting, all impacting future changes in the magnitude and
timing of water availability (Immerzeel et al., 2020; Bookhagen and Burbank, 2010). These changes can affect
the mountain ecosystem and have far-fetching social, ecological and political consequences (Sorg et al., 2012).

Moreover, glacier retreat is associated with the rapid expansion and new formation of glacial lakes (Zheng
et al., 2021; Zhang et al., 2015; Shugar et al., 2020). Allen et al. (2016) predicted the future appearance of
glacial lakes in HMA and identified 5.000 overdeepenings that are at risk of turning into glacial lakes. These
glacial lakes can cause glacial lake outburst floods when water is suddenly released from the lake. Floods of
unstable lakes cause great risk up to a hundred kilometres downstream and have killed thousands of people,
with the most frequent events observed in HMA (Dubey and Goyal, 2020).

Glaciers store and supply water for environmental and human demands downstream (Viviroli et al., 2011).
These so-called ’water towers’ provide a seasonal buffer as they provide higher water runoff in the warmer
seasons and store water in the form of ice and glaciers in the colder seasons. The water runoff in downstream
rivers is essential for irrigation, industrial water supplies, hydrodynamic power production and environmen-
tal needs (Viviroli et al., 2011). Shifts in seasonal runoff are already observed in some rivers, and this trend
is expected to continue (Sorg et al., 2012). We find it essential to study regional changes in mountain water
resources because of the social, ecological, and political consequences associated with water availability.

1.2 Spatial Variability in Glacier Mass Balance

It is widely recognized that glaciers are affected by climate change at a global level. However, different
regions may behave remarkably dissimilar. Most glaciers in the Himalayas and on the Tibetan Plateau
are losing mass (Bolch et al., 2012; Yao et al., 2012), but they show contrasting shrinkage patterns (Kääb
et al., 2012; Maussion et al., 2014). Kaab et al. (2012) examine mass loss in five subregions of the Hindu
Kush–Karakoram–Himalaya region (HKKH). On average, HKKH glaciers thinned 0.26± 0.06 m yr−1, while
glaciers in the northern and eastern parts of the subregion Karakoram thickened 0.14± 0.06 m yr−1. These
heterogeneous glacier responses can be partly explained by local morphological factors (such as slope, height
and debris coverage) but also by the contrasting climatic setting in HMA (Brun et al., 2017; Maussion et al.,
2014).

For example, the contrasting behaviour of Karakoram is associated with cooling summer temperatures over
the Karakoram (Forsythe et al., 2017). Not only is the temperature highly variable in HMA, but the amount
and timing of precipitation also differ across regions. Most glaciers in the western Himalayas and the Karako-
ram receive 60-70% of the annual accumulation from westerly extratropical cyclones (Shean et al., 2020),
while glaciers in central and eastern Himalayas receive 80% of their annual accumulation from the summer
monsoons (Bookhagen and Burbank, 2010).

Forsythe et al. (2017) identify heterogeneous climatology as a possible driving mechanism for changing
glacial mass balance patterns in the Himalayas. However, heterogeneous climatology partly explains the
regional patterns of glacier mass changes. Recent studies show that glacier morphology also explains the
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variability of glacier mass balance (Brun et al., 2019). For example, a study by Huss (2012) investigates the
mass balance and ice volume change for all glaciers in the European Alps with multiple regression. Glacier
geometry variables perform best in reproducing observed spatial mass balance variability, with the most
important morphological variables being: area, median elevation, lower 10 % of the slope, easting, northing
and, aspect. Together these morphological variables explain 51% of the glacier mass balance variance.

A similar study by Brun et al. (2019) investigates 6470 glaciers in HMA, subdivided into 12 climatically
homogeneous regions. They find that 8-48% of glacier mass balance variability can be explained by the
slope of the glacier tongue, mean glacier elevation, percentage of supraglacial debris cover, and avalanche
contributing area. They identified the slope of the glacier tongue and the mean glacier elevation as the
best predictors of the mass balance. It is suggested that the significant influence of the slope is partially
explained by the preferential development of glacial ponds on shallow slopes. This is in line with the findings
by Zhang et al. (2015), who investigate the effect of glacial lakes and found that the presence of glacier-fed
lakes negatively correspond to glacier mass balance patterns.

Kraaijenbrink et al. (2017) show that, in HMA, about 11% of glacier area is covered in debris. The amount
and thickness of the debris layer are associated with the mass balance variability. A thin layer of debris
accelerates glacial melt because debris has a lower albedo than debris-free ice. However, a debris layer thicker
than a few centimetres has an insulating effect which inhibits glacial melt (Kraaijenbrink et al., 2017). Like-
wise, changes in ice velocity are associated with mass balance variability. Heid and Kääb (2012) analyzed
ice velocity changes over recent decades. In regions with negative mass balance, they observed that ice flow
slowed. However, they found no clear relation between mass balance and velocity change (Dehecq et al.,
2019). In HMA, the slowdown of glaciers has been observed locally and is associated with a negative mass
balance. In regions like Karakoram and West Kun Lun, where glaciers are stable or thickening, glacier flow
accelerated. However, the relation between the flow response of glaciers to mass change is poorly understood
at regional scales (Dehecq et al., 2019).

1.3 Research Question

In this thesis, we contribute to research on this topic by studying mass balance variability in HMA. We aim
to discover which climatical and morphological predictors most contribute to explaining the specific mass
balance (SMB) variability of glaciers in climatically heterogeneous region HMA and the following assumed
climatically homogeneous subregions: Hissar Alay (HA), Pamir (P), West Tien Shan West (WTS), East
Tien Shan (ETS), West Kun Lun (WKL), East Kun Lun East (EKL), Qilian Shan (QS), Inner Tibet (IT),
South and East Tibet (T), Hindu Kush (HK), Karakoram (K), West Himalaya (WH), Central Himalaya
(CH), East Himalaya (EH) and, Hengduan Shan (HS). We test this for 9098 individual glaciers (<2km2)
in HMA. Additionally, we test whether glaciers with a lake are associated with more negative SMB, debris
coverage reduces mass loss and faster-flowing glaciers are associated with a more negative mass balance.

In Section 2, we will describe data sources and prepossessing. Next, in Section 3, we present the meth-
ods and motivation for selecting a multi-linear regression model. Finally in Section 4,5 and 6 we outline and
discuss the results.
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2 Data

In this thesis, we aim to investigate influence of climatical and morphological predictors on glacier mass
balance. Section 2.1 describes all predictors that possibly influence SMB. Data is selected from multiple
open source platforms. Table 1 provides an overview of all variables and their source. Next, in Section
2.2 we present data selection and outlier detection results. Finally, in Section 2.3 we present missing data
analysis.

2.1 Documentation of Variables

Randolph Glacier Inventory Version 6.0
The Randolph Glacier Inventory (RGI) provides global estimates of all glacier outlines and is updated
annually. Outlines are produced in coordination with the Global Land Ice Measurements from Space (RGI).
Glacier outlines are obtained from satellite images acquired in 1990 or later using Landsat platforms like
Landsat 5 TM and Landsat 7 ETM, ASTER, IKONOS and SPOT HRS sensors. Glaciers with areas less
than 0.01 km2 are removed from the data (Pfeffer et al., 2014). In this study, we examine 15 subregions
(region 13 O1 - 15 O3) in HMA (region 13, 14, 15). Based upon the work of Brun et al. (2017), we assume
that these regions are climatically homogeneous. From now on, we will refer to the climatically homogeneous
subregions as ’subregions’. We will refer to all subregions combined as ’HMA’; this region is climatically
heterogeneous.

Figure 1: Left panel: Outlines of the RGI 6.0 regions. Region names: 9: Russian Arctic, 10: North Asia,
11: Central Europe, 12: Caucasus and Middle East, 13: Central Asia, 14: South Asia West, 15: South Asia
East, 16: Low Latitudes. Image taken from (Wouters et al., 2019). Right panel: climatically homogeneous
subregions. Image taken from (Zhao et al., 2016)

From the RGI (Consortium, 2017) we obtain i) Glacier area in km2, ii) The minimum, maximum elevation
(m) above sea level iii) The median elevation (m) of the glacier iv) the mean slope of the glacier surface
(in degree). v) The aspect (orientation) of the glacier surface (in degree) is defined as an integer azimuth
relative to 0° at north. The mean aspect is calculated by the arctangent of the sum of the aspect sines and
cosines of each of the glaciers. vi) Length (in m) of the longest surface flowline of the glacier. The length is
measured with an algorithm developed by Frey et al. (2014).
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ERA5
ERA5 is the fifth generation atmospheric reanalysis medium-range weather forecast of the global climate
(ERA5, 2022). The Copernicus Climate Change Service produces ERA5 at the European Centre for Medium-
Range Weather Forecasts. ERA5 covers the period from January 1950 to the present. It provides hourly
estimates of climate data of many variables in the atmosphere, on land and in the ocean. The Earth is
covered by 30km grid cells, and atmospheric data is provided up to a height of 80km. In addition, Era5 pro-
vides reanalysis data, which combines weather observations and past short-range weather forecasting models.
This implies that reanalyses fill in the missing observational records, resulting in a globally complete map
consistent in time.

Open Global Glacier Model
The Open Global Glacier Model (OGGM) is an open-source modelling framework for glaciers (OGGM,
2022). The model produces past and future mass balance, volume and geometry estimates of almost any
glacier. The default directories are generated with the default parameters of the current stable OGGM ver-
sion (May 2022). OGGM provides monthly temperature and precipitation data interpolated to the glacier
location and height. Temperatures are corrected for altitude using a linear gradient (Maussion et al., 2019).
In addition, OGGM provides estimates for the Equilibrium line Altitude (the altitude where accumula-
tion is balanced by ablation over a one year period) and the Accumulation Area Ratio (the ratio between a
glacier’s accumulation area and total area). These estimates are based on methods by Marzeion et al. (2012).

NASA MEaSURE
The NASA MEaSUREs project provides automated, low latency, global glacier flow and elevation change
datasets (NASA, 2022). The ITSLIVE project provides a 120 m-resolution record of global ice velocity and
elevation change from 1985 to the present. Data is obtained from multiple optical, radar, and laser satellite
sensors. The U.S. Geological Survey provided Landsat 4,5,7,8 data. Regional Glacier and Ice Sheet Surface
Velocity data are generated using auto-RIFT Dehecq et al. (2019) and provided by the NASA MEaSUREs
ITSLIVE project. We obtain flow velocity fields on a 5 km grid. Each glacier’s average annual glacier
velocity was extracted by overlaying the GeoTIFF file with the RGI polygons in QGIS and computing the
zonal-statistics. 311 HMA glaciers larger than two km2 are outside a grid and therefore missing.

Huggonet et al.
Hugonnet et al. (2021) study glacier mass loss from 2000 to 2020. They use openly available satellite achieves
to extract surface elevation changes at a 100m horizontal resolution covering 97.4% of all glaciers on Earth.
They use a gap-filling method to extend the estimated elevation change up to 99.9% of all global glaciers.
Estimates are validated against high-precision measurements. Using Gaussian process regression, Huggonet
et al. provide global estimates for glacier mass, volume and height variability per individual glacier along
the period 2000-to 2020 (SEDOO, 2022).

Farinotti et al.
Farinotti et al. (2019) estimate the ice thickness distribution of all glaciers in HMA form surface character-
istics, using an ensemble of five models. Glacier outlines are provided through RGI version 6.0 RGI. We use
all ice thickness data in 25m spatial resolution.

Kraaijenbrink et al.
Kraaijenbrink et al. (2017) study the response of 5537 glacier melt in HMA to a global temperature rise of
1.5°C. Glacier outlines are provided from the Randolph Glacier Inventory (RGI) version 5.0. Additionally
this study develops a debris classification method of HMA using Landsat 8 imagery. The Normalized Differ-
ence Snow Index (NDSI) is used to distinguish between debris-free and debris-covered ice (Hall et al., 1995).
From this study, we obtain the volume- and area percentage of debris below the ELA.
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Zheng et al.
Zheng et al. (2021)assess the changes in glacial lakes and the related glacial lake outburst flood in HMA.
Glacial lakes are water bodies primarily formed and fed by glacier melt. They are located on the surface,
below, adjacent or downstream of the glacier. Landsat 4,5,8 satellite images and US Geological Survey ob-
tained lake outlines with a spatial resolution of 30m and 15m, respectively. Data is available from up to 1990.
A 10 km buffer zone around the RGI establishes a preliminary distribution of possible glacier lakes. Images
are taken from the warm season (June to November). An automatic water body classification algorithm
locates all lakes from the Landsat images. We extracted all types of lakes from this study and selected the
2608 lakes that intersect with the RGI polygons using QGIS.

Below, Table 1 provides an overview of all variables and their source.

Variable Documentation Unit Source Period
RGI id rgi id - RGI 6.0 2022
O2 Region O2Region - RGI 6.0 2022
SMB dmdtda w.e./yr Huggonet 2000-2020
Area Area km2 RGI 6.0 2022
Max hight Zmax km RGI 6.0 2022
Mean hight Zmed km RGI 6.0 2022
Min hight Zmin km RGI 6.0 2022
Lenght Lmax km RGI 6.0 2022
Slope Slope degree RGI 6.0 2022
Ice Thickness ice thickness m Farinotti 2019
Mean ice flow velocity velocity m/year Gardner 1985-2022

Apect Aspect

0 = north
(270°- 90°)
1 = south
(90°- 270°)

RGI 6.0 2022

Glacial lake Glacial lake
0 = no lake
1 = lake

Zheng 2021

Equilibrium Line Altitude TStar ela h km
OGGM,
ERA5 base

2022

Accumulation Area Ration TStar aar -
OGGM,
ERA5 base

2022

Volume percentage debris
below ELA

debris vol ela p - Kraaijenbrink 2017

Area percentage debris
below ELA

debris area ela p - Kraaijenbrink 2017

Mean temperature
(aggregated by 10 year)
Downscaled to glacier lvl.

temp mean 2000 2020
temp mean 1980 2000

degree
OGGM,
ERA5 base

2000 2020
1980 2000

Temperature variability
(aggregated by 10 year)
Downscaled to glacier lvl.

temp diff 2000 2020
temp diff 1980 2000

degree
OGGM,
ERA5 base

2000 2020
1980 2000

Mean precipitation
(aggregated by 10 year)

prcp mean 2000 2020
prep mean 1980 2000

mm/year
OGGM,
ERA5 base

2000 2020
1980 2000

Precipitation variability
(aggregated by 10 year)

temp diff 2000 2020
temp diff 1980 2000

mm/year
OGGM,
ERA5 base

2000 2020
1980 2000

Table 1: Documentation of variables used in this study. SMB stand for Specific Mass Balance in water
equivalent per year

7



2.2 Data Prepossessing and Outlier Detection

Similar to Brun et al. (2017), we delete all glaciers with an area smaller than 2.0 km2. As a result, we
study 8098 glaciers in HMA. These glaciers contain 86.4% of the total ice volume. In addition, we have
identified and deleted one outlier in the data, a glacier with a median elevation of 610 m (corresponding RGI
id: RGI60-15.02228). Finally, we check whether the data is normally distributed and find that the area and
the mean ice flow velocity are highly skewed. We log-transform the variables to reduce skewness and make
patterns in the data more interpretable. The distribution of the variables are displayed in the supplementary
material SC.1.

2.3 Missing Data Analyses

Thorough reanalysis and gap-filling methods in the source data minimize the presence of missing data. The
mean ice flow velocity and ELA and AAR contain 3.8%, 0.2% and 0.2% of missing values, respectively.
Missing data can cause bias and impact the overall statistical power of a study (Myers, 2000). In order to
reduce bias, it is essential to apply the appropriate imputation method for the different types of missing
data (missing completely at random, missing at random, or missing not at random). We apply an iterative
imputation method, as this method can be applied to all types of missing data. We impute missing values
with the ItterativeImputer from scikit-learn [29]. This imputer uses the entire set of available data in the
other features to estimate the missing value. At each step, the imputer treats a single feature column as
the output y and treats the other feature columns as the inputs X. A regressor is fit on (X,y) for all known
y. Then, missing values of y are imputed with the regressor predictions. This is iteratively done for each
feature until the stopping criterium is met:

max(|Xt −Xt−1|)
max(|Xv|)

< Cstop,

where Xt is X at iteration t, Xv is the known value of X and Cstop is the stopping condition, in this case set
to Cstop = 10−3.
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3 Methods

In this thesis, we aim to discover to what extent the variability of glaciers’ specific mass balance is explained
by the morphological and climate variables presented in Table 1. We do this by fitting a multivariate linear
regression model as this model can quantify the relative impacts of the selected predictors on the outcome
variable SMB. We select the best subset of predictors using LASSO regression and Pearson correlations.

3.1 Pearson Correlations

Multicollinearity occurs when several independent variables in a model are highly correlated. When this is
the case, unnecessary noise is added to the model, making statistical results less reliable (Alin, 2010). We
reduce multicollinearity in all following calculations by performing univariate linear analysis and disregarding
all highly correlated independent variables (> |0.7|). We do this by calculating the Pearson’s correlation
coefficients ρ and their associated p values for all two-by-two combinations of available variables.

The Pearson correlation coefficient is a measure of linear correlation between two variables X and Y and is
defined as:

ρX,Y =
cov(X,Y )

σXσY
, (1)

where cov is the covariance of X and Y, and σ is the standard deviation. All computed correlations are
displayed in Figure 4.2.

3.2 Best Subset Selection with LASSO

Recent work showed that including unnecessary predictors that impact the exposure but not the outcome
can increase standard errors without improving bias (Hawkins, 2004). Including predictors uncorrelated to
the exposure but associated with the outcome can improve precision (Shortreed and Ertefaie, 2017). In
order to include appropriate predictors for the mass balance variability, we use the Least Absolute Shrinkage
and Selection Operator (LASSO) from Scikit Learn [31]. This operator favours simple models with fewer
parameters. Variables with little impact on the outcome are entirely ignored by the model. Therefore, this
type of regularization (known as L1 regularization), can be seen as a form of automatic feature selection.
Selecting only relevant features reduces multicollinearity and makes model results easier to interpret.

LASSO is a linear model with an additional penalty term added to the loss function. Below we first introduce
a simple multivariate linear model. A linear model aims to find the best set of coefficients (β1, β2, ..., βn)
which explain the maximum variability in ŷ (in this thesis the specific mass balance variability SMB) when
multiplied with the predictors (x1, x2, ..., xn) (the selected predictors are displayed in Table 1).

ŷ = β0 + β1X1 + β2X2 + ...+ βnXn, (2)

where we consider n instances in the data set. The maximum variability ŷ is explained if by optimizing the
cost function J (know as the Residual Sum of Squares) with respect to β:

J(β) =

n∑
i=1

(
yi − ŷi

)2
, (3)

where yi is the actual outcome and ŷi is the predicted outcome.
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With LASSO regression an additional additional penalty λ is added to the loss fiction J(β). Similarly, the
aim is to optimize the new cost function Jlasso with respect to β:

Jlasso(β) =

n∑
i=1

(
yi −

p∑
j=1

Xijβj

)2
+ λ

p∑
j=1

|βj |, (4)

where the that data set has n instances and p features and where ŷi =
∑p

j=1 Xijβj . The penalty term
λ regularizes the coefficients. Meaning, the function is penalized if the coefficients take large values. So,
LASSO regression shrinks the coefficients, and it helps to reduce the model complexity and multicollinearity.
If the model complexity is high compared to the sample size, it is prone to overfitting. Choosing the optimal
λ introduces a penalty and prevents the model from overfitting.

In order to fit the best LASSO regression (where the cost function Jlasso is minimized), it is essential to
tune the hyper parameter λ. In this study, the best model is selected using 5-fold cross-validation. With
cross-validation, the data is split into a test and train set. The single hyperparameter ’k’ controls the number
of test-train subsets into which the data is split. Predictions are made on test data that is not used during
the model’s training.

To allow for valid and direct comparison between the regression coefficients βi we standardize all inde-
pendent variables xi by centring them around 0 and rescaling them to a standard deviation of 1:

xi,s =
xi − xi

σxi

, (5)

where xi,s is the standardize variable, xi is the mean of xi and σxi
is the standard deviation of xi

We perform LASSO regression on all glaciers in HMA and on all subregions. Here, we use LASSO to
identify which variables are strongly associated with the SMB so we can perform feature selection. All
predictors shrink towards zero, meaning the model expects no specific linear combination of any subset of
the regressors to help predict the SMB. Therefore, in all further analyses, we select all features from Table
1 but exclude predictors that highly correlate (> |0.7|) with other predictors. When all variables shrink
toward zero, the last term of equation 3 becomes increasingly small, i.e. LASSO regression reduces to OLS
regression. Therefore, in the following Section, we will continue with OLS regression.

3.3 Ordinary Least Squares Multivariate Regression with LOOCV

We fit a simple Ordinary Least Squares (OLS) multivariate linear regression because this model allows us to
determine the relative influence of one or more predictor variables on SMB. This may lead to a more accurate
understanding of climate and morphological influences on glacier dynamics. We perform OLS regression on
all glaciers in HMA and on all subregions. Here, we aim to find the best set of coefficients (β1, β2, ..., βn)
which explain the maximum variability in SMB when multiplied with the predictors (x1, x2, ..., xn) (the se-
lected predictors are displayed in Table 1). For each analysis, we calculate Pearson’s correlation coefficients
ρ and their associated p values for all two-by-two combinations of all available variables and disregard all
highly correlated predictor variables (> |0.7|) to reduce multicollinearity. We standardize all variables as
described by equation 5.

We evaluate model performance with Leave One Out Cross Validation (LOOCV) by scikit-learn (Learn,
2022b)]. LOOCV is a special case of cross-validation. In LOOCV, k is set to the number of examples in
the data set n. Meaning, LOOCV is trained on n− 1 samples of data. Cross-validation fits and evaluates k
models and returns k estimates for model performance. In order to reduce bias and improve reliability, we
report the mean performance of the k models.
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4 Results

In this section we will present the results obtained from analyzing SMB variability in HMA and the selected
climatically homogeneous subregions. First, we will present data exploration results in Section 4.1. Next, we
present predictor-predictor (see Section 4.2) and predictor-outcome (SMB) Pearson correlation values (see
Section 4.3). Finally, we continue by presenting the results obtained from LASSO and OLS regression in
Section 4.4 and Section 4.5.

4.1 Data Exploration Results

Below in Table 2, we provide an overview of the mean of all selected variables in (HMA) and the selected
subregions (HA-HS). In all regions, except for West Kun Lun, glacier mass is decreasing. The most negative
SMB are observed in East Tien Shan, East Himalaya and Hengduan Shan.

HMA HA P WTS ETS WKL EKL QS IT T HK K HW CH EH HS

#glac. 8098 151 840 738 262 644 311 176 802 271 253 1481 734 518 467 449

SMB -0.22 -0.09 -0.09 -0.27 -0.49 0.16 -0.06 -0.27 -0.31 -0.57 -0.18 -0.03 -0.34 -0.35 -0.46 -0.56

Area 8.2 5.5 7.9 8.4 5.1 9.6 6.8 4.5 6.3 8.2 6.3 12.6 6.4 7.0 7.2 6.3

Zmed 5.2 4.1 4.9 4.2 3.9 5.8 5.5 5.0 5.9 5.2 4.9 5.4 5.1 5.4 5.6 5.0

Slope 19.7 17.9 20.8 19.6 17.8 18.8 16.1 18.0 14.5 22.7 17.4 24.2 17.1 20.5 20.0 21.4

Vel 3.3 3.2 3.6 2.6 2.0 2.5 2.4 1.6 2.4 5.6 3.9 3.6 4.1 4.3 3.9 3.2

AAR 0.54 0.53 0.55 0.54 0.51 0.56 0.52 0.55 0.53 0.53 0.54 0.54 0.53 0.56 0.59 0.52

deb a
ela p

0.19 0.26 0.27 0.17 0.09 0.12 0.05 0.02 0.04 0.19 0.36 0.22 0.26 0.27 0.20 0.16

#Lake
814
(10.0)

6
(4.0)

55
(6.5)

79
(10.7)

30
(11.5)

26
(4.0)

47
(15.1)

26
(14.8)

111
(13.8)

51
(18.8)

17
(6.7)

83
(5.6)

44
(6.0)

62
(12.0)

129
(27.6)

48
(10.7)

#North
facing

2235 125 672 543 201 531 227 148 582 166 187 1107 530 323 245 275

T mean
’00-’20

-7.4 -3.2 -8.6 -6.4 -4.8 -10.2 -8.6 -7.3 -6.6 -4.5 -6.5 -12.1 -7.0 -3.7 -3.0 -2.3

dT
’00-’20

0.36 0.48 0.46 0.18 0.18 0.47 0.63 0.53 0.64 0.59 0.47 0.28 0.07 0.18 0.28 0.39

dT
’80-’00

0.38 0.16 0.18 0.36 0.56 0.62 0.46 0.88 0.20 0.25 -0.02 0.48 0.51 0.50 0.28 0.22

P mean
’00-’20

8503 12919 6207 8597 7710 4491 4719 5194 5822 12677 7218 5445 9792 13763 16262 18133

dPrcp
’00-’20

603 -187.0 -176.3 -248.2 -205.6 47.7 182.0 304.7 -60.4 -106.3 -99.5 -45.7 372.3 833.7 418.0 67.2

dPrcp
’80-’00

93.1 250.6 -72.8 320.1 334.2 80.8 112.0 120.0 301.7 -270.3 -20.5 34.6 324.1 372.9 329.5 -1012.7

Table 2: Mean value of the selected variables in the climatically heterogeneous region (HMA) and the select
climatically homogeneous subregions (HA-HS). glac are the number of glaciers. Lake is the number and
percentage of glacial lakes. North facing are the number of north-facing glaciers. T mean and P mean are
the mean temperature and precipitation, respectively. dT and dPrcp are the changes in temperature and
precipitation, respectively. All values are in standard units as displayed in Table 1.
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Next, we investigate the influence of debris coverage below the ELA on the SMB. When considering the entire
sample of 9098 glaciers in HMA, the results show that glaciers with more than 30% debris coverage below the
ELA are associated with a lower specific mass balance (mean SMB = −0.24 w.e. yr−1) than glaciers than
glaciers with less than 30% debris coverage below the ELA (mean SMB = −0.15 w.e. yr−1). Additionally,
results show that glaciers with more than 30% debris coverage below the ELA have a lower median elevation
(5035 km) than glaciers with less than 30% debris coverage below the ELA (average median elevation =
5552 km). The left panel of Figure 2 displayes the SMB of all glaciers with more than 30% debris coverage
below the ELA in red and glaciers with less than 30% debris coverage below the ELA in black , as a func-
tion of their median elevation. The supplementary material provides similar results for each subregion (SC.2).

Furthermore, we investigate the influence of glacial lakes on the SMB. When considering the entire sample
of 9098 glaciers in HMA, the results show that glaciers with lakes are associated with a lower specific mass
balance (mean SMB = −0.40 w.e. yr−1) than glaciers than glaciers without a lake (mean SMB = −0.20
w.e. yr−1). Additionally, results show that glaciers associated with lakes have lower slopes (average Slope
= 17.0◦) than glaciers that are not associated with a glacial lake (average Slope = 20.0◦). The right panel
of Figure 2 displayes the SMB of all glaciers with a lake in red and without a lake in black, as a function of
their slopes. The supplementary material provides similar results for each subregion (SC.3).

Figure 2: Left panel: SMB (dmdtda) as a function of median elevation (Zmed), grouped by more or less than
30% debris coverage below the ELA. The red dots represent glacier with more than 30% coverage. Right
panel: SMB (dmdtda) as a function of the slope, grouped by the presence of a glacial Lake. The red dots
represent glaciers associated with a lake.

Finally, we examine the influence of the glacier’s aspect on the SMB change. In the sample, 72% of all
glaciers are north-facing (5862 glaciers). On average, the north-facing glaciers have a lower temperature
(mean temp = -7.6◦) than south-facing glaciers (mean temp = -6.9◦). In addition, north-facing glaciers
are associated with a slightly less negative mass balance (SMB=-0.21 w.e. yr−1) than south-facing glaciers
(SMB=-0.23 w.e. yr−1)
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4.2 Predictor-Predictor Pearson Correlations

We compute Pearson correlations for all selected variables in HMA (see Figure 4.2). Similar calculations for
all the subregions are displayed in the supplementary material SC.4.

Figure 3: Pearson correlation matrix of all selected variables. The variable dmdtda stand for the Specific
Mass Balance. The heat map represent the value of correlation, from red (+1.0) to blue (-1.0). The stars
indicates a significant correlation for p< 0.05

The variables temp mean 1980 2000 and prcp mean 1980 2000 are excluded from all following analyses as
they are highly (> |0.7|) correlated with temp mean 2000 2020 and prcp mean2000 2020, respectively. Sim-
ilarly, the variables ice thickness, tstar ela h and, debris vol ela p are excluded from the analyses as they
are highly correlated with Area log, tstar aar and, debris area ela p, respectively. Finally, Lmax, Zmin, and
Zmax are excluded from the analyses as they are highly correlated with Zmed.
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4.3 Predictor-SMB Pearson Correlations

We compute Pearson correlations between the variable SMB and all selected predictor variables, see Table
3. In this table we only display significant (< 0.05) correlations, missing values are non-significant.

HMA HA P WTS ETS WKL EKL QS IT T HK K HW CH EH HS
Area log - - - - - -0.26 -0.13 - - -0.14 0.13 -0.16 -0.20 - - -
Zmed 0.17 - 0.26 0.52 0.57 -0.40 0.37 0.54 0.46 0.21 0.30 -0.16 - 0.24 0.33 -0.21
Slope 0.28 - 0.33 0.46 0.45 0.29 0.29 0.20 0.06 0.30 0.62 0.23 0.46 0.43 0.44 0.37
Velocity
log

-0.04 - 0.09 0.10 - - - 0.21 0.10 - 0.28 -0.08 0.11 0.14 - -0.17

AAR 0.18 0.22 0.21 0.36 0.37 - - 0.31 0.26 0.25 0.25 0.02 0.17 0.37 0.32 -
deb a
ela p

- - - - - 0.16 0.15 - -0.25 -0.19 - - -0.10 -0.19 -0.19 0.11

T mean
2000 2020

-0.38 - - -0.20 -0.31 0.47 - 0.25 -0.22 - -0.25 0.21 0.17 0.26 - 0.14

T diff
2000-2020

0.11 -0.22 -0.07 0.29 - - 0.22 - - - - 0.17 0.19 - -0.12 -0.12

T diff
1980-2000

0.14 - 0.31 -0.12 0.24 - - 0.25 0.33 - -0.47 -0.05 -0.30 -0.17 - -0.22

P mean
2000-2020

-0.33 0.36 - -0.27 - 0.49 -0.37 -0.5 -0.57 0.15 - 0.12 0.13 0.35 - 0.2

P diff
2000-2020

-0.05 - - 0.40 - 0.37 - 0.28 - - - -0.12 -0.12 0.32 - 0.17

P diff
1980-2000

-0.03 - 0.27 -0.22 0.12 - -0.2 -0.21 -0.32 -0.19 - - -0.14 - -0.20 -0.20

Table 3: All significant correlations (p< 0.05) between all continuous variables and the SMB. All missing
values are non-significant. T and P stand for temperature and precipitation, respectively.

First, we tested whether a shallower slope increases glacier mass losses. This hypothesis is accepted as a
positive and significant correlation between SDM and slope is found for 14 of the 15 subregions. This means
that the gentler the glacier slope, the more negative SMB.

In 9 out of 15 regions the median elevation is found to be associated with positive SMB. A negative as-
sociation is found in 3 regions, with the biggest influence in West Kun Lun.

Next, we tested whether debris coverage increases glacier mass losses. This hypothesis is accepted in 4
out of 15 regions as a negative and significant correlation between SMB and percentage debris below the
ELA is found. However, in all other regions, the hypothesis is rejected as a positive and significant correlation
is observed in 3 out of 15 regions and, no significant correlation is observed in 8 out of 15 subregions.

In 7 out of 15 regions flow velocity is found to be associated with negative SMB. In 2 out of 15 regions
the results show a negative and significant correlation (Karakoram and Hengduan Shan). In all other regions
the correlation were not significant.

In 5 out of 15 subregions the area is found to be associated with negative SMB, with the most negative
association found in West Kun Lun. Only in Hindu Kush a positive association is observed.

Generally, in the subregions, the climate predictors correlate less strong and less often with the SMB.
Only in West Kun Lun a relative high correlation between the mean temperature (2000-2020), the mean
precipitation (2000-2020) and the precipitation difference (2000-2020) is observed.
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4.4 LASSO Regression

We performed L1 LASSO regression on all glaciers in HMA to find the best set of coefficients βi, which
explain the maximum variability in the SMB when multiplied by a combination of climate and morpholog-
ical predictors variables as described in Section 4.2. The final LASSO model is produced by the optimal
value: λ = 0.59. The results show a MAE training and test error of 0.20. Model performance is evaluated
with with 5-fold cross-validation. This resulted in the following train en test performance: R2

train = 19.1 and
R2

test = 17.5.

Additionally, we performed L1 LASSO regression on all glaciers in the 15 subregions to find the best set
of coefficients βi, which explain the maximum variability in the SMB when multiplied by the climate and
morphological predictors (All highly correlated predictors are removed for the analysis, see supplementary
SC.4). In 6 out of 15 regions, the model explained more than 40% of the SMB variability (in regions: WTS,
ETS, EKL, QS, IT, HK). However, in 6 out of 15 regions the model explained less than 20% of the mass
balance variability (in regions: HA, P, T, K, EH, HS).

In Table 4, we present an overview of all regression results. In this table, we also present the penalty
term λ. We obtain relatively low values for λ. This means that no significant penalty is needed to prevent
the model from overfitting.

HMA HA P WTS ETS WKL EKL QS IT T HK K HW CH EH HS
MAE
train

0.20 0.09 0.11 0.14 0.12 0.10 0.11 0.09 0.15 0.20 0.12 0.11 0.12 0.17 0.17 0.30

MAE
test

0.20 0.13 0.11 0.13 0.10 0.10 0.10 0.09 0.14 0.24 0.10 0.11 0.15 0.18 0.17 0.29

R2

train
17.5 36.8 21.6 36.9 44.2 27.5 41.3 42.3 43.5 30.8 42.4 11.5 27.7 28.4 32.7 7.27

R2

test
19.1 -5.9 16.2 40.8 47.6 24.6 45.0 53.2 43.6 -1.5 47.4 16.6 27.1 31.5 17.2 9.89

λ 0.59 0.22 0.03 0.05 0.24 0.02 0.04 0.35 0.25 0.03 0.05 0.03 0.09 0.06 0.05 16.6

Table 4: Summary of the LASSO regression results in the climatically heterogeneous region HMA and the
homogeneous subregions HA-HS.
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4.5 OLS Multivariate Regression

We performed OLS regression on all glaciers in HMA to find the best set of coefficients βi, which explain
the maximum variability in the SMB when multiplied by the predictor variables as described in Section 4.2.
The results showed that 30.7% of the SMB variability can be explained by the selected variables (see Table
1). With the most important predictors variables: lake (βi = −0.13), mean temperature (βi = −0.07), mean
precipitation (βi = −0.07), and the slope (βi = 0.07). The regression residuals showed no obvious signs of
heteroscedasticity (see Figure 4)

Next, we performed OLS regression on all glaciers in the 15 climatically homogeneous subregions to find the
best set coefficients βi, which explain the maximum variability in the SMB when multiplied by the predic-
tor variables as described in Section 4.2. Again, all highly correlated predictor variables were disregarded
(correlation per subregion are provided in supplementary material SC.4). In the subregions, the results
showed that the selected variables explain 18.1% to 50.0% of the SMB variability, with the most important
predictors being the morphological variables: the presence of a lake, the slope, and the median elevation
(Table 5 columns HA-HS). The presence of a lake had the most significant influence in 6 out of 15 regions
(HA, QS, HW, CH, EH, HS), the slope had the most significant influence in 3 out of 15 regions (T, HK,
HW) and median elevation had the most significant in 5 out of 15 regions (P, WTS, ETS, EKL, T). The
mean temperature (in 2000-2020) and mean precipitation (in 2000-2020) were the most important predictors
in only one region, West Kun Lun and Inner Tibet, respectively.

The results showed a larger influence of the climate predictors when examining a climatically heteroge-
neous region (Table 5, column HMA), than observed in the climatically homogeneous subregions (Table 5,
column HA-HS). Generally, in the selected subregions, climate influences reduce (lower and more often not
significant) and morphological influences increase (see Table 5 and Figure 4). Note that, in Figure 4, we
only display the average of the standardized regression coefficients of all subregions. If a predictor is non-
significant in a subregion, it is counted as a zero-contribution to the average. An overview of all significant
(p < 0.05) regression results are displayed in Table 5. In all subregions, the regression residuals showed no
obvious indication of heteroscedasticity (figures provided in supplementary material SC.5).

Figure 4: Left panel: Regression residuals of SMB predictions of all glaciers in HMA. Right panel: Stan-
dardized regression coefficients for each predictor. Coefficients from analyzing HMA are displayed in blue.
The average of all coefficients from analyzing the subregions are displayed in orange.
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Below in Table 5, we present a summary of the standardized regression results in all regions for significance
level p< 0.05. Non-significant values are not displayed in the table.

HMA HA P WTS ETS WKL EKL QS IT T HK K HW CH EH HS
MAE 0.19 0.10 0.10 0.13 0.11 0.10 0.10 0.09 0.14 0.21 0.11 0.10 0.12 0.17 0.16 0.28
R2 30.7 28.4 23.7 40.8 44.6 27.1 45.7 48.0 50.0 22.0 42.7 20.2 38.1 33.6 38.0 18.1
Const -0.21 -0.09 -0.09 -0.26 -0.48 0.16 -0.04 -0.27 -0.31 -0.59 -0.19 -0.04 -0.34 -0.37 -0.42 -0.60
Area -0.02 -0.04 -0.04 - - -0.03 -0.02 - - -0.09 - -0.01 -0.07 -0.05 - -
Zmed -0.01 0.04 0.06 0.09 0.13 -0.03 0.12 - 0.04 0.11 - -0.04 0.04 0.05 - -0.09
Slope 0.07 - 0.02 0.06 0.04 - 0.05 0.04 0.06 0.11 0.10 0.04 0.08 0.10 0.10 0.12
Velocity 0.02 - 0.04 - - 0.02 - 0.04 0.04 0.10 - - 0.06 0.08 0.03 -
Aspect - 0.07 - - - - -0.09 - - - 0.06 0.04 - 0.09 - 0.16
Lake -0.13 -0.17 - -0.05 - - - -0.07 - - - - -0.08 -0.14 -0.18 -0.16
AAR 0.05 - - 0.02 0.03 - - 0.02 0.02 - - 0.02 0.02 - 0.07 0.08
DAEP 0.01 - 0.02 - - -0.02 0.02 - -0.03 - - -0.02 - - - -
temp
mean

-0.07 0.07 0.03 0.02 -0.05 0.05 - 0.04 - 0.08 -0.04 0.02 - - -0.03 -

dT 0.05 -0.03 - 0.02 - - 0.02 0.03 0.05 -0.06 0.04 0.04 0.02 - -0.03 -
dT
lag 20y

0.03 - 0.03 -0.03 -0.08 0.01 - - 0.06 - -0.04 0.02 -0.03 0.03 - -

prcp
mean

-0.07 0.07 - - 0.03 - -0.05 -0.06 -0.13 - - - - - - -

dP 0.02 - - - -0.03 - 0.03 0.04 - - -0.03 -0.03 -0.02 0.05 - -
dP
lag 20y

-0.02 -0.08 0.02 -0.02 - - - - - - -0.03 - -0.03 - -0.05 -

Table 5: Summary of the standardized regression results when predicting the SMB in HMA and the subre-
gions HA-HS. We only display significant (p< 0.05) regression results, missing values are non-significant.

The regression results showed a relatively large negative influence of the presence of a glacial lake on the
SMB in 7 out of 15 subregions. The biggest influence is observed in Hissar Alay, where the presence of a lake
results in a SMB decrease of -0.867 w.e. yr−1. Similarly, the slope of the glacier showed a relatively large
influence on the SMB. The biggest influence was observed in Hindu Kush (see Table 5), where a one-degree
increase in slope results in an SMB increase of 0.022 w.e. yr−1. The median elevation showed a significant
contribution in 14 out of 15 subregions. The biggest influence was observed in East Kun Lun, where a
one-kilometre increase results in an SMB increase of 0.0006 w.e. yr−1.

The regression results showed a relatively low but significant velocity influence on the SMB. The most
significant effect of flow velocity was observed in Central Himalaya, where one m/year increase in ice veloc-
ity results in an SMB increase of 0.0063 w.e. yr−1(see Table 5). Similarly, the regression results showed a
relatively small contribution of the area to mass balance (−0.05 < βi < −0.01, except for West Himalaya
βi = −0.09). In West Himalaya, a one km increase in area results in an -0.0028 decrease in the SMB w.e.
yr−1.
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5 Discussion

5.1 Contrasting Behaviour of West Kun Lun glaciers

In all subregions, except for West Kun Lun and Inner Tibet, we find that the morphological variables explain
the variability in SMB best (see Section ??). We expect the relatively large climate influences in Inner Tibet
to result from the possibly incorrect assumption that this region is climatically homogeneous (see Section
5.5). However, we expect the West Kun Lun abnormality to result from the unusual climate settings here.
Generally, this region experiences a relatively dry and cold continual climate (see S2) because the wester
Kun Lun and the Karakoram mountains block the transportation of moisture from the Indian Ocean (Bao
et al., 2015). West Kun Lun displays more abnormal behaviours, as is it the only subregion where SMB is
increasing. In West Kun Lun, the SMB correlates relatively strong with the area in a negative fashion (see
Table 3). Meaning the bigger the area, the lower the mass loss. We expect this remarkable large correlation
to result from the relatively large number of big glaciers located in this region (9 out of 33 biggest (>100
km2) glaciers in China are located in West Kun Lun (Bao et al., 2015). Additionally, in West Kun Lun, the
SMB correlates relatively strong with the median Elevation in a negative fashion (see Table 3). Ke et al.
(2015) suggest that the abnormal behaviour of West Kun Lun might be related to the heterogeneous spatial
variability of elevation trends over different glacier parts.

5.2 Influence of Lakes and Slopes on Glacier Mass Balance

One of the most important predictors for the SMB variability is the presence of a glacial lake. That the
presence of glacial-fed lakes negatively corresponds to glacier mass balance patterns (see Section 4.5) agrees
with a study by Zhang et al. (2015). However, we expect that a part of this remarkably large influence of
glacial lakes is explained by a spurious signal resulting from unobserved lake-slope correlations. Because of
the preferential development of lakes on shallower slopes (Quincey et al., 2007), we expect a strong correlation
between these variables. Our beliefs are supported by the fact that we find that glaciers associated with
lakes have lower slopes than glaciers that are not associated with a glacial lake (see Section 4.1 and Figure
2).

5.3 Influence of Debris on Glacier Mass Balance

The percentage of debris coverage positively and negatively correlates with the SMB. This might be explained
by the varying thickness of the debris layer, as a thin layer accelerates the melt and a layer thicker than a
few centimetres inhibits the melt (Evatt et al., 2015; Kraaijenbrink et al., 2017). However, including debris
thickness falls outside the scope of this thesis and is left for future study.

5.4 Non-linear Glacier Response to Climate Variables

When we compare the OLS and LASSO regression results from the climate heterogeneous region to the
homogeneous subregions, the results showed:

i) A more significant influence of the climate predictors in the climatically heterogeneous region (Table
5, column HMA) than in the climatically homogeneous sub regions (Table 5, column HA-HS).

ii) Both LASSO and OLS performance have high Mean Absolute Errors in the climatical heterogeneous
regions (OLS MAE = 0.22; LASSO MAEtrain = 0.20, MAEtest = 0.20). Compared to other (non-linear)
statistical methods, 0.20 is a relatively high MAE. For example, Hartmann (2022) studies SMB response
to similar climate and morphological predictors. With three non-linear methods he finds a Means Absolute
Errors of ∼0.12. Because our results showed a high test and train MAE, we expect the model to overfit,
meaning the model is not complex enough to capture the true statistical nature of the data model.
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iii) Model performance increased (meaning underfitting reduced) in the homogeneous climatical subregions.
With OLS regression the results showed that the mean MAE of all regions is 0.13. With LASSO regression
the results showed that mean MAE of all regions is 0.14. The difference between the test and train MAE was
small (max difference = 0.04, see Table 4). This means the amount of underfitting was less in the climatical
homogeneous subregions, and the linear model is better at capturing the true statistical response of the data.

The above observations show that model performance decreases in the region where SMB responses are
dominated by temperature and precipitation influences. Here, in the climatically heterogeneous region,
the proposed linear model is worse at capturing the true statistical response of the data. Because climate
predictors predominantly influence this region, we expect they behave in a non-linear fashion and explain
the reduced performance of the linear model. The non-linear response of glacier mass balance to climate
variables agrees with studies by Bolibar et al. (2022) and Steiner et al. (2005). They develop deep learning
models and find non-linear air temperature and precipitation contributions.

5.5 Limitation of the Analysis

In this thesis, we fit a linear model to non-linear data. This decreases model performance, especially in
the climatically heterogeneous region HMA, which is predominantly influenced by climate predictors like
temperature and precipitation. To improve performance it is essential to capture the non-linear behaviour of
the data, for example by fitting a polynomial regression or using non-linear deep learning methods. Another
possible way to improve the model is by including more explanatory variables, e.g. avalanche contributing
area, debris thickness Kraaijenbrink et al. (2017) and velocity change Heid and Kääb (2012). A final way to
improve model performance is by considering interaction between the predictor variables.

An other major limitation of this study is the inclusion of the non-independent variables Lakes and Aspect
in the multiple linear regression model. Because of possible unobserved predictor-predictor correlations,
regression results cannot be correctly interpreted. Because the variables Lake and Aspect are binary, we
cannot compute their Pearson correlation. Therefore, we choose to include both variables in all the analyses.
A more sophisticated approach would be to calculate a point-biserial correlation, which is used to measure
the correlation between a continuous and dichotomous variable.

In this thesis, we investigate lagged (∼40 y) climate effects on current changes in the SMB and do not
find a significant contribution. However, we did not include lagged climate predictors at much larger (∼100
kyr) time scales. We presume that these unobserved lagged effects impact current changes in SMB as the
evolution of glaciation in HMA is dominated by a ∼23kyr periodicity during the last 425 kyr (Yan et al.,
2021). Yan et al. (2021) finds that the ∼23kyr periodicity results from changes in the earth’s precession,
affecting summer temperatures and precipitation patterns induced by changes in the summer monsoons and
the mid-latitude westerlies. The annual mean temperature shows a ∼100-kyr cycle dominated by CO2-
induced effects. Including lagged climate effects at larger time scales is an interesting topic left for further
study.

Another limitation of this study is the separation of glaciers into regions that we assumed were climati-
cally homogeneous. This assumption might not hold, especially in regions that cover a larger spatial extent
like Inner Tibet (covers more than 2000km) (Brun et al., 2017). A more sophisticated approach would be
to spatially cluster glaciers based on climate data.

In this study, missing data is iteratively imputed, which can influence the predictor-predictor and predictor-
outcome correlations. A study by Taylor et al. (2017) shows that, generally, the correlation’s magnitude
is reduced in imputed data sets, and this effect increases with the amount of missing data Taylor et al.
(2017). Underestimation of correlation can lead to unobserved heterogeneity in regression results. However,
we expect this effect to be minimized as the percentage of missing is low (see Section 2.3). Additionally, no
significant sign of heterogeneity is observed in all regression residuals (see Section 4.5).
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6 Conclusion and Outlook

In this thesis, we aim to discover which climatical and morphological predictors most contribute to explaining
the SMB variability of glaciers in climatically heterogeneous region HMA and in the following climatically
homogeneous subregions: Hissar Alay, Pamir, West Tien Shan West, East Tien Shan, West Kun Lun, East
Kun Lun East, Qilian Shan, Inner Tibet, South and East Tibet, Hindu Kush, Karakoram, West Himalaya,
Central Himalaya, East Himalaya and, Hengduan Shan. To investigate this, we performed OLS regression
and excluded all significant predictor-predictor correlations > |0.07|.

We find that in HMA, 30.7% of the glaciers’ SMB variability can be explained by the area, median ele-
vation, slope, velocity, presence of a lake, accumulation area ratio, percentage of debris below the ELA, the
mean temperature and temperature change in periods (1980-2000 and 2000-2020) and the mean precipitation
and precipitation change in periods (1980-2000 and 2000-2020). Here, the most important predictors are the
presence of a lake, the slope and the mean temperature and precipitation in 2000-2020. All predictors, except
for the slope are found to be associated with negative SMB. We expect that a part of the remarkably large
influence of glacial lakes on the SMB is explained by a spurious signal resulting from unobserved lake-slope
correlations.

Generally, OLS regression showed that climate influences reduced (lower and more often not significant)
and morphological influences increased in the subregions. Here, we found that the selected variables explain
18.1% to 50.0% of the SMB variability, with generally the most important predictors being the morphological
variables: the presence of a lake, the slope, and the median elevation. The slope and the median elevation
are found to be associated with positive SMB. The climatical variables mean temperature (in 2000-2020)
and mean precipitation (in 2000-2020) were the most important predictors in only one region, West Kun
Lun and Inner Tibet, respectively. We expect the relatively large climate influences in Inner Tibet to result
from the possibly incorrect assumption that this region is climatically homogeneous. However, we expect
the contrasting behaviour of West Kun Lun to result from the unusually dry and cold climate settings here.

Our analysis suggests that glacier mass balance responds in a non-linear fashion to climate influences like
temperature and precipitation. We expect this because model performance decreases in the region where
SMB responses are dominated by temperature and precipitation influences. Here, in the climatically het-
erogeneous region, the proposed linear model is worse at capturing the true statistical response of the data.
Because climate predictors predominantly influence this region, we expect they behave in a non-linear fashion
and explain the reduced performance of the linear model. This agrees with Bolibar et al. (2022) and Steiner
et al. (2005), who developed deep learning models and found non-linear air temperature and precipitation
contributions.

Additionally, results showed that a higher percentage of debris below the ELA does not significantly re-
duce glacier mass loss in 11 out of 15 subregions. In 7 out of 15 subregions, slower flowing glaciers are
associated with more negative SMB.

A major limitation of this study is the uses of a linear model to non-linear data. This decreases model
performance, especially in the climatically heterogeneous region HMA, which is predominantly influenced by
climate predictors like temperature and precipitation. To improve performance it is essential to capture the
non-linear behaviour of the data, for example by fitting a polynomial regression or using other non-linear
deep learning methods. Another possible way to improve the model is by including more explanatory vari-
ables, e.g. avalanche contributing area, debris thickness and velocity change. A final way to improve model
performance is by considering interaction terms between the predictor variables.
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C Supplementary Tables and Figures

C.1 Distribution of predictors variables

Figure 1: Count distributions of dmdtda (the SMB), the mean temperate 2000-2020, the log transform of
the area, the log transform of the velocity, accumulation area ration and the slope. Bin size = 50
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C.2 SMB as a function of glacier median elevation

Figure 2: SMB (dmdtda) as a function of median elevation (Zmed), grouped by more or less than 30% debris
coverage below the ELA. The red dots represent glacier with more than 30% coverage.
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C.3 SMB as a function of glaciers slope

Figure 3: SMB (dmdtda) as a function of slope, grouped by the presence of a glacial Lake. The red dots
represent glaciers associated with a lake
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C.4 Pearson Correlations per Subregion

Figure 4: Pearson correlation matrix of all selected variables in Hissar Alay. The variable dmdtda stand for
the Specific Mass Balance. Significance levels: one star p< 0.05, two stars p< 0.01, three stars p< 0.001

Figure 5: Similar as figure 4

Figure 6: Similar as figure 4
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Figure 7: Similar as figure 4

Figure 8: Similar as figure 4

Figure 9: Similar as figure 4

29



Figure 10: Similar as figure 4

Figure 11: Similar as figure 4

Figure 12: Similar as figure 4
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Figure 13: Similar as figure 4

Figure 14: Similar as figure 4

Figure 15: Similar as figure 4
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Figure 16: Similar as figure 4

Figure 17: Similar as figure 4

Figure 18: Similar as figure 4
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C.5 Regression Residuals per Subregion

Figure 19: Regression residuals of SMB predictions of per subregion.
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