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Chapter 1

Introduction

1.1 Problem Statement

There is clear evidence that pre-term birth is rising globally, yet the causes and
implications are not fully understood. In 2010, an estimated 14.9 million babies
were born prematurely, that accounted for 11.1% of the worldwide livebirths [1].
Given the rise of pre-term births, research for monitoring this sub-population of
infants has become a widely research topic. Preterm infants are more likely to
develop a myriad of developmental disorders compared to full-term infants [2],
hence they require extensive monitoring. This monitoring is often performed by
Neonatal Intensive Care Units (NICU), which provide a controlled environment
for them to develop in. However, methods for monitoring infant health and de-
velopment can be obtrusive as they rely on needles or electrodes, which are often
painful or cause damage to their thin skin [3]. Therefore unobtrusive methods
have become a welcomed and necessary tool for monitoring preterm infants in
the NICU. Video-based methods are a relatively cheap and accessible type of
unobtrusive monitoring methods that can be used to track and capture a wide
variety of vital and behavioral signals. These methods are used in monitoring
systems to detect seizures, hunger, sleep or discomfort and have an immeasur-
able value in medical applications. Movement and poses, which are what these
methods seek to capture, are helpful indicators for tracking a wide range of de-
velopmental milestones of infants as well as their overall health. However, these
methods require constant and active human participation which is generally not
possible. Due to the large number of patients that are often in NICU, medi-
cal staff cannot monitor infant movements manually for large periods of time.
Therefore recent work [4,5] has aimed towards developing monitoring systems
that are able to track and monitor the movement of infants in video through
pose estimation. A wide range of state-of-the-art pose estimation methods are
predominantly trained using only adults as their target domain, therefore when
applied to infants these methods perform drastically worse [6]. The reason for
this drop in performance is due to the fact that infants and adults have sig-



nificantly different body compositions [6, 7]; this is even more pronounced with
neonates. Researchers such as Hesse et. al. [4,5] successfully modify and retrain
state-of-the-art human pose estimation methods for the infant domain, however
they deal with healthy infants in simple environments. For preterm infants, who
are often placed in NICUs, the assumptions made by these methods are not met
and pose estimation becomes a significantly more challenging task.

Heavy occlusions, both spatial and temporal, occur frequently due to move-
ment and the presence of medical equipment, blankets, and other objects. This
particular challenge is specially present for the preterm infant population and
has not been fully addressed in the computer vision field. Additionally, lack of
accessible infant data makes it difficult to collect and create diverse datasets
for deep learning systems which are known to be data-reliant. Often, infant
data is highly sensitive due to privacy concerns and even more so for the sub-
population of preterm infants as video recordings occur inside NICUs for medical
purposes.These are critical challenges for developing computer vision systems to
track infant movement in the medical domain and their solutions are not trivial.
Therefore, this research proposes the extension of current state-of-the-art infant
pose estimation from general population infants to preterm infants. Further-
more it aims to contribute to the infant pose estimation literature by directly
addressing the challenges often present in this domain. In particular, it aims to
create a network for preterm infant pose estimation to deal with occlusions in
video.

Additionally, in order to specifically tackle the occlusions often present in
the target domain, an occlusion augmentation technique for training data will
be implemented. The intuition behind using occlusion augmentation is that
by artificially occluding poses in video, we can regularize the pose estimator,
and guide it towards not relying on a few joints and thereby robustly deal
with heavy occlusions. The aim is to produce more temporally and spatially
consistent results.

The ideal computer vision system for monitoring must be unobtrusive, cheap
and easy to set up. Therefore the data that will be used to validate the proposed
model will be video from a single RBG-D camera. The camera is set up at the
side incubator of the infant in such a manner that it is does not interfere with
the tasks of the caretakers.

1.2 Research Focus

This research assumes a supervised learning approach. It is focused around
developing a deep learning approach to predict the poses of NICU infants from
video footage. There are a several steps required in order to successfully create
such an approach. Given our target domain, we must first develop a pipeline for
generating synthetic data. One of the most crucial steps for pose estimation is
the selection and use of annotated data. Annotated data of poses is required to



guide the loss function of the system towards learning a set of model parameters.
For a standard human pose estimator, annotated data comes in 2D and/or 3D
data and there a wide variety of paradigms to choose from. There are few an-
notated synthetic datasets for learning infant pose and shape parameters, such
as MINI-RGBD [8], and SyRIP [7]. However preterm infant data is limited and
the movement of healthy infants and pre-term infants is significantly different.
Often 2D data annotation is time consuming task, especially when it is often
heavily occluded. Synthetic data can often help in with this problem by pro-
viding 3D and 2D ground truth data, allowing us creating more abundant and
diverse datasets to improve performance and robustness.

By following the methodology proposed by SMIL [5] and SMPLify [9], we
can fit a volumetric model to preterm infant data and use it to generate syn-
thetic 3D data. Given that the target domain generally often offers little to no
data, synthetic data can successfully fill in the gaps missing in real data. The
data used to augment pre-term infant movements is provided by the Utrecht
University Medical Center. The reason for selecting a volumetric model such
as SMIL over kinematic and planar models is due to its ability to capture both
pose and shape information, which allows us to create highly realistic data.With
the real and synthetic data generated, we can train a pose estimator using a
hybrid dataset. The contributions of this research is two fold: (1) The applica-
tion of the SMIL body model to the preterm infant domain with the capability
of generating synthetic data of preterm infants, and (2) the development of an
infant pose estimator that is capable of estimating pose of occluded pre-term
infants.

1.3 Research Questions

The current state of the art has clearly indicated that we can model infant
bodies movements appropriately with relatively small data using RGB-D data.
However the same has not been attempted on preterm infant data. Preterm
infants have slightly different bodies and the data is more incomplete due to the
high amounts of occlusion present. Given that the aim is to develop an accu-
rate body pose estimator for clinical application in NICUs the leading research
question of this paper is the following:

(1) Can preterm infant poses be accurately estimated under occlusions in
controlled NICU environments?

In order to verify whether the poses can accurately be estimated the MSE
(Mean Squared Error), mAP (mean Average Precision), mAR (mean Average
Recall) and PCK@Q.2 (Percentage of Correct key-points) metrics will be used.
However, to effectively answer (1), a series of sub-questions (2),(3), must first
be addressed. SMIL [5] has demonstrated that infant bodies can be learned and



modeled. Additionally, they demonstrated that realistic synthetic data can be
generated from such models in order to increase data diversity. In order to deal
with the small data problem present in the preterm infant domain, this paper
seeks to answer the following sub-question:

(2) Can a preterm infants movement be modeled in order to learn its pose
parameters?

The intent behind such a question is to verify whether synthetic data of
preterm infants can be generated. Given the current state of the field, it should
be possible. In order to answer this research question, we will use the MSE error
between the re-projected 3D joints and the ground truth 2D data to verify it,
an MSE of less than 10 pixels should be acceptable.

The focus of this paper is primarily centered around estimating the poses of
preterm infants and tackling the challenges that come with this domain, one of
these challenges in particular are occlusions. Occlusions can be quite challeng-
ing to deal with, therefore it is necessary that techniques that aid in mitigating
their impact on pose estimation results are studied. Therefore this paper aims
to further study the impact of said techniques on performance and address the
following sub-question:

(3) Can occlusion augmentation techniques used during training aid to
minimize the errors for preterm infant pose estimation?

In order to answer question (3), this research will use the similar evaluation
metrics as question (1): MSE and PCK. These metrics will be used to compare
the performance of the network with and without the occlusion training. The
research approach will seek to answer (2) and (3) in order, as they provide a solid
foundation for the required steps that must be followed. Whether the preterm
infants pose parameters can be modeled will validate the methodology for the
synthetic data generation and answer sub-question (2). As for the occlusion
augmentation sub-question (3), it will aid us in identifying whether these tech-
niques are important for training deep learning models for the NICU domain.
The main research question (1) will be answered once the sub-questions have
been addressed and their respective techniques are applied to train an infant
pose estimator.



Chapter 2

Literature Review

2.1 Preterm Infants

The term preterm infant refers to infants that are born before 37 completed
weeks of gestation. There are categories of preterm birth based on their ges-
tational age; extremely preterm (less than 28 weeks), very preterm (28 to 32
weeks) and moderate to late preterm (32 to 37 weeks). Depending on their ges-
tational age, preterm babies have different physical characteristics that change
over time. Table 2.1 provides an overview of the physical characteristics, rel-
evant to the scope of this paper, of preterm children by their gestational age.
Figure 2.1 shows an example of preterm infants of different gestational ages.
As seen in Figure 2.1, the younger the infant the more red the skin is. The
poses these infants are in provide clear examples for the information presented
in Table 2.1; where the extremely preterm infant has an extended pose, the very
preterm infant displays leg flexion, and the moderate preterm infant displays
full limb flexion. The general trend seen in Figure 2.1 is that the physical ap-
pearance of preterm infants develops relatively fast.

Preterm infants are at a higher risk of developing serious disabilities, life
threatening conditions and face a higher mortality rate due to their early birth;
the earlier the birth the higher the likelihood [12]. Cerebral palsy, developmental
delays, cognitive and physical disabilities are common conditions that preterm
infants are likely to develop [13]. Additionally, preterm infants are more likely to
develop sleep, attention and temperament dysfunctions than full-term infants
[14]. These dysfunctions could have long-term consequences such as reduced
psychomotor and reduced cognitive capabilities. This population is extremely
sensitive; they require routine medical care and health monitoring. Currently, in
high-income countries, neonatal intensive care units (NICU) provide a safe and
controlled environment that allow us to obtain measurements that can be used
to monitor preterm infants. Given that preterm infants are being taken care of
in a medical environment, tubes, blankets, diapers and medical equipment are



Gestation | Extremely Very Preterm | Moderate/Late
Preterm Preterm
Skin Very thin, Medium  thin, | Thick skin with
gelatinous, pink cracking, pale
dark red pink color all
over ears, lips,
palms and soles
Length 31 to 36.5 cm 36.5 to 42 cm 36.5 to 49 cm
Head cir- | 21 to 26 cm 26 to 29.5cm 29.5 to 33.5 cm
cumference
Ears Shapeless, little | Shaped, some | Shaped, Carti-
to no cartilage cartilage is | lage is mostly
present on edge | present
of ears
Eyes Eyelids may | Open eyes, | Open eyes, fre-
be fused or | increased eye | quent eye move-
partially open, | movement ment
absent or in-
frequent eye
movements
Posture Extended, unco- | Some flexion | Flexion of limbs,
ordinated move- | of legs, semi- | coordinated
ment coordinated movement
movement
Musculature | Little to none | some subcu- | pronounced ab-
subcutaneous taneous fat, | domen, present
fat, thin ab- | thicker abdomen | subcutaneous
domen fat

Table 2.1: Physical characteristics of preterm infants by gestational age. These
physical characteristics are selected based on the scope of the paper. The char-
acteristics are Skin, Eyes, Posture, Ears, Musculature, Length, and Head cir-
cumference. Data is compiled from Lissauer et al [10] and Fenton [11].



(a) Extremely Preterm  (b) Very Preterm (32 (c) Moderate preterm (36
(28 weeks) weeks) weeks)

Figure 2.1: Preterm infants of different gestational ages.

likely occlude large sections of their body; as seen in Figure 2.1.

2.2 Preterm Infant State Classification

Preterm and term infant state monitoring is still an ongoing area of research.
Non-contact and unobtrusive methods are of particular interest given that in
preterm infants the epidermis is 2-3 layers thick and barely has a protective
outer-layer [3]. Given the fragile skin, even attaching electrodes to the skin is
considered too obtrusive; this greatly reduces the methods that can be applied.
There are three types of measurements used for monitoring: polysomnography
(PSG), polygraphy and behavioral measurements. These measurements can be
used in three types of methodologies: PSG methods, behavioral methods or hy-
brid methods. PSG methods combine several polygraph measurements - such as
heart rate and respiration - to determine the state of the patient in combination
with PSG measurements such as EEG, ECG, and EOG signals. Meanwhile be-
havioral methods use physical cues such as motion and facial expressions; these
are preferred for preterm infants due to their non-obtrusiveness.

This has sparked interest on improving and creating deep learning (DL)
methods to collect both behavioral and PSG measurements that can be used
for monitoring. In particular, video-based methods have recently become an
interesting avenue for unobtrusive measurement collection and other clinical
applications. However, the available DL models often under-perform in the
infant domain due to the difference in body composition between infants and
adults.

2.2.1 Video-based Methods

Video-based methods, using standard or depth cameras, are have become more
accessible in recent years. They have seen a surge of uses in a wider variety of
applications due to the possibility of extracting multiple signals from a single
source and their non-obtrusiveness. Heart rate (HR) measurement has been
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Figure 2.2: Example of an unobtrusive set-up for RR monitoring. Camera is
highlighted with a red circle. Image was retrieved from Rossol et. al. [24].

a widely researched topic for video-based monitoring, producing a variety of
methods [15-22]. Verkruysse et. al. [16] were the first to be able to remotely
measure HR and Respiration Rate (RR) using a digital camera by applying
digital filtering and spectral analysis using ambient light. Aarts et. al. [17]
tracked a region of interest and further applied this technique under similar
lighting conditions and successfully measured HR of newborn infants in the
NICU from the color changes in the skin. Figure 2.2 demonstrates an example
of a video-based set-up in a NICU. Koolen et. al. [18] and Naji et. al. [23] were
able to detect RR from video data of neonates during deep sleep by extracting
optical flow information from Eulerian magnified videos.

Heinrich et. al. [25] proposed to analyze body movement by employing a
spatiotemporal-based recursive search on video motion as a replacement for cur-
rent motion-based sleep (actigraphy) monitoring methods. Long et. al. [26] fur-
ther developed this concept by classifying video-based actigraphy signals using
a Bayesian-based linear discriminant classification model for monitoring wake
and sleep in healthy infants. Cabon et. al. [27] used a multi-modal approach to
estimate the sleep state of newborns in the NICU by creating feature descrip-
tors from audio, motion analysis, and eye state estimation. For both audio and
movement, they were interested in globally capturing the amount of activity at
a certain time and creating a continuous signal. To capture movement activity,
they compared subsequent frames and calculated the difference between pixels.

More recent research [4,5,28] has focused on leveraging infant pose estima-
tion in order to capture, track, and monitor movement of infants in video. These
methods provide a solid foundation and proof that collection and monitoring of
PSG signals from video is valuable and practical in a clinical setting, particu-

11



larly in the NICU and developing approaches to tackle the challenges present
in this domain are necessary. Therefore we aim to further iterate on current
methodology for preterm infant pose estimation.

2.3 Human Pose Estimation

Human Pose Estimation (HPE) is a technique that allows us to measure a wide
variety of behavioral signals from videos, with the goal of predicting the loca-
tions of body joints. HPE provides us with the tools to study a wide range of
properties about the human and what it is capable of. It allows us to study the
movement of humans, as well as to keep track of certain regions of interest in
the body. Robust applications of HPE in the clinical domain, specifically for the
preterm infant population, allows us to non-obtrusively monitor patients and to
collect behavioral signals such as phasic twitching and movement. These signals
can then be used to identify physiological states of patients such as hunger or
pain, and for applications such as seizure detectors.

2.3.1 A taxonomy of Human Pose Estimation

HPE can be divided into two directions, 2D and 3D HPE. 2D methods try
to predict the 2D spatial location of joints of human body key-points in im-
ages/videos. Similarly, 3D methods try to predict these spatial location of
joints in 3D space. Unlike 2D methods, 3D methods can provide extensive 3D
structure information about the body and movement [29]. DL methods have
shown great promise for HPE in both 2D and 3D; DeepPose [30] brought for-
ward a paradigm shift. Classical methods which rely on hand-crafted feature
extraction and sophisticated body models to obtain local representations and
global pose structures [29,31] have been outperformed by DL frameworks and in
recent years, DL has been the backbone of progress in the field. These methods
are aimed towards either single-person or multi-person pose estimation. Given
that the target domain for this research is preterm infants in the NICU, the re-
search of this paper is centered around single-person 2D HPE. Methodologies in
single-person 3D HPE can be grouped depending on whether they use a human
body model or not [32]. Additionally these DL, HPE frameworks can be further
divided into an array of categories: bottom-up vs. top-down, regression-based
vs. detection-based and one-stage vs. multi-stage [29,31]. Each of these frame-
works have their advantages and limitations.

Model-free vs. Model-based

Model-free methods generally learn a mapping between images and 3D human
poses by directly estimating joint locations (direct regression), or by exploiting
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2D pose estimation and use the intermediately estimated poses to predict 3D
poses (2D-t0-3D lifting). Recent work by Pavlakos et. al. [33] proposed a multi-
stage framework to improve the performance of direct regression methods. They
propose a natural volumetric representation by performing a discretization of
the 3D space into voxels. Additionally they propose a gradual refinement scheme
called coarse-to-fine prediction scheme. It was identified that naively stacking
multiple components gave diminishing returns, therefore they decided use dif-
ferent resolution targets at different training stages. In the first iterations they
supervised the training with lower resolution targets; they gradually increased
the resolution of targets in later iterations. By doing so, they were able to
stack components and avoid the overfitting and dimensionality issues that are
associated with such an approach. Sun et. al. [34] proposed a structure-aware
approach, where they used a bone-base representation instead of a joint-based
representation. This allowed for the encoding of long range interactions between
bones, this resulted in increased stability within poses.

2D-t0-3D lifting approaches tend to outperform direct-regression methods,
and are the more commonly used of the model-free methods. They benefit
from the progress made in 2D pose estimation [29] as they use state-of-the-art
2D HPE networks. The 2D-to-3D lifting step has been predominantly done by
training neural networks. Martinez et. al. [35] were one of the first to train a
simple residual CNN to regress 3D joint locations from 2D and predict depth.
They provided a baseline for simple 3D HPE and achieved state-of-the-art per-
formance at the time. More recent work, such as Pavllo et. al. [36] developed
Temporal Convolutional Networks (TCN), which used a encoder-decoder archi-
tecture to perform a semi-supervised training scheme by using a 2D-to-3D pose
estimator as an encoder and a projection layer as a decoder. Zhou et. al. [37]
developed a weakly supervised transfer learning approach that used mixed 2D
and 3D labeled data to train a 2D pose estimator and a 3D depth regression
sub-network both sequentially and separately. By presenting 2D heat-maps
alongside with intermediate feature representations from the 2D pose estima-
tor to the depth regressor they were able to extract semantic information that
served as additional cues for 3D pose recovery.

Model-based methods, on the other hand, employ parametric body models
to estimate the shape and pose from images [31]. The human body models used
in are either kinematic, planar, or volumetric. Most work has centered around
kinematic and volumetric models. Kinematic models represent the body as a
structured graph, allowing for a very simple yet flexible representation. How-
ever, due to their simple nature they provide no information regarding shape.
Zhou et. al. [37] embedded a kinematic object model in a ResNet for general
object pose estimation. By doing so, they were able to constrain both the
orientation and rotational properties of the model and produce more accurate
estimations. Mehta et. al. [38] fitted a kinematic skeleton model against 2D and
3D pose predictions from a single RGB-D image. They were able to constrain
the output of their pose estimators and produce temporally stable joint angles
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of a metric global 3D skeleton in real time.

Volumetric models, unlike kinematic models, are capable of recovering high-
quality meshes and thereby provide additional shape information of the body.
One of the most commonly used volumetric models is SMPL. Developed by
Loper et.al. [39], SMPL is a skinned vertex-based statistical model that is able
to represent a wide variety of body shapes in natural poses. In the original
paper, they are able to train the model from a large variety of pose-aligned 3D
meshes of different people in different poses. Bogo et. al. [9] developed SMPLify,
where they estimated the 3D pose from a single unconstrained image. They used
DeepCut [40] in order to predict the 2D joint locations and fitted the SMPL
model to generate the 3D pose and minimize the re-projection error. In more
recent work, Varol et. al. [41] used SMPL in order to generate 3D body meshes
for a synthetic human database. Similarly to previous work, they trained an
Hourglass [42] backbone for 2D pose prediction and body part segmentation, and
depth estimation. They leveraged the 2D and 3D data generated with SMPL to
train the network and demonstrated that synthetic data can be effectively used
to learn 2D /3D poses. Other volumetric models have been developed, such as
the Cylinder Man Model by Cheng et. al. [43], which was used to create 3D
ground truth data for occlusion data augmentation.

Top-down vs. Bottom up

Top-down frameworks generally have two steps, the human detection step and
the pose estimation step. Top-down frameworks use a person detector to iden-
tify where in the image humans are present and a single-person pose estimator is
ran for each individual found [29]. Bottom-up frameworks do not require a per-
son detector, but rather predict all joint locations in an image and then treat it
as a clustering problem. As Ning et. al [44] indicate, an advantage of top-down
approaches is the fact that they disassemble the task into multiple compara-
tively easier tasks. Having an object detector that is trained for detecting hard
candidates improves the performance of the pose estimator by focusing the re-
gression space. However, this can inversely be seen as a negative quality given
that the results of top-down frameworks are heavily dependent on the quality of
the person detector results [45]. In complex environments where occlusions are
common phenomena, top-down approaches can suffer from early-commitment
issues due to the person detector and fail to recover [46]. Figure 2.3 provides a
visualization of how bottom-up and top-down frameworks generally function.

Regression vs Detection

DL regression-based frameworks were pioneered by DeepPose [30]. Regression-
based methods attempt to solve a highly non-linear problem by directly mapping
the input image to the coordinates of body key-point joints or to the param-
eters of human body models [31]. These models are primarily used in 3D.

14



Detected human subjects Single-person pose

(a) Top-Down Approaches

Input image Body part candidates detection Output 2D multi-person poses

(b) Bottom-Up Approaches

Figure 2.3: Visualization of generic top-down and bottom-up methods. Re-
trieved from Zheng et. al. [29].

Regression-based methods are fully differentiable, however they lack inherent
spatial generalization [47]. Unlike regression-based methods, detection-based
frameworks try to predict the approximate spatial locations of body key-point
joints [29], these were pioneered by Tompson et al. [48]. Detection methods
do this by generating a likelihood heat-map for each joint and using the point
with the maximum likelihood as location of the joint [49]. In practice, detection
methods have shown to outperform regression methods and are more common
in 2D single-person pose estimation; the dense pixel information appears to fa-
cilitate the heat-map supervised learning. In 3D HPE however, regression-based
methods are more common given that heat-map representations are more com-
putationally expensive in 3D.

Detection-based methods are not free of limitations. Output heat-maps are
of lower resolution due to the down-sampling performed in neural networks
which introduces quantization errors [49]. Furthermore, these methods tend to
perform worse with low resolution inputs [50]. In order to address this problem,
Cheng et. al. [51] used a feature pyramid consisting of feature map outputs from
their previous work [52]. HRNet [52] is used as the backbone for HigherHRNet.
This backbone produces high-resolution representations of the input, obtained
by applying parallel and repeated multi-resolution feature fusions. Rather than
trivially applying a Gaussian filter to smooth lower resolution features, they
up-sampled the highest-resolution outputs of HRNet by passing them through
a transposed convolution. By doing so they were capable of achieve state-of-
the-art results on low resolution images. Detection-based methods tend to be
sensitive to body occlusions and background complexity [31] and can have high-
memory requirements due to the nature of heat-maps, making them difficult
to implement in systems with low computational and memory resources [45].
Regression-based methods have the advantage of generally being end-to-end
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Figure 2.4: Visualization of generic regression and detection-based methods.
Retrieved from Zheng et. al. [29].

and producing a continuous output, which is not possible with detection-based
methods due to the non-differentiable nature of joint coordinates in heat-map
representations. Figure 2.4 visualizes how regression and detection-based meth-
ods differ in terms of what is learned.

In recent years, some methods [47,49, 50] have attempted to bridge this
gap between regression and detection methods in order to exploit heat-map
representation and regression advantages and produce end-to-end differentiable
frameworks, resulting in detection-based frameworks that are as flexible as their
regression-based counterparts. Diogo et. al. [50] and [47] proposed to use the
soft-argmax function for HPE, which could be implemented as a CNN layer in
order to convert 2D feature maps directly into 2D joint coordinates, thereby
bridging the regression and detection based methods. The soft-argmax function
makes detection-based methods fully differentiable by performing a weighted
average of the confidence heat-maps. By doing so, confidence heat-maps can be
converted to spatial coordinates. They were able to train end-to-end networks to
learn heat-map representations indirectly, achieve comparable results with state-
of-the-art detection-based approaches and directly addressed the poor perfor-
mance of detection-based methods in lower-resolution settings. Sun et. al. [49]
further iterated on this technique by applying it to both 2D and 3D training data
and studied the effect of resolution and network capacity with integral regres-
sion, and its impact on multi-stage framework performance. They found that
multi-stage networks with integral regression improved performance as stage
increases. Furthermore, integral regression significantly alleviated quantization
errors and are significantly less affected by resolution compared to heat-map
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based methods. Lastly it was found that in terms of parameters and com-
plexity, smaller networks with integral regression outperformed larger networks
without it.

One-Stage vs. Multi-Stage

One-stage frameworks aim to map input images to human poses by employing
end-to-end networks. Generally one-stage frameworks tend to be regression-
based and top-down [53]. Multi-stage frameworks predict poses in multiple
stages and generally have intermediate supervision [31], which is done in order
to address the vanishing gradient problem [46]. Multi-stage frameworks can
take many forms, however the foundation remains the same - stack multiple
networks on top of each other. Newell et. al. [42] proposed an encoder-decoder
architecture coined Hourglass, since then this architecture has been a common
choice for a variety of Multi-stage frameworks [33,43, 54-56]. Hourglass-based
networks apply intermediate supervision and repeat bottom-up and top-down
processing to capture information at every scale. One-stage frameworks gener-
ally tend to be easier to train, however they have less intermediate constraints.
Multi-stage networks are seemingly more suited to the task as they provide more
flexibility, and benefit heavily from intermediate supervision [36].

In the following sections an overview of the challenges HPE faces will be
presented, with a focus on the challenges imposed by the clinical and infant
domains, followed by a summary of current infant pose estimation literature.

2.3.2 Human Pose Estimation Challenges

The challenges present for HPE primarily arise from the human body and the
complex environments in real-world settings. The body is challenging to learn
due to the fact that it is flexible, joints can be interdependent and have high
degrees of freedom, which allow for complex and rare body positions [31] - this is
particularly true for the bodies of infants [5]. Additionally, the body is capable
of producing non-linear motions and has high pose and appearance variance [32].
3D methods suffer from the problem of depth ambiguity. This problem is ill-
posed as multiple 2D poses from monocular videos can produce a single 3D pose
due to depth ambiguities. Furthermore, this is an inverse problem given that
during projection from 3D to 2D (real world to camera) a dimension is lost [29].

Occlusions

Dealing with occlusions (self-occlusions and foreground occlusions) and ambi-
guities are common challenges in HPE. It is common for bodies to cause self-
occlusions, particularly in unrestricted environments. In the clinical setting
heavy occlusions are a frequent challenge due medical equipment, medical staff,
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the body, blankets and other objects [5]. Intensive care units tend to have heav-
ily occluded patients due to the critical nature of their condition, the same holds
for preterm infants in NICU. Therefore it is critical to develop systems that are
capable of handling occlusions, caused by foreground objects or the body of the
patient itself. Attempts have been made to directly tackle occlusions that are
a common phenomena in the clinical domain. Achilles et. al. [57] developed
Patient MoCap, a dataset of motion-captured 3D video data with a simulated
blanket occlusions of varying degrees and trained a Recurrent Neural Network
(RNN) on this dataset to directly regress 3D joint locations for human poses.
They used an RNN, which at the time was a state-of-the-art DL method to
capture spatio-temporal information. Given that occlusions do not occur in a
single frame, spatio-temporal information is incredibly useful as it allows us to
smooth and obtain more consistent pose predictions. Older work generally used
RNNs to encode temporal information, however more recent work has moved
on towards using Temporal Convolutional Networks (TCNs) [36].

Temporal Convolutional Networks (TCN) were developed by Pavllo et. al.
[36]. TCNs [36] are multi-stage, 2D-t0-3D lifting networks which use a 2D pose
predictor to generate a sequence of 2D joint key-point poses from video. For
each frame, the joint coordinates are concatenated and a temporal convolution
is applied. They apply 1D convolutions over a series of ResNet-style blocks to
increase the receptive field exponentially and capture temporal dependencies.
The convolutional nature of these networks allows parallelization over both time
and batch, offering precise control over the temporal receptive field and miti-
gates vanishing and exploding gradient problems.

Cheng et. al. [43] developed an occlusion-aware network that directly ad-
dressed self-occlusions by deploying a multi-stage framework. In addition they
develop the Cylinder Man model, a volumetric model for occlusion reasoning
that is used as a heuristic to map 3D ground truth points to 2D heat-maps.
First a detection-based 2D pose estimator and an optical-flow consistency con-
straint are deployed in order to obtain joint confidence maps. By filtering out
non-reliable estimations of occluded key-points they produce incomplete but
correct 2D pose key-points that are fed to two TCNs, one in 2D and another in
3D. The reasoning behind this is that by giving an incomplete but reliable set of
points, occlusions can be explicitly modeled. The 2D network takes as input the
2D pose key-points, while the 3D network utilizes a pair of 2D pose key-points
and 3D ground truth key-points fitted to the Cylinder Man model. A limitation
of this approach is that the cylinder man model can only model self-occlusions
and does not explicitly address foreground occlusions. Furthermore the method
does not perform well with long-term heavy occlusion. This work was further
iterated on by Wang et. al. [58], they used the method described by [43] and
sought to train the 2D TCN to recognize the ground truth occlusions by ex-
plicitly adding them to the loss function and created the Boxed Man model, an
alternative to the Cylinder Man model that is less computationally expensive
and has a higher tendency to mark joints as occluded. The higher tendency for
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occlusion labeling of the Boxed Man model works as a dropout or regularization
technique and helps guide the network such that it does not overly rely on a
subset of joints. The results achieved were comparable, albeit slightly better
than the original work.

Other recent work has focused primarily on dealing with foreground oc-
clusions. Foreground occlusions occur when other bodies, viewing angles, or
objects prevent us from (fully or partially) seeing parts of the target body. In
order to tackle occlusions in images Zhou et. al. [59] developed an occlusion-
aware siamese network. They leverage an attention mechanism to remove the
interference caused by occlusions. By artificially occluding images, they train
a sub-module of the network to predict heat-map joint locations as well as oc-
clusion maps and erase the contaminated features in a multi-task fashion. A
reconstruction sub-module is trained to reconstruct the images by providing the
feature erased image with the original non-occluded image. However, occlusions
usually do not occur in a single frame, rather they occur persistently across mul-
tiple frames [43]. In more recent work, Cheng et. al. [60] further focused on
occlusion handling. They apply high resolution networks [61], which perform
repeated multi-scale fusions to generate joint heat-maps, and concatenate them
to obtain multi-scale features. These features are then given to an embedding
network to generate low dimensional representations. By applying TCNs with
multiple strides to the multi-scale features they are able to incorporate more
spatial and temporal information to the predictions. This allows them to deal
with pose estimation in multiple scales for both the temporal and spatial do-
main. Furthermore, they introduce a novel spatio-temporal pose discriminator
to reduce the risk of generating unreasonable 3D pose sequences. After training
the discriminator, they use it to produce a regularization loss that is used for
the pose prediction training. Lastly they perform occlusion data augmentation,
three types of occlusions are applied during training. The first type they use
is frame-wise occlusions, where they randomly mask several frames in a video.
The second type is point-wise occlusions, where they randomly set certain key-
point heat-maps to zero. The aim behind such an technique is to simulate that
certain points are occluded. Lastly, they applied area occlusion by setting a vir-
tual area to be occluded; every heat-map activation in this area is set to zero.
This third augmentation aims to simulate occlusions that occur across bigger
sections of the body.

Data Scarcity

DL has introduced its own set of requirements for HPE. DL methods require
large amounts of data in order to learn the target domain [29], which is not
readily available in certain domains. This is somewhat addressed by using pre-
trained network layers as the backbone for feature extraction followed by fine
tuning to the target domain [62]. The data requirement can be further alleviated
by the introduction of data augmentation techniques. Although performing data
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augmentation is not as good as having more real data, it allows us to increase
the available data provided to the data-hungry networks. Data augmentation is
particularly useful when little data is available. Occlusion augmentation is one
of such methods, papers such as [43,57,59,60,63] use this technique. Others such
as [5,7,9,41,42] use volumetric models to generate synthetic data. Generative
Adversarial Networks (GANs), have also become a powerful tool for generating
synthetic data [64-67].

Data used to supervise training requires annotation. For 3D HPE collecting
accurate pose annotations is time-consuming and manual labeling is impractical,
although this can be somewhat avoided with data augmentation techniques. As
Zheng et. al. [29] indicate, creating 2D human pose datasets with accurate 2D
annotations is more practical. Furthermore, 2D data sets are more inexpensive
in terms of the equipment required to collect the data and the time spent anno-
tating the data. Others such as [36] have moved to semi-supervised methods to
further address this. By leveraging a high-performing 2D pose estimator, they
predict 2D poses on unlabeled data and feed them to their TCNs to predict 3D
poses. The 3D poses are then re-projected to 2D, the training then penalizes
re-projected points that are far from the original predictions. Leveraging 2D
image datasets for 3D HPE has become a wide-spread solution [68], hence the
popularity of 2D-to-3D lifting methods.

For the infant domain, data is generally not available, as it is difficult or
impossible to collect due to ethical concerns. As Hesse et. al. [5] point out,
infant data is often of low quality, noisy and subjects have large parts of the
body occluded. Additionally, many HPE methods do not work out-of-the-box
with infants, as these tend to be only trained on adults. The body proportions
of adults and infants and the versatility of their poses are significantly different
[6,7]. In the next subsection, we will discuss methods developed to predict the
poses of infants and address the challenges in the domain.

2.3.3 Pose Estimation for Infants

Pose estimation for infants is relatively sparse, however it has the potential to
aid in child monitoring in clinical environments and trials. In order to study the
efficacy of human pose estimation methods on infants, Sciortino et. al. [6] devel-
oped an infant dataset that contained images with varying degrees of occlusion
and truncation and studied the performance for state-of-the-art pose detectors.
They were able to confirm that every detector performed significantly worse in
the infant domain. Hesse et. al. [69] used 3D pose estimation in order to ana-
lyze the motion of infants with the intent to capture early signs of movement
disorders. By using an RGB-D camera they are able to train random ferns to
assign a body part to each input depth pixel. Further reiterating this idea,
Hesse et. al. [70] achieved a better performance by applying a feature selection
step prior to training. They remove redundant features by randomly generating
a large set of features and evaluating their information gain on the training data
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Figure 2.5: Example of a modeled infant using SMIL. Retrieved from Hesse et.
al. [5]

once. Only features whose information gain is above a user-specified threshold
are kept. Additionally they incorporated a kinematic chain reweighing scheme
to constrain poses and identify misclassified pixels. After the development of
SMPL, in a series of papers with a similar aim as [9], Hesse et. al. [4,5] learned
a 3D Skinned Multi-Infant Linear body Model (SMIL) from noisy, low-quality
and incomplete RGB-D data of infants in a clinical environment. An example
of the modeled data can be seen in Figure 2.5. They use SMIL to capture body
pose and personalized shape, as well as face and hand landmarks. In order to do
so they replace the SMPL mean shape with an infant mesh and scale the pose
blend-shapes to infant size. Lastly they adjust the pose priors manually in order
to prevent the model from explaining shape deformations with pose parameters.
Additionally, they perform a case-study on general movement assessment of in-
fants and demonstrate the capacity of SMIL to faithfully represent the shape
and pose of infants. In more recent work, Huang et. al. [7] applied the SMIL
model to generate a hybrid dataset of synthetic and real images of infants called
SyRIP. Additionally they propose FIDIP, a fine-tuned domain-adapted infant
pose estimation framework that is easy to integrate with any encoder-decoder
pose model for training with hybrid datasets. This framework proposes the
introduction of a domain confusion network during training, which shares the
feature extractor from the pose estimation component of the encoder-decoder
model and adds a domain classifier head. The aim of this classifier is to identify
whether the image is synthetic or real. By doing so, the hybrid and real image
domain are mapped in the same feature space after extraction.

Moccia et. al. [28] opted for estimating the 2D limb-poses of preterm in-
fants in the NICU from depth images. Rather than estimating full poses, they
focus on capturing information about limb movement as they are incredibly
helpful predictors to diagnose cerebral illnesses. Inspired by [46] they build a
bottom-up, multi-stage, detection-based framework where they use two consecu-
tive CNNs. Their framework has one CNN for detecting joints probability maps
and joint connections using part affinity fields, and another CNN for regressing
joint positions. The detection network uses a classic encoder-decoder bi-branch
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architecture, where the network receives as input 20 ground-truth binary detec-
tion maps from a video frame. The final output of the network is a confidence
map of joint and joint connections. Similarly, the regression network receives
as input the depth image and the output of the detection network, as output it
produces joint confidence maps. They link joints with their joint connections by
applying non-maximum suppression and exploiting the joint connection regres-
sion maps using a bipart matching approach. Moccia et. al. [71] continued their
work by adopting temporal clips to encode temporal information to constraint
poses and obtain more consistent results. They converted the framework from
their previous work [28], and used 3D CNNs to encode temporal information.
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Chapter 3

Synthetic Data (zeneration

The creation of synthetic data allows us to increase the amount of data that
can be used to train and evaluate the proposed preterm infant pose estimation
network. Infant Pose Estimation is a challenging task due to the nature of the
domain. Infant pose data is often scarce and difficult to collect and distribute
due to a myriad of legal and practical reasons. The limitations imposed by
the domain create the challenges of data scarcity, lack of pose variability and
reduced quality.

To address this, Hesse et. al. [5] developed SMIL, an adaptation of the
SMPL [39] model trained with incomplete 3D scans of freely moving infants
placed on their backs. The SMIL model is highly descriptive for body shape
and pose and can be used to create synthetic data of infants. Huang et. al. [7]
demonstrated that by using realistic synthetic data generated with SMIL we
can address the challenges present in the infant domain and train better mod-
els. They were able to demonstrate that models trained on augmented hybrid
data achieved better results than those trained only on real training data with
limited pose quantity and variability.

Initially, it was expected that the annotated data collected for this research
would contain the depth information of the scene. Lighting conditions, incu-
bators, and practicality limitations in the NICU environment significantly de-
creased the quality and viability of using such depth recordings, therefore only
2D information was available from annotated data. This impacted the synthetic
data generation methodology as it was no longer possible to follow the approach
proposed by Hesse et. al [5] to learn pose and shape parameters of preterm in-
fants from collected point clouds. In order to circumvent this limitation, the
research opted to follow and alter the approach proposed by Huang et. al. [7]
instead, which leverages SMPLify [9] to estimate the SMIL body parameters
from a single 2D image. In the following sub-sections we will quickly go over
SMIL and SMPLify in order to contextualize the modifications required for the
preterm infant domain.
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3.1 SMIL

SMIL [5] is a skinned vertex-based statistical model that is capable of capturing
both infant shape and pose. This model contains three crucial components: a
template mesh, a pose prior and a shape prior. The SMIL model was learned
from 200K frames of 37 sequences of freely moving infants. The SMIL template
mesh was created by using the same topology as SMPL, this template mesh
contains N = 6890 vertices and K = 23 joints. Unlike SMPL, SMIL only has
one mesh template for gender. SMIL only has a neutral gender due to the fact
that gender does not have an effect on the body shape of infants. The model can
be parameterized by two sets of coefficients, the pose coefficients § € R3(E+1)
and the shape coefficients 3 € R2°. The pose coefficients describe the pose of
the infant using an axis-angle representation, where each joint has 3 degrees of
freedom (DoF) and each can be described by an axis angle that represents the
relative rotation of body parts. Given that there are 3(K + 1) pose parameters,
3 of these parameters describe the global translation 7 of the pelvis (root of
the kinematic tree), for a total of 72 pose parameters. The shape coefficients
represent the proportions of the individual’s height, head-to-body-ratio, as well
as torso and limb length, fatness and thinness. The pose and shape prior are
learned from registering the real world data to the template mesh. To learn the
pose prior, the 200K poses were filtered by using a minimum difference threshold,
resulting in a total of 47K different poses used. To learn the shape prior, a
personalized shape unrestricted from the shape space of the model was created
for each infant. These shapes are created by uniformly sampling 1 million points
from fussion clouds, which are the union of 1000 randomly sampled point clouds
with virtual points, and performing gradient based optimization to minimize the
difference between the template mesh and scans. The shape prior is created by
performing a weighted principal component analysis (PCA) on the personalized
shapes with an iterative expectation-maximization approach and retaining the
first 20 components. The template mesh is deformed to be the average of the
personalized shapes. Therefore the result of the fitting the mesh of the SMIL
model can be represented as M (3,0, ~), where M represents the template mesh
that is deformed given a set of 8, 3, v coeflicients to fit the body of an individual
in a video.

3.2 SMPLify

SMPLify [9] is a 2D-t0-3D lifting approach used to estimate the 6, 8 and ~ pa-
rameters of models that share the topology of SMPL, such as SMIL. SMPLify
assumes that the person in the frame is parallel to the image frame, meaning
it uses a weak-perspective camera model C' which has a set of parameters K.
By calibrating the camera we are capable of obtaining all the required intrin-
sic parameters of the camera model, however due to our non-static monocular
set-up of the data collection and the fact the camera is not calibrated before
each recording, the extrinsic camera parameters are unknown. This adheres
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to the assumptions made by SMPLify that both camera translation and body
orientation are unknown and the focal length is known, making it the optimal
approach for fitting the SMIL model to our data.

The first step is to estimate the camera parameters. SMPLify only esti-
mates the camera translation, camera rotation is ignored given that it assumes
the person in the frame is parallel to the image frame. The camera translation
is initialized to be the 7 of the SMIL model. In order to estimate the depth (or
z-coordinate) of the camera, SMPLify calculates the ratio of similar triangles.
SMPLify does so by dividing the mean euclidean distance of the 3D joint lo-
cations d3p by the mean euclidean distance of the 2D ground truth landmark
annotations dop of the shoulder and hip joints. The ratio of similar triangles is
then multiplied by the focal length K. The estimated depth parameter is then
as follows:

SMPLify then refines the camera translation K; by minimizing the objective
function (2) from Bogo et. al. [9]. This equation is the weighted robust distance
between the 2D landmarks and the corresponding 2D projections the SMPL
model joints. For a more precise description refer to their work; the only joints
that are relevant for the purpose of fitting the camera are the shoulder and hip
joints. With the camera parameters estimated, SMPLify fits the model in a
staged approach by minimizing Eq. (3.2) derived from Bogo et. al. [9]. The
FEjqtq term penalizes the weighted 2D distance between the joint landmarks and
the corresponding projected SMIL joints. The pose prior term, Ey, penalizes
improbable poses given the 6 coefficients, and similarly the shape prior Eg
punishes improbable body shapes given the § coefficients. It is important to note
that the pose and shape priors of SMPLify are substituted by those proposed
by SMPLify-X [72] for the Ey and Ej3 terms presented in Section 3.3.1. Lastly,
Bogo et. al. [9] introduce the angle term E, to heavily penalize unnatural knee
and elbow rotations; where unnatural rotations are positive rotations. F, is the
sum of the exponential of the rotations of knees and elbow joints. Lastly, E,
is the interpenetration term that uses capsule representations of the body to
punish shape intersections; rather than using SMPLify’s version of this term,
we opted to use the improved interpenetration term proposed by Pavlakos et.
al. [72].

E(ea B) = )\dataEdata + )\OEG + )\ﬁEﬁ + )\aEa + )\spEsp (32)

3.3 Data Generation Procedure

As previously indicated, the body and pose parameters for SMIL were estimated
by deploying a modified SMPLify fitting procedure which uses a gradient-based
optimization. As recommended by [72], we use a L-BFGS with strong Wolfe
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line search optimizer, with a learning rate of 0.1, allow at most 30 optimization
iterations with a gradient and loss tolerance rate of le — 9. In the following
sections, the energies that were minimized for the fitting procedure will be
explained, as well as the modeling choices behind them.

3.3.1 Fitting

The SMIL model is initialized by setting the 6 coefficients to the mean of the
SMIL pose prior. In order to register the SMIL model to the sequence, the best
initial frame is selected. Similarly to Hesse et. al. [5], an automatic method
for detecting the best frame is applied where the best frame is defined to be
the one that contains the most visible body part segments. We can define a
body part segment b to be the set of two annotated landmarks, and s is set
of all body part segments in the landmark annotation of a frame. Given this
notation, a sequence of landmark annotations S can then be defined simply as
the set of all landmark annotations s of an individual video. Each landmark
has a ‘confidence’ score ¢, the confidence score depends on the visibility label
from the annotated data. The mapping from label to confidence score is as
follows: not visible/occluded = 0 and visible = 1. The visibility of a segment
is calculated to be the euclidean distance between the two points of a segment
multiplied by their confidence value. The equation to find the best frame F,
from a sequence of landmark annotations S can be defined as:

F= argmax(z d(ly,13) * ¢, * ¢1,), where I, 15 € b. (3.3)
ses bes

The best frame is used to predict the camera parameters for SMPLify. The
camera parameters are then kept fixed throughout the entire registration pro-
cedure for each sequence. In order to register the model to the sequence and
fit SMIL to the infant, we minimize an objective function similar to the one
function proposed by Bogo et. al. [9] for each frame, we optimize the following

energy w.r.t the pose 6 and shape § parameters:

E(G, 6) = )\dataEdata+)\9EO+)\,8E,B+)\aEa+)\tableEtable+)\toEto+)\hEh+)\spEsp
(3.4)
Eq. (3.4) is a domain adapted version of SMPLify’s objective function (3.2).
The additional terms Aigpre Frabies Moo and A\ Ey are introduced to further
constraint the optimization energy and enforce penalties for movements and
poses that are deemed impossible for the preterm infant domain. In the follow-
ing paragraphs the intuition behind the changes and additions introduced to
the objective function will be expanded upon.

Pose Prior Term

Originally, the pose prior of SMIL was used to penalize unlikely poses due to
the fact the prior was learned from a similar domain. A problem with using
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such a prior is the fact that the infants from which the SMIL prior is learned
are much older. By performing a qualitative evaluation on the results early on,
it became apparent that the SMIL prior was not representative of the preterm
infant domain. The infants used to learn the SMIL prior are capable of striking
a very different distribution of complex poses, in particular with the limbs than
those a preterm infant can perform. Therefore we opted to use the pose prior
of adults from SMPLify. The methodology originally proposed by Huang et.
al. [7] did this as well, however in that case it appears to be a design oversight
rather than a choice. The pose prior term used is a Gaussian Mixture from a
MoCAP dataset and is explained by equation (5) in Bogo et. al. [9].

Shape Prior Term

With the improvements of Pavlakos et. al. [72] and following the methodology
of Huang et. al. [7] the shape prior term is set to be the squared Mahalanobis
distance between the g coefficients and the shape prior of SMIL. Given that
the shape prior is constructed to have a mean of 0, the shape term is simply as
follows:

Eg =||BlI* (3.5)

Angle Prior Term

Given the axis-angle representation of the joints, the formulation presented by
Bogo et. al. [9] allows us to heavily punish implausible joint rotations. Since
the axis angle has a range of (—27, 27), we can punish joint rotations in specific
axes and directions. For example, the elbow should never turn outwards to
explain a wrist rotation as that would not be physically plausible given the
elbow joint. This term guides the optimization towards modifying other pose
and shape parameters to explain the location of the ankle and wrists in the
image. The equation for the angle prior term proposed by Bogo et. al. [9] is the
following:

E.(0) = > ef (3.6)

i€ (elbows,knees)

Table Term

Given the non-static monocular set-up of the data collection, a table term used
to enforce that the infants are laying on an incubator, like the one proposed by
Hesse et. al. [5] was not possible. However, given the preterm infant domain
certain constraints could be placed on the body joints. The infants from our
collected data are always on their backs, laying inside of an incubator. Inspired
by the angle prior term, the FE;.pe term punishes shoulder and hip rotations
around the x-axis that would place the arm or legs below the torso. Although
this does not fully remove some of the fitting artefacts, it helps to guide the
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optimization and simulates a virtual table. This term is identical to the one
described in Eq. (3.6) with the exception that i € (shoulders, hips).

Torso Term

In order to further constraint the fitting procedure, we enforce the limited
strength and mobility of preterm infants to punish implausible poses. The
FE;, term punishes large differences between the rotations of the hip and neck
joints around the x-axis, meaning the torso should remain relatively straight,
the infant should never have its neck higher or lower than the hip. The intu-
ition behind this term, is that preterm infants are not able to move as freely
as full-term infants and hence are not capable of raising their torso or hips in
the same manner. This term further aids to enforce that the infant should be
laying flat on its back. The term can be formalized as the following:

Eyo(0) = ellf»=0nll (3.7)

where 6,, and 6}, refer to the neck and hip joint pose parameters we want to
constraint.

Head Term

The head term is introduced in order to limit two particular rotations the infant
cannot perform. The first rotation we want to punish is the movement of the
head around Z-axis regardless of direction; the second rotation we punish is the
neck rotation around the X-axis. Once again these movements are deemed to be
highly unlikely for infants to perform and help to enforce the restricted poses of
preterm infants during the fitting procedure. Given that we want to constraint
these two movements, the Fj, is the following:

Ey,=FE+FE, (38)

Where E; punishes the movement around the Z-axis and is formalized by
equation (3.9). By using the absolute value of the 6, for the neck joint Z-
rotation we can produce a similar behavior to that of a quadratic and punish
movements regardless of direction. The term E,, punishes the movement on the
X-axis and is formalized by Eq. (3.6).

Ey(6) = el (3.9)

3.3.2 Term Weights

As previously mentioned, the registration is executed in a staged approach,
following the advice of Huang et. al. [7] and Pavlakos et. al. [72], where term
weights change during each stage. By performing the fitting in stages we are
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Stage
Term 1 2 3 4
Adata 1 1 1 1
Ao 404 | 404 | 404 | 404
A3 200 | 200 | 200 | 200
Aa 10 10 15 30
Atable 50 50 50 60
Ao 40 40 50 50
An 0 0 10 20
Asp 0.00 | 0.00 | 0.01 | 1.0

Table 3.1: Aterm weights for term € data, 0, 3, a, table, to, h, sp.

capable of guiding the optimization function such that certain terms become
less or more important depending on the stage, the rationale behind such an
approach is to first fix the ”coarse” pose and then refine it. The term weights
given each stage can be seen in Table 3.1. The term weights for the terms in
Eq. 3.4 were found through manual adjustment to keep the terms balanced.

3.3.3 Post-Processing

Given the unconstrained nature of the 2D-to-3D lifting procedure, the fitting is
likely to produce jittery results. Therefore we apply a post-processing step prior
to the image generation. We apply a moving average filter of width 5 (2 frames
in the past and 2 frames in the future) in order to smooth the parameters. For
the first 2 and last 2 frames, we simply use the moving average of the available
frames and do not perform padding. Doing so allows us to significantly smooth
out pose and shape parameters between frames in a single sequence.

3.3.4 Video Generation

The video generation procedure uses the optimized registrations of the SMIL
model to generate videos of synthetic infants based on real data. Similarly
to how Huang et. al. [7] describe the process of creating a synthetic image, a
synthetic video Vj,,, can be generated through an imaging process (2 as described
in Eq. (3.10). Let R be an ordered sequence of optimized registrations and
C(d, f,t) be the single camera used in the video, where d, f and ¢ are the
principal point, the focal length and the translation parameters respectively of
the camera. Additionally, let Bg be a randomly selected background image of a
hospital room from the MIT Indoor Scene dataset [73] and T be one randomly
selected infant texture provided by MINI-RGBD [8] that is mapped to the SMIL
output mesh M(f;, 0;,7:;). The SMIL mesh takes as parameters the 3;, 6; and
v; of the corresponding optimized registration i € R.

‘/syn = <Q(M(6i79ia7i)ac(d’ f’ t)ngaT) ‘ i€ R> (310)
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(a) Synthetic Caucasian infant (b) Synthetic Black infant

Figure 3.1: Individual frames of two different augmented videos from the same
sequence.

In order to increase data quantity, for each sequence we replace the global
pose parameters with a random rotation on the x, y and z axis. The x rotations
are in the range [J, 7] while the y and z rotations are in the range [—7, T];
these ranges ensure that the infant will never be facing away from the camera
or in an implausible recording angle. Figure 3.1 demonstrates a frame from two
different synthetic videos augmented from a real infant video. In the figure each
image has a different texture, background and global rotation. Note that the
augmentation is achieved by the re-projection of the 3D joints after a rotation.
By rotating the sequence and re-projecting to the image plane, we effectively
create a new mapping of a 3D pose in 2D. To get an understanding of the
variability that this video generation procedure is capable of, refer to Appendix

A.

3.3.5 Occlusion Labels

Given that we are able to generate ground truth data for infant poses in video,
we further extend this and generate occlusion labels for said poses. The occlu-
sion labels generated follow the COCO format explained in Section 4.2, and are
as follows: if the joint can be seen it is labeled as visible, if the joint is in the
image but it is occluded (either by self-occlusion or by foreground occlusions)
it is marked as occluded, and if the joint is not in the image it is marked as not
visible. In order to generate the occlusion labels for the generated sequences we
apply the Boxed Man model detailed by Wang et. al. [58] with a few adjust-
ments.

Boxed-Man model

The Boxed-Man model is a planar model that describes the body segments,
such as the head, torso, legs, and arms, as rectangles. Given a key-point and
a set of rectangles, we can verify whether the joint is occluded by identifying
whether such key-point is inside of another rectangle that it is not a part of.
If a key-point is inside a rectangle, we compare the depth of the key-point to
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Figure 3.2: Box calculation supplementary help for the Boxed Man model. As
indicated in the text, the two original points are A and B, additionally the
slope between these points can be seen in the image. The distance between the
generated points and the original point is determined by J. Inspired by Wang
et. al. [58].

the depth of the closest key-point in the rectangle. Each segment is originally
composed of 2 key points, A and B, from which we can project into 4 points
Ay, Ay, By and Bs to create the bounds of the boxes for each segment. The
points are calculated by taking the perpendicular slope map of the line AB,
which is defined as the negative inverse of the slope %, applying a rotation,
subtracting/adding the original key-point coordinates, and multiplying it by a
scaling parameter §. For specific implementation details, refer to Section 4.2
of Wang et. al. [58]. Figure 3.2 provides a visual aid for the box calculations.
The results of such a method allows us to create boxes that are proportional
to distance between two key-points in the image plane. Figure 3.3 shows an in-
fant whose arms produce different box proportions - the left arm shows smaller
box sizes, while the right arm shows proportionally larger box sizes. The black
points on the infant body are the ground truth key-point locations.

Given that the model was originally developed with the Human3.6M skele-
ton in mind, some modifications had to be made. Rather than using the top
of the head key-point and the thorax key-point for the head, we use the ear
key-points of COCO19 in order to define the head box. For the head box we
apply a ¢ of 105 and for the limbs we apply a ¢ of 35 in order to capture the
different proportions of the infant. Furthermore, given that the hip-joints of
the SMIL model are closer to the center of the hip, we use the maximum and
minimum x and y coordinates of the two shoulders and two hips to create a
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(a) Boxed-Man model prior to torso modification

(b) Boxed-Man model after to torso modification

Figure 3.3: The same frame of a synthetic infant with the original Boxed-man
model and the modified Boxed-man model overlayed.

more rectangular shape; not doing so would result in incorrect occlusion labels.
Figure 3.3 demonstrates the Boxed-Man model applied to the synthetic infant
along side the corrected torso segment.

3.4 Results

In order to verify results a qualitative and a quantitative validation were per-
formed. The qualitative validation was done manually, where we inspected
whether a fitted sequence had severe mesh deformation (i.e. a crumbled up in-
fant mesh). Any sequences which had such deformations, were removed from the
dataset and from the subsequent quantitative evaluation. From the annotation
data, the fitted sequences from videos 1 and 2 from Infant 2 were removed due to
severe mesh deformations. In video 1, the mesh had severe inter-penetrations,
the arms went through the head. In video 2, the head of the infant was fully
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Infant | Video | WMSE | PCK@QQ.2

1 1 8.11 96.26

1 2 8.11 95.46
2 [ 3 | 575 | 100 |

2 4 5.17 97.77
3 | 1 | 899 | 99.07 |

3 2 5.37 97.81
4 [ 1] 215 | 100 |
5 | 1 | 328 | 100 |

5 2 6.21 99.24

5 3 3.32 100
6 | 1 | 549 | 100 |
7 1 275 | 1000 |

Table 3.2: WMSE in pixels and PCK@O0.2 per sequence. Low MSE error and
high PCK value indicate a good fit.

turned 180 degrees.

Lifting a pose from 2D to 3D is a highly unconstrained problem, and us-
ing a fitting procedure that minimizes an energy provides no guarantee that
the pose is valid and correct. Given that there is no ground truth 3D data to
evaluate the quality and correctness of the image generation we resort to using
the 2D data. As SMPLify is a lifting procedure that takes into consideration
2D re-projection error, standard validation metrics such as PCK (Percentage of
Correct Key-points) are not fully indicative of the quality of the results alone as
they often provide very high scores. Therefore, the metric that we select to fur-
ther validate the fitted sequences is the weighted MSE (Mean Standard Error),
which is calculated in pixels. The MSE for a sequence is calculated between the
re-projected 2D SMPLify joints and the ground truth annotations. Using the
occlusion labels from the annotation, we set the weights of the key-points which
are marked as occluded to 0 as they were not used during the fitting procedure
and set the remaining weights to 1. The reasoning behind using this metric is
that it allow us to measure how close the joints are in the image plane. It is
important to note that given the fact only 2D is available, there is no measure
that will effectively capture the quality of the results. The weighted MSE serves
as an indicative, yet not infallible, metric for pose validity. Table 3.2 displays
the PCK@0.2 and MSE for each fitted sequence.

T-SNE (T-distributed Stochastic Neighbor Embedding) was applied to the
pose and shape coefficients of the SMIL model in order to understand the coef-
ficient distributions of the sequences. Given that each pose is represented by 69
coeflicients, we aim to reduce the dimensionality of our data. First we normalize
the pose coefficients of the sequences by removing the mean and scaling to unit
variance, to which we apply PCA. We reduce the data to 3 principal components
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and feed it to the T-SNE algorithm. We optimize the T-SNE with a learning
rate of 200, for 1000 iterations and apply early stopping if no change occurs for
200 iterations. Lastly, we use a perplexity of 15 due to the small sample size.
We apply the same procedure to the shape coefficients. The results can be seen
in Figure 3.4.

Figure 3.4a shows the shared pose coefficient clusters by sequence. This fig-
ure indicates that there are no severe pose coefficient outliers between sequences,
all the sequences to some extend, share the same pose parameter space. Further-
more, this indicates that our pose variability for the registered data is good, with
different sequences encompassing a large area of the parameter space. This pro-
vides further indication that the fitting procedure is capable of capturing a good
range of motion and we do not get low movement sequences due to a severely
constrained fitting procedure. Additionally a large portion of sequences have a
big overlap between pose coefficients as seen in the figure around the (0,0,0) co-
ordinates, indicating that we are able to capture similar infant positions across
sequences. Having more fitted sequences would allow us to further collect more
information about the infant motion range and how well our fitting procedure
captures said motion. By inspecting the in-between clusters, we can see that
most frames from within a sequence remain close to their respective sequence
cluster. Figure 3.4b shows the share shape coefficient clusters by sequence. This
figure shows that the shape coefficients have some variation within sequences.
This is not particularly surprising as pose and shape coefficients are not in-
dependent from each other; certain poses affect the shape of the body. For
example, slouching might make a person’s torso appear thicker than it is. How-
ever, sequences Inf:1-Vid:1, Inf:2-Vid:4, and Inf:3-Vid:1 appear to have more
variation than the other sequences, which indicates that the shape of the in-
fants for these sequences might not remain accurately portrayed throughout the
entire sequence or that the movement in these sequences significantly affect the
shape of the infant.

In order to further visualize the results of the fitting procedure, we addition-
ally plot the embeddings per infant. This can be seen in Figure 3.5, this is done
to get an understanding of the overall parameter space and how much is shared
between different infants. Figure 3.5a indicates that the pose clusters per infant
are close in the embedding space, this indicates that we are able to capture the
movements of the same infant across different videos effectively. However, this
figure indicates that pose parameters across different infants might be signifi-
cantly different. Given that our data relies on 2D points to perform 3D pose
estimation this is not a surprising result and might indicate that the fitting pro-
cedure should be more constrained; future work should explore the use of VIBE
in order to verify whether its a shortcoming of using a single image registration
approach, or a shortcoming of these techniques. It is also possible that dif-
ferent infants move significantly different and strike different poses, this would
explain the similarities in sequences from the same infant and dissimilarities in
sequences between different infants. Figure 3.5b shows the shape parameters
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Pose Parameters

Sequences
@ inf: 1, vid: 1 @ inf: 4, vid: 1
@ inf: 1, vid: 2 @ inf: 5, vid: 1
inf: 2, vid: 3 @ inf: 5, vid: 2
inf: 2, vid: 4 ® inf: 5, vid: 3
@ inf: 3, vid: 1 @ inf: 6, vid: 1
inf: 3, vid: 2 ® inf:7, vid: 1

(a) T-SNE of the infant pose coefficients for all registered frames per sequence.

Shape Parameters

Sequences

@ inf 1 vid: 1 L
inf: 1, vid: 2

inf: 2, vid: 3

inf: 2, vid: 4

@ inf: 3, vid: 1
inf: 3, vid: 2

 EERE Y]

(b) T-SNE of the infant shape coefficients for all registered frames per sequence.

Figure 3.4: T-SNE plots for the pose and shape coefficients per sequence. The
legend labels indicate the infant ID and its corresponding video. The results of
12 sequences are displayed. Each point in the plot represents a single frame.
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per infant. This figure shows a even though the shape parameter space within
infant sequences varies, the shapes between infants are different. This suggests
that we are able to capture the different shapes caused by movements performed
by infants. Additionally, this figure suggests that we are able to capture how
the shape of different infants. This can be extrapolated from the fact that the
sequences fitted from the same infant always produce shapes coefficients that
are close in the shape space. These results might suggest that different infants
do in fact move differently.
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Pose Parameters per Infant

Infants
@ inf:1l inf: 5
inf: 2 ® inf:6
inf: 3 @ inf:7
@ inf:4

(a) T-SNE of the infant pose coefficients for all registered frames per infant

Shape Parameters per Infant

Infants
@ inf:l inf: 5
inf: 2 ® inf:6
inf: 3 @ inf:7
@ inf:4

(b) T-SNE of the infant shape coefficients for all registered frames per infant

Figure 3.5: T-SNE plots for the pose and shape coefficients of sequence. The
legend labels indicate the infant ID. The results of the 7 fitted infants are dis-
played. Each point in the plot represents a single frame.
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Chapter 4

SPIS Dataset

4.1 Data Collection

The data that was collected comes from preterm infants in the NICU at the
University Medical Center Utrecht(UMCU). The data was recorded using a Re-
alSense2 depth camera, however due to lighting limitations which prevent depth
capture inside the NICU, only the RGB data was used. Each recording is stored
as a 1920x1080 video and captured at an average of 30 frames per second. Due
to the hectic nature of the NICU, the camera is placed in different locations
between recording sessions. At its furthest, the camera was placed approxi-
mately at 50cm away from an infant and at its closest, at approximately 30cm.
Each recording contains a single infant inside of an incubator with some form
of foreground occlusion present. The original data contains hours of recorded
and un-annotated footage, however for the purpose of this research, short clips
of 5 seconds are annotated and used. These short clips were manually selected
based on a set of criteria: lighting conditions, viewing angle, infant visibility
and movement. The criteria of lighting conditions is simply based on whether
or not the infant can be seen in the video. If the infant can be clearly seen, the
video clip fits the criteria. For viewing angle, only video clips which did not have
severe perspective distortion fulfill the criteria. Additionally, clips in which the
infant displayed no motion were discarded. The reasoning behind using motion
as a criteria is to gain as much pose variability as possible given the scarcity of
the data in this domain.

4.2 Data Annotation

The collected data was annotated by three interns at the UMCU. The data
annotated followed the COCO19 key-point standard (Figure 4.1a), as it was
an appropriate annotation format for the fitting procedure outlined in Section
3.2 and could be easily retrofitted into the COCO17 key-point standard. Ad-
ditionally, each key-point is annotated with an occlusion label. Each key-point
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(a) COCO human 19 key-point standard. Retrieved from
Cao. et. al. [46]

(b) COCO human 17 key-point standard. Retrieved from
Kocabas. et. al. [74]

Figure 4.1: COCO19 and COCO17 Data annotation formats.

can be labeled as visible, partially occluded or occluded. If the key-point is
not self-occluded or occluded by a foreground object the key-point is visible. If
the key-point is partially visible, or occluded by the subject or by a foreground
object, the it is labeled as partially occluded. Lastly, if the point is not present
in the image, it is labeled as not visible. As previously mentioned, each clip is
5 seconds long and captured at 30 frames per second, resulting in a total of 150
frames per clip. There are in total 14 clips annotated from 7 different infants,
resulting in approximately 2100 key-point annotated infant poses.
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4.3 Data Pre-processing

As previously mentioned the data is annotated by hand, given the small move-
ments that occur between frames annotators usually use previous annotations
and make small corrections after a certain number of frames. Therefore we
apply a pre-processing step to the annotations. In order to smooth out the
annotations, we apply a moving average filter over the sequences with a width
of 5, using two previous and 2 future frames. Lastly, given that the torso and
limbs of the infant are always present in video, we relabel every joint above the
hip from not visible to partially occluded; this is done in order to fix a set of
key-point mistakes in certain annotations.

4.4 SPIS

For this research we introduce a hybrid dataset for preterm infants. The Syn-
thetic (and Real) Infant Pose Sequences (SPIS) dataset was created in order to
train and validate DL methods on preterm infant pose estimation in the NICU.
This dataset is composed of a combination of real infants from the NICU and
generated synthetic infants from these sequences. Each sequence is treated as
its own independent data entry.

Like SyRIP, this is a hybrid dataset of real infants and synthetic infants gen-
erated with SMIL. Although the datasets use the same volumetric model and
similar methodology, there are some key differences. SyRIP is an image dataset
of full-term infants in-the-wild; the real data comes from publicly available video
footage of infants. SPIS, on the other hand, is a video dataset intended to be
used for motion modeling. Additionally, the real and synthetic data are from
preterm infants in the medical domain. Lastly, the SyRIP dataset is approxi-
mately composed of 1000 synthetic and 200 real samples, while SPIS is composed
of approximately 2100 real samples and 17700 synthetic samples.

In order to create a sizeable dataset that can be used to train and validate
infant pose estimation, we augment each fitted sequence 10 times. Every aug-
mented sequence has a different infant texture, a different background image,
and a different viewing angle, which allows us to increase the visual variability
of the data. Using the infant textures from MINI-RGBD [8], we are able to gen-
erate up to 12 different textured infants. Furthermore, there are 68 background
images, which are hospital rooms selected from MIT Indoor Scene dataset [73].
Note that the hospital room images selected from this dataset have been man-
ually filtered to not contain any people. The dataset is in COCO17 format, as
seen in Figure 4.1b, which simply requires the removal of two points from the
COCO19 format used to annotate the real data. The main difference between
these two annotation formats, is that COCO17 does not contain the annotations
for the thorax and the center of the hip. Furthermore, each sequence comes
with key-point occlusion labeling generated by leveraging a modified Boxed-
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Type IDs

Real 3,4,5,7,8,9, 10, 11, 12, 13
Synthetic | 19, 25, 30, 40, 44, 50, 57, 64, 70, 82, 102, 106, 109, 118, 122, 132

Table 4.1: Real and synthetic sequence IDs in the SPIS testing set. The re-
maining sequence are in the SPIS training set.

Man Model [58] and foreground-background masks for future use. In total the
dataset contains approximately 19800 frames of annotated and ground truth
synthetic data.

The SPIS dataset has a total of 134 sequences, of which 14 real hand-
annotated sequences and 120 are synthetic. We opted to use an 80%-20% split
for training and testing respectively. Given that we want to validate the pose
estimators for in-the-wild use, we create the test set to be composed of 10 ran-
domly selected real sequences and 16 synthetic sequences. Sequence IDs for the
real data range from 1-14, while 15-134 are for the synthetic sequences. The ran-
domly selected sequence ids for testing can be seen in Table 4.1. The remaining
data is used for training. Given the limited size of the dataset, no validation set
is created, and we recommend to carefully use the training data for evaluation
during training. The training split is primarily synthetic, making up 96% of the
training data, the remaining 4% are real infant videos. Meanwhile, the test set
has a more balanced real and synthetic data distribution, made up of approxi-
mately 38% real data, and 62 % synthetic data. Due to the scarcity of real data,
we opted to use as little as possible for training; we found one third of the real
data to be an acceptable compromise given the large amount of synthetic data
available. For the test set, we selected enough synthetic sequences such that we
would reach the required 20% split previously outlined.
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Chapter 5

Preterm Infant Pose
Estimation

5.1 Pipeline Architecture

This architecture is a single person, top-down, multi-stage approach. The archi-
tecture assumes that it will be fed both a series of images with infants present
and their corresponding bounding boxes. The pipeline architecture is relatively
simple: it contains a 2D pose estimator for encoding image features and decod-
ing them into heat-maps that represent the location of joints, by selecting the
peak activation of the heat-maps we find the predicted location of the joints in
an image. Given a series of these predictions, a causal 2D TCN model is applied
to predict the latest pose given the entire sequence of poses up until the current
point in time.

5.1.1 Design Choices and Assumptions
Top-down

A shortcoming of top-down architectures is that they tend to suffer from early
commitment issues. However given the nature of the domain and intended use,
we believe this is appropriate. There are two main reasons as to why this is
the case. Given the domain and future use, we can assume that pre-term infant
pose estimation will be done with a single infant in mind. Due to the nature of
the domain, preterm infants will always be alone and placed inside of the same
environment: an incubator. Top-down architectures require a person detector
in order to find the person in an image. However, given the nature of our data
and the provided annotations previously mentioned, we train the model using
ground truth bounding boxes. Future research should train a detection model,
such as Mask-RCNN; to detect incubators or occluded infants for in the wild
use. In this research we assume the ground-truth detection boxes are present.
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Multi-stage

Often multi-stage approaches allow us to effectively control models more effec-
tively. The reasoning behind using a multi-stage approach is due to the choice
of using the FiDIP training framework for the 2D pose estimator and the for-
mat limitations provided by using the COCO annotation format. Originally
we had the intent of using Human3.6M to train the TCN to perform 2D-to-3D
lifting. However the available Human3.6M [75] data did not contain the key-
points necessary to represent the poses in the COCO17. Therefore we opted for
converting the 3D TCN into a 2D TCN that would be trained on the detections
from a high performance 2D pose estimator pre-trained on COCO, such that
the 2D TCN would be able to predict key-points in the COCO17 format of our
data. This was done following the methodology of Pavllo et. al. [36], where they
use pre-trained CPN and Mask-RCNN 2D point detectors and achieved simi-
lar results to those with ground-truth annotations. Producing key-points from
our synthetic data in another format is not possible unless a joint-regression is
learned between the SMPL model and Human3.6M meshed dataset, which we
got denied access to; future work could address this limitation.

5.2 Pose Estimator

The architecture uses a 2D pose estimator in order to predict the key-points
of the image. A wide variety of high performing 2D pose estimators for single
frames exist, however very few of them have been tested or trained for infant pose
detection. Therefore we select a model that has been evaluated on infant data
previously, the DarkPose+FiDIP model, which uses an HRNet-W48 backbone,
proposed by Huang et. al. [7] was selected as the underlying architecture to
use for the 2D pose estimator. The reasoning for selecting this architecture as
the foundation is two fold: (1) it has been previously tested in a similar domain
and achieved exceptional results, (2) the training framework proposed by FiDIP
embeds both synthetic and real data features in the same feature space. Using
the FiDIP framework to train the 2D pose estimator is necessary in order to
improve performance given our the data scarcity problem we face, and the need
to use synthetic data to train our network.

5.2.1 Pre-training Procedure

The 2D pose estimator uses the FiDIP framework to transfer the knowledge of
adult pose estimation to infant poses estimation by using a domain adaptation
technique. FiDIP uses an adversarial approach to fine-tune a network with the
main task of predicting poses and the auxiliary task of predicting whether the
image is real or synthetic. In order to do so, they add an auxiliary domain clas-
sification sub-network, which takes as inputs the spatial feature representations
of the pose estimator. For more in-depth information regarding the domain
sub-network architecture, please refer to Huang et. al. [7].
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(a) Sample from SURREAL (b) Sample from COCO

Figure 5.2: Image samples from SURREAL and COCO used to train the Domain
sub-network.

Domain Sub-network

In order to effectively use adversarial training to encode the synthetic and real
images in the same feature space, Huang et. al. [7] pre-train the domain clas-
sifier. Not doing so would degrade feature embedding performance and would
render the use of the framework futile. The pre-training dataset is not publicly
available, therefore we create our own. We randomly sample 2000 images of peo-
ple from the COCO val2017 dataset and 2000 images of synthetic humans from
the SURREAL dataset. Figure 5.2 contains an image from each dataset used
to pre-train the sub-network. In order to ensure a diverse synthetic split, we
randomly sample a single frame at a random time from 2000 different videos.
We pre-train the classifier sub-network by propagating the Binary Cross En-
tropy (BCE) loss between the ground truth labels and the predicted labels.
The sub-network is trained for 20 epochs, using AMSgrad as an optimizer, with
a learning rate of 0.0001. The training data is augmented by randomly apply-
ing scaling with a factor of 0.35, rotations of at most 45 degrees and horizontal
flipping. During the pre-training we use a batch size of 8.

Darkpose + FiDIP

Using the pre-trained weights of the HRNet-W48 and the pre-trained weights
of the domain sub-network from the previous section, we train the Darkpose +
FiDIP model on SyRIP to serve as our baseline for 2D infant pose estimation.
We use SyRIP whole set to train the network. SyRIP whole set consists of 1000
synthetic infant images and 200 real infant images. We leverage SyRIP Test100,
a small validation set of real infant images, to validate the baseline results.

Following the methodology of Huang et. al. [7], we freeze the layers of the
HRNet up to the second stage and its bottleneck. We tune the network for
20 epochs, using a batch 8, AMSgrad as an optimizer, with a learning rate of
0.0001. Training data augmentation is performed by randomly applying scaling
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with a factor of 0.35, rotations of at most 45 degrees and horizontal flipping.
Similarly to the results outlined in the original research, the model achieves a
93.9 mAP, a 98.4 AP50 and a 98.4 AP75 on SyRIP Test100.

5.2.2 Fine-Tuning Procedure

Following methodology from Huang et. al. [7] we freeze the layers of the HR-
Net up to the second stage and its bottleneck. By doing so, we are able to
use the pre-trained weights to capture the early spatial feature representations
and fine-tune a smaller set of parameters for our preterm infant pose estimation
network using FiDIP; this is done to perform transfer learning given our small
data domain. Given that our model has previously been fine-tuned and adapted
to the infant domain using SyRIP, but not to the preterm infant domain, we
train the same layers in hope of capturing new information about the preterm
infant domain. The fine-tuning of the network is done for 5 epochs with a batch
size of 16, using AMSgrad as an optimizer, with a learning rate of 0.0001. The
reason for tuning the network for a few epochs lies on the fact that the synthetic
data of SyRIP is also created using SMIL, therefore we aim to not over-fit to
the synthetic data given our mostly synthetic training split. We fine-tune and
test the network using SPIS, following the data split provided in Section 4.4.
Training data augmentation is performed by randomly applying scaling with a
factor of 0.35, rotations of at most 45 degrees and horizontal flipping to the
images and key-points.

For every iteration, the batch of input images is provided to the pose estima-
tion network, from which we collect two outputs. First, we collect the resulting
spatial feature representations of the network for each image in the batch, which
we feed to the domain classifier to identify whether the images are real or syn-
thetic. We calculate the BCE loss between the ground truth labels and the
predicted labels and propagate it through the domain classifier sub-network.
Next we calculate the weighted MSE loss between the predicted heat-maps and
the ground truth heat-maps of the key-points. Given that our data is annotated
using key-points, we generate the target heat-maps using a Gaussian distribu-
tion with a 0 = 3, and use the (x,y) coordinates of the key-point as the mean.
Given the MSE and BCE loss of the batch, as indicated by Huang et. al. [7],
we calculate the loss of the pose network as the following:

loss = MSE — (Ax BCE) (5.1)

where A is set to 0.0005. Note that this loss is only propagated to the pose
estimation network. By doing so, the FiDIP framework guides the network to
not only predict the location of the joints, but to embed the extracted features
into the same feature space using adversarial training.
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5.3 2D TCN

Given that the aim of this paper is to create a pipeline for preterm infant pose
estimation in video, a network to model motion was required. We considered the
optimal choice for modeling sequences of movements of preterm infants would
be TCNs, as previous work [36,43,60] have demonstrated promising results for
2D and 3D pose estimation on adults. TCNs use 1D convolutions in order to
capture and model sequences. Given the nature of our task, we use a causal
and dilated convolutions for our network.

Causal TCNs are models which produce an output at time ¢ and only perform
convolutions on elements prior to and up to time ¢, therefore no future infor-
mation is used. These models are often preferred in real time systems where
information should be processed as it arrives [36]. Additionally, the choice to
use a dilated convolution architecture is due to the fact that simple causal con-
volutions only allow us to increase the receptive field of the network linearly.
Creating a model with a large receptive field using only casual convolutions
would heavily increase memory requirements and slow down training as cer-
tain outputs would have to be recalculated. Dilated convolutions allow us to
increase the temporal receptive field of the network while maintaining a reason-
able model size and prevent us from re-calculating intermediate results. Figure
5.3 demonstrates how causal and diluted convolution TCNs work.

Although previous works [60] have experimented with training networks to
capture multi-scale temporal by using multiple temporal strides in order to deal
with varying degrees of motion (in particular for very fast motions such as those
associated to sports), we refrain from doing so. The reason being that the range
of speeds at which pre-term infants are capable of moving is small and movement
speed variation in videos is low.

5.3.1 Architecture

The developed architecture can be seen in Figure 5.4. The TCN takes as in-
put a sequence of 27 frames, each containing 17 key-points in 2D. The input is
given to 1D convolutional layer with a filter width of 3, dilation of 1, and 512
channels, followed by a 1D batch normalization layer, an activation layer and a
dropout layer. Immediately after two temporal blocks are applied and lastly a
1D convolutional layer with a filter width of 1, dilation of 1 and 512 channels.
The network produces as an output a single frame prediction of 17 joints in 2D.

Each temporal block is made up of two components. The first component
is a 1D convolutional layer of 512 channels and a filter width of 3, followed by
a batch normalization layer, a ReLLU activation layer and a dropout layer. The
second component follows with 1D convolutional layer with a dilation of 1 and
a width of 1, followed once again a 1D batch normalization, activation layer, a
drop out layer and lastly a residual is added to the output. The temporal blocks
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Figure 5.3: Causal and dilated convolutions of a generic TCN composed of 2
temporal blocks with filter widths = (3,3,3), stride = 1. In this example the
TCN has a receptive field of 27 frames. The dilations have the same size as the
filter widths and can be seen increasing the larger the receptive field becomes.
Image retrieved from Pavllo et. al. [36]

can be seen in Figure 5.4 inside of the light orange rectangles. After the last tem-
poral block, one last 1D convolution is performed to get the predicted key-points
of a sequence. The blocks are created to have filter widths of size 3 accordingly.
The dilation rate for each of these blocks is set to be equal to the width of the
filter for each block. It is common to set the dilation rate equal to or less than
that of the filter widths as making them larger would result in information loss.
Setting the dilation rate of a block to be less than that of the filter width leads
to reusing information present in previous filters and was purposefully not done.

The architecture was selected to have equal filter widths in order to keep
the model relatively small while achieving a medium size temporal receptive
field. The receptive field of the model can be calculated by multiplying the
filter widths at each level. In our case the total receptive field of the model is 27
frames. With the first 1D convolutional layer having a receptive field of 1, the
first temporal block a total receptive field of 3, and the second having a total re-
ceptive field of 9, followed by the final 1D convolutional having a total receptive
field of 27 frames. Even though large temporal receptive fields often produce
better results [36,43,60], there is a reason why we do not design our TCN to
have a larger receptive field. The aforementioned research has been evaluated
on adults performing action sequences and therefore motions often are highly
correlated to one another. For example, it would be unlikely for an adult who
is sitting down to to raise their arms in the air and move them back and forth.
However, in the infant domain, motion is often less predictable and movement
is less correlated. Second, our clips are relatively short (approximately 150
frames) and therefore a balance between sequence quantity and sequence length
for training had to be taken into consideration.
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5.3.2 Occlusion Augmentation Module

The occlusion augmentation module presented is inspired by the occlusion mod-
ule proposed in Cheng. et. al. [60]. However some modifications are made due
to architecture differences and lack of explicit information. In their implemen-
tation they apply the augmentation module used on heat-map outputs, while
the current implementation works on key-point outputs. Additionally, while the
goal of training TCNs to be robust to occlusions is similar, the methodology is
significantly different. Given the preterm infant domain where there are signif-
icant occlusion, infant movements are short and actions are seemingly random,
the occlusion module aims to simulate when no predictions can be made using
a key-point detector. To do so, the module sets the x and y coordinates of
the key-points to (-1,-1). Doing so, we hope to train network to identify that
key-point which are set to (-1,-1) provide no temporal information regarding
movement.

In order to do so, the module applies one of three occlusion types to the
sequence. The three types of occlusions applied are joint occlusions, frame oc-
clusions and location occlusions. All occlusions occur in a series of consecutive
frames. Joint occlusions are occlusions that occur on a particular set of joints,
regardless of location, in a sequence of frames. These are meant to replicate
self-occlusions and foreground occlusions. Frame occlusions are those in which
the entire body is occluded, and are meant to simulate heavy foreground occlu-
sions and missed detections. Lastly, location occlusions are those which occur
in a specific spatial location and are meant to represent persistent foreground
occlusions, such as medical equipment attached to the infant.

Given that the proposed 2D TCN model has a receptive field of 27 frames,
the number of consecutive occluded frames are sampled from a Gaussian dis-
tribution with a mean of 13, and a standard deviation of 1. Therefore, the
occlusion module will apply an occlusion to at least 9 frames and at most 16
frames. The reason for creating such large occlusion windows is based on the
fact that infant video is often heavily occluded. Due to the fact Cheng et. al. [60]
provide no information as to how often their occlusions are applied, nor whether
these occur on every batch or sequence, we follow conventional regularization
methodology (such as dropout) and apply the simulated occlusions to 25% of
the total batches.

5.3.3 Pre-training Procedure
Human3.6M

Human3.6M [75] is a MOCAP dataset that contains 8 actors performing 16
actions. The dataset uses 4 cameras in different locations in order to capture 3.6
million ground truth 2D poses of humans and their corresponding images. This
dataset is originally intended for 3D pose estimation, however for the purpose
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of our research we use the images for 2D pose detection. Furthermore, given
that infant videos often do not have the infant parallel to the camera, we apply
a random rotation augmentation from the set (-135, 90, 45, 45, 90 , 135) to the
training key-points of each sequence of 27 frames; not doing so would lead to
significantly worse results as indicated in Appendix B.1. If the rotations are not
applied, the network only understands motion parallel to the ground given that
Human3.6M is of adults performing actions.

2D Detection

The TCN is pre-trained on the Human3.6M dataset, however the key-points
used to train the network are not the ground truth key-points of this dataset,
but rather the detections of a Dark-pose model with a HRNet-W48 backbone
pre-trained on the COCO dataset. Given that DarkPose is a top-down network
and bounding boxes are required we use the ground truth bounding boxes of
Human3.6M as outlined by Pavllo et. al. [36]. By training the network on the
COCO detections rather than Human3.6M ground truth key-points we do not
expect the network to learn a mapping of joints from Human3.6M to COCO.
Given the small data domain we want to fine-tune the model to, expecting
the network to learn a new mapping of joints is not feasible without severely
over-fitting the network to the sequences. The detections of the network were
collected and stored offline, and loaded in during training, which allowed us
to speed up network training. Instead of using raw key-point detections, we
normalize the key-points using the corresponding intrinsic camera parameters
such that the screen coordinates are no longer from [0,max), but rather from
[-1,1]. Normalizing screen coordinates allows us to use the model for videos
of different resolutions. Following common methodology [36,43,60] we use the
detections of subjects 1,3,5,6,7 and 8 for training. We guide the network by
calculating the MSE error between the target and predicted joint locations.

Hyper-parameters

We pre-train the network for 60 epochs, using a batch size of 64 and apply
random shuffling of sequences; sequences from different subjects are given in the
same batch. Furthermore, we use an AMSgrad optimizer with an exponential
learning rate decay. The initial learning rate is set to 0.001 and we apply a decay
factor of 0.95. The drop-out rate is set to 0.25, and train with a temporal stride
of 1. Additionally, for each epoch we decay the batch normalization momentum
with the following equation:

m = Mynit * exp(( Pi log( Minit ) (5.2)
Pend M final

where the m;,;; stands for initial momentum, mf;pq; for final momentum,
p; for epoch i and penq for the final epoch.
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Pre-training Results

In order to verify whether the pre-training of the networks was done effectively,
we leverage the COCO detections of subject 11 from Human3.6M. We use MSE
(in pixels) and PCK@OQ.2 in order to quantify network performance. The results
for the baseline 2D TCN and the Occlusion Augmented 2D TCN can be seen
in Table 5.1 and Table 5.2, where total and per joint MSE and PCK@O0.2 are
displayed respectively.

Moetric Condition Baseline | Occlusion Aug.

Nose MSE 7.1 11.2

Eyes MSE 6.9 11.2

Ears MSE 7.2 11.5
Shoulders MSE 7.1 10.5
Elbow MSE 8.4 10.2
Wrist MSE 10.8 13.0

Hip MSE 6.3 7.9

Knee MSE 6.6 8.2
Ankle MSE 8.5 9.0

\ Total MSE | 78 ] 9.2 \

Table 5.1: Total MSE and per joint MSE in pixels for the baseline TCN model
and the baseline occlusion augmented TCN on the H36M COCO detection test
set.

Motric Condition Baseline | Occlusion Aug.

Nose PCK 94.76 89.65

Eyes PCK 95.06 89.51

Ears PCK 94.17 88.79
Shoulders PCK 95.58 91.04
Elbow PCK 92.4 89.30
Wrist PCK 87.3 81.65

Hip PCK 96.02 94.64

Knee PCK 94.36 93.25
Ankle PCK 92.85 91.72

\ Total PCK | 9355 | 89.97 \

Table 5.2: Total PCK and per joint PCK scores for the baseline TCN model
and the baseline occlusion augmented TCN on the H36M COCO detection test
set.

The results indicate that both networks achieve acceptable results on the
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validation set. The MSE for all joints is very low and the PCK@O0.2 scores
are high. This suggests that the 2D TCNs, both the pre-trained baseline and
pre-trained occluded baseline, achieve good results on a large scale dataset and
have been effectively pre-trained to the adult motion domain. These models
are considered to be acceptable for fine tuning to the pre-term infant domain.
However, given the lower PCK scores and higher MSE, we can infer that the
augmentation module might not be leading the network towards using other
joints to robustly predict joint locations. Given that the occlusion module ef-
fectively removes temporal information from the sequence, the network might
simply be learning to only use the incomplete information. Rather than relying
on other points for information, the network could be simply using the data
available.

5.3.4 Fine-Tuning Procedure

Similarly to the methodology for the pose estimator, we fine tune and test the
network using the SPIS dataset split proposed on Section 4. The reason for
following the same split is to prevent artificially improving results by using
previously seen detections. Given that we want to leverage the sequence infor-
mation learned on Human3.6M, we only unfreeze the second temporal block of
the network and the last 1D convolutional layer. The reason for doing so is as
follows: sequence information at the first convolutional layer and the first block
should not contain overall sequence motion given that they have a low temporal
receptive fields, but are more likely to contain information regarding motion
direction and velocity. We fine tune the network for 30 epochs, using the same
hyper parameters as for the network pre-training.
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Chapter 6

Results

6.1 Ablation Study

In order to study the impact the augmented training dataset, the occlusion
augmentation, and evaluate the pipeline for preterm infant pose estimation we
perform an ablation study. By studying the results of the network under 6
different conditions we are able to analyze which components improve preterm
infant pose estimation in video. The conditions can be seen in Table 6.1, the
main comparisons that will be drawn in the discussion of results will be between
Conditions 1 and 2, 1 and 3, 1 and 4, 1 and 6, 3 and 4 and lastly 5 and 6.
Conditions 1 and 2 use the 2D point detections of FiDIP, while Conditions 3-
6 use the 2D point detections of the preterm infant tuned FiDIP model. We
inspect and analyze the overall MSE error and PCK@O0.2, as well as the per
joint results in order to understand which joints seem to be the most difficult
to predict. In the following subsections, the results will be presented; for an
in-depth discussion of said results refer to Section 7.4.

Condition Name Fine-tune FiDIP | Occlusion Augmentation | Fine-tune TCN
1 TCN-B No No No
2 TCN-OA No Yes No
3 TCN-DA Yes No No
4 TCN-DA-FT Yes No Yes
5 TCN-DA-OA Yes Yes No
6 TCN-DA-OA-FT Yes Yes Yes

Table 6.1: Ablation Study Conditions. Here TCN stands to temporal convolu-
tional network, B stands for baseline, OA stands for Occlusion Augmentation,
AD stands for domain-adapted and FT stands for fine-tuned. AD indicates that
the condition uses fine-tuned 2D pose estimation detections, while FT indicates
that the TCN of the condition is fine-tuned to infant motion.
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6.1.1 2D Pose Estimator Results

In order to study the impact of the synthetic data for infant pose estimation
in images, we collect the results of the 2D pose estimator on the SPIS test set,
which is composed of 10 real infants and 16 synthetic infants. To quantify their
performance we use the mAP (mean Average Precision) as the main performance
metric. The results for both the baseline FiDIP model and the tuned model for
preterm infants can be seen in Table 6.2.

Metric | v p | AP50 | AP75 | AR | AR50 | ARTS
Model

Baseline Model 53.6 | 76.0 60.3 | 55.6 | 78.0 61.5
Fine-tuned Model | 82.1 | 98.0 87.8 | 83.8 | 98.7 90.0

Table 6.2: Model results for pose estimators on the complete SPIS test set.
Table displays the Average Precision (AP) and Average Recall (AR) metrics.
Additionally their variants AP50, AP75, AR50 and A75 are displayed, where
AP75 and AT75 are more strict metrics given the bounding box of the infant.

These results indicate that the re-training of the model aided the 2D pose es-
timation performance significantly. The baseline FiDIP model achieves a mAP
of 53.6, while the fine-tuned model achieves a mAP of 82.1. Additionally, the
mAR of the baseline FiDIP model achieves a 55.6, while fine-the tuned model
achieves a 83.8. In order to further investigate the performance of the network,
we test the network once again using only the real infant images of the SPIS
dataset. By doing so, we are able to have a better understanding of the per-
formance gain for in-the-wild use. The results can be seen in Table 6.3. The
performance of the fine-tuned network significantly outperforms the baseline
FiDIP model, in both mAP and mAR. The fine-tuned model achieves a 62.5
mAP on the real data, while the baseline model achieves a 15.9 mAP. In terms
of mAR, the tuned model achieves a mAR of 69.7, while the baseline model
achieves a value of 22.7. These results allows us to infer that the fine-tuned
model has been adapted for the preterm infant domain.

Metric |y p | AP50 | AP75 | AR | AR50 | ART5
Model

Baseline Model 159 | 344 14.9 | 22.7 | 45.6 21.3
Fine-tuned Model | 62.5 | 95.9 77.8 | 69.7 | 96.6 84.0

Table 6.3: Model results for pose estimators on the real preterm infant test split
of SPIS. Table displays the Average Precision (AP) and Average Recall (AR)
metrics.
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6.1.2 TCN Per-joint Results

For each of the conditions we used the MSE error and the PCK@0.2 in order
to quantify the results of the proposed architecture for preterm infant pose
estimation. The total MSE and per-joint MSE results on the entire SPIS test
set for each of the conditions can be seen in Table 6.4, while the total PCK score
and per joint PCK scores can be seen in Table 6.5. By inspecting the tables,
we can see that model from TCN-DA-OA-FT had the lowest total MSE for the
SPIS test set split, while TCN-DA-FT had the highest PCK.

Metrie Condition | roNB | TCN-OA | TCN-DA | TON-DA-FT | TCN-DA-OA | TCN-DA-OA-FT

Nose MSE 89.5 70.2 62.8 513 9.4 491

Eyes MSE 86.3 69.1 60.7 48.8 52.9 47.6

Ears MSE 94.6 81.3 62.4 52.8 59.1 51.0
Shoulders MSE 89.6 77.9 44.8 37.3 40.5 37.1
Elbow MSE 109.0 90.6 57.6 50.6 48.0 46.6
Wrist MSE 1239 | 1107 101.9 81.8 80.5 711

Hip MSE 1122 | 1069 64.1 1.1 60.0 45.4

Knee MSE 1232 | 11195 130.5 58.3 106.6 59.6
Ankle MSE 1252 | 119.0 130.1 64.8 115.1 711

\ Total MSE | 1069 | 944 | 804 | 54.3 \ 69.1 \ 53.4 |

Table 6.4: Total MSE and per-joint MSE in pixels on the complete SPIS test
split for all ablation conditions.

Metrie Condition | 1N B | TCN-OA | TCN-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT
Nose PCK 628 645 62.1 68.1 65.6 60.6
Eyes PCK 63.8 63.6 60.9 70.0 63.4 65.4
Ears PCK 414 35.9 422 53.6 36.4 52.4

Shoulders PCK 59.6 56.0 64.6 67.2 62.4 69.5
Elbow PCK 51.1 50.8 59.5 60.1 58.3 61.2
Wrist PCK 39.7 37.8 46.1 46.2 453 45.8

Hip PCK 23.3 19.8 49.4 68.9 55.9 65.72
Knee PCK 51.8 51.2 58.6 63.9 59.2 62.4
Ankle PCK 46.0 49.0 50.2 63.0 50.9 58.5
Total PCK 180 16.6 544 61.9 54.64 60.2

Table 6.5: Total PCK@O0.2 and per-joint PCK@0.2 on the complete SPIS test
split. for all ablation conditions. Note that it is abbreviated to PCK on the
table.

Once again, in order to study their performance on only real preterm infant
data and understand the differences between the synthetic and real data, we
leverage the real data from the SPIS test split. Table 6.6 displays the total
MSE and per joint MSE of the TCN models on only the real infant data. Table
6.7 displays the respective total PCK score and per-joint PCK scores. Again,
the model that had the lowest MSE is TCN-DA-OA-FT and the model with the
highest PCK score is the model from TCN-DA-FT. Additionally, it is clear that
the MSE are significantly higher and PCK scores are significantly lower for all
models when tested with only real data.
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Metrie Condition | 1oNB | TCN-OA | TCN-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT

Nose MSE 168.5 132.5 138.9 111.3 102.6 102.7

Eyes MSE 161.5 130.3 133.4 104.9 111.8 99.2

Ears MSE 172.9 147.8 119.4 102.8 110.6 96.5
Shoulders MSE 180.2 155.1 88.1 71.0 74.1 69.7
Elbow MSE 231.2 192.0 119.6 105.0 94.7 94.0
Wrist MSE 2459 | 2224 219.4 176.2 165.1 146.5

Hip MSE 2394 | 22527 | 1358 8.1 127.7 91.6

Knee MSE 203.9 | 26454 | 3189 136.5 257.5 140.3
Ankle MSE 200.7 | 2745 309.2 148.8 268.7 163.8

\ Total MSE [ 2236 [ 1974 | 1781 [ 1155 ] 1484 ] 112.1 |

Table 6.6: Total MSE and per-joint MSE in pixels on the real data SPIS test
split for all ablation conditions.

Metrie Condition | 7oN.B | TON-OA | TON-DA | TON-DA-FT | TCN-DA-OA | TCN-DA-OA-FT

Nose PCK 36.2 126 %5 332 30.2 2038

Eyes PCK 35.9 0.5 24.6 40.2 31.4 31.8

Ears PCK 245 215 29.6 30.6 20.1 317
Shoulders PCK 38.9 4238 413 49.1 48.9 53.0
Elbow PCK 22.9 24.8 319 28.8 316 33.0
Wrist PCK 12.7 9.9 14.1 11.6 15.1 15.3

Hip PCK 3.3 3.1 8.5 39.9 6.8 30.8

Knee PCK 6.4 7.7 6.1 17.9 6.2 13.6
Ankle PCK 19 2.7 0.9 18.6 1.9 8.7

[ Total PCK | 193 | 205 | 200 | 301 | 213 | 271 \

Table 6.7: Total PCK@0.2 and per-joint PCK@Q0.2 on the real data SPIS test
split. for all ablation conditions. Note that it is abbreviated to PCK on the
table.

To get an understanding of the model performance per sequence, the total
MSE per sequence were collected. Figure 6.1a shows distributions of the MSE
each model for every sequence. These results provide us some insight regarding
the overall model performance and the difference in performance between real
and synthetic data. The same results are collected for the PCK scores of the
model and are displayed in Figure 6.2a. The model performance is significantly
different between the real and synthetic data, the synthetic data has significantly
lower MSE overall and significantly higher PCK scores. Given these differences,
we plot the performance of the models for only the synthetic sequences in order
to gain a better understanding of the variation in performance. Figure 6.1b and
Figure 6.2b show the zoomed in MSE and PCK of the models respectively. Note
that the legends remain the consistent across figures. These results indicate that
the real and synthetic data are significantly different; it is possible the synthetic
data is not challenging enough for the pose estimator, creating easier to predict
sequences.
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(b) MSE per sequence for only the synthetic data in the SPIS dataset.

Figure 6.1: MSE per sequence. The scatter plot displays the MSE of each model
for every sequence. The x-axis is the sequence, while the y-axis is the MSE in
pixels. The legend shows the corresponding label for each model, the legend
labels remain consistent across sub-figures. Figure 6.1a shows the entire error
distribution, while Figure 6.1b shows the error distribution over the synthetic
data. Note the change in MSE range.
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(b) PCK per sequence for only the synthetic data in the SPIS dataset.

Figure 6.2: PCK per sequence. The scatter plot displays the MSE of each
model for every sequence. The x-axis is the sequence, while the y-axis is the
PCK score. The legend shows the corresponding label for each model, the legend
labels remain consistent across sub-figures. Figure 6.2a shows the entire PCK
distribution, while Figure 6.1b shows the PCK distribution over the synthetic

data.
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Chapter 7

Discussion

In the following sections we will discuss and analyze the results previously pre-
sented. First we will discuss the impact of using synthetic data on the per-
formance of the TCNs. In order to do so we will mainly compare the results
between the conditions TCN-B and TCN-DA. Next, we will analyze the impact
of using the occlusion augmentation technique on the TCN performance. The
main comparisons will be drawn between the conditions TCN-B and TCN-OA.
Immediately after, we will study the impact of fine tuning the TCNs to infant
motion. The main conditions that will be compared are TCN-DA and TCN-DA-
FT. Lastly, we will evaluate the overall performance of the proposed pipeline by
comparing the results from the conditions TCN-B and TCN-DA-OA-FT.

7.1 Synthetic Data

By analyzing the results of TCN-B and TCN-DA in conjunction with the re-
sults for the 2D pose estimator, we can identify that the use of synthetic data
to augment pose and visual diversity for preterm infant pose estimation is effec-
tive. As previously stated in Section 6.1.1, the baseline pose estimator achieves
a mAP of 53.6 and a mAR of 55.6, while the fine-tuned model achieves a mAP
of 82.1 and a mAR of 83.8; seeing a 53% increase in mAP and a 50% increase
in mAR. These are promising results and validate the use of the synthetic data
for preterm infant pose estimation in images. This indicates that the FiDIP
framework is effective not only for the infant pose domain, but can also be
leveraged in the preterm infant pose domain. Additionally, the use of synthetic
data generation using SMIL for the preterm infant domain is validated by the
increased performance of the fine-tuned model on the real infant data, where
the fine-tuned model significantly outperforms the baseline model in mAP and
mAR due to the addition of largely augmented training data with a wide vari-
ety of viewing angles and visual variability. It is important to note that these
results can only be validated for Caucasian infants, given that the real split of
the testing does not contain infants from other demographics and ethnic groups.
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However, we hope that with the use of diverse infant textures, results remain
consistent.

Lastly, given the performance differences of the models on the SPIS test
set and the real data, it is clear that the networks often perform better on the
synthetic data. This can be particularly seen in Figures 6.1a and 6.2a. The
MSE per sequence of the real data is often significantly higher for all models,
and the PCK scores are significantly lower. Figure 6.2a indicates that from the
synthetic sequences, number 25, 44, 70, 102 are particularly challenging; even
when the MSE of these sequences are low. There are two possible explanations
to the results that we see. One of the explanations might be that the synthetic
data isn’t sufficiently challenging for the pose estimator. The improved mAP
and mAR of the fine-tuned pose estimation model seem to indicate this when
comparing the results between test sets. Even though the results are signifi-
cantly better on real data, the performance is not optimal. This supported by
the fact that the the MSE of all models for all synthetic sequences is within the
0-50 pixel range, except for 2 outliers in Sequence 25. This is further supported
by the difference in PCK scores of models on the synthetic data compared to
the real data Another explanation might be found in the smoothness of move-
ment in the synthetic data. Given that the annotation is performed by humans,
even when smoothing is applied, certain discrepancies might arise. Addition-
ally, the synthetic data might produce more predictable motion given that an
additional smoothing is performed on the pose parameters in post-processing;
since the points are smoothed during pre-processing and after the fitting in post-
processing. For example, if the infant performs a fast and short twitch in the
real data, the smoothing might remove or significantly decrease the movement
seen in fitted sequences from said video. Furthermore, additional smoothness
is also present in synthetic data given that there is no human error and the
location of the joints on the body do not change per annotator, as synthetic
data use vertex mapping to indicate joint locations and are precise.

7.2 Occlusion Augmentation

By comparing the results of TCN-B and TCN-OA we are able to identify that
the occlusion augmentation module alone is not an effective module for pre-
term infant pose estimation. The MSE and PCK®@O0.2 of the baseline model
performance sees a minimal increase when the occlusion module is introduced
during training. The same can be said when we compare the results of the
models from TCN-DA-FT and TCN-DA-OA-FT, where the MSE sees an in-
significant decrease with occlusion augmentation, but the PCK value decreases
as well. These results can be further visualized in Figure 6.1a, where the oc-
clusion augmented models consistently show slightly less MSE compared their
non-augmented counter parts on the real data split (Sequences between 3 - 13).
By inspecting Figure 6.2a, we can see that PCK of the occluded models remains
relatively unchanged when compared to their non-occluded counterparts on the
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real data. Similar results can be seen when we compare TCN-DA against TCN-
DA-OA. These results hold true for both the SPIS test set and the real data set.

Interestingly, the joints which are often occluded in the data, such as the
ankles, hips, and shoulders obtain better detection and lower MSE across condi-
tions which use occlusion augmentation during training; this can be seen in both
test sets. There are several reasons as to why this might be the case. The TCN
is dependent on the quality of the detections provided by the pose estimator
used to predict joints locations, as seen by the results outlined in the previ-
ous section. The module removes temporal information from the sequence and,
by design, attempts to force the network to identify motion through a sequence
with incomplete information. Given that the network provides incomplete joints
to the TCN, the TCN predicts the closest pose given the incomplete set of de-
tections. If the detector produces very low quality results for a large quantity
of the joints and further occlusion is applied, little to no information is given
to the network about infant motion and it produces a result closest to the pose
prior. Given that the baseline architecture already has difficulty predicting the
spatial location and temporal movement of these joints, relying on the internal
representation of the network for joint movements is not an effective solution
for dealing with occlusions. Additionally, the occlusion module of the network
applies occlusions randomly inside a sequence of frames, indicating that the
information should be present at some time within the temporal window, how-
ever in the preterm infant domain occlusions are likely to be consistent across
larger periods of time. Addressing this problem is difficult given that preterm
infants do not perform highly correlated movement sequences and motion infor-
mation from larger temporal windows likely will not help. Additionally, given
the dependence of the pose estimator, training the TCN on the detections of
the network might introduce additional noise. A solution to this issue would be
to make the TCN and pose estimator trainable end to end rather than using a
multi-staged approach.

Different ways of handling occlusion might provide better results, for ex-
ample introducing the occlusion labels into the loss function of the network,
as Chung et. al. [43] did for their 3D pose estimation network and leveraging
a preterm infant pose prior might produce better results. Another potential
solution would be to introduce an occlusion detection head to the 2D pose es-
timator, similar to the domain head of FiDIP. This occlusion detection head
should be trained in order to predict whether or not a particular joint is present
in the image but it is occluded by leveraging the occlusion labels. We would
be able to implicitly model occlusion detection in images, similar to the work
of [59], and leverage the occlusion maps to guide the subsequent TCN network
to use said information. By using the Boxed Man model for in-the-wild videos
and randomly masking images, generating enough ground truth occlusion la-
bels to train such a module should be possible. Furthermore other occlusion
augmentation techniques could be explored in conjunction with the previously
discussed solutions, such as an augmentation module for synthetic occlusions
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in the data generation procedure. Generating occluded data and leveraging it
as ground truth to train an occlusion detection head for foreground occlusions
could provide promising results. The generation of said occluded data was at-
tempted during this research, however due to time constraints and the lack of
portability of SMIL to rendering environments other than OpenDR, [76], syn-
thetic occlusions with realistic properties were difficult to generate and it was
deemed unsuccessful.

7.3 Infant Motion

Given the preliminary results obtained in Table 5.3.3, it is clear that the 2D
TCNs that were trained were able to accurately capture sequence information
with minimal error. Therefore it is particularly surprising that the error of
the baseline models and their subsequent fine-tuned variants have poor per-
formance on the real preterm infant data. TCN-B demonstrates the reduced
performance on the preterm infant data with baseline model detections, while
TCN-DA demonstrates improved performance scores with fine-tuned pose de-
tections. By comparing Condition TCN-DA and TCN-DA-FT, we can analyze
how using the infant data to train the TCN impacts the performance of the
TCN on infant motion. The results indicate that by fine-tuning the TCN, the
performance of the model is significantly improved for both MSE and PCK, in
the complete SPIS set and the only real data split. The results indicate that
by using the synthetic data, the total MSE error decreased from 80.4 to 54.3,
and the PCK score increased from 54.5 to 61.9. These results show a decrease
of 32.5% in MSE and an increase of 13.8% in PCK score on the SPIS test split.
For only real data, the MSE error decreased from 178.1 to 115.5, and the PCK
score increased from 20.0 to 30.1. These results show a 35.1% decreased in MSE
and a 50.5% increase in PCK scores.

Given that one of the performance bottlenecks of the architecture is the 2D
pose estimator, it is crucial to have a pose estimator that performs well in order
to feed the TCN with as much correct information as possible. The performance
improvement for the pose estimator has a significant impact on the results of
the TCN. As seen in Table 6.4, the MSE error for the majority of the joints
significantly decreases for conditions TCN-DA, TCN-DA-OA, TCN-DA-FN and
TCN-DA-OA-FT; these all use the fine-tuned pose estimator detections. Given
the performance differences on the real and synthetic data as seen in Tables 6.4
and 6.5, as well as in Figures 6.1a and 6.2a, we can identify that the performance
of the TCNs are limited by the 2D pose estimator performance. These figures
indicate that performance of models on the real data has much higher variabil-
ity, which indicate different degrees of detection difficulty. These have an impact
on the infant motion results. The same cannot be said for the synthetic data, in
which the pose estimator appears to perform extremely well and creates more
complete and correct infant detections which improves the TCN performance
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on these sequences. By looking at all these results, we can identify that in order
to improve the performance of the model for infant motion, a better performing
2D pose estimator is needed.

The knee and ankle joints are the only joints for which the MSE is worse
across these conditions even when using the synthetic data. There are two
plausible explanations for this. These joints are often the most occluded in
the infant domain, and especially in the real data, and their detection might
not have been significantly improved in the fine-tuned pose estimator. This is
made apparent by viewing the results of these joints in Table 6.6 and Table
6.7, which indicate low detection scores and high MSE. Therefore, sequences
with extreme occlusions might have no information whatsoever regarding the
positions of these joints. Additionally, the network was originally trained on
Human3.6M, which is a dataset of adult poses. Due to the difference in body
proportions, the information regarding motion might be modeled significantly
differently and thereby impact the baseline results, this can be seen by the over-
all higher total MSE and lower total PCK scores when compared pre-training
results of the TCNs shown in Tables 5.1 and 5.2. For example, the proportions
of an infant could make the network predict a sitting or crouching motion for
adults, and learned temporal information might produce erroneous results. By
providing the TCN with infant data, the network improves at modeling propor-
tions and movements of the infant more appropriately. These results, however,
indicate that the fine-tuning of the network was not enough to obtain accurate
estimations and positive results given the high MSE rates and low PCK scores
across all conditions for which we used infant data to tune the TCN.

The PCK scores for conditions TCN-DA, TCN-DA-OA, TCN-DA-FN and
TCN-DA-OA-FT indicate similar results with the majority of joints seeing im-
proved detection scores when using the fine-tuned pose estimator detections,
even for the ankle and knee. It is clear from the results of both data splits
that the hardest joints to effectively capture are the knees and ankles. These
joints have the highest error and lowest PCK scores across all conditions. Solely
looking at the PCK for TCN-B AND TCN-DA does not provide a clear picture
into the results. We can see that they have a negligible difference in total PCK
score, but the per-joint PCK and per-joint MSE paint a much different picture.
The MSE indicates that across sequences the error is lower, however, the PCK
detects how often this error is within a particular threshold. This allows us to
infer that even though the MSE is lower, the detection rate remains the same
indicating that the performance gain is not significant enough on these joints.
Additionally, given the lower MSE for the nose and eyes, as seen in Table 6.4
and Table 6.6 between TCN-B and TCN-DA, we can see that MSE as the sole
metric does not help us to identify the best performing model. Even the error
might be lower on average for TCN-DA when compared to TCN, it often is not
enough to count as a detection.

Another reason for obtaining such results could be due to the fact that the
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annotated data used to train the TCN and create the synthetic infants had
inaccurate annotations in the knees and ankles, due to annotator error, which
could not be fully pre-processed or removed from the data entirely. During
the data generation procedure these key-points were simply marked as occluded
and thereby removed from the fitting, which might have caused irregular mo-
tions in the knees and ankles, thereby reducing the reliability of these points
for temporal modeling. This in particular would explain the high MSE rates
present in the knee and ankle joints across all conditions, in particular with
the real data split as seen in Table 6.6. Additionally, this would also explain
the significantly higher total MSE and significantly lower PCK scores between
the complete SPIS test set and real data results. For an analysis of the results
using only the upper-body joints, refer to Appendix B.2. Even with the se-
vere augmentation of preterm infant data, the resulting sequences only created
enough data for 733 training sequences. This indicates that the results could
additionally be impacted by the effects of data scarcity, which might be much
more pronounced issue for motion data. A solution to this would be to first
train the network from scratch using a dataset such as MINI-RGBD [8], which
provides infant motion information and proportions. By doing so, we could
freeze the weights once again and re-train a smaller number of network layers
and fine-tune them for preterm infant motion. This was not considered in time
during this research, future work should address it by leveraging MINI-RGBD
and analyzing the performance of the model.

7.4 Pipeline Evaluation

Having analyzed the conditions and their respective results, we are now able
to analyze the performance differences found between TCN-B and TCN-DA-
OA-FT, and the overall architecture. TCN-DA-OA-FT outperforms TCN-B for
infant pose estimation, with a MSE decrease of 50%. The model for TCN-DA-
OA-FT achieves a lower total MSE and a higher total PCK for both the SPIS
test set and the real data only. Indicating that the combination of fine-tuned
detections and infant motion tuning outperforms the baseline network. Given
that performance between conditions that differ only on whether or not occlu-
sion augmentation is performed is minimal, we can safely infer that the most
important factor is whether the TCN component of the pipeline is fine-tuned to
the domain.

The results indicate worst performing variant of the pipeline is unsurprisingly
the baseline model for TCN. This model has the highest total MSE across and
lowest PCK scores across all joints, having a few exceptions with TCN-OA, in
both the SPIS test set and the real data. This model attains a total MSE of
106.9 and a total PCK score of 48.0 on the SPIS data set, and a total MSE
of 223.6 and a total PCK score of 19.3 for the real data set. By inspecting
the results in all tables, and across every condition, it is clear that the best
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performing model is the one for TCN-DA-FT with a total MSE of 148.4 and
a total PCK score of 30.1 for the real data, and a total MSE of 54.3 and a
total PCK score of 61.9 for the SPIS test set. Additionally, by inspecting the
results in Figures 6.1a and 6.2a we can see that the results on the real data
are significantly different between real and synthetic data. The most significant
differences in performance arise from the real sequences, while the variations
in performance of the models for the synthetic data remains small, the large
differences occur in the real sequences. However, given the nature of the domain
and goal of the task, every condition severely under-performed. There is ample
room for improvement and the current results cannot be used trivially for down-
stream (or subsequent) tasks such as classification of the behaviors. Future
improvements for the shortcomings of the components have been provided and
future work seek to improve and iterate on this architecture.
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Chapter 8

Conclusions

At the beginning of this research, we proposed a main research question, which
was broken down into two different sub-questions in order to analyze and un-
derstand whether the methodologies were suitable for preterm infant pose esti-
mation. The first sub-question we sought to answer was aimed at tackling the
data scarcity of the preterm infant domain and was as follows:

Can a preterm infants movement be modeled in order to learn its pose
parameters?

The application of SMPLify, in conjunction with the use of SMIL as pro-
posed by Huang et. al. [7] were proposed in order to tackle this question. Two
main conclusions can be drawn from the results. First, given that SMIL is a
volumetric model of a full-term infant and not a premature infant, the increased
performance of the 2D pose estimator allows us to conclude that physical differ-
ences between pre-term and full-term infants for infant pose estimation are not
significant enough to require the use of a specialized volumetric model. This
demonstrates that using SMIL for preterm infant synthetic data generation can
be an effective method for tackling the data scarcity domain for images. How-
ever, given the lower performance score of the baseline FiDIP model, we can
extrapolate that there are some significant differences between the preterm in-
fant domain and the full-term infant domain, particularly in the viewing angle
and observed poses. It is important to note that, in the work of Huang et. al. [7],
additional textures (in particular, Adult SMPL textures) and body meshes were
used to generate more diverse synthetic infants. This difference in performance
could, in part, be attributed to that and future research should refrain from
generating such synthetic data for medical applications.

In conjunction with obtained results and their subsequent analysis, it is clear
that the performance of the TCNs on preterm infant data using augmented
synthetic sequences is not yet satisfactory. The modified approach proposed in
order to generate synthetic sequences does not provide the necessary qualita-
tive results for infant motion modeling. This is clearly outlined by the results
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obtained and the lack of performance gain obtained from leveraging said data
during the training for motion modeling. The proposed methodology is effec-
tive for generating synthetic images of infants, but is not effective for modeling
motion in videos. Further research into more sophisticated methodologies is
necessary; some interesting avenues for doing so are proposed in the following
section.

The second sub-question we sought to answer was aimed at addressing the
challenge of occlusions in the preterm infant domain, and how to tackle these
occlusions in video. The sub-question was as follows:

Can occlusion augmentation techniques used during training aid to minimize
the errors for preterm infant pose estimation?

As indicated by the results previously discussed, the application of the pro-
posed occlusion augmentation module was not satisfactory. Given the low per-
formance variation between networks which use the augmentation module dur-
ing the training, we deemed the technique to not be suitable for minimizing
errors for the infant pose domain. However, further research could explore the
avenue of using such technique for network regularization. Additionally, given
the shortcomings of this methodology, an attempt to implement this module
for heat-map representations might be fruitful. Using the heat-maps for tem-
poral information rather than sole key-points might produce more promising
results given that heat-maps tend to contain more information than sole key-
points. The occlusion augmentation module designed was originally intended
for heat-map representations, however given the challenges encountered during
the pre-processing and training of the TCNs this was not possible.

Lastly, given that results and the answers of the previous sub-questions
answered, it is now possible to answer the main research question which is as
follows:

Can preterm infant poses be accurately estimated under occlusions in
controlled NICU environments?

Given shortcomings in the data generation procedure for capturing infant
motion and the lack of improvement with the occlusion augmentation tech-
niques, in conjunction with the quality of the real data, and the design of the
architecture the answer to this question with the current methodology is "no”.
As previously mentioned, the synthetic data is helpful for training the 2D pose
network to detect poses in images, however the quality of the annotations and
the resulting movements present in the sequences do not produce data that ef-
fectively captures the movement on infants in occluded sequences, which are
produced when the 2D pose estimator produces low confidence results. The
achieved mAP and mAR of the fine-tuned estimator demonstrate that the poses
can be somewhat accurately estimated in images. However, given the target do-
main, higher AP scores are desirable. The same can be said for video, given
the low PCK®@O0.2 scores and high MSE of all networks across all conditions.
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Given that the preterm infant pose estimation should be accurate in order for it
to be valuable for motion analysis, motion tracking and infant monitoring, the
proposed architecture does not currently meet the requirements to provide a
positive result to this research question. A positive outcome of this the research
is that it has enabled us to understand that pre-training TCN networks on adult
data and fine-tuning them to the preterm infant domain might not be effective
strategy for tackling the data scarcity problem alone. As previously alluded to,
the differences in body proportions and performed movements might already be
represented in early layers of the TCN; this demonstrates that the TCNs should
preferably be trained purely on infant data. By freezing the early layers of the
TCN model, we assumed these only contained motion and direction information
about joints, however it appears to be that body proportions and joint locations
in the image might be represented in these early features as well. Given that
the pre-training results and the collected results produce significantly different
total MSE and PCK values, this might be the case. Lastly, we have learned
that preterm and full-term infant physical differences are not significant enough
to require a different template mesh and shape prior.

8.1 Future Work

The current methodology for generating synthetic data has a series of limita-
tions that should be addressed in future work. These limitations can be divided
into two different categories; limitations that arise from methodological choices
and limitations that arise from the data domain. SMPLify was originally de-
veloped for single frames, yet our data comes from video footage, due to this
spatio-temporal information cannot be fully captured using this method. To
address this, future work would should follow the methodology proposed by
Kocabas et. al. [77] and extend it by training a motion discriminator for infant
motion levering a 3D infant pose dataset such as MINI-RGBD [8]. Adding these
synthetic occlusions will increase the difficulty of synthetic sequences and bridge
the gap between the real and synthetic data used to train the models. Addition-
ally, SMPLify uses a weak-perspective camera in order to estimate both camera
and body parameters, in order to do so, it requires the hips and shoulder joints
to be present in data. Future work should try to address this limitation for
the preterm infant domain for in-the-wild videos given that preterm infants are
placed in incubators which can provide significant information regarding camera
parameters. Additionally, artefacts such as twisted limbs and mesh interpene-
tration inherited from the limitations of SMPLify and SMIL are still present.

For occlusion augmentation techniques, future research could address syn-
thetic augmentation techniques for more realistic occlusion sequences as they are
highly desirable. We recommend using rendering environments such as Blender
in order to create more realistic occlusions. For example, simulating occlusions
with cloth physics in order to closely simulate real occlusions as proposed by
Achilles et. al. [57] might yield significant improvements in network perfor-
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mance. Doing so would provide additional information to the network about
how infant movement might look like under severe occlusions, particularly blan-
kets, and increase the quality of the synthetic videos. Future research should
additionally look into more sophisticated and complex ways to tackle occlusion
modeling in the preterm infant domain. As previously alluded to, Zhou et.
al. [59] propose an interesting avenue for occlusion detection as they train a
Siamese network to predict heat-map joint locations as well as occlusion maps
to erase contaminated features. Future work should investigate whether such
a technique would be appropriate for the preterm infant domain. Addition-
ally, this technique could be leveraged in combination with a modified FiDIP
framework to encode not only the feature representations of the joints in the
same embedding space, but the feature representations of the occlusion maps as
well. Studying the performance of such an adversarial framework for occlusion
modeling could bear interesting results.

Lastly, future research should address the limitations, shortcomings, and
oversights of the current research in regards to TCNs and infant motion. As
previously stated in the discussion, re-training the TCNs using a dataset such as
MINI-RGBD (8] is likely to yield much more accurate and positive results and
their viability for preterm infant pose estimation should be studied. Addition-
ally, future work regarding formulation of the data collection procedure for this
domain, as well as additional annotations is required. In order to collect further
data on preterm infants, the fine-tuned pose estimator presented in this paper
could be leveraged to collect pose data for joints in the head, torso and arms,
however it is not advised to use this for points which are often heavily occluded
and difficult to predict such as the knees and ankles. As for the TCN com-
ponent, future improvements could be in regards to training and network fine
tuning. The use of infant data has already been previously discussed, however,
if there is still a lack of available infant data, we propose to use Human3.6M as
indicated in this paper, with some slight alterations. Rather than performing
rotation augmentations, a more elegant solution would be to identify the direc-
tion which the infant is facing, and rotate the key-points such that the infant
appears as if it was standing. Additionally, rather than using the entire image
to represent the coordinate space, using a static bounding-box which always
has the subject in the center might be more appropriate for the infant domain.
Given that we do not want to capture actions, but rather movements, this would
allow us to exploit the motion data in an appropriate manner for the preterm
infant domain as they do not move around an environment but rather in place.

Lastly, future research should refrain from using a non-static set-up for data
collection as it makes the data generation procedure less unconstrained and
inaccurate. Preferably the camera should be in the same location, or it should
be calibrated prior to each recording to know the extrinsic camera parameters.
Knowing these parameters would facilitate the data fitting procedure and would
enable us to create more accurate and precise synthetic data. Furthermore,
placing the camera above and perpendicularly to the incubators might improve
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data quality and ease of annotation; this would reduce the chance of annotation
errors as well as facilitate the estimation task and improve the synthetic data
fitting procedure results significantly.
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Appendix A

Synthetic Data

A better perspective regarding the variation of the augmented data can be seen
in Figure A.1. This figure shows 8 frames from different synthetic sequences
in the SPIS dataset, each frame has a different background, different viewing
angle and different texture. These images are not exhaustive of the variability
of the dataset, but provide good insight in regards to how different the infants
and images are in the dataset. Due to the large selection of backgrounds, infant
textures and viewing angles the variability of the data is relatively high. Dif-
ferent fitted sequences from the same real infant sequence always look different
and provide a challenging amount of variation. This visual variability is key
in training the pose estimator, in particular the different infant textures are
particularly useful for training an in-the-wild model. Given the visual diversity
textures, we can ensure that the trained pose estimator is capable of predicting
poses for groups of different ethnic groups.
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Figure A.1: Synthetic image samples from the SPIS dataset. Each image has a
different background, camera perspective and infant texture.
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Appendix B

TCNs

B.1 Pre-training Results

Tables B.1 and B.2 show the results of the TCNs on the complete SPIS dataset
without rotating augmentations during training. The results clearly indicate a
significant drop in performance, and the network outputs are extremely noisy.
These results also demonstrate why using PCK as a sole metric can be extremely
misleading. These results indicate why rotation augmentations were necessary,
as show by the increased performances presented in Section 5.3.3

Motrie Condition | 1N B | TCN-OA | TON-DA | TON-DA-FT | TCN-DA-OA | TCN-DA-OA-FT

Nose MSE 163.4 188.7 122.4 149.4 135.8 178.8

Eyes MSE 143.0 176.7 118.1 168.2 130.2 139.6

Ears MSE 182.5 199.2 116.6 133.1 155.4 115.7
Shoulders MSE 1580 | 2004 87.6 124.4 142.2 95.3
Elbow MSE 2032 | 2807 160.1 180.1 251.1 181.2
Wrist MSE 2304 | 2982 192.7 231.9 293.8 216.6

Hip MSE 280.1 | 3548 157.0 162.9 306.0 142.9

Knee MSE 2324 | 3712 261.2 293.9 352.7 255.2
Ankle MSE 265.5 | 4356 274.2 327.5 429.3 307.4

\ Total MSE [ 209.03 [ 28366 [ 1681 [  199.6 | 250.4 [ 178.8 |

Table B.1: Total MSE and per joint MSE in pixels for all ablation conditions.
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Condition

Metric TCN-B | TCN-OA | TCN-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT

Nose PCK 45.17 34.1 43.95 48.40 39.04 4320
Eyes PCK 53.72 31.12 54.28 58.70 36.31 53.20
Ears PCK 35.60 20.40 45.52 52.10 21.65 54.40
Shoulders PCK 41.36 17.56 53.50 58.37 17.50 63.69
Elbow PCK 17.55 5.51 17.41 29.01 4.31 29.29
Wrist PCK 9.54 5.70 11.31 29.86 4.85 35.50
Hip PCK 19.86 248 24.98 43.24 3.26 52.13
Knee PCK 24.80 14.50 30.58 43.02 20.37 46.79
Ankle PCK 11.09 3.80 16.19 38.83 4.50 41.10

\ Total PCK | 2778 | 1340 | 3244 | 4579 | 1556 | 46.80 |

Table B.2: Total PCK@O0.2 and per joint PCK@O0.2 for all ablation conditions.
Note that it is abbreviated to PCK on the table.

B.2 Upper-body results

Condition

Metrie TCN-B | TCN-OA | TCN-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT
Nose MSE 89.5 70.2 62.8 513 191 191
Eyes MSE 86.3 69.1 60.7 48.8 52.9 47.6
Ears MSE 94.6 81.3 62.4 52.8 59.1 51.0
Shoulders MSE 89.6 77.9 448 37.3 40.5 37.1
Elbow MSE 109.0 90.6 57.6 50.6 48.0 46.6
Wrist MSE 1239 | 1107 101.9 81.8 80.5 711
\ Total MSE [ 988 | 833 ] 650 | 538 | 551 | 50.4 \

Table B.3: Total MSE and per-joint MSE in pixels for the upper-body joints on
the complete SPIS test split for all ablation conditions.

Meotrie Condition | 1o\ B | TON-OA | TON-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT
Nose PCK 628 645 62.1 63.1 65.6 60.6
Eyes PCK 63.8 63.6 60.9 70.0 63.4 65.4
Ears PCK 41.4 35.9 42.2 53.6 36.4 52.4
Shoulders PCK 59.6 56.0 64.6 67.2 62.4 69.5
Elbow PCK 51.1 50.8 59.5 60.1 58.3 61.2
Wrist PCK 39.7 37.8 46.1 46.2 453 458
\ Total PCK [ 531 | 514 | 559 ] 60.9 \ 55.2 \ 59.2 |

Table B.4: Total PCK@(Q.2 and per-joint PCK@0.2 for the upper-body joints
on the complete SPIS test split. for all ablation conditions. Note that it is
abbreviated to PCK on the table.
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Metrie Condition | roNB | TCN-OA | TCN-DA | TON-DA-FT | TCN-DA-OA | TCN-DA-OA-FT
Nose MSE 168.5 132.5 138.9 111.3 102.6 102.7
Eyes MSE 161.5 130.3 133.4 104.9 111.8 99.2
Ears MSE 172.9 147.8 119.4 102.8 110.6 96.5
Shoulders MSE 180.2 155.1 88.1 71.0 74.1 69.7
Elbow MSE 231.2 192.0 119.6 105.0 94.7 94.0
Wrist MSE 2459 | 2224 | 2194 176.2 165.1 146.5
[ Total MSE | 1033 | 1634 | 1365 | 1119 | 1098 | 101.4 \

Table B.5: Total MSE and per-joint MSE in pixels for the upper-body joints on
the real data SPIS test split for all ablation conditions.

Metrie Condition | 1oNB | TCN-OA | TON-DA | TCN-DA-FT | TCN-DA-OA | TCN-DA-OA-FT
Nose PCK 36.2 42.6 26.5 38.2 39.2 24.8
Eyes PCK 35.9 40.5 24.6 40.2 314 31.8
Ears PCK 24.5 215 29.6 30.6 20.1 317
Shoulders PCK 38.9 4238 413 49.1 48.9 53.0
Elbow PCK 22.9 24.8 31.9 28.8 316 33.0
Wrist PCK 12.7 9.9 14.1 11.6 15.1 15.3
\ Total PCK | 285 | 304 | 280 | 34.1 \ 31.1 \ 31.6 |

Table B.6: Total PCK@Q.2 and per-joint PCK@Q.2 for the upper-body joints
on the real data SPIS test split. for all ablation conditions. Note that it is
abbreviated to PCK on the table.

These results indicate the total MSE and total PCK of the models for only the
upper-body joints of the body; the hip, knee, and ankle joints are not consid-
ered. The results presented here remain consistent with the results presented in
Section 6.1.2; albeit these results paint show that if we only consider the upper
body joints, the overall performance of the models is slightly more positive. Ta-
ble B.3 indicates that TCN-DA-OA-FT still had the lowest total MSE for the
SPIS test set split, and Table B.4 indicates TCN-DA-FT had the highest PCK,
as seen in the non-filtered joint data. Tables B.5 and B.6 contain the MSE and
PCK scores for the models of the upper joints for the real data split only. These
tables provide the same results as the non-filtered tables shown in Section 6.1.2,
where TCN-DA-OA-FT still had the lowest total MSE while TCN-DA-FT had
the highest total PCK score. By comparing the results between the full joints
and the upper-body joints, we can reach the conclusion that the performance
does not improve enough to consider using the trained models only for the up-
per body joints. The results indicate that the architecture does not produce the
quality of the results required for infant motion analysis.
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