
Combining Branch-and-bound and Constraint Programming for the
Job-Shop Problem

Master thesis written by:
Thimon van der Sluis (5489083)

(Under supervision of: Han Hoogeveen, Roel van den Broek and Marjan van den
Akker.)

Department of Information Science
Utrecht University
August 22, 2022

Abstract

The Job Shop Problem is a well-studied scheduling problem which is proven to be
NP-Hard. The Job Shop Problem consists of a set of jobs and a set of machines.
For each job, one activity has to be processed on each machine and the order in
which the activities have to be executed is predetermined for each job. The goal
is to choose an ordering of activities for each machine such that the makespan
is minimized. Approximation methods seem to work quite well at finding good
solutions fast, but exact methods have trouble finding optima, especially for the
bigger instances. In this thesis, we look at two exact methods for the Job Shop
Problem, Branch-and-bound and Constraint Programming, and we test whether
combining these two techniques reduces the amount of time needed to solve instances
of the Job Shop Problem. To efficiently do this, we created new branching structures
which make use of Constraint Programming in their choice of the next branch and
then propagate the consequences of these choices. We found that adding Constraint
Programming to a Branch-and-bound algorithm improves its efficiently by a lot, but
calculating lower bounds in each node of a Constraint Programming algorithm has
little effect and in some cases it even slows down the algorithm. A possible reason for
this result is that both the edge-finding Constraint Propagation technique and the
preemptive one-machine relaxation make use of the Jackson Preemptive Schedule in
their calculations. Since the latter is used in cutting of branches of the search tree,
it is possible that it is dominated by the Constraint Propagation techniques.

1

Contents

1 Introduction 4

2 Job Shop Problem 5
2.1 Definitions . 6
2.2 Constraint Programming . 7

3 Approximation Methods 8
3.1 Shifting bottleneck approach . 8
3.2 Tabu search . 9
3.3 Simulated annealing . 9

4 Branch-and-bound 10
4.1 Branching schemes . 10

4.1.1 Choosing an ordering . 10
4.1.2 Assigning a start time . 15

4.2 Bounds . 17

5 Constraint programming 19
5.1 Propagation techniques . 20

5.1.1 Disjunctive Constraint Propagation 20
5.1.2 Edge-finding . 21
5.1.3 Not-first, Not-last . 22
5.1.4 Unnamed propagation . 22
5.1.5 Multi-machine propagation . 23
5.1.6 Shaving . 23

6 Research questions 25

7 Methodology 25

8 New branching schemes 26
8.1 Slack-based branching . 26

8.1.1 Increasing head or tail based on slack 26
8.1.2 Fixing disjunctions . 28

8.2 Edge-finding score . 29
8.2.1 Increasing head or tail to impose Edge-Finding 31
8.2.2 Fixing disjunctions to impose Edge-Finding 31

8.3 Selecting an activity . 32
8.4 Amount of propagation . 33

2

9 Implementation 34
9.1 Upper bounds . 34
9.2 Lower bounds . 34
9.3 Branching . 35

9.3.1 Selecting an ordering . 35
9.3.2 Increasing head or tail . 35
9.3.3 Scheduling an activity . 36

9.4 Constraint Propagation . 36
9.5 Backtracking . 37
9.6 Leaves . 37
9.7 Branching strategies . 38

10 Experimental settings 39
10.1 benchmarks . 39

11 Results and Discussion 40

12 Conclusions 50
12.1 Future work . 51

References 53

3

1 Introduction

The Job Shop Problem (JSP) is a well studied scheduling problem. The standard variant
consists of scheduling a set of jobs on a set of machines, such that each of the jobs has an
activity which has to be performed on each of the machines. The JSP is an optimization
problem, the goal is to find a schedule such that all jobs have been scheduled and such
that some objective is minimized (maximized). Usually this objective is to minimize the
makespan of the schedule. The makespan of a schedule gets defined as the completion
time of the last scheduled activity. Other objectives also get studied, including minimiz-
ing the maximal tardiness of a schedule or minimizing the total completion time of the
activities.

Many techniques have been developed to find good (if not optimal) solutions for in-
stances of the job shop problem. Good approximation techniques often involve Lo-
cal Search methods like Simulated Annealing, Tabu Search or the Shifting Bottleneck
method. Algorithms to find optimal solutions are mostly based on Branch-and-bound
techniques [27]. Using efficient heuristics in selecting branches for Branch-and-bound
helps guiding the algorithm to better solutions in less time. Another solution method
concerns Constraint Programming. By modelling the JSP with an interval of start times
for each activity, Constraint Propagation helps in narrowing these intervals and thus the
search space.

In this thesis, the aim is to investigate the potential of combining Branch-and-bound
and Constraint Programming. We want to find out how Constraint Programming and
Branch-and-bound are used in the literature to solve the JSP and how they can be com-
bined to compete with the state-of-the-art for solving the JSP. To do this, we compare
Constraint Programming and Branch-and-bound hybrid algorithms with solely Branch-
and-bound and solely Constraint Programming algorithms. We also create new branch-
ing schemes which use Constraint Programming in their choice for the next branch.

This thesis is organized as follows. In Section 2, a formal definition of the job shop
problem is given, followed by a description of the disjunctive graph and then some nota-
tions which we will use in the remainder of this thesis. In Section 3, we give a description
of different approximation methods for the job shop problem. In Section 4, we discuss
different Branch-and-bound algorithms for the JSP. In Section 5, we explain Constraint
Programming, followed by different Constraint Propagation techniques. In Section 6 the
research questions for this thesis are introduced followed by the methodology in Section
7. In Section 8, we explain new branching structures that make use of Constraint Pro-
gramming in their branching choices. In Section 9, a description of the implementation
of the our solver is given. In Section 10 we describe the experimental settings and the
experiments that we performed. In Section 11, the results of the experiments are given
and in Section 12, we discuss these results.

4

This thesis has no explicit literature section, we discuss the literature within the section
it corresponds to.

2 Job Shop Problem

An instance of the JSP consists of scheduling a set of n jobs J = {J1, .., Jn} onto a set of
m machines M = {M1, ..,Mm}. Each of the jobs consists of one activity for each of the
machines. Thus we have a total of mn activities A1,1, .., A1,n, A2,1, .., Am,n (or Ai with
i ∈ {1, ..,mn}). For each activity Ai, the processing time pi is known as well as to what
machine and job it belongs. Within a job, there is a chain-like precedence constraints
ordering Ai,1 −→ Ai,2 −→ .. −→ Ai,m. The order of the activities on the same machine is yet
to be determined. Furthermore, we denote O as the set of all activities, Oµ as the set
of activities that have to be executed on machine µ ∈M and Oj as the set of activities
belonging to job j ∈ J .

The JSP can be represented as a graph. Each one of the precedence constraints for
activities of the same job can be seen as a directed edge (conjunctive constraint). We
can introduce an edge for each pair of activities that have to be performed on the same
machine. This gives us cliques of undirected edges (disjunctive constraints) between ac-
tivities on the same machine. A solution to the JSP is now equal to deciding a direction
for each of the disjunctions such that there are no cycles in the graph. This results in the
disjunctive graph G = (O,U ∪D), where O is the set of activities, U is the set of edges
corresponding to the conjunctive constraints and D is the set of edges corresponding to
the disjunctive constraints. The weight of a conjunctive arc (i, j) is equal to pi and the
weight of a disjunctive arc (i, j) is equal to pi or pj , depending on its direction. The
fictitious activities A0 and A∗ get added as a source and a sink of the disjunctive graph.
They both have a processing time of 0. The makespan of a schedule can now be seen as
the starting time of activity A∗.

A schedule on a disjunctive graph can be described by a set of starting times Si, ∀i ∈
{1, ..,mn}, such that all conjunctive constraints (2.1) and all disjunctive constraints (2.2)
are satisfied [10]:

Sj − Si ≥ pi, ∀(i, j) ∈ U, (2.1)

Sj − Si ≥ pi or Si − Sj ≥ pj , ∀(i, j) ∈ D. (2.2)

Some papers in the literature consider the Preemptive Job Shop Problem (PJSP). In
this variant of the JSP, an activity can be halted to perform another activity first. The
PJSP is used as a relaxation of the JSP and it helps in determining lower bounds of the
JSP.

5

2.1 Definitions

A selection S is a set of disjunctive arcs such that if (Ai → Aj) ∈ S, (Aj → Ai) ̸∈ S.
We can associate a conjunctive graph GS = (O,U ∪ S) with this selection. A selection
is complete if all disjunctions of D have been selected. It is consistent if there are no
cycles in the graph. A schedule corresponds to a complete, consistent selection.

Let S ⊂ D be a selection that denotes a set of directed arcs. Then GS = (O,U ∪ S) is
a directed graph that corresponds to the selection of S. If GS is a complete and acyclic
graph, then it defines a feasible schedule for the problem. The start time of activity Ai

can be found by taking the longest distance from A0 to Ai in this graph. The makespan
of a solution can be obtained from a complete selection by taking the length of the
longest path from A0 to A∗ [22].

In scheduling problems, there often are resources (machines) which are higher loaded
than the others. We call these resources critical resources or bottleneck machines. Ac-
cording to Baptiste et al. [4], it is important to plan these in first because the makespan
of the entire problem may be heavily influenced by these resources. (And otherwise
the scheduling of critical resources may be delayed by the schedule of other less-critical
resources.) We can find a critical machine by considering a one-machine relaxation to
the problem; the machine with the highest lower bound is called critical.

When we find a schedule S (complete selection), its makespan is defined by the length
of the longest path from A0 to A∗ using only the directed edges. We call any path of
this length a critical path, if we want to find a better schedule something on this path
must change. A sequence of two or more activities on the critical path that belong to
the same machine is called a critical block. When a critical machine is found, we often
look for a block or a path that makes this resource critical. Many of the local-search
algorithms now consist of changing the order of the activities on the critical path and
some branching structures also pick critical blocks and alter the order of their activities.

The one-machine subproblem is the problem we get when looking at only one machine.
The other machines are relaxed to have infinite capacity. We only consider the activities
on this one machine. An activity in the one-machine subproblem has a release date ri, a
processing time pi and a tail qi. When we model the problem as a disjunctive graph (with
added source A0 and sink A∗), the release date ri of an activity Ai is defined as the length
of the longest path from A0 to Ai in the disjunctive graph (using only the directed edges).
Its tail is defined as the longest path from Ai to A∗ in the disjunctive graph, minus the
processing time pi [22]. Now, for any K ⊂ J , H(K) = mini∈K ri +

∑
i∈K pi +mini∈K qi

is a lower bound to the optimal makespan of the one-machine problem. The optimal
value to the one-machine subproblem is the maximum taken over all possible subsets
maxK⊂J H(K). This value is a lower bound to solution of the JSP and it can be com-
puted in O(n log n) time [9].

6

1 2 3

40 5 6 *
7 8 9

Ai µi ri pi qi
A1 1 0 1 4
A2 3 1 2 2
A3 2 3 2 0
A4 2 0 3 6
A5 1 3 3 3
A6 3 6 3 0
A7 1 0 2 4
A8 2 2 1 3
A9 3 3 3 0

Figure 2.1 & Table 1: An example of a 3 × 3 disjunctive graph with added source (A0)
and sink (A∗). The coloured arcs denote the different machines and the black arcs denote
the precedence constraints within the jobs.

As an example, consider the disjunctive graph of Figure 2.1. We start with the prece-
dence constraints (conjunctive arcs) A0 → A1 → A2 → A3 → A∗, A0 → A4 → A5 →
A6 → A∗ and A0 → A7 → A8 → A9 → A∗. And we have the disjunctive arcs
{(A1, A5), (A1, A7), (A5, A7)} on Machine 1, {(A3, A4), (A3, A8), (A4, A8)} on Machine
2 and {(A2, A6), (A2, A9), (A6, A9)} on Machine 3, for which we have to choose a direc-
tion. The release dates of the activities on Machine 1 are r1 = 0, r5 = r4 + p4 = 3
and r7 = 0. The tails of the activities are q1 = p2 + p3 = 3, q5 = p6 = 2 and
q7 = p8 + p9 = 4. If we fix the disjunctions A1 → A5 and A5 → A7, then A7

must come after A1 (otherwise we would get a cycle in the graph). We then have
r5 = max (p4, p1) = 3, r7 = max (r5 + p5, r1 + p1) = 6, q5 = max (q7 + p7, q6 + p6) = 6
and q1 = max (q2 + p2, q5 + p5) = 6.

Some of the papers from the literature use groups of activities Ω and constraints over
these groups of variables. For this the following notation is used: pΩ is the total pro-
cessing time of the set of activities Ω, rΩ is the earliest release date of all the activities
in Ω, qΩ is the smallest tail of all the activities in Ω, and dΩ is the latest deadline in Ω.

2.2 Constraint Programming

For each activity Ai, the variable Si is introduced, it denotes its start time. With ri as
the release date (earliest possible start time), and di as the deadline (latest possible end
time) of Ai, [ri, di] is the window in which to execute activity Ai. The initial domain of
Si is [ri, lsti] and activity Ai ends in the interval [eeti, di]. Here, lsti and eeti are the latest
start time and the earliest end time of activity Ai respectively. The release date ri of an
activity Ai equals the length of the longest path from A0 to Ai in the disjunctive graph
using only the directed edges. The deadline of an activity Ai is equal to a known upper
bound ub minus the processing time pi and the tail qi of Ai: di = ub− pi − qi. We also
have the relations eeti = ri + pi and lsti = di − pi. Note that after fixing a disjunction,

7

the sets of successors and predecessors of certain activities may grow, resulting in smaller
windows to execute the activities.

An instance of the Constraint Satisfaction Problem (CSP) is a triple P =< X,Y,C >,
where X is the set of all variables (Si ∈ X), Y is the set containing the domains for every
Si, and C is the set of constraints. Each constraint is a rule between one or more start-
variables. A solution to the CSP is an assignment of a value vi to every start-variable
Si such that each vi is in the domain of Si and all constraints are satisfied.

Performing Constraint Propagation has two purposes: firstly, detecting if a partial so-
lution at a given node can be extended into a complete solution with makespan lower
than or equal to some upper bound ub. Secondly, reducing the domains of the start-
variables Si, which provides us with good information on which variables are the most
constrained. Complex propagations take a lot of time which can be costly but they usu-
ally give better reductions for the intervals of the different start-variables than simple
propagation techniques [4].

3 Approximation Methods

Many methods have been researched to solve the JSP. Local search methods like Sim-
ulated Annealing, Genetic Algorithms or Tabu Search have proven to be very good at
finding good approximations of optimal solutions for the JSP. A lot of research has been
done for exact methods like Branch-and-bound and Constraint Programming. Combi-
nations of different methods have also been researched to create hybrid algorithms.

Local search methods like simulated annealing may rely on the quality of an initial
solution. Furthermore, Branch-and-bound methods for the JSP use an initial solution to
initialize an upper bound for the search tree. The initial solutions can be generated by
various methods such as priority dispatching rules [23, 28], insertion algorithms [26, 32],
the Shifting Bottleneck Procedure or by random methods.

3.1 Shifting bottleneck approach

The shifting bottleneck approach uses a basic form of iterated local search to produce
substantially better schedules than were previously computed [18]. Adams, Balas and
Zawack [1] present an example of the shifting bottleneck approach. First, they schedule
the activities for each of the machines one at a time. Let M0 ⊂M be the set of machines
that have already been sequenced. For each machine not yet sequenced, they solve an
one-machine relaxation (see Section 2.1) to optimality by determining the starting times
of the activities on this machine. They use the outcome of the relaxation to find a
bottleneck machine. The bottleneck is now the machine with the maximum optimal
solution to the one-machine subproblem. The shifting bottleneck approach works as
follows.

8

1. Identify the bottleneck machine ν among the machines µ ∈ M\M0 and sequence
the one-machine subproblem optimally. Set M0 ←M0 ∪ {ν}, go to (2).

2. Re-optimize the sequence of each critical machine µ ∈M0 in turn, while keeping the
other sequences fixed: set M ′

0 = M0 − {µ} and solve the one machine subproblem
for machine µ. Then if M0 = M , stop, otherwise go to (1).

3.2 Tabu search

Tabu search uses a memory function (tabu list) to avoid being trapped at a local min-
imum. It was designed to find a near-optimum solution without (known) proof of con-
vergence. Its performance is dependant of initial solutions, a good initial solution may
lead to a good final solution [33].

In [19], Nowicki and Smutnicki explain their i-TSAB algorithm. i-TSAB is a tabu
search algorithm which uses a set of elite solutions in its execution. The neighbours in
this local-search algorithm consist of swapping activities in the critical path of a solu-
tion. The i-TSAB algorithm initializes a set of elite solutions by applying tabu search
to random initial solutions. Then, the algorithm repeatedly modifies the set of elite
solutions by performing tabu search, replacing the elite solutions with new ones. This is
based on the fact that the global optima can be found at the center of a big valley and
in each iteration we get closer to the center of this big valley [20].

Beck [6] introduced a tree-search algorithm for the JSP. The Solution-Guided Multi-
Point Constructive Search (SGMPCS) was inspired by the i-TSAB algorithm but it uses
a standard tree search with randomization combined with Constraint Propagation. Like
the i-TSAB algorithm, it also uses a set of elite solutions.

Beck, Feng and Watson [7] proposed an algorithm that combines the i-TSAB algorithm
with (a less complicated version of the) SGMPCS algorithm. It uses the fact that both
of these algorithms use a set of elite solutions by passing along the set of elite solutions
between the algorithms in every iteration.

3.3 Simulated annealing

Simulated annealing possesses a formal proof of convergence. Its behaviour is controlled
by the cooling schedule. It may return to old solutions and oscillate between them since
there is no memory used [33].

In [30], van Laarhoven et al. explain a simulated annealing approach for the JSP.
Neighbours in this approach consist of schedules where successive activities on a critical
path are reversed. This choice is motivated by two facts: (1) switching the order of a
critical arc can never result in a cycle. (2) Switching the order of a non-critical arc can
never result in a schedule with a lower makespan.

9

4 Branch-and-bound

Branch-and-bound is a solution approach that can be applied to a number of different
types of problems. It is based on the principle that the total set of feasible solutions
can be partitioned into smaller subsets of solutions. These subsets can be evaluated
until a best solution is found. For the JSP, we can branch on fixing a disjunction in a
certain direction or splitting the execution interval of an activity into two intervals. If
we branch on a disjunction between activities Ai and Aj , the two subproblems we get
are one where Ai comes before Aj and one where Aj comes after Ai. If we branch on
splitting the execution interval of activity Ak, the two subproblems are one where the
start time of the activity is lower than or equal to some value and one where it is higher
than this value. Bounding is often done by considering a relaxation of the problem. A
solution to this relaxation serves as a lower bound to the problem. If the best lower
bound of a partial schedule in a node is not strictly better than the solution-value of an
already known schedule, then the node does not have to be evaluated since its branch
does not lead to an optimum. If this happens, we backtrack to the last node where
getting an optimal schedule was still possible.

To create a good Branch-and-bound algorithm, a couple of questions have to be an-
swered. What subproblems do we consider in each node? How do we backtrack when a
node can not lead to an optimal solution? What bounds do we consider?

4.1 Branching schemes

Three different classes of branching schemes can be distinguished for the JSP. Either
each node consists of choosing an ordering between a pair of activities, it consists of
splitting the interval of the start time of an activity or we pick an activity Ai to be
scheduled as early as possible and we fix all corresponding disjunctions in the direction
Ai → Aj .

4.1.1 Choosing an ordering

When we choose the ordering between a pair of activities, the heads and tails of some
activities may change since the longest paths between activities in the disjunctive graph
may change. The head of an activity Ai is always equal to the length of the longest
path using directed edges only from A0 to Ai and the tail of an activity is equal to the
length of the longest path from Ai to A∗ minus pi. For instance, in the disjunctive graph
of Figure 2.1, if we fix the ordering A4 → A8, then we get r8 = max (r8, r4 + p4) = 3
and q4 = max (q4, q8 + p8) = 3. And because the longest path from A0 now becomes
{A0, A4, A8, A9} with length 4, we get r9 = 4.

In the branching structure of Colombani [14], we first choose the machine that has the
strongest influence over the rest of the system, then we choose a disjunction on this ma-
chine for which we want to decide a direction. We use the maximum delay maxµ∈M δneoµ

10

1 2 3

40 5 6 *
7 8 9

Ai µi ri pi qi
A1 1 0 1 6
A2 3 1 2 3
A3 2 4 2 0
A4 2 0 3 6
A5 1 3 3 3
A6 3 6 3 0
A7 1 0 2 6
A8 2 3 1 3
A9 3 4 3 0

Figure 4.1 & Table 2: A disjunctive graph of a partial schedule and a table with the
release date ri, machine µi, processing time pi and tail qi for each activity Ai.

over the set of not yet ordered activities neo to determine which machine is the most
critical. Here, neoµ ⊂ neo is the set of activities of machine µ for which not all disjunc-
tions have been fixed and δ is defined as δJ = rJ + pJ + qJ for a group of activities J .
The choice of activity pairs to order is done by selecting on the selected machine a pair
of activities from the neo set that minimizes the sum of the head of the first activity
and the tail of the second: min(i,j)∈D(ri + qj). In Figure 4.1, the neo-set consists of the
activities A1, A2, A6, A7 and A9. Thus we have δ{A1,A7} = 0+ 1+ 2+ 6 = 9 for Machine
1 and δ{A6,A9,A2} = 1 + 2 + 3 + 3 + 0 = 9 for Machine 3. Both machines have the same
maximum delay, so we pick one of them and we branch on the ordering with Ai → Aj

for which (ri+ qj) is minimized. We pick Machine 3 and the ordering A2 → A6 (because
A2 → A9 has already been chosen) and we keep A6 → A2 as an alternative to try after
backtracking.

The branching structure of Carlier and Pinson [11] is based on disjunctive arc pairs
which define exactly two subtrees. Let i and j be any pair of activities which have to
be scheduled on a critical machine with the highest one-machine lower bound. Then for
both sequences of the two activities, we check if they increase the best lower bound LB.
Let dij = max {0, ri + pi + pj + qj − LB}, aij = min {dij , dji}, bij = |dij − dji|.
The algorithm chooses a pair of disjunctive arcs which maximizes bij (maximize aij when
tied) and creates a branch for i→ j and one for j → i .

We now assume that the Machine 3 in Figure 4.1 is critical and that the best known
lower bound to the problem is LB = 10. Then for the pairs of activities (A2, A6)
and (A6, A9), we calculate dij , dji and bij . For instance, d2,6 is calculated as d2,6 =
max(0, 1 + 2 + 3 + 0 − 10) = 0. For the other values, we have d6,2 = 4, d6,9 = 2 and
d9,6 = 0. Thus b2,6 = 4 and b6,9 = 2. Now, the pair of activities with the highest bij
is (A2, A6). Thus we branch on this pair, creating one branch where A2 → A6 and one
branch where A6 → A2.

11

0

M1

M2

M3

7

4

2 6 9

8 3

1 5

1 2 3 4 5 6 7 8 9 10 1

1 2 3

40 5 6 *
7 8 9 1

Figure 4.2: Disjunctive graph and Gantt-chart of a complete schedule obtained from
Figure 4.1.

Barker and McMahon [5] associate with each node a complete schedule S heuristically.
In practice, we can associate a complete schedule by using a heuristic. For instance, for
the remaining disjunctions, we pick the activity Ai with the lowest ri+ pi and fix all the
unfixed disjunctions from Ai to some activity Aj . In this complete schedule they find a
critical activity (the earliest scheduled activity Ai where ri + pi + qi is at least the value
of the best known solution) and a critical block (a sequence of two or more activities on
the same machine which are on the critical path in S that ends in the critical activity).
A set of subproblems is considered. In each of them, one of the activities in the critical
block is made to precede all other activities of the block. The lower bound is an one-
machine lower bound, computed for each machine. The branching continues in the node
which has the lowest one-machine bound.

Brucker, Jurisch, and Sievers [8] also associate a complete schedule S with each node.
Their branching algorithm consists of finding a critical path P in S and a critical block
B on P . For each of the activities Ai in B, a branch is created for which the activity
Ai is fixed to be processed before (after) all the other activities of B. A lower bound is
calculated and if it does not exceed the known upper bound, we take the next activity
of B and branch again (while Ai is still processed before (after) the other activities). If
it does exceed the upper bound, Ai stays in its place in B and we take the next activity
of B and branch again. See below for an example of the branching schemes of Barker
and McMahon [5] and Brucker, Jurisch and Sievers [8].

From the example of Figure 4.1, we can obtain the complete schedule of Figure 4.2.
The critical path {A4, A5, A6, A9} contains only one critical block, which is {A6, A9}.
The branching structure of [5] as well as the branching structure of [8] will now branch
on the disjunctive arc between A6 and A9.

Smith and Cheng [25] branch on a disjunctive arc, chosen based on the “slack” of the
disjunctive arcs. For two activities on the same machine Ai and Aj , the slack of an
ordering is defined as

Slack(Ai → Aj) = lstj − eeti. (4.1)

Here eetj = rj + pj is the earliest time at which activity Aj can be finished if it starts
after its release date, and lsti = di − pi is the latest time on which activity Ai can be

12

started if it ends before its deadline. If the slack of an ordering Ai → Aj is less than 0,
then there is no schedule possible with this ordering (see Section 5.1.1). Thus, 4 cases
can be identified:

1. (Slack(Ai → Aj) ≥ 0) and (Slack(Aj → Ai) < 0), then Ai → Aj is selected.

2. (Slack(Aj → Ai) ≥ 0) and (Slack(Ai → Aj) < 0), then Aj → Ai is selected.

3. (Slack(Ai → Aj) < 0) and (Slack(Aj → Ai) < 0), then an inconsistency is de-
tected.

4. (Slack(Ai → Aj) ≥ 0) and (Slack(Aj → Ai) ≥ 0), then both orderings are still
possible.

In cases 1 and 2, it is obvious what ordering we choose. In case 3, there are no feasible
schedules, so we backtrack. For case 4, Smith and Cheng [25] research different choices
in selecting what branch to explore first. In [13], Cheng and Smith use the function

min
(Ai,Aj)∈D

{Slack(i→ j)√
S

,
Slack(j → i)√

S
},

to determine what branch to explore first. Here

S =
min(Ai,Aj)∈D {Slack(i→ j),Slack(j → i)}
max(Ai,Aj)∈D {Slack(i→ j),Slack(j → i)}

.

Note that the first three cases of this branching structure are equivalent to performing
disjunctive Constraint Propagation (Section 5.1.1).

Carlier and Pinson [11] created a branching scheme where the branching consists of
picking an activity Ac on a certain machine and a set of activities K on the same
machine. The function H (preemptive one-machine lower bound from Section 2.1) is
defined as H(I) = rI + pI + qI , for a set I ⊂ J . Here we can schedule every activ-
ity Ai ∈ I freely. Similarly, we can have a bound of an ordering between an activity
and a set of activities. If we fix Ac to be processed before all the elements K, then
we have H(Ac → K) = rc + pc + pK + qK , if Ac is to be processed after K, then
H(K → Ac) = rK + pK + pc + qc, and if Ac has to be processed within the set K, then
H(AC ↓ K) = rK + pK + pc + qK . The branching structure finds a combination of an
activity Ac and a set if activities K such that one of the following cases holds:

1. Ac can not be processed after K, but Ac can be processed within or before K.
Then create a branch for Ac → K and create a branch for Ac ↓ K.

2. Ac can be processed within K, but Ac can not be processed before or after K.
Then we must have Ac ↓ K.

3. Ac can be processed after or within K, but Ac can not be processed before K.
Then create a branch for K → Ac and create a branch for Ac ↓ K.

13

4. Ac can be processed before or after K, but it can not be processed within K. Then
create a branch for K → Ac and create a branch for Ac → K.

Note that this is very similar to performing the Not-first, Not-last propagation (Section
5.1.3).

In Table 3a, we have constructed an example of five activities that have to be processed
on the same machine. The upper bound we use here is 15. We have H(Ac → K) =
rc+pK+pc+qK = 4+7+3+2 = 16 > 15 = ub, H(Ac ↓ K) = rK+pK+pc+qK = 2+7+
3+2 = 14 < 15 = ub and H(K → Ac) = rK+pK+pc+qc = 2+7+3+0 = 12 < 15 = ub.
Thus Ac can not be processed before K and we create one branch where Ac must be
processed after K and we create one branch where Ac must be processed before and
after at least one activity of K (case 1). Examples of the cases 2, 3 and 4 can be found
in Tables 3b, 3c and 3d respectively.

Ai A1 A2 A3 A4 Ac

ri 2 3 3 2 4
pi 1 3 2 1 3
qi 3 2 3 2 0

(a)

Ai A1 A2 A3 A4 Ac

ri 2 3 3 2 4
pi 1 3 2 1 3
qi 3 2 3 2 5

(b)

Ai A1 A2 A3 A4 Ac

ri 2 3 3 2 0
pi 1 3 2 1 3
qi 4 5 5 4 2

(c)

Ai A1 A2 A3 A4 Ac

ri 2 3 3 2 0
pi 1 3 2 1 3
qi 3 2 3 2 4

(d)

Table 3: Examples for the four different cases of [11]. Here, K = {A1, A2, A3, A4} and
ub = 15.

14

4.1.2 Assigning a start time

Baptiste, Pape and Nuijten [4] use a simple branching procedure with Constraint Propa-
gation at each node of the search tree to determine whether the problem with makespan
at most T has a solution. This is done in the following manner.

1) Select a machine on which the activities are not fully ordered.

2) Select an unscheduled activity that has to be processed on the chosen machine and
make it start as early as possible. Use the propagation techniques to find more
constraints. Keep the other activities as alternatives to be tried when backtracking.

3) Iterate step 2 until all activities on the chosen machine are ordered.

4) Iterate step 1 to 3 until all activities on all machines are ordered.

Nuijten and Aarts [21] give a constraint satisfaction approach based on search algo-
rithms. Each node in the search tree corresponds to a partial solution and going from
one node to another is done by assigning a start-time to an activity. The selection of
a next activity and its start-time are done by selection-heuristics, one for the activity
and then one for its start-time. Activities get selected by determining the activity Ai

with the earliest minimal completion time (ri+pi) of any unscheduled activity and then
randomly selecting an activity that can be started before this minimal completion time
(these are all the activities for which the processing-intervals overlap with that of Ai).
After a start-time is assigned, inconsistent values of unassigned activities are removed.
A start-time for an activity is inconsistent if there exists no feasible solution with this
assignment. If by removing inconsistencies, the domain of a value becomes empty, a
dead end is detected and we backtrack.

Florian, Trepant and McMahon [16] propose a Branch-and-Bound algorithm where at a
certain time a subset of unscheduled activities is considered. Hereto, they use the “con-
secutive cut” dominance rule, where they pick the machine with the activity Aj from
the cut C which can be finished the soonest (it has the lowest rj + pj value). Here C is
a cut of unscheduled activities for which all predecessors have been scheduled, thus each
cut consists of one node per job. The machine µ with the activity Aj with the lowest
rj +pj gets selected and the start times of all activities in the cut on µ form the decision
variables. The branching continues from the node with the smallest one-machine lower
bound. When creating a node for an activity Aj , we schedule it to start at the earliest
time possible, thus changing the release dates of the remaining activities on the same
machine or job to be at least rj + pj . Note that this algorithm does not make use of the
tails of activities, but we could create a symmetrical cut containing only the activities
for which all the successors have been scheduled and similarly pick the activity with the
lowest qj + pj value.

Consider the following example. At the start of the tree search (see Figure 2.1), the
cut consists of only the first activities of each job: A1, A4 and A7. Of these activities, we

15

pick the activity Aj with the lowest rj + pj ; this is A1. Then for all of the activities Ω
within the cut that have to be performed on the same machine as A1, we create a branch
where we plan Ai ∈ Ω to start at its release date. Because A7 is on the same machine as
A1, we create two branches, one where we have A1 → A5 and A1 → A7 and one where
we have A7 → A1 and A7 → A5 (see Figure 4.3). Note that by using this branching
structure we can omit parts of the search space (A5 → A7 or A5 → A1) without losing
optimality. This is true because of the relation r5 ≥ r4+p4 ≥ r1+p1, thus if we schedule
A5 to be processed at its earliest start time, then A1 can be scheduled before A5 without
delaying it.

1 2 3

40 5 6 *
7 8 9 1 2 3

40 5 6 *
7 8 9

1 2 3

40 5 6 *
7 8 9

Figure 4.3: Branching structure of Florian, Trepant and McMahon. The cuts are colored
in cyan and the different machines have different colors (red, blue and green) for their
arcs. Chosen arcs are bold.

16

4.2 Bounds

The potential of branches in the Branch-and-bound method can get measured by mak-
ing use of lower and upper bounds of these branches. The objective value of the best
schedule found so far gets used as an upper bound. When we find a new, better sched-
ule, the upper bound is altered. We can find lower bounds for each of the nodes in the
search-tree by relaxing the problem. When we solve a relaxation and it gives us a lower
bound for the node which is higher than or equal to the already found upper bound, we
can stop at this node and backtrack; its children will never have a better objective value
since they are subproblems of the current node.

If we pick any machine and allow preemption and then allow all other machines to
have infinite capacity, then we get a relaxation for which the solution is a lower bound
to the solution of the JSP. We can find the makespan of this relaxation by construct-
ing Jackson’s preemptive schedule (JPS). Jackson’s preemptive schedule is the schedule
associated with the most work remaining priority dispatching rule. The schedule is
constructed by always executing the available, unfinished job with maximal tail. If
we compute this bound for each machine, the we find a lower bound to the JSP with
value maxI⊂Oµ H(I) (µ ∈M) [11]. Carlier and Pinson [9] state that there exists a sub-
set I ⊂ Oµ such that either H(I) equals the makespan of the non-preemptive optimal
schedule f0, or f0 −H(I) < pc for some activity Ac of Oµ\I, then I is called a critical
set and Ac is a critical activity. The edge-finding algorithm of Baptiste, Pape and Nui-
jten [4] constructs the JPS to update the heads of activities (Section 5.1.2). Because
heads and tails are symmetrical, a Backwards Jackson’s preemptive schedule (BJPS) can
be constructed in a similar manner which can be used to update the tails of activities.
The JPS and BJPS can both be computed in O(n log n) time.

Martin and Shmoys [18] give an ILP notation for the JSP which can be used to find
lower bounds. For each job j ∈ J , Fj denotes the set of all job-schedules. A job-schedule
contains an assignment of starting times to all of the activities of one job such that all of
the precedence constraints are met and such that the job is finished by time ub. Let xjσ
be a 0 − 1 variable that indicates whether job j is scheduled according to job-schedule
σ ∈ Fj . Let γ(σ, i, t) indicate whether job-schedule σ requires machine i at time t and
let λ be the maximum number of jobs being processed on the same machine. M is the
set of machines. Then the ILP formulation is to minimize λ subject to:∑

σ∈Fj

xjσ = 1, ∀j ∈ J,

∑
j∈J

∑
σ∈Fj

γ(σ, µ, t)xjσ ≤ λ, ∀µ ∈M, t = 1, .., T,

xjσ ∈ {0, 1}, ∀j ∈ J, σ ∈ Fj .

There is a feasible job-shop schedule which completes by time T if and only if the op-
timal value of the ILP equals 1. We can relax this to a LP by removing the binary

17

constraints. Let λ∗ be the optimal value of the relaxation, if we can show that λ∗ > 1,
then there is no schedule with makespan at most T and T +1 is a valid lower bound for
the problem. The relaxation can be solved by using a combination of dynamic program-
ming and the fractional packing algorithm of Plotkins, Shmoys and Tardos [24]. Martin
and Shmoys [18] state that this algorithm finds better bounds than other bounds found
by LP-relaxations, but that it is too slow to be useful in practice.

Brucker et al. [8] give lower bounds for when we put an activity on the edge of a block
of activities. If an activity Ai in block B is moved in front of the block, all disjunctive
arcs {(Ai, Aj)|Aj ∈ B and j ̸= i} will be fixed in the direction Ai → Aj . Thus,

ri + pi +max { max
Aj∈B,j ̸=i

(pj + qj),
∑

Aj∈B,j ̸=i

pj + min
Aj∈B,j ̸=i

qj}

is a simple lower bound for the search tree node. And

max { max
Aj∈B,j ̸=i

(rj + pj),
∑

Aj∈B,j ̸=i

pj + min
j∈B,j ̸=i

rj}+ pi + qi

is a lower bound for the search tree node if activity i is moved to the very end position
of block B. Promising subproblems are heuristically detected.

Vandevelde et al. [31] present different lower bounds for the Head-Body-Tail problem
on parallel machines. These lower bounds were created for the multiprocessor flow-shop
problem, but some of them can also be used for the Job Shop Problem. The job-based
bound (JB) is the lower bound that we get by computing the minimal makespan for each
job. Since this gives a lower bound for each of the jobs, taking the maximum over all of
the jobs also gives a lower bound. We have:

JB = max
Ji∈J

rJi + pJi + qJi .

The set-based bound (SB) is the lower bound we get by considering the minimum idle
time of each machine. Let r̄i be the ith smallest heads. Then in the interval [0, r̄1], all
m machines are idle, in the interval [r̄1, r̄2] at least m − 1 machines are idle; until r̄m,
which is the first possible moment when all machines can be operable. Thus we have at
least

∑m
j=1 r̄j idle time at the beginning of the schedule and similarly, we have at least∑m

j=1 q̄j idle time at the end of the schedule. Here q̄i is the ith smallest tail. It follows
that

SB =

∑m
j=1(r̄j + q̄j) +

∑mn
i=1 pi

m
is a lower bound for the current node of the search tree. This last bound can be calculated
for any subset I of jobs with a size of at least m. The maximum over all these subsets is
also a lower bound for the JSP and it is called the subset-based bound (SSB). Vandevelde
et al. prove that max SSB, JB is bigger than the bound found by using the JPS, but the
difference is less than or equal to m−1

m pmax. Here pmax is the greatest processing time
out of all activities.

18

5 Constraint programming

We can define a combinatorial optimization problem as an instance of a Constraint Sat-
isfaction Problem (CSP) by formulating the problem as a decision problem and adding
an upper bound for the problem solution. The CSP consists of a set of variables, a
set of possibles values for these variables (domains) and a set of constraints between
these variables. Constraints between variables say something about what combination
of values are allowed for them. Constraints are either implicitly stated (e.g. arithmetic
expressions) or explicitly stated (e.g. a set of tuples that satisfy the constraints). A
feasible solution to the CSP is an assignment of values to the variables such that all
the constraints are satisfied. Constraint Propagation is used to narrow down the search
space of the variables [4]. With Constraint Programming, the aim is to find feasible
solutions to the CSP.

As an example, we can consider a sudoku puzzle. The variables of a sudoku puzzle
are the tiles in the 9 × 9 grid. The constraints of a sudoku puzzle are that on every
row, column and subblock there should be exactly one of each of the numbers from 1
to 9. The domain of a tile are the numbers 1 to 9 that do not yet occur in a row,
column or subblock of the tile. Now by logical reasoning, we can narrow down the
values that each of the tiles can assume and by assigning a value to a tile and propa-
gating its consequences, we can see if it is possible to find a solution with this assignment.

For the JSP, the variables are the starting times of the different activities. The con-
straints consist of the precedences between different activities on the same job (2.1) and
of the orderings of activities on the same machine (2.2). The domains get modeled as
a set of values within the interval [ri, lsti]. Because the JSP is an optimization prob-
lem, we can alter the CSP to an optimization problem by introducing some constraint
on the outcome of the solution: Si + pi ≤ ub (∀Ai). If we can find an assignment of a
value to each of the Si’s, then this will correspond to a solution of the JSP. Constraint
Propagation consists of reducing the set of possible values for these variables by using
information that is already known or by assuming information and then propagating
the consequences [3]. The success of Constraint Propagation is due to the fact that
the CSP needs all constraints to be met. If assigning a value to a variable leads to a
contradiction, then the entire subset of solutions with this assignment can not contain
a feasible solution.

Because CSP is a NP-complete problem, Constraint Propagation is usually incomplete.
Thus it is beneficial to perform some kind of search to determine if a CSP has a solution
or not. Traversing the search tree consists of two main things to think about: (i) How
to go forward in the tree (what decision to make) and (ii) how to go backwards when
finding a contradiction. The latter corresponds to adding additional constraints to the
CSP and adjusting the domains of different variables. Constraint Propagation thus rea-
sons on a combination of the original constraints and the new constraints which were

19

added by making the decisions in the tree traversal [4].

A Constraint c(v1, .., vn) is said to be arc-consistent if and only if for any variable vi
and any value xi in the domain of vi, there exist values x1, .., xi−1, xi+1, .., xn, such that
c(x1, .., xn) holds. Arc-consistency is the process of making sure that the domains of the
variables match all of the constraints. For the JSP, the domain of a variable is often
presented as a set of values within the interval, [ri, lsti] (it can have gaps). Keeping
arc-consistency on these bounds of the domain is called arc-B-consistency. Keeping arc-
B-consistency is useful for problems like the non-preemptive JSP because updating the
bounds is less costly than checking arc-consistency for each value inside the domains [4].
For the JSP, we can keep arc-B-consistency by updating ri and lsti for each activity Ai

after fixing an ordering of two activities. We can find the gaps in the domain-intervals
by keeping track of when each machine is occupied (and by what activity).

5.1 Propagation techniques

Constraint Propagation techniques might work well with Branch-and-bound since they
allow us to keep the search tree small, which helps in speeding up the traversal of the
Branch-and-bound tree, and they can help with finding better lower-bounds. By prop-
agating certain constraints after fixing a disjunction, we may find some search-nodes
that are not feasible. There are several methods to propagate constraints for a set of
activities requiring the same machine. In this subsection, we discuss these techniques.

When we use a Constraint Propagation technique, we assume ri + pi ≤ di for every
activity Ai. Otherwise there would not be a feasible solution possible and Constraint
Propagation on some earlier node should have already found a dead end. The propaga-
tion techniques now try to find out if all the activities together can be processed in the
time interval [0, ub].

5.1.1 Disjunctive Constraint Propagation

If activities Ai and Aj have to be processed on the same machine, disjunctive Constraint
Propagation consists of making sure activity Ai starts after Aj ends or Aj starts after
Ai has ended:

[Si + pi ≤ Sj] ∨ [Sj + pj ≤ Si].

Whenever the earliest end time of Ai exceeds the latest start time of Aj , Ai must be
processed after Aj . Thus we add the constraint Sj + pj ≤ Si (or the ordering Aj → Ai).
When neither can proceed the other, a contradiction is detected.

In the example of Figure 5.1, two activities have to be performed on the same machine.
A1 can be processed within the interval [0, 4] and A2 can be executed within the interval
[1, 5]. We have lst1 = 2 and eet2 = 3. Thus we can propagate the ordering A1 → A2 and
we put lst1 = 1 and r2 = 2.

20

i i
pir id

1

2

2 4

521

0

Figure 5.1: Example of two activities on the same machine. The light grey tiles denote
when the activities can be executed and the dark grey tiles denote the processing times.

5.1.2 Edge-finding

Edge-finding consists of deducing that some activity Ai must, can, or cannot, execute
before or after all the activities of a set of activities Ω. Edge-finding works as follows.
Let rΩ denote the smallest release date of the activities in Ω. Let dΩ denote the largest
deadline in Ω. Let pΩ be the sum of the processing times of the activities in Ω. For any
set of activities Ω not containing activity Ai, if the window of executing [rΩ, dΩ∪{Ai}]
([rΩ∪{Ai}, dΩ]) is smaller than the combined processing time pi + pΩ, then Ai must be
executed before (after) Ω. And if an activity Ai comes after a set of activities Ω, then it
must start (end) after (before) the earliest end time (latest start time) of any subset of
Ω.

1. ∀Ω, ∀Ai ̸∈ Ω, [dΩ∪{Ai} − rΩ < pΩ + pi] =⇒ [Ai ≪ Ω],

2. ∀Ω, ∀Ai ̸∈ Ω, [dΩ − rΩ∪{Ai} < pΩ + pi] =⇒ [Ai ≫ Ω].

The algorithm that performs all the time-bound adjustments in O(n2) time is given in [4]
and it uses the JPS in finding the edges. There is also a variant that uses more complex
data-structures but runs in O(n log(n)) time, given in [11]. And in [12], an edge-finding
variant based on task intervals is given which runs in O(n3) time.

i i
pir id

1

1

0

1 1 5

5

7

2 2

3

3

Figure 5.2: Example of three activities on the same machine. The light grey tiles denote
when the activities can be executed and the dark grey tile denote the processing times.

In the example of Figure 5.2, three activities have to be performed on the same machine.
The disjunctive Constraint Propagation does not find any changes in the domains of the
activities. If A1 is processed before or in between A2 and A3, then A2 and A3 can not
both finish on time anymore. If we take Ω = {A2, A3}, then the second edge-finding rule
tells us that A1 has to be performed after both A2 and A3, thus we can put r1 = 4, lst2 = 2
and lst3 = 3.

21

5.1.3 Not-first, Not-last

Opposite of the edge-finding rules, there are also rules to determine whether a certain
activity can not be processed before (or after) a set of activities. If Ai comes before
(after) the set of activities Ω, then the window of executing is given by [ri, dΩ] ([rΩ, di]),
and if this is smaller than the combined processing time pAi∪Ω, then there exists no
solution where Ai is executed before (after) Ω. This leads to the following rules:

1. ∀Ω, ∀Ai ̸∈ Ω, [dΩ − ri < pΩ + pi] =⇒ ¬(Ai ≪ Ω) =⇒ Si ≥ minj∈Ω eetj ,

2. ∀Ω∀Ai ̸∈ Ω, [di − rΩ < pΩ + pi] =⇒ ¬(Ai ≫ Ω) =⇒ Si + pi ≤ maxj∈Ω lstj .

Here, the first rule is the not-first property and the second rule is the not-last property.

In [4], Baptiste, Pape and Nuijten give an algorithm which performs the time-bound
adjustments corresponding to the Not-First rules. It runs in O(n2) time and O(n)
space. For the Not-Last rules, a symmetrical algorithm could be used which has the
same time and space complexity.

i i
pir id

0

0

6

6

61 1

2 2

2

23

Figure 5.3: Example of three activities on the same machine. The light grey tiles denote
when the activities can be executed and the dark grey tile denote the processing times.

In the example of Figure 5.3, three activities have to be performed on the same ma-
chine. The disjunctive Constraint Propagation and the edge-finding rules do not find
any changes in the domains of the activities. But, if we process A1 before A2 and A3,
then we can not process all three of the activities. If we take Ω = {A2, A3}, then the
Not-First rule propagates that A1 can not be processed before Ω and we can change
r1 = 2.

5.1.4 Unnamed propagation

An activity Ai cannot start at a certain time t if there is a set Ω ⊆ I of activities with
Ai ̸∈ Ω and a u, 1 ≤ u ≤ |Ω| such that at most u − 1 activities can be scheduled
before t and at most |Ω| − u activities can be scheduled after t+ pi. We look for a good
combination of Ai, Ω and u, such that:

(1 ≤ u ≤ |Ω|, ri < eet(Ω, u) ∧ lst(Ω, |Ω| − u+ 1) < eeti) =⇒ ri = eet(Ω, u). (5.1)

Here eet(Ω, u) (lst(Ω, u)) is defined as the earliest end time (latest start time) of any
subset Ω′ ⊂ Ω for which |Ω′| = u. If the left hand side of equation (5.1) holds and

22

we set Si to be smaller than eet(Ω, u), then we still have ri < eet(Ω, u) and we are
again in the situation where we can only schedule u− 1 activities before Ai and |Ω| − u
activities after Ai. Thus we can indeed put ri = eet(Ω, u). This propagation can be
done in O(n2 log(n)) time by using eet(Ω, u) = rΩ +minΩ′⊆Ω:|Ω′|=u pΩ′ (and similar for
lst(Ω, u)) [4].

5.1.5 Multi-machine propagation

Based on the idea that different machines are connected with each other through prece-
dence constraints, Sourd and Nuijten [27] studied additional rules to propagate con-
straints between activities on different machines. The length of a path is defined as the
sum of the processing times of the activities in the path, excluding the processing times
of the two ends. If there is a path from activity Ai to activity Aj , then there is also a
longest path between these two activities. We denote the length of this longest path by
l0(Ai, Aj) (we set this to −∞ if there is no path from Ai to Aj). This length serves as
a lower bound on the time between the end of Ai and the start of Aj . Then for any set
of activities Ω on a certain machine and for any activity Aj on a different machine, we
have:

Sj ≥ rΩ + pΩ + l0(Ω, Aj). (5.2)

Here l0(Ω, Aj) = minAi∈Ω l0(Ai, Aj) is the minimal length of any path from an activity
of Ω to Aj . Since all activities in Ω are to be scheduled on the same machine, the last
activity of Ω cannot end before rΩ + pΩ. Because there now exists a path from Ω to Aj ,
we have that Aj cannot start before the end of the path from Ω to Aj .

5.1.6 Shaving

Shaving is a technique where an activity Ai is scheduled at the end or beginning of its
domain and this fact is used to prove a contradiction or to reduce the domain of Si. By
trying out a starting time for an activity, and proving that this will not yield a feasible
solution, we can omit it from the set of domains.

• Using the preemptive one-machine relaxation to determine that there is no feasible
schedule is called one-machine shaving. It is equivalent to iterated Carlier-Pinson
(C-P) (see [11]).

• Using the non-preemptive one-machine relaxation to determine that there is no
feasible schedule is called exact one-machine shaving. It gives a slightly better
bound than C-P but is significantly more costly.

• Using iterated Carlier-Pinson to show that there exists no schedule, is called C-P
shaving.

• If we use C-P shaving to show that there is no schedule, this is called double shaving,
it uses an extra recursion level of C-P. Double shaving gives very good bounds,
but takes too much time to compute for it to be practical in a Branch-and-bound
algorithm [18].

23

In [4], Baptiste, Pape and Nuijten explain a shaving algorithm, which works as follows.
At each node of the search tree and for each activity Ai, the earliest time ri at which
the activity Ai can be scheduled without triggering a contradiction is computed. This
consists of:

1. Iteratively trying a start time Si for the activity Ai,

2. Propagating the consequence of this decision with the edge-finding techniques, and

3. Verifying that no contradiction has been detected. If a contradiction is found,
remove the start time Si from the domain of Ai.

By iteratively trying out start times for Ai, we shave off the parts of the domain of Ai

for which there is no feasible solution.

24

6 Research questions

The goal of this thesis is to find out if the combination of Constraint Programming
and Branch-and-bound is a good method for solving the (standard) Job Shop Problem.
We also want to find out how different Branch-and-bound and Constraint Programming
techniques compare to each other and in what way they should be combined for the best
results. We do this by implementing and then comparing techniques from Section 4 and
Section 5 of this thesis. This leads to the following research questions:

Q1. How to combine Branch-and-bound and Constraint Programming?

Q2. Does combining Branch-and-bound with Constraint Programming lead to a hybrid
technique that works better than Branch-and-bound or Constraint Programming?

Q3. What kind of branch-choices/decisions should be made?

Q4. What are critical machines or activities and how do we find them?

Q5. What are relevant Constraint Propagation techniques and how do we use them?

7 Methodology

To answer the research questions of Section 6, we use the following method. First we
implement a solver for the Job Shop Problem in python using a Branch-and-bound ap-
proach where each branch consists of either fixing the ordering of some heuristically
chosen disjunction, splitting the start-interval of some activity in two or executing an
activity at its (current) release date. To answer Questions 3 and 4, we will implement
different Branch-and-bound algorithms for the JSP (from Section 4) and find out how
they compare.

To answer Question 1, we want to come up with new branching structures where we
branch on an activity or a pair of activities which is close to a propagation. For in-
stance, if the domain of an activity Ai is one unit off of letting us use the Edge-finding
propagation technique, then we would like to branch so that we can use this propagation.
The goal is now to create a measure of closeness between an activity and a propaga-
tion, similar to how Cheng and Smith do this for the disjunctive Constraint Propagation
in [25].

To answer Questions 2 and 5, we will implement the different Constraint Propagation
techniques (Disjunctive Constraint Propagation and Edge-finding) and use Constraint
Propagation on every node of the Branch-and-bound search tree in our implementation.
We then compare how Constraint Programming influences the performance of a Branch-
and-bound algorithm.

25

8 New branching schemes

To test the potential of combining Constraint Programming with Branch-and-bound for
the JSP, we came up with new branching structures that make use of knowing that
there will be Constraint Propagation after each branching choice. We expect that pick-
ing branches in which we have the largest amount of information, results in a relatively
smaller search tree. We can measure the amount of information in a branch as a combi-
nation of disjunctions fixed and heads or tails increased. In this section, we explain the
new branching schemes.

8.1 Slack-based branching

Smith and Cheng [13, 25] defined the slack of a ordering of two activities (Equation
(4.1)). Similarly, we define the score of an ordering of two activities as

Scorei,j = ri + pi + pj + qj . (8.1)

Here Ai and Aj have to be executed on the same machine. If the score of an ordering
exceeds the upper bound for which we try to find a feasible schedule, the disjunctive
Constraint Propagation technique will impose the opposite ordering. The branching
structure of Smith and Cheng [25] (SC) now picks the ordering of any pair of activities
which has the highest score and fixes it in the opposite direction. This is equivalent to
fixing the ordering which is the closest to being imposed by the disjunctive Constraint
Propagation technique.

8.1.1 Increasing head or tail based on slack

If we select the ordering of a pair of activities with the highest slack, another way of
inducing the ordering Aj → Ai is by increasing the head ri of activity Ai (or the tail
qj of activity Aj) and then letting the disjunctive Constraint Propagation impose the
ordering of the pair. The idea is that when we are close to disjunctive Constraint Prop-
agation, then in the first branch we get the ordering because of the propagation and in
the second branch we get a start-interval which is as big as the difference between ub
and the score of the ordering.

Suppose that the Constraint Propagation techniques find every ordering Ap → Aq for
which the score Scorep,q > ub and fixes the disjunction in the right direction. Let
Ai → Aj be the ordering with the highest score which was not fixed by the Constraint
Propagation, then we have that Scorei,j = ri+pi+pj+qj ≤ ub. If we can get the score of
this ordering to exceed the upper bound, then the propagation will impose the opposite
ordering. To do this, we increase the head of Ai (or tail of Aj): r

′
i = ri+ub−Scorei,j+1.

After increasing the head of activity Ai, its start-interval [ri, lsti] splits into two intervals,
[r′i, lsti] and [ri, r

′
i − 1]. When we backtrack and go into the opposite branch, we thus

change the tail q′i = ub− pi − r′i + 1 = pj + qj .

26

Theorem 1. If rj +2pj + qj < ub− pi +1, then increasing the head of activity Ai gives
more information than (SC) would give in the first branch. Increasing the tail of the
activity in the second branch gives less information than (SC) gives.

Proof. After increasing the head of Ai to r′i = ri + ub − Scorei,j + 1 we get Aj → Ai

because of the disjunctive Constraint Propagation. In the branching structure of Smith
and Cheng, we get that r′′i = max (ri, rj + pj) and q′′j = max (qj , qi + pi). Thus if
ri + ub − Scorei,j + 1 > rj + pj , the new branching structure gives more information.
This is equivalent to: ub− pi + 1 > rj + 2pj + qj .

In the opposite branch, Smith and Cheng fix the ordering Ai → Aj , causing r′′j =
max (rj , ri + pi) and q′′i = max (qi, qj + pj). In the new branching structure, we get
q′i = qj + pj . For the new branching structure to gain as much information in the sec-
ond branch as S-C, it has to propagate the ordering Ai → Aj . This happens when
rj + pj + pi + q′i > ub, which is equivalent to rj + pj + pj + qj ≥ ub− pi + 1.

We refer to the branching structure where we increase the head or tail of an activity
based on the slack as Decrease Slack Branching (DSB).

Theorem 2. If qi ≥ qj + pj, then:

• The branch where we increase ri leads to a second branch that is equal to its parent.

• The branch where we increase qj leads to a second branch where r′j = ri + pi.

Proof. When going into the second branch after increasing the head ri of activity Ai in
the first branch, we increase qi to max (qi, qj + pj). If we have that qi ≥ qj + pj , then
the new value of qi equals its old value. Thus, in the second branch of this branching
scheme, nothing changes and we are in the same situation as its parent. But, since
we choose the pair of activities for which scorei,j = ri + pi + pj + qj is maximal, if we
increase qj instead of ri in the first branch, such that the score goes over the upper
bound, this will also impose the ordering Aj → Ai. If we were to have rj ≥ ri+pi, then:
scorei,j = ri + pi + pj + qj ≤ rj + qi < rj + pj + pi + qi = scorej,i. This contradicts the
choice of scorei,j being maximal. Thus we must have rj < ri + pi and when going into
the second branch, we have rj = ri + pi.

Theorem 3. Let (Ai, Aj) ∈ D be the pair of activities with the highest score Scorei,j.
If qi ≥ qj + pj, then:

• ri ≥ rk + pk for all Ak with (Ak, Ai) ∈ D,

• and qi ≥ qk + pk for all Al with (Ak, Ai) ∈ D.

Proof. For all activities Ak for which there is no directed arc between Ak and Ai, we
have:

ri + pi − rk − pk ≥ qi + pi − qj − pj ≥ pi.

27

It follows that we have ri ≥ rk + pk for all activities Ak for which (Ak, Ai) ∈ D.
For all activities Al for which there is no directed arc between Ak and Ai, we have:

ri + pi + qi ≥ ri + pi + pj + qj ≥ ri + pi + pk + qk.

It follows that we have qi ≥ pk + qk for all activities Ak for which (Ak, Ai) ∈ D.

When using the DSB branching scheme, we check if qi < qj + pj and if it does, we
branch on splitting the start interval of Aj in two. Because of Theorem 2, branching
on increasing the head or tail of an activity (DSB) is a valid branching strategy; it
always results in a left branch and a right branch where some constraint is added to the
solution in both branches. Because of Theorem 3, if we find a pair of activities (Ai, Aj)
with maximal score Scorei,j for which qi ≥ qj + pj , we have that Ai has the biggest
head and the biggest tail out of all activities on the same machine for which there is no
directed arc to or from Ai. Therefor, Ai might be the reason why its machine is critical
and we thus think it is a good idea to fix direction from or to Ai first.

Ai A1 A2 A3

ri 5 2 3
pi 1 2 1
qi 5 3 2

Table 4: Example of three activities for the same machine.

Consider the activities of Table 4 and let the upper bound be 11. Score1,2 = 11 is the
highest score of all the pairs of activities. If we increase r′1 to 6 or q′2 to 4, then the
disjunctive Constraint Propagation will impose the ordering A2 → A1. Because we have
q1 = 5 = q2 + p2, we choose to branch on increasing q2. It follows immediately that A1

should be processed within the interval [5, 6].

8.1.2 Fixing disjunctions

Instead of directly increasing the head or tail of an activity Ai, we can also look for an
ordering (Ak → Ai) which increases the head of Ai enough for Scorei,j to get bigger than
the upper bound. For this to happen, we need to find an activity Ak on the same machine
as Ai and Aj for which we have rk+pk > ri+ub−Scorei,j (or qk+pk > qj+ub−Scorei,j).
In the opposite branch, we would fix the ordering Ai → Ak.

It is possible that there is no disjunction between Ai and another activity for which
we can fix an ordering to get Scorei,j over the upper bound. In this case we can choose
a disjunction on a different machine for which one of the activities is a predecessor of
Ai. Let (Ak, Al) be such a disjunction for which Al is a predecessor of Ai and belongs to
the same job. We fix Ak → Al if it increases the head ri such that Scorei,j goes over the
upper bound. Symmetrically, if there is an ordering of a disjunction between a successor
Ak of Aj and another activity that will increase the tail of Aj , fixing this ordering will

28

result in propagating Aj → Ai as well. We can keep taking predecessors within the job
of Ai until we find a disjunction between a predecessor and Ai which will increase ri (or
qj) enough upon fixing the disjunction.

If there are no orderings available which will cause Scorei,j to go over the upper bound,
we simply branch on fixing Aj → Ai.

We call the branching structure where we fix a disjunction on the same machine which
increases the score of an ordering Machine Disjunction Slack Branching (MDSB). The
branching structure where we look for a disjunction with an activity of the same job is
called Job Disjunction Slack Branching (JDSB).

8.2 Edge-finding score

Similarly to how the slack of Smith and Cheng is a measure of how close an ordering is
to being propagated by the Disjunctive Constraint Propagation, we can define closeness
to performing Edge-Finding by introducing the score of a combination of an activity and
a set of activities:

Scorec,Ω = r{Ac}∪Ω + pc + pΩ + qΩ, (8.2)

ScoreΩ,c = rΩ + pc + pΩ + q{Ac}∪Ω. (8.3)

If this score goes over the upper bound for which we want to find a schedule, we know
that the Edge-finding propagation technique will determine that Ac should be processed
after (before) all of the activities of Ω. Thus, in each node, we want to create a branch
where we either increase r{Ac}∪Ω or q{Ac}∪Ω for the right combination of Ac and Ω.

There are two cases depending on which activity has the smallest head: Ac or some
Ai ∈ Ω. If rc < ri = rΩ, then we can increase rc by rΩ − rc for it to still be the smallest
element of the set {Ac} ∪ Ω. We can increase rc further such that Scorec,Ω > ub if and
only if rΩ+ pc+ pΩ+ qΩ > ub. The activity Ac is executed after every activity of the set
Ω if its head rc goes over ub− pΩ − pc − qΩ. Alternatively, if there is an activity Ai ∈ Ω
with a smaller head than rc, then the amount we can increase ri for it to still be the
smallest head is rj − ri. Here rj = r{Ac}∪Ω\{Ai} is the second smallest head of the set
Ω ∪ Ac}. Thus we have that if r{Ac}∪Ω\{Ai} + pc + pΩ + qΩ > ub, then rc increases to
rΩ + pΩ.

Theorem 4. Let Ω = {A1, A2, .., Ak} be a set of activities that is ordered such that
r1 ≤ r2 ≤ .. ≤ rk. For an activity Ac ∈ Ω, if r2 − r1 ≥ ub − Scorec,Ω + 1, then we
can increase r1 enough for the Edge-Finding Propagation to determine that Ac has to be
processed after all of the activities in Ω.

Proof. If r2 ≥ r1+ub−Scorec,Ω+1, then we can increase r1 by ub−Scorec,Ω+1 without
losing that r1 is the smallest head of Ω. If we do increase r1 with this amount, then
we get that Scorec,Ω = ub+ 1 > ub and thus the Edge-Finding Propagation will put Ac

after Ω.

29

Theorem 5. For a given activity Ac and a given set of activities Ω, let Aj be the activity
with the smallest head of Ω∪ {Ac}. Furthermore, let x = ub− scorec,Ω +1 and let Ai be
the activity with the smallest head of Ω ∪ {Ac}\{Aj} greater than or equal to rj + x. If
there is an activity in Ω ∪ {Ac}\{Aj} with a smaller head than Ai, then if qc ≥ qΩ or if
ri ≥ rj +x+ pc, then one of the activities Ak ∈ Ω∪{Ac} with rk < ri should be executed
before all of the other activities of Ω ∪ {Ac}.

Proof. If all activities Ak with rk < rj + x are executed at the end of Ω, then r′Ω = ri ≥
rj +x. The last activity of Ω∪Ac is either Ac or some Ab ∈ Ω. If the last activity is Ab,
then we have r′Ω+pΩ+pc+ qb ≥ rj +x+pΩ+pc+ qΩ > ub. If the last activity is Ac and
qc ≥ qΩ, then we have r′Ω + pΩ + pc + qc ≥ rj +x+ pΩ + pc + qΩ > ub. If the last activity
is Ac and ri ≥ rj + x + pc, then we have r′Ω + pΩ + qΩ ≥ rj + x + pc + pΩ + qΩ > ub.
Thus at least one of the activities with a head smaller than rj + x should be executed
first.

Note that in practice, we never have qc ≥ qi = qΩ, because if we do we can choose
Ω′ = Ω∪ {Ac}\{Ai} and we have Scorei,Ω′ ≥ Scorec,Ω. Because of Theorem 5, if we find
an activity Ac and a set of activities Ω with high Scorec,Ω which is being “blocked” by
one or more activities, then if ri if bigger than or equal to rj +x+pc, then we can create
a branch where we put one of the activities of {Ab ∈ Ω ∪ {Ac} : rb < rj + x} in front
of the other activities of Ω ∪ {Ac}. This is especially useful if there is only one activity
Ak for which rj < rk < rj + x because then we can create one branch where we execute
Ak before all of the activities of Ω and one branch where we execute Aj before all of the
activities of Ω since they can not both be executed after Ω. When there are more than
one blocking activities, then we can create a similar branching structure but the node
will have more than two branches.

Table 5: An example for calculating the edge-finding score (a) and an example for when
the head of an activity is being blocked by another activity (b).

Ai A1 A2 A3 A4 A5

ri 4 1 3 3 3
pi 1 8 1 3 1
qi 3 4 4 4 4

(a)

Ai A1 A2 A3 A4 A5

ri 4 1 3 1 3
pi 1 8 1 3 1
qi 3 4 4 4 4

(b)

As an example, we look at the activities in Table 5a. The upper bound for these examples
is 19. The activities all belong to the same machine. The score Score1,{A2,A3,A4,A5} =
1+14+4 = 19 is the highest score of all combinations of activities and sets of activities.
The activity with the smallest head is A2 with r2 = 1. It needs to increase to 3 for the
edge-finding to be able to put A1 after {A2, A3, A4, A5}. Because the activity with the
second smallest head has head 3, we can increase r2 to 3 and have it still be the smallest
head. We now look for a disjunction which pushes r2 over 3 and if we can not find such
a disjunction, we branch on splitting the domain of the start interval S2: in the first

30

branch we have r2 = 3 and in the second branch we have q2 = 9 to enforce that A2 starts
at time 2 at the latest.

In Table 5b, r2 is being “blocked” by r4, so if we increase r2 to 3, then r4 will have
the smallest head. The second smallest head is r3 = r5 = 3, thus if A3 (or A5) were to
start before all the other activities, then we would get r3 + pΩ + q1 = 20 > 19 = ub.
Thus, we create a branch where A2 is the first activity to be processed and if this branch
leads to a dead end, we create a branch where A4 is the first to be processed.

Instead of looking at the combination of an activity and a set of activities that is closest
to Edge-Finding, we can also find the combination of an activity and a set of activi-
ties for which the Edge-Finding will increase the head or tail the most upon increasing
Scorec,Ω to go over ub, or we can look for a combination of being close to propagation,
the amount of propagation we get and the changes that follow.

8.2.1 Increasing head or tail to impose Edge-Finding

To make the score of a set of activities Ω and an activity Ai ̸∈ Ω go over the upper bound,
we can directly increase the head or tail of an activity and propagate the consequences.
We call this branching scheme Increase Edge-Find Branching (IEB).

8.2.2 Fixing disjunctions to impose Edge-Finding

Instead of directly increasing the head or tail of an activity Ai such that the score of
an ordering goes over the upper bound, we can also look for a disjunction which, when
given a direction, increases the head or tail of Ai enough to go over the current upper
bound. To find such a disjunction, we can:

• Search within the disjunctions of the machine where Ai has to be scheduled on.
If we find a disjunction which will increase ri or qi enough then we can choose to
fix this disjunction in the right direction. We call this branching scheme Machine
Disjunction Edge Branching (MDEB).

• If there is no disjunction within the same disjunction of the machine of Ai, we can
take a predecessor (successor) of Ai within the same job and try to find an ordering
of a disjunction which will increase the head (tail) of this predecessor (successor)
enough. We call this branching scheme Job Disjunction Edge Branching (JDEB).

It is possible that there are no orderings of disjunctions between predecessors of the
activity for which we want to increase the head. In this case, we branch by using the
DSB branching scheme. It is also possible that there is no combination of activity and
set of activities for which we can increase the head (or tail) such that the score goes over
the upper bound because the second smallest head (or tail) is too small, in this case
we do not find a branch with this branching scheme. In practice, we will then use the
slack-based branching scheme (SC) to find a new ordering between a pair of activities
on a critical machine (highest lower bound).

31

8.3 Selecting an activity

Florian, Trepant and Mcmahon [16], branch by selecting an activity Ai for which the
predecessors within the same job have all been processed and they schedule it as early
as possible. Then every disjunction between Ai and some other activity Aj will be fixed
in the direction Ai → Aj , thus Ai is put on the edge of the set of activities which have
not yet been executed. For this way of branching, we can create a branching rule similar
to the (SC) branching rule by choosing an activity which is closest to being put in front
of the remaining activities by the edge finding rules and schedule it in as soon as possible.

We pick the critical machine by taking the machine of the activity from the consec-
utive cut (see Section 4.1.2) that has the lowest rj + pj value. Then the activities which
are candidates to be scheduled to process first are the activities on this critical machine
for which all predecessors have been scheduled in. We determine how close an activity
Ai is to being put in front of a set of activities Ω by calculating the JPS with the extra
constraint that at least one activity Aj ∈ Ω is processed before Ai. If the score we get
from calculating this JPS is close to the upperbound, we know that the Ai is also close
to being put in front of the set of activities Ω by the edge-finding technique. We order
the set of candidates from highest JPS-score to lowest JPS-score and start by planning
in the activity with the highest JPS-score. We will refer to this branching scheme as
Plan Activity Edge Branching (PAEB).

1 2 3 4

5 6 7 8

10 11 129

14 15 1613

Figure 8.1: Example where the consecutive cut consists of A2, A6, A11, A14 (cyan). The
ordering A2 → A15 has already been chosen and the activities in grey belong to the
machine for which we want to plan in the next activity. The head, body and tail of the
activities are given in the Table 6.

In the example of Figure 8.1 and Table 6, we want to plan in one of the grey activities
from the consecutive cut: A2 or A11. For each activity Ai, we construct the JPS by
scheduling at each moment the available activity with the longest tail, with the extra
constraint that Ai cannot be executed first. For A2, we process A11 for one time-unit,
then we process A8 until its finished, then we execute A2 and A15 an then we process
A11 for its remaining processing time, this gives a JPS-score of 20. For A11, we process
the activities in the order A2, A15, A8, A11, this gives a JPS-score of 15. Thus, we create
a branch where we schedule A2 as early as possible and if it turns out to be a dead-end,

32

we create a branch where we schedule A11 as early as possible.

An advantage of (PAEB) is that there is always an activity which is closest to being
propagated, thus we can always perform this heuristic (this is not the case for IEB,
MDEB and JDEB). This branching scheme does not necessary result in a binary tree
since there are in between 1 and |J | possible children for each node.

Ai A2 A8 A11 A15

ri 3 8 7 5
pi 2 3 2 3
qi 7 3 2 4

Table 6: Head, body and tail for the different gray activities of Figure 8.1.

8.4 Amount of propagation

After choosing the ordering of a disjunction, we always propagate to try and get as
much information from this one choice as possible. With this knowledge, we created
another branching structure which counts the amount of information a disjunction will
get by performing the propagation techniques (Edge-finding and Disjunctive Constraint
Propagation) for each of the possible orderings on a critical machine and choosing the
one which gives the most information. We call this branching scheme Full Propagation
Amount (FPA).

Because performing disjunctive Constraint Propagation and edge-finding (twice) for each
disjunction in every branch can get very costly, we tried a variation where we make a
small selection of disjunctions and see how much fixing them would propagate. This se-
lection consists of the ordering with the highest slack, and if they exist the two orderings
which will cause forward and backward edge-finding to gain new information. We refer
to this branching scheme as Selection Propagation Amount (SPA).

Another way of using the amount of propagation branching scheme is by only using
it if most disjunctions have already been given a direction. We expect this branching
scheme to be able to find branches that give lots of information, but in each node it costs
O(n log(n)) ∗ d) time, where n is the number of jobs and d is the number of disjunctions
left to fix. Thus we can use a hybrid approach where, in the first nodes, we use one
of the other heuristics and in the latter nodes (after a certain number of disjunctions
have been given a direction), we use the amount of propagation for all of the remaining
disjunctions. We call this hybrid approach Hybrid Propagation Amount (HPA).

33

9 Implementation

We parse a given instance of the JSP by creating a variable for each of the activities.
These variables are all given a parameter for head, tail, size and id. The id of an activity
Ai equals nb of machines× job numberi+machine numberi. Here nb of machines is the
number of machines the problem has, job numberi ∈ {0, ..,nb of jobs − 1} is the job Ai

belongs to. The size of each variable equals the processing time pi of the corresponding
activity. The head (tail) of the first (last) operation of each job is initialized as 0 and for
every other activity, the head (tail) gets initialized as ri = ri−1+ pi−1 (qi = qi+1+ pi+1),
where Ai+1 is the successor of Ai in a job. We start with an empty list of chosen
disjunctions and for every machine, create a list of disjunctions of the form (Ai, Aj) if
idi < idj . (so we only have one tuple for each disjunction.) We start with an upper
bound ub, we want to find a solution to the problem for which the solution-value ≤ ub.

9.1 Upper bounds

To find an initial upper bound for the search, we perform simulated annealing. We
find an initial solution for the simulated annealing by using the Florian, Trepant and
Mcmahon scheme [16]. With this scheme, we only consider activities for which all of the
predecessors have been planned in, thus we do not have to consider cycles in finding the
initial schedule.

The neighbours that we use are obtained from a complete schedule by swapping two
randomly chosen adjacent activities (belonging to the same machine) on a critical path
of the complete schedule. The number of iterations in the simulated annealing is depen-
dent on the size of a benchmark instance. We have chosen to use a number of iterations
linear to n2m2 because the local search finds good initial solutions for small instances
fast, but for bigger instances we want to give it some more time to find a better ini-
tial solution. Here n and m are the number of jobs and the number of machines in a
benchmark instance respectively.

9.2 Lower bounds

After finding an initial upper bound with the simulated annealing, we start branching.
In each node of the Branch-and-bound tree, we first solve a preemptive one-machine re-
laxation for each of the machines. In Branch-and-bound: if the relaxation of one of the
machines has a score higher than the upper bound for which we try to find a schedule,
we know that no schedule is possible and we backtrack. In Constraint Programming or
if there is no such machine, then the machine with the highest relaxation becomes our
critical machine and it serves as a lower bound for the current node. We prefer to find
an ordering (or increase the head or tail of an activity) on this critical machine.

If the lower bound that we find is very close to the upper bound for which we try
to find a solution, we find a better lower bound for the current choices by considering

34

the non-preemptive one-machine subproblem. We solve this problem by using the imple-
mentation for the entire JSP but without considering the other machines. If the lower
bound found with this subproblem is higher than the current upper bound, then we have
found a dead end and we backtrack.

9.3 Branching

When we find a lower bound and a critical machine, we select an ordering to fix, a head
or tail to increase or an activity to plan in by using one of the branching schemes of the
previous section. Note that some of the branching schemes do not necessarily branch on
a critical machine, in this case we just branch on a non-critical machine. Some branching
schemes do not always find an ordering to branch on, if this happens we use the standard
S-C branching scheme.

9.3.1 Selecting an ordering

When an ordering (Ai → Aj) is chosen, we perform a breadth-first-search in the partial
schedule starting at activity Aj . We set rj = max (ri + pi, rj) and the successors of Aj

are put in the queue. For each activity Ak we find with this BFS, we change the head
rk = max (rk−1 + pk−1, rk) and put its successors in the queue, here Ak−1 is a predecessor
of Ak. When we find Ai, we know that the ordering results in a cycle and we backtrack.
For each of the machines, we keep a list of activities that we find while doing the BFS.
Similarly, we perform a BFS in the reversed partial schedule starting at activity Ai.
For each activity Ak we find, we change the tail qk = max (qk+1 + pk+1, qk). For this
reversed BFS, we also keep a list of all the activities we find for each of the machines.
If after the BFS’s, for one of the activities Ak we now have that rk + pk + qk > ub, then
we backtrack. After we perform both BFS’s, we go over the two lists that we saved and
for each of the machines, if an activity Ax is in the list of the normal BFS and another
activity Ay is in the list of the reversed BFS, we know that we should fix the ordering
between the two in the direction Ay → Ax. Because we now fix all orderings Ay → Ax

which would result in a cycle if given the opposite direction Ax → Ay, this guarantees
that we will not get cycles in our Disjunctive Graph.

9.3.2 Increasing head or tail

If we branch on increasing the head of an activity, then after we increase the head, we
perform a BFS in the normal direction and for every activity Ak we find, we change
the head to rk = max (rk, rk−1 + pk−1) where Ak−1 is the predecessor of Ak in the BFS.
When the head of an activity Ak does not change in an iteration of the BFS, then we
do not put its successors in the queue since their head was already dependent on rk.
Different than selecting an ordering, because we are only increasing heads or tails, we
can not have a cycle appear when branching in this manner, thus it is not necessary
to perform a BFS on the entire partial graph. Similarly, if we increase the tail of an

35

activity, we perform a BFS in the reversed direction and change the tails of the activities
we find.

9.3.3 Scheduling an activity

We choose the machine on which we schedule an activity by finding the activity Ai from
the consecutive cut for which ri+pi is minimal (see Section 4.1.2). We then heuristically
select an activity (Ac) from the consecutive cut to plan in and we fix every disjunction
between Ac and other activities (for which no direction had been chosen) in the direction
Ac → Ad. We then perform a BFS starting at Ac where we increase the head of all
activities that we find. The tail of Ac changes to max (qc,max(Ac,Ad)∈D qd + pd).

9.4 Constraint Propagation

After we fix an ordering or increase the head/tail of an activity, we use the propaga-
tion rules (see below) to try and find more disjunctive arcs that have to get a direction
(disjunctive Constraint Propagation), activities for which we can increase the heads and
tails (edge finding) or dead-ends.

When propagating, we first perform Disjunctive Constraint Propagation and edge-finding
for all of the machines, starting at the machine for which we fixed the most disjunctive
arcs. While doing the first iteration of propagation, we keep track of how many changes
each machine gets, both in added orderings or increases of heads or tails. If there are
changes to at least one activity on a machine during an iteration of propagation, we
perform the propagation techniques on this machines again. The order in which we
perform the propagation techniques on each of the machines is from most changes to
least changes. We stop propagating when none of the machines have any changes in an
iteration. We implemented 4 orders of doing an iteration of propagation:

• First perform Edge-Finding for all of the machines, then perform Disjunctive Con-
straint Propagation for all of the machines.

• First perform Disjunctive Constraint Propagation for all of the machines, then
perform Edge-Finding for all of the machines.

• Perform Disjunctive Constraint Propagation and then Edge-Finding for each of
the machines.

• Perform Edge-Finding and then Disjunctive Constraint Propagation for each of
the machines.

36

9.5 Backtracking

A node becomes a dead-end if all of its children are a dead-end, or if we know there is
no schedule possible with the choices made so far; this can happen when a lower bound
exceeds the upper bound, when the sum of the head, body and tail of an activity exceeds
the upper bound, or when the Constraint Programming techniques propagate that there
is no schedule possible. If we come across a dead-end and we have to backtrack, then
one of six situations occurs:

• We were trying Ai → Aj in the first branch of a node. Now we go into the second
branch of the node and we try Aj → Ai

• We were trying Aj → Ai in the right branch of a node and we have already
tried Ai → Aj (unsuccessfully). Now the entire node of giving a direction to the
disjunctive arc (Ai, Aj) becomes a dead-end and we go back to its parent-node.

• We were trying r′j = rj + x in the first branch of a node. We go into the second
branch of the node and we try q′j = ub− pj − rj − x+ 1.

• We were trying q′j = ub− pj − rj − x+ 1 in the second branch of a node after we
already tried r′j = rj + x. Now the node becomes a dead-end and we go back to
its parent-node.

• We were trying to schedule Ai as early as possible, while having a list of activities
Ωi as alternatives. Now we take the next activity of Ωi and try and schedule it as
early as possible.

• We were trying to schedule Ai as early as possible, with Ωi = ∅. Now there are no
alternatives left, so the node becomes a dead-end and we return to its parent-node.

If the root-node becomes a dead-end, then we know that there is no schedule possible
for the current upper bound ub and we report that the optimal solution has value equal
to at least ub+ 1.

9.6 Leaves

If there are no disjunctions left to give a direction, we have found a leaf of the search tree.
It should have a solution value val ≤ ub (otherwise we would have found a dead-end in
an earlier node). Now we report that we have found a new upper bound to the problem,
we lower ub to val− 1 and we go into follow path mode: we save every choice we made
in the Branch-and-bound tree and when we find a leaf, we follow the choices that we
made, try and perform them again and if we find a contradiction (from propagation or
because the lower bound exceeds the upper bound) we make the opposite choice (or the
next choice in the case of planning in an activity). After finding a contradiction, we go
on and select branches in the same manner as before finding the leaf.

37

9.7 Branching strategies

Because we want to research the difference in performance of Constraint Programming,
Branch-and-bound and Hybrid Constraint Programming and Branch-and-bound, we give
an overview of the differences between the implementations of the three:

• In a Constraint Programming (CP) algorithm, we perform a tree search algorithm
that uses the Constraint Propagation techniques Edge Finding and Disjunctive
Constraint Propagation in each node of the search tree (Section 9.4). If we find
new constraints, we add them to the current node and if we find a contradiction,
we backtrack. For the algorithms that choose what machine is critical based on
the non-preemptive one-machine lower bound, we still calculate the lower bound
with the JPS, but we do not compare it to the known upper bound.

• In a Branch-and-bound (BB) algorithm, we perform a tree search algorithm that
uses the JPS-bound as a lower bound for each node(Section 9.2). If this lower
bound is higher than the current upper bound, we backtrack. If this lower bound
is close to the current upper bound (≥ 0.95 ∗ ub) and if we can get a higher lower
bound by considering the non-preemptive one-machine problem, we calculate a
new lower bound with the non-preemptive one-machine problem. If this new lower
bound goes over the current upper bound, we backtrack.

• In a Hybrid algorithm (CP+BB), we perform the Constraint Propagation tech-
niques (Section 9.4) and calculate a lower bound at every node of the search tree
(Section 9.2). If either of the two finds a contradiction, we backtrack. We add the
constraints that we find with the Constraint Propagation to the node.

In all three types of algorithms, we use local search to find an initial upper bound before
traversing the search-tree (Section 9.1). We use the same upper bound for each of the
algorithms to have a fairer comparison.

38

10 Experimental settings

We conduct the experiments on a computer with 16 GB RAM, windows 10 OS and a
Ryzen 5 3600 processor. We implemented the different algorithms using Python 3.9.13.

The first experiment consists of testing all of the new branching schemes for each bench-
mark and comparing them with each other. For each benchmark instance, we first
perform simulated annealing so that all of the branching schemes start with the same
initial upper bound. For each test, we report the initial upper bound, the time it takes
the algorithm to find the optimum solution and the number of branches it needs to find
this optimal solution. If an algorithm does not find the optimum because of a timeout,
we report that it timed out and report the best found solution so far.

For the second experiment, we use (a selection of) the newly created branching schemes
(Section 8) and compare them with the branching scheme of Smith and Cheng [13] im-
plemented as a Branch-and-bound algorithm (without Constraint Propagation) and as
a Constraint Programming algorithm (without bounding).

In the third experiment, we test different algorithms based on the PAEB branching
scheme. We test how well the PAEB works when we sort the candidates in the opposite
order in each branch, and we test the performance of two variants of the PAEB algo-
rithms: sorting the candidates from biggest to smallest tail qi, and sorting the candidates
from biggest to smallest qi − ri.

In the fourth experiment, we test different Edge-finding branching schemes, and test
if it makes a difference if we take a different function to determine what combination
of activity and set of activities we take. We test for combinations of “closest to edge”
and “gaining the most”. Where closest to edge has the highest ub − Scorec,Ω and with
gaining the most is the combination for which, after we create a branch, the head of
Ac will increase the most. We also test the influence of using Theorem 5 when using a
branching scheme based on the Edge-finding score.

In the fifth experiment, we test if changing the propagation order has any influence
on the performances of the algorithms.

10.1 benchmarks

The benchmarks that we use to test the different branching schemes on are: abz05,
abz06 [1], ft06, ft10, ft20 [15], la01-la22, la24-la26,la28,la30,la35,la37,la40 [17] and orb01-
orb10 [2].

39

11 Results and Discussion

For the initial upper bounds that we found with local search and the optimal solutions
for each benchmark instance, see Appendix A. The results for JDEB in table 7 chooses
the branch where the edge-finding propagation increases the head or tail of an activity
the most and it does use the technique of Theorem 5. SC is the branching algorithm
of Smith and Cheng [25] that chooses the ordering of a pair of activities that is closest
to being imposed by the Disjunctive Constraint Propagation. “\P” denotes that an
algorithm does not use the Constraint Propagation techniques. “\B” denotes that an
algorithm does not calculate a lower bound in each node of the search tree. MDSB/JDSB,
JDEB, FPA and PAEB are the algorithm described in Sections 8.1.2, 8.2.2, 8.4 and 8.3
respectively.

Table 7: Results of the new BB + CP algorithms and comparison between BB, BB+CP
and CP. For each benchmark instance, the time it takes the algorithm to find an optimal
solution and prove that it is optimal is given in seconds (with decimals). If the algorithm
does not find an optimal solution after 5 minutes, we report the best solution found so
far (as a whole number). The best result for each instance is in bold (fastest time or
best non-optimal solution). A ‘*’ denotes that an algorithm was able to find an optimal
solution, but did not prove its optimality within the time limit.

Instance SC SC\P SC \B MDSB JDSB JDEB FPA PAEB PAEB\P PAEB\B
abz05 1263 - 1263 1242 1272 1262 1236 1268 1268 1268
abz06 24.67 - 23.35 10.68 105.66 29.82 53.50 - - -
ft06 0.017 1.960 0.023 0.016 0.021 0.027 0.051 0.031 0.487 0.031
ft10 967 - 967 987 1006 972 984 1061 - 1061
ft20 1180 1350 1180 1388 1388 1207 - 1410 - 1410
la01 0.126 - 0.127 0.089 0.078 0.125 0.505 0.065 - 0.065
la02 0.629 689 1.42 0.843 10.76 2.30 19.23 666 841 666
la03 3.92 653 3.90 3.94 9.22 15.81 17.28 625 - 625
la04 5.60 619 5.56 5.66 28.37 5.81 18.08 600 - 600
la05 0.232 0.048 0.250 0.085 0.109 0.273 0.247 0.065 0.096 0.065
la06 3.34 - 3.37 3.57 2.57 4.66 11.24 0.221 - 0.222
la07 11.89 970 11.92 53.50 934 23.20 921 915 - 915
la08 0.659 - 0.669 1.59 0.631 0.632 5.31 - - -
la09 5.837 0.602 5.92 2.68 24.80 5.50 5.69 0.237 - 0.238
la10 38.56 - 39.33 2.84 4.58 4.03 10.73 0.237 - 0.221
la11 6.45 - 6.38 38.86 4.00 9.54 39.07 - - -
la12 62.59 - 25.00 23.90 34.82 65.80 59.62 77.96 - 77.10
la13 51.95 - 52.84 21.76 - 180.67 49.67 - - -
la14 28.72 14.30 28.14 8.67 8.05 35.49 50.06 - - -
la15 227.01 1246 232.53 1212 1246 237.53 1251 - - -
la16 979 - 979 964 975 979 979 974 - 974
la17 5.20 - 5.12 15.97 66.75 1.32 26.68 792 - 792

40

Continuation of Table 7

Instance SC SC\P SC \B MDSB JDSB JDEB FPA PAEB PAEB\P PAEB\B
la18 75.49 - 73.13 - - 32.68 150.85 879 - 879
la19 181.83 - 176.81 143.10 842* 220.93 287.698 855 892 855
la20 916 - 916 907 942 127.88 909 929 - 929
la21 - - - 1131 - 1116 1130 - - -
la22 1004 1038 1004 1053 - 962 - - - -
la24 1026 - 1026 - - 1025 - - - -
la25 1085 - 1085 1085 1085 1039 1091 - - -
la26 - - - 1349 - - - - - -
la28 1367 - 1367 - - 1416 - - - -
la30 - - - 1536 1533 - 1535 - - -
la35 - - - 2042 2042 2037 - - - -
la36 1370 - 1370 - - 1344 - - - -
la37 - - - - - - 1480 - - -
la39 - - - - - 1323 - - - -
la40 1282 - 1282 - - 1318 1323 - - -
orb01 1099 1140 1099 1138 1199 1099 1195 1231 - 1231
orb02 925 - 925 889 888* 925 889 940 - 940
orb03 1087 - 1087 1136 1149 1096 1087 - - -
orb04 192.518 1098 185.989 1094 1066 231.36 1078 1066 - 1066
orb05 906 - 906 952 972 891 - 938 - 938
orb06 1071 - 1071 1081 1093 1072 1096 1102 - 1102
orb07 409 - 409 261.184 416 404 397* 420 - 420
orb08 934 1032 934 959 1043 50.37 - 1042 - 1042
orb09 939 992 939 943 987 969 943 971 - 971
orb10 3.54 - 3.31 6.13 21.60 3.89 40.22 - - -

We see in Table 7 that the difference between Constraint Programming and Constraint
Programming combined with Branch-and-bound (Column 1 and 3 or Column 8 and 10
in Table 7) is quite small. We expected the bounding to have a positive outcome on the
time complexity of the algorithms, but in reality it seems to not matter much and it
even slows the algorithms down in some cases (la02,la12,orb10 for SC). For PAEB, there
seems to be less of an influence of using bounding in each node as the values of Column
8 and 10 are very close to each other for all of the benchmarks.

A possible reason for the influence of bounding being so small is that we use the JPS to
find lower bounds for each branch while the edge-finding propagation is also calculated
using the JPS. Edge-finding works by calculating the JPS for each subset of activities
for a machine and it tries to find activities that must be executed at the border of one of
these subsets. Naturally, we also consider the JPS for all of the activities of a machine
and when this goes over the current upperbound, we have found a dead-end that is equal
to the dead-end we would have found using the preemptive one-machine lower bound

41

in the Branch-and-bound algorithms. For the Branch-and-bound algorithms, we also
consider the full one-machine subproblem as a relaxation if the JPS gives a lower bound
close to the upper bound. This might be the reason why Constraint Programming with-
out Branch-and-bound is faster than Constraint Programming with Branch-and-bound
for some of the instances. The full one-machine subproblem takes a significant amount
of time and if it does not gain a lot of information (dead-ends), then it might slow the
algorithm down.

Using the propagation has a very big effect on the speed of the algorithms. In all cases,
except la05, la09 and la14 for SC, the SC algorithm with Constraint Programming was
faster than SC without Constraint Programming or it was able to find solutions where
SC\ P timed out after 5 minutes. SC without Constraint Programming was able to
find an optimal solution for 4 out of 47 benchmark instances (ft06, la05, la09 and la14),
while SC with Constraint Programming was able to an optimal solution for 22 out of 47
benchmark instances and in 26 out of 47 instances, SC was able to find a (sub-optimal)
solution where SC\ P was not able to find a solution for its starting upper bound at all.

PAEB without Constraint Programming was able to find an optimal solution for 2 out
of 47 instances, while PAEB with Constraint Programming was able to find an optimal
solution for 7 out of 47 instances. The 2 instances for which PAEB\ P was able to find
an optimal solution used 15.7 (ft06) and 1.5 (la05) times as many seconds as PAEB. In
22 out of 47 cases, PAEB was able to find a (sub-optimal) solution where PAEB\ P was
not able to find any solution for its starting upper bound at all.

PAEB with Constraint Programming (with and without bounding combined) was the
fastest algorithm for 4 out of 47 benchmark instances (la01, la06,la09 and la10) but in
other instances (la02-04,la07,la08 la11-15), it was among the slowest of algorithms.

The algorithms MDSB and JDSB have some benchmarks where they are the fastest
(abz06, ft06, la08, la11-14, la16, la19 and orb07) and MDSB was the only algorithm
that found the optimal solution for orb07 within 5 minutes. JDEB works well for the
instances la17,la18,la20-25, la26, la39, orb05 and orb08 where it was either the fastest
algorithm that we tested, or it found the best (sub-optimal) solution out of all the
algorithms.

42

Table 8: For each benchmark instance, the number of branches the algorithms of table 7
needed to find an optimal solution is reported. If an algorithm did not find an optimal
solution after 5 minutes, we report nothing. For each instance, the results of the algo-
rithm that uses the lowest number of branches is in bold. Benchmark instances where no
algorithm found an optimum are left out.

Instance SC SC\P SC \B MDSB JDSB JDEB FPA PAEB PAEB\P PAEB\B
abz06 6550 - 6550 1878 22821 6547 2576 - - -
ft06 10 29571 10 7 16 11 8 39 5777 39
la01 55 - 57 25 19 48 20 51 - 51
la02 296 - 844 202 2487 1240 981 - - -
la03 1561 - 1563 1376 2806 5165 1280 - - -
la04 2475 - 2475 2437 15071 1503 1041 - - -
la05 125 207 127 34 26 126 18 51 366 51
la06 218 - 220 135 72 252 60 76 - 76
la07 3158 - 3160 4962 - 5377 - - - -
la08 215 - 217 108 102 179 35 - - -
la09 539 927 541 62 2003 189 29 76 - 76
la10 3140 - 3142 95 85 212 57 76 - 76
la11 473 - 475 1494 143 417 65 - - -
la12 534 - 536 176 343 528 68 6385 - 6385
la13 516 - 518 173 - 2092 66 - - -
la14 459 740 461 162 207 487 77 - - -
la15 10972 - 10992 - - 8814 - - - -
la17 976 - 976 3905 15867 227 1501 - - -
la18 15420 - 15420 - - 8076 8785 - - -
la19 40162 - 40162 30395 - 48196 11882 - - -
la20 - - - - - 47641 - - - -
orb04 38507 - 38507 - - 50134 - - - -
orb07 - - - 53540 - - - - - -
orb08 - - - - - 7425 - - - -
orb10 440 - 440 715 3230 623 652 - - -

In Table 8, we see that FPA uses the least number of branches in almost all instances
where it is able to find the optimal solution. However, if we look at the time it takes to
find these solutions in Table 7, we see that it is slow compared to the other algorithms.
This was to be expected because FPA uses a lot of computation to find the next branch
in each node.

43

In the instances la05, la09 and la14, SC\P was able to find an optimal solutions while
using less than double the number of branches of SC. These are also the only three
instances where SC\P is faster than SC. In the instances la05, la09 and la14, SC find
a total of 120, 1422 and 2512 disjunctive constraints respectively while doing the tree-
search. It appears that in these three instances, the branching structure of Smith and
Cheng is very good at finding the right branches to choose and even though the Disjunc-
tive Constraint Propagation is able to find a lot of branches without having to make a
choice, this is more costly than simply choosing the right branches. ft06 is the smallest
benchmark instance that we tested on (6×6). The number of branches needed by SC\P
to find an optimal solution is 2957 times as much as the number of branches needed by
SC.

During the testing of the PAEB algorithm, we noticed that when we sort the candi-
dates from lowest JPS-score to highest JPS-score, the algorithm would perform better
for some of the benchmark-instances. Therefore, we included the results of the Reversed
PAEB (R-PAEB) in Table 9. Also, because the activity with the highest JPS-score is
often equal to the activity with the biggest tail, we tested the simple heuristic of sorting
the candidates from biggest tail to smallest tail in each node. We refer to this branching
algorithm as Plan Activity Tail Branching (PATB) and we also included it in Table 9.
Finally, because the JPS-score of an activity with a relatively small head and a large
tail will be relatively high, we implemented a similar heuristics that sorts the candidates
from biggest to smallest qi − ri value. We refer to this branching algorithm as Plan Ac-
tivity Head-Tail Branching (PAHTB). The performances of the PAEB, R-PAEB, PATB
and PAHTB algorithms are shown in Table 9.

44

instance PAEB R-PAEB PATB PAHTB

abz5 1268 1249 1236 1248
abz6 - 967 975 975
ft06 0.031 0.026 0.026 0.030
ft10 1061 1025 1046 1046
ft20 1410 1369 1190 75.12
la01 0.065 0.127 0.059 0.066
la02 666 663 666 666
la03 625 10.61 19.26 20.56
la04 600 199.50 590* 590*
la05 0.065 0.078 0.055 0.064
la06 0.221 0.253 0.153 0.169
la07 915 5.91 5.82 4.30
la08 - 0.205 0.208 0.218
la09 0.237 0.191 0.163 0.181
la10 0.237 0.222 0.155 0.171
la11 - 0.503 0.367 0.400
la12 77.96 0.472 0.372 0.413
la13 - 0.486 0.366 0.407
la14 - 0.441 0.339 0.377
la15 - 1250 11.47 7.50
la16 974 973 975 973
la17 792 14.39 792 792
la18 879 885 854 854

instance PAEB R-PAEB PATB PAHTB

la19 855 851 864 854
la20 929 922 915 915
la21 - - 1133 1132
la22 - - 1032 1025
la24 - 1017 1025 1004
la25 - - 1062 1073
la26 - - 1350 1347
la28 - 1367 - 1312
la30 - 1473 1422 1403
la35 - 2026 1944 183.22
la36 - - - 1341
la37 - - - 1465
la39 - - - 1323
orb01 1231 1254 1266 1224
orb02 940 943 917 917
orb03 - - 1169 1150
orb04 1066 1078 1039 1041
orb05 938 968 932 947
orb06 1102 - - -
orb07 420 - 415 415
orb08 1042 - 1014 950
orb09 971 964 986 986

Table 9: Comparison between the PAEB, R-PAEB, PATB and PAHTB algorithms. Here
decimal numbers denote the time it takes an algorithm to find an optimum and whole
numbers denote the best score found after 5 minutes if an optimum was not found. If
an algorithm was not able to find any solution after 5 minutes, we report nothing. For
each instance, the best result is in bold. A ‘*’ denotes that an algorithm was able to find
an optimal solution, but not prove that it is optimal.

Surprisingly, we see in Table 9 that using the reversed PAEB algorithm outperforms the
normal PAEB algorithm in 26 out of 45 benchmark instances, they perform the same in
8 out of 45 instances and PAEB is faster or finds a better solution in the remaining 11
instances. A possible explanation why R-PAEB performs better than PAEB is that it
is possible that in most branches, neither of the heuristics chooses the best activity to
schedule in first. With R-PAEB, we choose the branch which results in the least compact
schedules. By doing this, we follow a path in the search tree for which the makespan
of different machines are getting close to the upper bound much faster, thus we either
get new information from the Constraint Propagation, or we find a dead-end. Suppose
there are three choices of activities A1, A2 and A3 to schedule in before the others and
they are ordered by some heuristic. Then, if in an optimal solution, A2 is processed first;

45

if we first explore the branch where we choose A3, we might get to the branch where
we choose A2 sooner than if we would have chosen A1 first because the branch with A3

results in a dead-end sooner. Now, the algorithm still has to prove the optimality of the
solution by traversing the rest of the search-tree, but because the less-compact choice of
R-PAEB leads to a new upper bound sooner than the compact PAEB, we get to use the
new upper bound in the rest of the search-tree. This argument is strengthened by the
following: for all of the benchmark instances where we get big differences between the
performance of PAEB and R-PAEB (la03, la07, la08, la11, la12, la13, la14 and la17),
starting a search from the value of an optimal solution minus 1 will result in a dead-end
very fast (see Table 10).

Algorithm la03 la07 la08 la11 la12 la13 la14 la17

PAEB
C 0.181 1.28 - - - - - 13.78
C − 1 0.003 0.001 0.003 0.001 0.002 0.000 0.002 10.56

R-PAEB
C 0.079 0.290 0.266 0.606 0.581 0.608 0.538 10.725
C − 1 0.003 0.001 0.002 0.000 0.002 0.001 0.002 10.38

Table 10: Comparison between an initial upper bound of C (optimum) and C − 1 for
the different benchmarks where PAEB and R-PAEB perform unexpected. Here C is the
known optimum (see Table 13 in Appendix A).

Not only do the algorithms R-PAEB, PATB and PAHTB outperform the PAEB algo-
rithm, they also perform very well compared to the other algorithms of Table 7. In 22
out of 47 instances (abz05, ft20, la01, la05-15 la24, la26, la28, la30, la35-37 and la39),
PAHTB outperforms all of the algorithms of Table 7 and PAHTB was the only algo-
rithm of the once that we tested which found an optimal solution for the instances ft20
and la35. For other instances (abz6, la02, la03, la04, la18, la19 and most of the orb01-
10 instances) PAEB, R-PAEB, PATB and PAHTB were among the worst performing
algorithms of the once that we tested. A possible reason why this PAHTB algorithm
(combined with Constraint Programming) works so well compared to the other algo-
rithms is that the PAEB algorithm (and variants) and the Constraint Programming
techniques are able to omit parts of the search space (see Section 4.1.2). Different than
Constraint Programming and Branch-and-bound, the parts of the search-space that we
omit with the PAEB are not found by calculating the JPS.

In Table 11, we compare the variant of JDEB that chooses the combination of an activity
and a set of activities with the highest score, with the variant of JDEB that branches
on the activity for which the head or tail of the activity increases the most after branch-
ing. And we compare the JDEB that uses Theorem 5 with JDEB which does not use
Theorem 5.

46

Instance Score + Thm.5 Increase + Thm.5 Score Increase

abz06
time(s) 27.05 29.82 944 14.68
branches 6459 6547 - 2773

ft06
time(s) 0.033 0.027 0.022 0.037
branches 20 11 9 31

la01
time(s) 0.159 0.125 0.335 0.154
branches 37 48 103 43

la02
time(s) 1.89 2.30 9.74 2.29
branches 922 1240 5788 1335

la03
time(s) 22.59 15.81 68.01 3.47
branches 8467 5165 25911 1174

la04
time(s) 2.44 5.81 31.45 4.82
branches 829 2503 13932 1953

la05
time(s) 0.275 0.273 0.302 0.141
branches 124 126 53 62

la06
time(s) 4.84 4.66 3.84 3.95
branches 245 252 299 236

la07
time(s) 25.24 23.20 966 12.30
branches 4965 5377 - 2727

la08
time(s) 0.645 0.632 7.44 8.07
branches 165 179 986 355

la09
time(s) 5.60 5.50 7.79 7.52
branches 226 189 214 483

la10
time(s) 3.99 4.03 3.50 3.71
branches 213 212 149 172

la11
time(s) 22.58 9.54 17.65 -
branches 402 417 267 -

la12
time(s) 65.82 65.80 63.00 62.22
branches 528 528 533 540

la13
time(s) 39.52 180.67 52.62 -
branches 320 2092 427 -

la14
time(s) 44.41 35.49 42.20 46.45
branches 487 487 408 607

la17
time(s) 3.40 1.32 22.19 33.20
branches 622 227 4816 7960

la18
time(s) 31.12 32.68 878 15.69
branches 8097 8076 - 3206

la19
time(s) 238.62 220.93 846 172.02
branches 55010 48196 - 31158

orb10
time(s) 5.68 3.89 944* 34.61
branches 928 623 - 3736

Table 11: Results of comparison between using edge-score to choose a branch and using
the number of units the head or tail of an activity increases to choose a branch. And
the comparison between using and not using Theorem 5. The time values with decimals
denote the time it takes the algorithm to find an optimal solution in seconds. The whole
numbers denote the best solution found after the time out of 5 minutes. The best result
for each instance is in bold. A ‘*’ denotes that an algorithm was able to find an optimum
but not prove its optimality.

47

In 7 out of 20 cases, not using Theorem 5 and picking the combination of activity and set
of activities for which we gain the most increase in head or tail is the fastest. In 7 out of
20 cases using Theorem 5 and branching on the amount of increase in head or tail is the
fastest. Branching on the amount of increase has a little advantage over branching on
the edge-score, but this advantage seems to be very dependant on the benchmark that
we test the different branching rules on. If we look at instance la04, we see that using
Theorem 5 has a very positive effect if we branch on the edge-score (2.44 seconds and
31.45 seconds), but if we branch on how much a head or tail increases, we see a (small)
negative effect in using Theorem 5 (5.81 seconds versus 4.82 seconds), so apparently the
combination of branching based on edge-score and using Theorem 5 is what makes this
scheme faster for this instance.

In Table 12, we compare the different orders of executing the propagation rules. We
have:

• de+lw : for each machine, first perform Disjunctive Constraint Propagation un-
til it stops finding new constraints, then for each machine perform Edge-finding
Propagation until it finds no new constraints.

• ed + lw : for each machine, first perform Edge-finding Propagation until it finds
no new constraints, then for each machine perform the Disjunctive Constraint
Propagation until it find no new constraint.

• de+lo: for each machine, perform Disjunctive Constraint Propagation followed by
Edge-finding until no new constraints are found.

• ed+lo: for each machine, perform Edge-finding followed by Disjunctive Constraint
Propagation until no new Constraint are found.

For the tests of Table 12, we use the SC algorithm that uses both bounding and propa-
gation.

48

instance de+lw ed+lw de+lo ed+lo

abz6 23.64 21.24 26.11 26.44
ft06 0.017 0.016 0.020 0.019
la01 0.125 0.119 0.130 0.120
la02 1.46 1.38 1.48 1.30
la03 3.71 3.47 3.98 3.84
la04 5.90 5.64 6.04 5.90
la05 0.253 0.243 0.247 0.242
la06 3.47 3.44 3.45 3.31
la07 9.00 8.98 9.10 8.70
la08 0.672 0.630 0.650 0.634
la09 6.02 5.85 5.97 5.72
la10 39.99 35.77 38.33 36.49
la11 6.44 6.32 6.36 6.21
la12 63.89 62.57 62.62 60.44
la13 53.37 54.49 53.02 52.29
la14 28.64 28.54 28.90 27.75
la17 5.29 4.91 5.56 5.79
la18 76.10 60.92 78.21 81.03
la19 182.63 156.68 190.16 200.90
orb04 182.14 154.23 186.00 199.25
orb10 3.49 3.24 3.64 3.68

Table 12: Time in seconds it takes the SC algorithm for each benchmark for different
orders of propagation. The best result for each instance is in bold.

In 20 out of 21 instance ed+lw is faster than de+lw. In 15 our of 21 instances, ed+lo
is faster than de+lo. In 13 out of 21 instances, de+lw is a than de+lo. In 12 out of
21 instances, ed+lw is than ed+lo. The differences within each benchmarks are not
very significant, but the fact that ed performs better than de in more than 71% for
both lw and lo implies that performing Edge-finding and then Disjunctive Constraint
Propagation is a little faster than doing it the other way around.

49

12 Conclusions

In this thesis, we set out to find what the effects of combining Branch-and-bound and
Constraint Programming are for the Job Shop Problem. We started by finding out what
techniques are used in the literature and used these as building blocks for our own al-
gorithms. We found different Constraint Programming techniques in the literature and
used the Constraint Programming rules to create new branching heuristics. By using
branching rules which find orderings or activities that are close to being imposed by the
propagation rules, we created algorithms whose goal is to gain the most information out
of each branch and thereby reducing the size of the search tree. We then implemented
the different algorithms and compared their performance on different benchmarks in-
stances.

The goal was to find algorithms which reduce the speed of traversing a search-tree for
the JSP by reducing its size. For most benchmarks and for most algorithms, reducing
the size of the search-tree seemed to indeed speed up the algorithms. For the FPA algo-
rithm, which uses Constraint Propagation for each possible choice of orderings between
two pairs, we saw that we get relatively small search trees, but this algorithm is one
of the slowest among the ones that we tested in most benchmarks. This tells us that
reducing the search-tree is a good thing, but using too many calculations to reduce the
search-tree might be more costly than the amount of time we gain by making it smaller.
We see the same thing in benchmarks la05, la09 and la14, where the SC algorithm uses
125, 539 and 459 branches with propagation and 207, 927 and 740 branches without
propagation. These are the only three cases where using Constraint Programming is not
beneficial because in these cases, the calculation costs for the Constraint Propagation
outweigh the gains we get for reducing the search tree.

We found that adding Constraint Propagation to a Branch-and-bound algorithm speeds
up the algorithm by a lot for both SC and PAEB and our recommendation would be that
any exact method for the JSP should contain at least some of these Constraint Propa-
gation techniques. Adding the bounding after each node to a Constraint Programming
approach does not give much of an advantage to the Constraint Programming algo-
rithms since this is already being done by the edge-finding propagation and we would
recommend to let the bounding be done by the different Constraint Propagation tech-
niques. The Constraint Propagation techniques give bounds that are lower than the
bounds for the (full) one-machine subproblem, but they are faster to compute and by
doing the Constraint Propagation, we get these bounds “for free”: they require no extra
computation.

50

We saw that different algorithms work well on different benchmarks and that these dif-
ferences can be quite big. Where PAHTB was the fastest algorithm in some instances,
it would be among the slowest for other instances. The three different algorithms SC,
JDEB and PAHTB all have different instances where they outperform the others and
together they use all three different kinds of branching (fixing ordering, planning activity
or splitting start-interval), thus we think that a combination of these different algorithms
might improve the performances.

We also tested the impact that Theorem 5 has on the performance of the JDEB al-
gorithm. We saw that it does change the time it takes the JDEB algorithm to find
optima, but it does not improve the performance of the algorithm in all benchmarks.
Branching on how much a head or tail of an activity increases after the edge-finding im-
posed by increasing the head or tail of some activity seems to work better than branching
based on how close an activity is to being put on the edge of a set of activities by the
edge-finding propagation(14 out of 20 instances) but not in all instances.

12.1 Future work

There are still some improvements that can be made for the implementation of the solver.
Now, we only consider Edge-finding and Disjunctive Constraint Propagation, but this
could be extended with the other propagation rules from Section 5. The new branching
structures that were created are also based only on Disjunctive Constraint Propaga-
tion and Edge-finding, so considering the other propagation rules might result in new
branching structures. We could optimize some of the code that was written, for instance,
we could use the information that we get from a dead-end to determine what combina-
tion of constraints is causing the dead-end and use this information in different branches.

If the window of executing of an activity Ai is smaller than 2pi, then we know Ai should
execute in the interval [ub − qi − pi, ri + pi] and its machine is thus occupied in this
time window. In the current implementation, we only considered the arc-B-consistency
(Section 4) of the activities, thus by creating these holes in the windows of execution of
the intervals, we might be able to gain some information.

In the tests we did in this thesis, we limited the time to 5 minutes for each combi-
nation of algorithm and benchmark instance because there were a lot of algorithms to
test on a lot of benchmark instances to test them on. We would like to increase this
time and test for other (bigger) benchmark instances so that we have more data points
to compare the algorithms on. Especially the bigger instances which require multiple
hours to solve might give more inside on what the different algorithms are good at.

51

The different algorithms performed very different by the different benchmarks. Thus
to always use the same algorithm would not be optimal. If we could estimate what
algorithm would work best on given benchmark before having to run the entire instance,
we could then make a choice on what algorithm we would want to use. Some research
could be done to classify benchmark instances before using the algorithms on them. For
instance, we could create a measure of how much an instance is like a flow shop problem
or how much the different machines are alike. One can imagine that the PAEB algorithm
works very well if the consecutive cut contains activities for all of the different machines
since it makes the number of options in a node smaller.

52

References

[1] Adams, J., Balas, E., and Zawack, D. The shifting bottleneck procedure for
job shop scheduling. Management science 34, 3 (1988), 391–401.

[2] Applegate, D., and Cook, W. A computational study of the job-shop scheduling
problem. ORSA Journal on computing 3, 2 (1991), 149–156.

[3] Baptiste, P., and Le Pape, C. A theoretical and experimental comparison of
constraint propagation techniques for disjunctive scheduling. In IJCAI (1) (1995),
Citeseer, pp. 600–606.

[4] Baptiste, P., Le Pape, C., and Nuijten, W. Constraint-based scheduling:
applying constraint programming to scheduling problems, vol. 39. Springer Science
& Business Media, 2001.

[5] Barker, J. R., and McMahon, G. B. Scheduling the general job-shop. Man-
agement Science 31, 5 (1985), 594–598.

[6] Beck, J. C. Solution-guided multi-point constructive search for job shop schedul-
ing. Journal of Artificial Intelligence Research 29 (2007), 49–77.

[7] Beck, J. C., Feng, T., and Watson, J.-P. Combining constraint programming
and local search for job-shop scheduling. INFORMS Journal on Computing 23, 1
(2011), 1–14.

[8] Brucker, P., Jurisch, B., and Sievers, B. A branch and bound algorithm
for the job-shop scheduling problem. Discrete applied mathematics 49, 1-3 (1994),
107–127.

[9] Carlier, J., and Pinson, É. An algorithm for solving the job-shop problem.
Management science 35, 2 (1989), 164–176.

[10] Carlier, J., and Pinson, E. A practical use of jackson’s preemptive schedule for
solving the job shop problem. Annals of Operations Research 26, 1 (1990), 269–287.

[11] Carlier, J., and Pinson, E. Adjustment of heads and tails for the job-shop
problem. European Journal of Operational Research 78, 2 (1994), 146–161.

[12] Caseau, Y., and Laburthe, F. Improved clp scheduling with task intervals. In
ICLP (1994), Citeseer, pp. 369–383.

[13] Cheng, C.-C., and Smith, S. F. Applying constraint satisfaction techniques to
job shop scheduling. Annals of Operations Research 70 (1997), 327–357.

[14] Colombani, Y. Constraint programming: an efficient and practical approach
to solving the job-shop problem. In International Conference on Principles and
Practice of Constraint Programming (1996), Springer, pp. 149–163.

53

[15] Fisher, H. Probabilistic learning combinations of local job-shop scheduling rules.
Industrial scheduling (1963), 225–251.

[16] Florian, M., Trepant, P., and McMahon, G. An implicit enumeration al-
gorithm for the machine sequencing problem. Management Science 17, 12 (1971),
B–782.

[17] Lawrence, S. Resouce constrained project scheduling: An experimental investiga-
tion of heuristic scheduling techniques (supplement). Graduate School of Industrial
Administration, Carnegie-Mellon University (1984).

[18] Martin, P., and Shmoys, D. B. A new approach to computing optimal sched-
ules for the job-shop scheduling problem. In International Conference on Integer
Programming and Combinatorial Optimization (1996), Springer, pp. 389–403.

[19] Nowicki, E., and Smutnicki, C. An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling 8, 2 (2005), 145–159.

[20] Nowicki, E., and Smutnicki, C. Some new ideas in ts for job shop scheduling.
In Metaheuristic Optimization via Memory and Evolution. Springer, 2005, pp. 165–
190.

[21] Nuijten, W. P., and Aarts, E. H. A computational study of constraint satisfac-
tion for multiple capacitated job shop scheduling. European Journal of Operational
Research 90, 2 (1996), 269–284.

[22] Pardalos, P. M., Shylo, O. V., and Vazacopoulos, A. Solving job shop
scheduling problems utilizing the properties of backbone and “big valley”. Compu-
tational Optimization and Applications 47, 1 (2010), 61–76.

[23] Philipoom, P. R., and Fry, T. D. The robustness of selected job-shop dis-
patching rules with respect to load balance and work-flow structure. Journal of the
Operational Research Society 41, 10 (1990), 897–906.

[24] Plotkin, S. A., Shmoys, D. B., and Tardos, É. Fast approximation algorithms
for fractional packing and covering problems. Mathematics of Operations Research
20, 2 (1995), 257–301.

[25] Smith, S. F., and Cheng, C.-C. Slack-based heuristics for constraint satisfaction
scheduling. In AAAI (1993), pp. 139–144.

[26] Sotskov, Y. N., Tautenhahn, T., and Werner, F. On the application of
insertion techniques for job shop problems with setup times. RAIRO-Operations
Research-Recherche Opérationnelle 33, 2 (1999), 209–245.

[27] Sourd, F., and Nuijten, W. Multiple-machine lower bounds for shop-scheduling
problems. INFORMS Journal on Computing 12, 4 (2000), 341–352.

54

[28] Teppan, E., and Da Col, G. Automatic generation of dispatching rules for large
job shops by means of genetic algorithms. In CIMA@ ICTAI (2018), pp. 43–57.

[29] van Hoorn, J. Jobshop instances and solutions. http://jobshop.jjvh.nl/. Accessed
on: 2022-07-16.

[30] Van Laarhoven, P. J., Aarts, E. H., and Lenstra, J. K. Job shop scheduling
by simulated annealing. Operations research 40, 1 (1992), 113–125.

[31] Vandevelde, A., Hoogeveen, H., Hurkens, C., and Lenstra, J. K. Lower
bounds for the head-body-tail problem on parallel machines: a computational study
of the multiprocessor flow shop. INFORMS Journal on Computing 17, 3 (2005),
305–320.

[32] Werner, F., and Winkler, A. Insertion techniques for the heuristic solution of
the job shop problem. Discrete applied mathematics 58, 2 (1995), 191–211.

[33] Zhang, C. Y., Li, P., Rao, Y., and Guan, Z. A very fast ts/sa algorithm for
the job shop scheduling problem. Computers & Operations Research 35, 1 (2008),
282–294.

55

Appendix A: Initial upper bounds and optima.

Table 13: Initial upper bound and optimal solutions for all of the benchmark instances
that we used in Section 11. The optima where obtained from [29].

instance init. ub optimum

abz05 1276 1234
abz06 976 943
ft06 55 55
ft10 1074 930
ft20 1410 1165
la01 666 666
la02 977 655
la03 653 597
la04 644 590
la05 593 593
la06 926 926
la07 985 890
la08 863 863
la09 951 951
la10 958 958
la11 1222 1222
la12 1039 1039
la13 1150 1150
la14 1292 1292
la15 1251 1207
la16 979 945
la17 795 784
la18 891 848
la19 893 842

Continuation of Table

instance init. ub optimum

la20 953 902
la21 1136 1046
la22 1055 927
la24 1027 935
la25 1092 977
la26 1350 1218
la28 1417 1216
la30 1536 1355
la35 2042 1888
la36 1371 1268
la37 1480 1397
la39 1323 1233
la40 1324 1222
orb01 1270 1059
orb02 945 888
orb03 1170 1005
orb04 1099 1005
orb05 981 887
orb06 1102 1010
orb07 429 397
orb08 1048 899
orb09 1012 934
orb10 944 944

56

	Introduction
	Job Shop Problem
	Definitions
	Constraint Programming

	Approximation Methods
	Shifting bottleneck approach
	Tabu search
	Simulated annealing

	Branch-and-bound
	Branching schemes
	Choosing an ordering
	Assigning a start time

	Bounds

	Constraint programming
	Propagation techniques
	Disjunctive Constraint Propagation
	Edge-finding
	Not-first, Not-last
	Unnamed propagation
	Multi-machine propagation
	Shaving

	Research questions
	Methodology
	New branching schemes
	Slack-based branching
	Increasing head or tail based on slack
	Fixing disjunctions

	Edge-finding score
	Increasing head or tail to impose Edge-Finding
	Fixing disjunctions to impose Edge-Finding

	Selecting an activity
	Amount of propagation

	Implementation
	Upper bounds
	Lower bounds
	Branching
	Selecting an ordering
	Increasing head or tail
	Scheduling an activity

	Constraint Propagation
	Backtracking
	Leaves
	Branching strategies

	Experimental settings
	benchmarks

	Results and Discussion
	Conclusions
	Future work

	References

