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Abstract

Recently, a model for tidal waves in shallow areas has been reconsidered [Wal21], previously studied in
[RZ92; BRZ94]. The goal was to study mixing and transport due to chaotic motion in the periodic
Poincaré map. In this thesis, the study of this system is continued, shifting, however, the focus to regu-
lar instead of chaotic motion. Regular motion has been studied using Liouville (complete) integrability,
action-angle coordinates and KAM theorems (we do not consider Nekhoroshev type theorems).

The Hamiltonian of the unperturbed tidal wave system is equal to H0(q, p) = cos(p) + η cos(q) for η ∈ R
and (q, p) ∈ R2. Since this system is planar, it is Liouville integrable and a first result of this thesis
is the explicit form of the action angle coordinates of the unperturbed tidal wave system in Section 3.
Furthermore, from a mathematical viewpoint the tidal wave system is also interesting, as it is the natural
third example in the sequence:

Harmonic oscillator: p2 + ηq2 pendulum: cos(p) + ηq2, tidal wave system: cos(p) + η cos(q)

and therefore presents an interesting problem to test KAM theory.

The perturbed system tidal wave system is a periodically perturbed planar Hamiltonian system with
Hamiltonian H = H0(q, p)+µH1(q, p, t), so H1 is periodic in t (1+1/2 d.o.f.), where µ is small. A second
result (Section 3.3) is a proof of existence of persistent invariant tori in the periodic Poincaré map (see
[Wal21]) using a KAM theorem for (quasi)-periodically perturbed systems [JS96; BSG03; Sev07].

A focus in [Wal21] was on the numerical side: a splitting method was developed for “time-affine” ODE
(Section 2). Also in this thesis we are much interested in the numerical side: A third result is the proof of
a “numerical” KAM theory for numerically integrated periodically perturbed systems in Section 5, where
the numerical integration is done using a symplectic integrator. This result is based on non-autonomous
backward error analysis i.e. interpolation of symplectic maps by Hamiltonian flows, as considered in
[Moa03; Moa05]. This numerical KAM theorem is not able to prove, for µ ̸= 0, the existence of invariant
tori of the periodic Poincaré map of the symplectically integrated the tidal wave system. Therefore we
present an ‘approximate’ KAM theorem, as in [HLW06] Section X.5, which proves, up to an assumption,
the existence of ‘approximate’ KAM tori in the numerical, periodic Poincaré map over exponentially long
times, which is the final result of this thesis discussed in Section 6.

Finally, we mention that backward error analysis (BEA) is of central importance to this thesis. Indeed in
both the theoretical system as well as the numerically integrated system, the proof of the above mentioned
KAM theorems was through the continuous setting (Kolmogorov/Arnolds setting i.e. flows) and not the
discrete (Mosers setting i.e. symplectic maps) and to this end BEA was used to embed the discrete
symplectic integrator into a Hamiltonian flow. Since BEA explains the well-behavedness of symplectic
integrators applied to autonomous Hamiltonian problems a minor part of this thesis was devoted to the
development of modified equation analysis (a type of BEA) for non-autonomous ODE.
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D Lie-Gröbner series and modified equation analysis for non-autonomous ODE 90
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1 Introduction

1.1 KAM theory and time-dependence in the continuous setting

The phase plane of a harmonic oscillator, described by the Hamiltonian H0(q, p) = 1
2 (p

2 + q2) consists of
invariant circles, Figure 1. More interestingly, when perturbed with a Hamiltonian H1 i.e. considering
H0(q, p) + H1(q, p), numerical experiments seem to indicate that most of these invariant circles are not
destroyed by the perturbation i.e. they persist.

Figure 1: Typical orbits of the harmonica oscillator and the perturbed harmonic oscillator. Made in PPlane
[Cas05].

The phase plane of a pendulum, desctribed by the Hamiltonian H0(q, p) =
1
2q

2 + cos(p), consists locally of
invariant circles, Figure 2 (one can also see unbounded orbits), and, more interestingly, most invariant circles
seem to persist when using a Hamiltonian perturbation as above.

Figure 2: Typical phase plane of the pendulum ad the perturbed pendulum. Made in PPlane [Cas05].

4



The theory that this statement holds more generally for autonomous Hamiltonian systems in higher dimen-
sions is one of the greater mathematical achievements of the of the 20th century in the field of perturbation
theory of Hamiltonian mechanics and is attributed to Kolmogorov (in the late 50s), Arnold and Moser (in
the 60s). Unsurprisingly this theory is coined KAM theory and the main theorem the KAM theorem. The
statement of the KAM theorem was given by Kolmogorov1 and two different strategies for a proof can be
distinguished:

• A proof for (Hamiltonian) flows i.e. a continuous setting given by Arnold in 1963.

• A proof for (symplectic)2 maps i.e. a discrete setting given by Moser in 1962.

Figure 3: Periodic Poincaré map
of the perturbed harmonic oscillator
H0 + µH1 for increasing (downwards)
perturbation strength.

and this strategy was proven equivalent by Douady [Dou82] for
smooth symplectic flows defined by generating functions and maps.
Douady’s strategy was to use Poincaré sections and suspensions, the
usual way (in dynamical systems theory) to relate continuous and
discrete dynamical systems [BS02] and using this strategy he avoided
entirely the consideration of any proof of KAM theory

“Nous nous sommes efforcés de ne jamais faire appel à ces
methodes et de montrer comment utiliser au mieux les
énoncés proposés par la littérature.” – Douady [Dou82]

The main statement of Kolmogorov is that an integrable Hamilto-
nian system H0 (analytic and autonomous), which displays locally
(such as the pendulum) or globally (such as the harmonic oscillator)
a structure of invariant tori, has persistent invariant tori when per-
turbed with an autonomous Hamiltonian H1 analytic and not too big
if H0 satisfies a regularity and strong non-periodicity/non-resonance
condition (see Section 3.2). In the words of Arnold:

“for a small perturbation, [H = H0(q, p) + µH1(p, q)]
(µ ≪ 1), most of the tori [...] do not disappear, but are
merely slightly deformed.” – Arnold [Arn63]

Admittedly, this brief sketch of KAM theory and its history leaves
much to be desired: First of all, there are many others who have
helped, prior to and after the 1950s and ’60s, to construct or extend
KAM theory, for example to settings other than the Hamiltonian one.
Second, exemplifying KAM theory using the harmonic oscillator and
the pendulum is extremely dull (but simple). Indeed it was the three-
body problem and the motion of the planets in our solar system,
studied amongst others by Poincaré, which gave a big impulse to
KAM theory and in this light KAM theory deserves the following,
more impressive question:

“The KAM theorem yields a troubling answer to one of
the oldest questions in celestial mechanics: is the solar
system stable? Will it continue eternally more or less as
we see it today? Or could it be that planetary interac-
tions, between Jupiter and Saturn e.g. will eventually
lead to catastrophes, where certain planets escape from
the Sun, and others collide or fall into the Sun?” – Hub-
bard [Hub07]

1See Section 3.2 for more details and references on the question if Kolmogorov himself provided a proof.
2One can say that symplectic maps are the discrete version of Hamiltonian flows (Section 2.2.2).
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This motivation has a long history [Mos87]. Moreover there are other fundamental motivations from physics
[Ber78]. However, we continue with the simple examples and leave the more impressive history and state-
ments of KAM theory and (Hamiltonian) perturbation theory to other sources (some references are given in
Section 3.2) and emphasize that, up to this point, we have only considered autonomous Hamiltonians H0

and autonomous Hamiltonian perturbations H1.

Figure 4: Periodic Poincaré map of
the perturbed pendulum H0+µH1 for
increasing (downwards) perturbation
strength µ.

What if the unperturbed Hamiltonian H0 is time-dependent?
In general, the natural strategy is to extend phase space with
an extra degree of freedom, incorporating the time variable
into the (symplectic) geometry of the system and making the
system Hamiltonian and autonomous (Section 2.1). Subse-
quently, one would like to use the above, autonomous KAM
theory to prove the persistence of invariant tori by provid-
ing the above mentioned conditions, but this is not always
easy:
In the case of general, aperiodic3 time-dependence the sit-
uation seems grim: A special set of coordinates, action-
angle coordinates (Section 3.1), are crucial for most proofs
of the KAM theorem, for which compact orbits are a con-
dition. Time, being incorporated into the geometry (and
topology), however, causes all orbits to become unbounded.
The construction of action angle coordinates is still possi-
ble in some sense (although much harder) [GMS02; Fio04]
and possibly one can work from there to get to a KAM
theorem. Alternatively, one can avoid working with ac-
tion angle coordinates all together, using more undeveloped
versions of the KAM theorem [Lla+05]. In the case of
(quasi)-periodic time-dependence time already lives on the cir-
cle, as an angle coordinate, thereby avoiding the grim sit-
uation in the construction of action angle coordinates in
the aperiodic case so it seems that the complexities of
a KAM application on the extended phase space are re-
moved.

In view of an appliation to the tidal wave system, we are only inter-
ested in the following case: “What if (just) the perturbation H1 is
time-dependent?.
It seems that this question is similar to the previous one: One is again
inclined to use the extended phase space and apply the usual KAM
theory, as in for example [Moa03]. However, this case (that H0 is
autonomous and H1 time-dependent) is more interesting (sometimes
we may use the term “non-autonomous KAM theory” for this case),
since the condition of non-degeneracy adapts accordingly:
Again, considering first the aperiodic case, there have been some
movements towards “aperiodic (non-autonomous) KAM theory”
[MW00; WM14; CL15; FW16]. And these interests seem to have
mainly arisen from applications in mixing and transport in fluid dy-
namics. For example, geophysical flows, such as meandering jets, are

usually aperiodic [WM14].
However, the main focus, where luckily our interest lies, has been on a KAM theorem for (quasi-periodic)
perturbations:

“Essentially all of the literature [...] concerned with time-dependent Hamiltonian systems deal

3“Aperiodically” indicating that the time dependence is not (quasi-)periodic (Defition 3.1, see also [Sev07]).
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with periodic or quasi-periodic time dependence [in the perturbation]. For such time dependence,
the problems can often be cast in a form where classical results and approaches can be applied”
– Fortunati & Wiggins [FW16]

However, the goal of this thesis is to prove the existence of persistent invariant tori (KAM tori) in the periodic
Poincaré map/2π- Poincaré map (see [Wal21] where it is called the “Tidal Poincaré map” or [Wig03] chapter
10.2) of the tidal wave system, we do not “cast in a form” but use KAM theorems which are adapted to quasi-
periodic perturbation as in [Jor91; JS96; BSG03; TZ09], and generalised in [JV97] (for lower-dimensional
tori) and [Sev07] (for non-Hamiltonian and/or parametrised systems, for families of tori and under the weaker
Rüsmann non-degeneracy conditions).

We check again with the elementary examples: the Harmonic oscillator H0(q, p) = 1
2 (p

2 + ηq2) and the
pendulum H0(q, p) = 1

2p
2 + η cos(q). We perturb these systems with the non-autonomous Hamiltonian

µH1(q, p, t) = µ sin(t)(cos(q2) + p2 + cos(p4)) which is 2π-periodic in t. The numerical simulations, plotting
the numerically approximated 2π-Poincaré map are shown in figure 3 and 4 and we see indeed existence of
persistent invariant tori in the numerically approximate 2π-Poincaré map.

1.2 Goal of the paper: theoretical part

In this thesis we are interested, as the title might suggest, in three of the topics that we have encountered so
far: KAM theory for quasi-periodic non-autonomous perturbations; mixing and transport in fluid mechanics;
a tidal wave system together with the elementary examples (the harmonic oscilator and the pendulum) and
numerical simulations. The first three topics are connected immediately below and numerical simlutations,
the fouth, is treated afterwards.

The first two topics are naturally entangled: In fluid mechanics, one sometimes encounters time-dependent
Hamiltonians H0 or perturbations H1 [WM14] and one would like to study obstructions to mixing and trans-
port using KAM theory, such as invariant tori. Indeed, mixing and transport in these types of systems can
be due to regular and chaotic Hamiltonian dynamics [WM14; Mei15] and one would like to use Hamiltonian
perturbation theory, such as non-autonomous KAM theorems, to qualitatively or quantitatively explain mix-
ing and transport [MMP84; OO89; Mei92] (studied also in the numerical case [FS96]). As mentioned above,
in geophysical flow applications H1 is often aperiodic, but sometimes it is periodic, and we are lucky (see the
previous quote).

In this thesis, we consider a recently studied model for mixing and transport in tidal waves in shallow areas
[Wal21], of which a simplified model had been previously studied in [RZ92; BRZ94], which we will call the
tidal wave system. The elementary examples and the tidal wave system can be related in the following
sense: The unperturbed Hamiltonian of the tidal wave system (Section 1.5) fits right next to the elementary
examples (η ∈ R):

Harmonic oscillator: H0(q, p) =
1

2
(q2+ηp2), Pendulum: H0(q, p) =

1

2
q2+η cos(p), Tidal wave system: H0(q, p) = cos q+η cos p

and the perturbations considered are periodic in time. The previous papers [RZ92; BRZ94; Wal21] focused
on (mixing and transport due to) the chaotic part of the motion and in particular chaotic motions in the
periodic Poincaré map (previously called the Tidal Poincaré map [Wal21]), the period of this map naturally
equals the period of the perturbation (see e.g. [Wig03] section 10.2). Instead, in this thesis we focus on
the regular part of the motion, in particular by applying non-autonomous KAM theory for (quasi-)periodic
perturbations to prove the existence of KAM tori in the periodic Poincaré map of the tidal wave system.

To summarize, the first three topics shed two different lights on the tidal wave system and applictions of KAM
theory to it: On the one hand, from a mathematical perspective, the system is relatively hard since it lies
beyond the elementary examples, which are well-studied from the KAM viewpoint. On the other hand, from
a physical perspective, the system is relatively easy, a ‘toy problem’. Indeed it has a periodic perturbation
and not aperiodic as was often the case for geophysical flows and, moreover, one is able to obtain action angle
coordinates, which is not usual for fluid dynamics:
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“The KAM and Nekhoroshev theorems are stated [...] using the action-angle variables of the
unperturbed integrable system. Even if one has a model that can be divided into an integrable
part plus “a perturbation”, it is [...] highly nontrivial to construct action-angle coordinates for
the unperturbed, integrable part. For this reason there have been essentially no applications of
the KAM theorem to fluid transport where the conditions for the applicability of the theorem
have been verified for a model under consideration. Similarly for the Nekhoroshev theorem [...].”
– Wiggins & Mancho [WM14]

Beside action angle coordinates, one could possibly even obtain estimates for the small parameters (e.g. µ
in Arnold’s quote above) in the KAM theorem, something that was done for the pendulum in the series of
papers [CC87; CFP87a; CFP87b; CC88; CG88]. We will not attempt such a rigorous undertaking.

The main goal of the theoretical (non-numerical) part of this thesis, Sections 2 - 3, is to put the tidal wave
system into action angle coordinates, to state a non-autonomous KAM theorem for periodic perturbations
(Section 3) and to prove the existence of persistent tori of the tidal Poincaré map in the theoretical system
(Section 3.3).
To conclude, we mention that there are two natural strategies to prove the existence of KAM tori in the
periodic Poincaré map (as discussed in Section 3.3). The first is, as mentioned, by the use of a non-autonomous
KAM theorem, which can be applied to the flow of the tidal wave system i.e. to a continuous dynamical
system (defined in Appendix A). A second way is to note that the periodic Poincaré map, as a symplectic
map, induces a discrete dynamical syste so that discrete KAM theorems, as the one of Moser, can be applied.
We do not consider this strategy, but comment on it in the further research.

1.3 KAM theory and time-dependence in the numerical/discretised setting

We now discuss the fourth topic, numerical simulations, from the KAM perspective. In [Wal21] Figure 5 was

Figure 5: Not all numerical methods are good-natured towards the KAM tori. A symplectic splitting method
is, while the Matlab ODe 45 routine is not (Source: [Wal21]).

produced, which shows two different numerical discretisations of the tidal Poincaré map. It can be seen that
KAM tori persist or are destroyed depending on the numerical method used and this is a general fact. There
exist methods adapted to ODE with “structure”: For the Hamiltonian, with “symplectic structure” (Section
2), these are called ‘symplectic methods”; For more general “structures” (see [MQ01; IQ18]), these are called
“Structure preserving methods” , in particular “Geometric numerical integration” (GNI) if the structure is
‘geometrical’.
Let us first consider again the case of autonomous Hamiltonian ODE. In this case the symplectic integra-
tors behave well: Energy is approximately conserved over exponentially long times [BG94], there is linear
error growth in time when applied to integrable Hamiltonian systems over polynomially small times [HLW06]
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Section X.3, and, most importantly, KAM tori persist [Sha99; HLW06]. This well-behavedness over expo-
nentially long times has been seen in the numerical integration of the solar system and gives an answer to
the above question of Hubbard about the stability of the solar system:

“The evolution of the entire planetary system has been numerically integrated for a time span
of nearly 100 million years. This calculation confirms that the evolution of the solar system as a
whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional
numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small
variations in the model can yield quasi-periodic motion. The motion of Pluto is independently
and robustly chaotic.” – Susmann & Wisdom [SW92]

Figure 6: The problem with using (continuous) KAM
theory on the numerically integrated system.

The latter property of symplectic integrators,
that KAM tori exist in the numerically inte-
grated system, suggest that there is a “nu-
merical KAM theory” for symplectically discre-
tised/integrated systems. Indeed in Figures 3
and 4 symplectic integrator were indeed used
so that KAM tori were seen in these Fig-
ures.

We saw above that ‘discrete’ KAM theory, for sym-
plectic twist maps, has already been developed: it
was proven by Moser. However, similar to the the-
oretical setting, there is also a continuous approach
to the proof and statement of discrete KAM theory (Figure 7):

1. Use a discrete version, done by Shang [Sha99] around 1999, who generalised Moser’s 1962 results on
twist maps on the annulus to higher dimensions. According to [HLW06], section X.6, Shang used an
Arnold type construction. The authors of [HLW06] give a complementary proof based instead on a
Kolmogorov type construction.

2. Use a continuous version, made possible by embedding the symplectic integrator into a Hamiltonian
flow and applying continuous KAM theory. This strategy seems discussed mainly by [Moa03] and
[MO10] (the latter for lower dimensional tori), inspired by the above mentioned suspension of Douady.
Similarly to Douady they remark again

“Many KAM style results for lower dimensional invariant tori already exist. Using interpola-
tion one can avoid redoing lengthy proofs for maps and so it is this approach we take in this
paper.” – McLachlan & O’Neale [MO10]

A symplectic integrator can naturally be seen as a symplectic map ψh with step-size h > 0. Thus, it seems
natural to apply a discrete KAM theorem to symplectically integrated systems to prove the existence of
invariant tori in the system. We are interested, moreover, in KAM tori of the 2π-Poincaré map which is also
a symplectic map, on which it again seems natural to use a discrete KAM theorem. Therefore, both in the
theoretical tidal wave system and in the symplectically integrated tidal wave system it seems natural to use
discrete KAM theorems. However, in this thesis we will use the numerical route and the main reason for this
is that backward error analysis (BEA) is a central topic in this thesis (see also Section 10).

In short, BEA (Appendix C for an introduction) constructs for a symplectic map/integrator an autonomous
or non-autonomous modified vector field so that this symplectic map/integrator is (almost) interpolated by
the flow of this vector field (Sections 5 and 6). The autonomous case is usually called modified equation
analysis (MEA), e.g. [GS86; CMS94] and we call the other non-autonomous flow interpolation. The reason
that we are interested in BEA is as follows: For autonomous Hamiltonian systems, the structure preserving
methods are symplectic integrators, which can be proven rigorously using BEA. For example, BEA shows that
the modified vector field which interpolates the symplectic map is again Hamiltonian. We therefore develop
BEA for non-autonomous (Hamiltonian) ODE (Section 6.3.6 and Appendix D) in the hope to contribute to
the problem of identifying what the ‘structure preserving methods’ of non-autonomous Hamiltonian ODE are.
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Figure 7: The two approaches (red and
green) to prove KAM tori in the numeri-
cally integrated tidal wave system.

Before asking what structure preserving methods are in the
non-autonomous Hamiltonian case, it is useful to first identify
what this ‘structure’ is i.e. ask the question “What is the ‘struc-
ture’ of non-autonomous Hamiltonian ODE?”. There has been
some research into this structure and this is considered briefly in
Section 2.4. However, coming back to the question of structure-
preserving integrators, reasearch into non-autonomous Hamil-
tonian struture-preserving integrators is extremely scarce. For
example we quote

“Although research in geometric numerical inte-
grators for differential equations has experienced
a tremendous boost during the last decades, it is
fair to say that this has been mainly restricted to
autonomous problems” – Blanes, Casas & Murua

[BCM12]

and more recently, for the Hamiltonian case

“Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in
geometric numerical integration, but for non-autonomous systems the situation is less clear” –
Marthinsen & Owren [MO14]

On top of that, an even more recent paper discussing De Vogelaere [De 56] (the first paper on symplectic
integrators) shows that this research started on a bad footing and never got a hold:

“The title of the preprint [of De Vogelaere] is a little bit misleading because De Vogelaere considers
only transformations in the phase space (q, p) treating time as a parameter. Now, such transfor-
mations are rather called symplectic (or canonical). Contact transformations, usually related to
the extended phase space (including the time variable), are more general.
The problem of extending symplectic integrators on non-autonomous (time-dependent) Hamilto-
nian systems is much more difficult and still only particular results are available. It seems that
in this aspect the way of introducing time dependence of integrators presented in the famous
preprint is not so fruitful as the symplecticity of the integrators in the autonomous case” – Skeel
& Cieslinski [SC20]

1.4 Goal of the paper: numerical part

In this thesis, we will not attempt to start such a theory for non-autonomous, structure preserving integra-
tors, although we will discuss some structure of non-autonomous (Hamiltonian) ODE and flows in Section 2.
As mentioned above, we will try to develop and use BEA, the tools in proofs concerning structure-preserving
methods, as much as possible to the non-autonomous setting, so that it may possibly help in future work on
the well-behavedness (including the persistence of KAM tori via application of the (periodic) non-autonomous
KAM theory) of ‘structure preserving methods’ in the non-autonomous Hamiltonian case, whatever the struc-
ture may be. Thus, a first goal is to discuss BEA (for non-autonomous ODE).

Furthermore, we discuss a numerial method developed in [Wal21], which is due to the special form of the
tidal wave system. This special form is that the considered Hamiltonian H and its perturbations are of the
form (n ∈ N):

H(q, p, t) =

n∑
i=1

gi(t)Hi(q, p), (1.1)

where gi, Hi are scalar functions (gi = 1 may be possible). These types of Hamiltonians are called time-affine.
In the case n = 1, the Hamiltonian is of the form

g(t)K(q, p),
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which we will call a forced Hamiltonian/vector field.

For forced ODE ẏ(t) = g(t)f(y) there exist a natural numerical method, discussed in Section 4, which is
called the induced method. Theoretically, in this case we will see that the system is (locally) equivalent, up to
time transformation, to the autonomous system with ODE f . In turn, this will imply that, given a numerical
method ψ for the ODE with vector field f , one may construct (Figure 8) a numerical method for the ODE
with vector field gf by using a ‘time-adaptive’ step-size, adaptive only to time, not to space. Thus, for a
forced ODE which is Hamiltonian, a natural choice is a symplectic method on the autonomous part, with
time-adaptive step-size.

Figure 8: Forced ODE are equvialent to their
autonomous part. The induced method is con-
structed from this perspective

The tidal wave system is time-affine (Equation (1.1)).
The numerical method used in [Wal21] is a splitting
method (Section 4): It splits the time-affine Hamil-
tonian H(q, p, t) =

∑n
i=1 gi(t)Hi(q, p) into n terms

gi(t)Hi(q, p) and uses the induced method to solve
solve the n forced system. We argue in Section
4 that, from the perspective of structure preserva-
tion, this splitting method for time-affine Hamilto-
nian ODE has no special properties, except that it
is symplectic if the induced methods are symplec-
tic.

The main goal of the numerical part of this thesis (Sec-
tions 4- 6) is to show existence of KAM tori for the numerically approximated 2π- Poincaré map of the
periodically perturbed tidal wave system, which is integrated using the splitting method for time-affine
systems as developed in [Wal21]. In Section 5 a KAM theorem is developed for numerically integrated,
periodically perturbed complete integrable systems. This theorem, however, has many assumptions and,
moreover, does not prove the existence of KAM tori in the numerically approximate 2π-map of the perturbed
system. Therefore, (and also due to considerations of round-off error) we will also state an ‘approximate’
KAM theorem in Section 6, which will prove, up to an assumption, the existence of ‘almost invariant’ tori in
the numerically approximated 2π-Poincaré map of the periodically perturbed system.

Before discussing the main goals of the theoretical and numerical part of this thesis, we first discuss (in
Section 2) the relation between non-autonomous (Hamiltonian) ODE and autonomous ODE is discussed. We
will show that forced ODE are locally equivalent, up to a time transformation, to autonomous ODE (Figure
8) and describe the (symplectic) structure of (non-)autonomous Hamiltonian ODE.

Thus, the structure of the paper is as follows:

• In Section 2 we will show how non-autonomous and autonomous ODE are related and we show thatr
forced ODE are locally equivalent the an autonomous part of the system. Afterwards we describe the
symplectic structure of autonomous (and non-autonomos) Hamiltonian ODE . Finally, we given discuss
what possible structures may be for non-autonomous Hamiltonian ODE.

• In Section 3 we develop action angle coordinates for completely integrable systems, the framework for
KAM theory, and state a KAM theorem for periodically perturbed completely integrable Hamiltonian
system. Afterwards we apply this KAM theorem to the theoretical tidal wave system, proving our first
goal, the persistence of invariant tori in the 2π-Poincaré map.

• In Section 4 we discuss numerical methods, in particular symplectic methods, the induced method for
forced (Hamiltonian) ODE and splitting methods for time-affine (Hamiltonian) ODE.

• In Section 5 we discuss some strategies for the proof of KAM tori in the 2π-Poincaré map of the
numerically integrated tidal wave system. Furthermore, we develop a KAM result for symplectically
integrated, periodically perturbed Hamiltonian ODE. However, this KAM theorem is not able to prove
the existence of KAM tori in the numerically approximated 2π-Poincaré map of the periodically per-
turbed Hamiltonian system.
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• In Section 6, we therefore develop an ‘approximate’ KAM theorem, which proves, up to an assump-
tion, the existence of ‘almost invariant’ tori in the numerically approximated 2π-Poincaré map of the
perturbed tidal wave system, when the discussed splitting method for time-affine Hamiltonian ODE is
used.

Next, however, we will finish the introduction by giving a description of the tidal wave system.

1.5 The tidal wave system

We end the introduction by giving a mathematical formulation of the tidal wave system, as considered in
[Wal21] (the formulation is similar to the one in [BRZ94], as noted in the appendix of [Wal21]). Throughout
the thesis we use notation and definitions of Appendix A.

The model is based on the shallow-water equations together with some assumptions and simplifications4. In
this thesis we will consider the Hamiltonian part of the tidal wave system, without dissipative terms. This is
modelled by the Hamiltonian ODE

q̇ = cos(t) + Cδl

(
k[rl sin(kq) cos(lp)− fk cos(kq) sin(lp)]

+ 2γ(r cos t+ sin t)[fk sin(kq) sin(lp) + rl cos(kq) cos(lp)]

) (1.2)

ṗ = Cδk

(
k[−rl cos(kq) sin(lp) + fk sin(kq) cos(lp)]

+ 2γ(r cos t+ sin t)[fk cos(kq) cos(lp) + rl sin(kq) sin(lp)]

)
,

(1.3)

where Cδ = δ
(
k2 + l2

)−1 (
k2 + 2r2 + 2

)−1
, δ, k, l, f, r ∈ R and γ ∈ {0, 1} (in the notation of [Wal21] δ =

[h]/H), with Hamiltonian
H(q, p, t) = p cos t+H1(q, p) + γH2(p, q, t), (1.4)

where

H1(q, p) = Cδk[rl sin(kq) sin(lp) + fk cos(kq) cos(lp)]

H2(p, q, t) = 2Cδ (r cos(t) + sin(t)) [rl cos(kq) sin(lp)− fk sin(kq) cos(lp)].

In the thesis [Wal21], the linear transformation

(q, p) 7→ A · (q, p)T =

(
k l
k −l

)
(q, p)T ,

is considered, which is a −2kl scaling of a symplectic matrix (Section 2.2.4). Thus, the transformed ODE
is induced by the Hamiltonian L(q, p, t) = det (A)H(A−1(q, p), t) (see Proposition 2.17 and Definition 2.16)
which is of the form

L(q, p, t) = k(p− q) cos(t) + L1(q, p) + γL2(q, p, t) (1.5)

where (correcting a factor 2 error in [Wal21])

L1(q, p) = H1(A
−1(q, p)) = −Cδk

2l
(
α cos(p) + β cos(q)

)
(1.6)

L2(q, p, t) = H2(A
−1(q, p), t) = Cδ2kl(r cos(t) + sin(t))(α sin(p) + β sin(q)), (1.7)

and α := fk + rl, β := fk − rl. Equivalently, these equations are found because d
dt

(
A(p(t), q(t))T ) =

A(ṗ, q̇)T (t). The transformed system satisfies the ODE

q̇(t) = k cos(t) + Cδkl
(
kα sin(p) + 2γα cos(p)(r cos(t) + sin(t))

)
(1.8)

ṗ(t) = k cos(t)− Cδkl
(
kβ sin(q) + 2γβ cos(q)(r cos(t) + sin(t))

)
. (1.9)

4Assumptions and simplifications comprise of: Rigid-lid approach, constant water density, tidal current depending on time
only, bottom height-variations being much smaller than average depth, Fourier series approximation of bottom-topography
[Wal21]
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The advantage of the system with Hamiltonian L is that it is easier to work with numerically, in particular
the splitting method developed in [Wal21] is explicit when applied to the ODE with Hamiltonian L.

The parameter sets considered in [Wal21] are g

r f γ δ α β
Default 2 0 0 0.3 2l -2l

Simple-B 2 0 0 6(k2+2r2+2)
10(kr) 2l -2l

Coriolis 2 1 0 0.3 k + 2l k - 2l
Vorticity-harmonic 2 0 1 0.3 2l -2l
Cor-VortHarm 2 1 1 0.3 k + 2l k - 2l

In [Wal21] l = k and δ = 0.3 or, in the ‘Simple-B’ case, δ = 0.6k2+2r2+2
rk . Therefore the Hamiltonians reduce

to

H(q, p, t) = p cos(t) +
3

20k(k2 + 2r2 + 2)

(
k[r sin(kq) sin(kp) + f cos(kq) cos(kp)]

+ 2γ(r cos t+ sin t)[−f sin(kq) cos(lp) + r cos(kq) sin(lp)]

)
L(q, p, t) = k(p− q) cos(t) +

3k

20(k2 + 2r2 + 2)

(
− k[cos(p)(f + r) + cos(q)(f − r)]

+ 2γ(r cos(t) + sin(t))[sin(p)(f + r) + sin(q)(f − r)]

)
,

except for the“simple-B” case, where

H(q, p, t) = p cos(t) +
3k

5r

(
1

2
[r sin(kq) sin(kp) + f cos(kq) cos(kp)]

+ 2γ(r cos t+ sin t)[−f sin(kq) cos(lp) + r cos(kq) sin(lp)]

)
L(q, p, t) = k(p− q) cos(t) +

3

5r

(
− k[cos(p)(f + r) + cos(q)(f − r)]

+ 2γ(r cos(t) + sin(t))[sin(p)(f + r) + sin(q)(f − r)]

)
.

Remark 1.1. This means that, varying the values of k ̸= 0, one finds two different scaling factors ν, ν̃ :
(0,∞) → R defined by

ν(k) =
3k

10(k2 + 2r2 + 2)
ν̃(k) =

3

5r

This relates the parameter sets in [Wal21] with different δ (“default” (to ν) and “simple-B” (to ν̃)).

2 Non-autonomous ODE and non-autonomous Hamiltonian ODE

The first goal of this section is to introduce forced, time-affine and Hamiltonian ODE. In particular, the
perturbed tidal wave system is an example of a time-affine, Hamiltonian ODE. Afterwards we treat the
symplectic structure of autonomous Hamiltonian ODE, symplectic maps and canonical maps, which is useful
for the theory of structure-preserving integrators 4.2. Finally, using we give an outlook on the structure of
non-autonomous Hamiltonian ODE.

Definition 2.1 (Forced ODE/vector field). A non-autonomous ODE onD×I (with henceforthD×I ⊂ Rn×R
open, (g, f) : D → I × Rn) (so g is a scalar function) of the form

ẏ(t) = f̂(y(t), t) = g(t)f(y(t))

13



is called a forced ODE and f̂ a forced vector field (periodically forced if g is periodic). ∅

Definition 2.2 (Time-affine ODE/vector field). A vector field f̂ on Rn which is a sum of forced vector fields

f̂(y, t) =
∑
i

gi(t)fi(y)

is called a time-affine5 vector field. An ODE with time-affine vector field f̂ is called a time-affine ODE. ∅

Definition 2.3 ((Separable) Hamiltonian ODE). Given a scalar function H ∈ C1(D× I). The Hamiltonian
ODE (with Hamiltonian H) is defined as the ODE

q̇(t) = DpH(q(t), p(t), t) ṗ(t) = −DqH(q(t), p(t), t),

where, abusing notation, q, p represent points in (phase) space D × I as well as paths (i.e. q ∈ C1(Ĩ ,Rn),
Ĩ ⊂ I open, see also Appendix A). If the Hamiltonian can be written as H(q, p, t) = V (q, t) + T (p, t) for
two scalar function V, T ∈ C1(D × I) then the Hamiltonian ODE (and the induced vector field) is called
separable. ∅

Denoting z = (q, p) a Hamiltonian ODE can be rewritten as

ż(t) = J−1∇H(z(t), t) =

(
0 Idn

−Idn 0

)(
DqH
DpH

)
(z(t), t), i.e. J =

(
0 −Idn
Idn 0

)
,

where Idn is the n-dimensional identity matrix and ∇H = (dH)T denotes the gradient. Hamiltonian ODE
satisfy the property that, along a solution q(t), p(t) one finds

d

dt
H(q(t), p(q), t) =

∂

∂τ
H(q(t), p(t), τ)|τ=t (2.1)

so that autonomous Hamiltonians are preserved by the flow ( d
dtH(q(t), p(t)) = 0). In particular, defining the

Poisson bracket {·, ·} of two scalar functions F,G as

{F,G} = ∇FTJ−1∇G (2.2)

one finds that [GPS02]
d

dt
F (q(t), p(t), t) = {F,H}+ ∂F

∂t
. (2.3)

Finally, the flow of a forced Hamiltonian g(t)H(q, p) preserves the function H since

d

dt
H(q(t), p(t)) = g(t){H,H} = 0. (2.4)

2.1 Forced ODE, canonical autonomous extension and extended phase space

We first show how forced ODE are equivalent to their autonomous part. Afterwards we introduce a simple
way to make non-autonomous ODE autonomous by autonomous extension of the ODE. Finally, we discuss
forced Hamiltonian ODE and a special kind of autonomous extension for Hamiltonian systems.

2.1.1 Forced ODE: Equivalence to its autonomous part

Given a non-autonomous vector field f : D × I → Rn, and suppose y is an integral curve of the ODE with
vector field f . Then, given a function τ : R → R, we may consider y ◦ τ , which is an integral curve of the
vector field f̃(y, t) = τ̇(t)f(y(τ(t)), τ(t)).

5The name time-affine is taken from control theory, where the functions gi are interpreted as a control parameter and such
systems are called control-affine [Jur96]. As is usual for control-affine system, one must be warned that control-affine systems
are not affine in the control parameters. Similarly time-affine systems are not affine in time.
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Definition 2.4. If f : D × I → Rn is a vector field and τ : R ⊃ I → R is differentiable. Then the time-
reparametrised (ODE with) vector field f by the the time-raparmetrisaion τ is the (ODE with) vector field
τ∗(f)(y, t) := τ̇(t)f(y, τ(t)). ∅

Given a forced vector field g(t)f(y). Suppose G(t) =
∫ t

0
g(t) is well-defined and y is an integral curve of the

ODE with vector field f i.e. ẏ = f(y) then

d

dt
(y ◦G) = g(t)f(y).

Thus, using the time-reparametrisation G one can, from the integral curves of the ODE with vector field f ,
find integral curves of the forced ODE with vector field Ġ(t)f(y) = G∗(f)(y, t). In this sense the forced ODE
and its autonomous part are equivalent up to time-reparametrisation.

Similarly, if ϕ is the flow of the autonomous ODE with vector field f and ϕ̃ is the flow of the forced ODE
with vector field gf then

ϕ̃t,t0 := ϕGt0
(t), where Gt0(t) =

∫ t

t0

g(s) ds. (2.5)

For example, for λ ∈ R, t0 = 0 y(t) = eλt is the solution of ẏ = λy. By the above, this implies that
z(t) = eλ sin(t) is the solution of the forced ODE of ż(t) = cos(t)λz(t).

This idea is used to construct numerical methods for forced ODE (Section 4).

2.1.2 Canonical autonomous extension

Given a non-autonomous vector field f : Rn × R ⊃ D × I → Rn (with D ⊂ Rn and I ⊂ R open) then one
can view f as an autonomous system on the space Rn × R.

The canonical way to view the ODE of f as an autonomous system is to incorporate time into space: The
vector field f̂ = (f, 1) is considered, defined on a space extended by one dimension D× I, which induces the
ODE

ẏ(t) = f(y(t), τ(t)) τ̇(t) = 1, for (y, t) ∈ D (2.6)

so that the extra ODE τ̇(t) = 1 is introduced.

Definition 2.5. Given a non-autonomous vector field f . The autonomous ODE with vector field f̂ = (f, 1)
(Equation (2.6)) is called the canonical autonomous extension of the ODE with vector field f . The phase

space D × I is called (autonomously) extended space and f̂ the (canonically) extended vector field. ∅

Given initial points y0, τ0, the solutions of the non-autonomous ODE and its canonical autonomous exten-
sion are related up to inclusion/projection: the integral curves ỹ of the ODE with vector field f̂ satisfies
(y(t), τ(t)) = ỹ(t), where τ(t) = τ0 + t and y the integral curve of the ODE with vector field f .

2.1.3 Hamiltonian autonomous extension and forced systems

Now we treat the Hamiltonian version of the canonical autonomous extension.

The canonical autonomous extension is easy to adapt to the Hamiltonian case: Adding not only a variable
τ but also a variable s conjugate to ‘time’ τ , the canonical autonomous extension becomes, using Equation
(2.1),

ż = J−1∇H(z, τ), τ̇ = 1, ṡ = − ∂

∂τ
H(z, τ) = − d

dt
H(z(t), τ(t)) with Hamiltonian H̃(q, τ, p, s) = H(q, p, τ)+s.

(2.7)
Thus, we find an autonomous Hamiltonian ODE with Hamiltonian H̃(q, τ, p, s) = H(q, p, τ) + s.
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The HamiltonianH is in general not preserved by the flow. The extended Hamiltonian H̃ is trivially preserved,
since (if τ(t0) = t0)

s(t) = s(t0) +

∫ t

t0

− d

dt
H(z(t), t) = s(t0)−H(z(t), t) +H(z(t0), t0).

Phase space together with time τ and its conjugate s is called extended phase space.

2.2 Non-autonomous Hamiltonian ODE and symplectic flows

Hamiltonian ODE and their surrounding theory (the Hamiltonian/canonical formalism) are very useful in
the description of plethora of physical systems e.g. the tidal wave system. Heuristically, the power of the
autonomous Hamiltonian formalism can be explained using the fact that it separates geometry and dynamics6:

“The Hamiltonian formalism is easier to deal with [than the Lagrangian formalism] because
geometry—the symplectic structure—and dynamics—the Hamiltonian 1 form dH—are indepen-
dent ingredients.” – Asorey, Cariñena & Ibort [ACI83]

However, considering a geometric framework for non-autonomous systems, they note “dynamics and geom-
etry are coupled again” and the structure of non-autonomous Hamiltonian ODE is not so clear (we present
an outlook of this in Section 2.4). We introduce now symplectic maps (the structure-preserving maps of the
‘geometry’ i.e. the symplectic structure) and canonical transformations (the structure-preserving maps of the
‘dynamics’ i.e. the Hamiltonian form of the ODE) and equivalence of these two concepts.

For our purposes, structure preserving numerical methods and backward error analysis, the most important
results of the autonomous formalism are

1. the fact that Hamiltonian ODE are characterised (locally) by symplectically symmetric vector fields
(defined below, Definition 2.7);

2. the fact that Hamiltonian ODE are characterised by symplectic flows.

In this section we show that these two statements hold as well for non-autonomous Hamiltonian ODE on R2n,
luckily without the need of any other geometries, beside symplectic geometry on flat space. Thus, possibly
the right ‘structure’ for non-autonomous systems on R2n × R is again the symplectic structure (the matrix
J) on R2n.

Besides the wide range of applications and the heuristic separation of geometry and dynamics. Another
strength of Hamiltonian ODE are generating functions and the Hamilton-Jacobi equation e.g. [Arn89; GPS02]
or [HLW06] chapter VI. In Figure 9 it is shown how the the mentioned objects are related.

2.2.1 Hamiltonian ODE

As mentioned, the anti-symmetric, invertible matrix (non-degenerate 2-form) J has an intrinsically geometric
meaning and is usually called the standard symplectic form. This geometric meaning can be tied to the fact
that, for n = 2, vtJw is the outer product of two vectors v, w ∈ R2 which is the (oriented) area of the
parallelogram which v, w span. In higher dimensions there is a similar geometric interpretation, Section
2.2.2.

Definition 2.6. A vector field f ∈ C0(D × I,R2n) is Hamiltonian if

f = J−1∇H

for some H ∈ C1(D × I) and locally Hamiltonian if ∀y ∈ D, ∃y ∈ Uy ⊂ D open such that f |Uy (i.e. the
restriction of f to Uy × I) is Hamiltonian. ∅

6In our case the symplectic geometry is flat: R2n together with a matrix J defined below.
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Figure 9: A diagram that shows how Hamiltonian vec-
tor fields and symplectic one-parameter groups, gen-
erating functions and the Hamilton-Jacobi equations
come into play. The left arrow and the bottom arrow
depict respectively the important statements 1. and 2.
as discussed in the text.

We may denote fH to make the Hamiltonian explicit.

Definition 2.7. A vector field f ∈ C1(D×I,R2n) is
symplectically symmetric7 if J∇yf(y, t) is symmetric
on its domain i.e. JDyf(y, t) = −Dyf(y, t))

TJ . ∅

The C1 vector fields f which are locally Hamiltonian
on Euclidean space (the left arrow in Figure 9) are
characterised by symplectic symmetry.

Lemma 2.8 (Integrability Lemma [HLW06]). A
vector field f ∈ C1(D × I,R2n) is locally Hamil-
tonian (with Hamiltonian H ∈ C2(D × I)) if and
only if it is symplectically symmetric (even globally
Hamiltonian if D is simply connected).

Proof. The proof is constructive and we are only in-
terested in this construction of the (local) Hamilto-
nian. We refer to [HLW06] chapter VI for details.
There they treat the case for autonomous f , but the proof is identical for non-autonomous f .

If f is locally Hamiltonian then Dyf = J−1∇2H (∇2 denotes taking the Hessian matrix), implying JDyf =
∇2H, symmetric since H is C2. Conversely, for every y ∈ D we pick a small ball Uy (or any convex set)
around y and define H[y] ∈ C2(Uy × I,D) by

H[y](z, t) =

∫ 1

0

Jf(γ(τ), t) · γ′(τ)dτ = J

∫ 1

0

f(γ(τ), t) · γ′(τ)dτ, (2.8)

where γ(τ) = y+ τ(z− y) which determines a well-defined Hamiltonian for f |Uy
([HLW06], chapter VI).

2.2.2 Hamiltonian flows on symplectic Euclidean space

In this section we show that Hamiltonian flows are characterised by their symplecticness (the bottom arrow
of Figure 9):

“Everybody knows that the time-1-shift of the flow of a hamiltonian vector field is a symplectic
diffeomorphism” – Kuksin & Pöschel [KP94b].

If f = fH is Hamiltonian then we may write ϕH,t for the Hamiltonian flow (or ϕt if it is clear from which
Hamiltonian it is induced).

Definition 2.9. If g ∈ C1(D × I,R2n) and z ∈ D then gt(z) := g(·, t) is called extended symplectic with
factor λ at y if

(Dygt)
T (y)J−1Dygt(y) = λJ−1

for all t ∈ I and some λ ̸= 0. Furthermore, g is called extended symplectic with factor λ if g is symplectic at
z with factor λ for all z ∈ D. ∅

Definition 2.10. A map g is called symplectic (at z) if it is extended symplectic with λ = 1 (at z). ∅

If g = (Q,P ) is symplectic (possibly depending on t ∈ I) then

D(q,[)g(p, q) =

(
DqQ DpQ
DqP DpP

)
and the symplecticness condition reads8

QT
q Pq = PT

q Qq QT
p Pp = PT

p Qp −QT
q Pp + PT

q Qp = I.

7Usually these vector fields are called Hamiltonian, but confusion arises on flat space, where the manifold and the tangent
space are hardly distinguishable.

8One may check that in R2 every invertible map g : D → R2 is extended symplectic with λ = det(Dg).
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Remark 2.11. An equivalent definition of symplecticness is obtained by replacing J−1(= JT = −J) by −J−1

and therefore also by switching the transpose of the two Jacobian matrices: g′J−1(g′)T = J−1.

An important property of the flow of Hamiltonian vector fields is volume preservation.

Theorem 2.12 (Liouville’s Theorem). If f ∈ C1(D×I,R2n) is a vector field with zero divergence ∇·f(z, t0) =
tr(f ′(z, t0)) = 0, then detDzϕt(z, t0) = detϕ′f,t(z, t0) = 1 for all z, t0, t in the domain.

Corollary 2.13. If H ∈ C2(D × I) then the flow ϕt preserves volume.

There is a more general and more important property of the flow. It is not only area preserving, but also
preserves sum of the infinitesimal 2-dimensional areas of parallelograms in the subspaces spanned by qi, pi
for 1 ≤ i ≤ n (pictures and more rigorous interpretation can be found in [Arn89; HLW06]).

Now we prove that Hamiltonian flows are characterised by their symplecticness, of which the ‘if’ implication
is due to Poincaré. The proof for the autonomous case can be found in [HLW06] and below it is seen that it
is identical for the non-autonomous case.

Theorem 2.14 (Poincaré 1899 (also [HLW06])). Suppose ϕ ∈ C1(D̃× I,D) is the flow induced by the vector
field f ∈ C1(D × I,R2n), where D̃ ⊂ D × I open. Then ϕ·,t0 is symplectic (for all t0 in the domain) if and
only if f is locally Hamiltonian (or globally Hamiltonian if D is simply connected).

Proof. The variational equation Dtϕ
′
t,t0 := Dp,qϕ̇t,t0 = f ′(ϕt,t0 , t)ϕ

′
t,t0 gives

Dt((ϕ
′
t,t0)

TJϕ′t,t0) = (ϕ′t,t0)
T
(
(f ′)TJ + Jf ′

)
ϕ′t,t0

⇐= : Now, if f is Hamiltonian with Hamiltonian function H ∈ C2(D × I) then

Dt((ϕ
′
t,t0)

TJϕ′t,t0) = (ϕ′t,t0)
T
(
∇2HJ−TJ + JJ−1∇2H

)
ϕ′t,t0 = 0.

since ∇2HJ−TJ + JJ−1∇2HJ = −∇2H +∇2H = 0. Therefore (ϕ′t,t0)
TJϕ′t,t0 =

(
(ϕ′t,t0)

TJϕ′t,t0
)
|t=t00 = J

since ϕt0,t0 = Id, thus ϕt,t0 is symplectic.
=⇒ : Conversely, if ϕ·,t0 is symplectic for all t0 in the domain, then

(ϕ′t,t0)
T
(
(f ′)TJ + Jf ′

)
ϕ′t,t0 = 0

for all t in the domain, implying (t = t0) (f ′)TJ + Jf ′ = 0 (take t = t0). Thus Jf ′ is symmetric and the
Integrability Lemma 2.8 implies that f ′ is locally Hamiltonian (or globally in the simply connected case).

Thus, on simply connected subsets of R2n symplectic flows and flows from Hamiltonian ODE are the same
and we see indeed that

“Symplectic maps are the discrete-time analogue of Hamiltonian motion” – James Meiss [Mei92]

2.2.3 Symplectic maps and symplectic flows related

As quoted above, symplectic flows are the discrete analogue of Hamiltonian flows. Indeed, using the suspen-
sion and Poincaré map (e.g. [BS02] chapter 1) the discrete symplectic map and the continuous Hamiltonian
flow can be related. This was for example, as mentioned in the Introduction 1, considered by Moser and
Douady in the context of discrete and continuous KAM equivalence [Dou82; Mos87] (see also [Wig03] chapter
14).

More generally, the problem of finding a Hamiltonian flow, given a symplectic map, can be reformulated as
finding an embedding of a symplectic map into Hamiltonian flows. This embedding problem (and similar
versions in the smooth and analytic case of this problem) has received much attention see e.g. [TZ09] chapter
1.3 and references therein, and additionally [Gol95; Tre99; Gio12; ST16; GV18; Tre19]. In particular, we will
use this embedding problem in the context of non-autonomous backward error analysis, which has already
been done extensively by Moan [Moa03; Moa05; Moa06] and McLachlan and O’Neale [MO10].
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2.2.4 Properties of symplectic maps

Symplectic maps have interesting properties

• Symplectic maps are locally C1 invertible due to the inverse function theorem.

• The inverse is also symplectic on its domain of definition.

• Composition of symplectic maps generates symplectic maps.

2.3 Canonical coordinate transformations and symplectic maps

As in Appendix A we are interested in coordinate changes (diffeomorphisms) and how they transform the
ODE. In particular, we are interested in coordinate changes which preserve the Hamiltonian form, called
canonical coordinate transformations (canonical maps). The importance of these coordinate transformations
is immense: An idea used by Jacobi to solve general Hamiltonian ODE [HLW06] was to use time-dependent
or time-independent coordinate transformations so as to find coordinates such that the dynamics become
trivial, which lead to the Hamilton-Jacobi equation (Appendix [HLW06] chapter VI). In this section we will
see furthermore that canonical maps are equivalent to symplectic maps.

We start with a time-independent coordinate transformation g ∈ C1(D,R2n). If z ∈ C1(I,R2n) is an integral
curve of an ODE with vector field f ∈ C1(D,R2n) then y := g ◦ z is a solution of the ODE

ẏ = Dg(z)f(z) = Dg−1(y) · (f ◦ g−1(y)) = g∗(f)

g∗(f) is called the pushforward vector field, Appendix A.3.

Definition 2.15. A coordinate transformation g ∈ C1(D,R2n) with D simply connected is (a) canonical
(coordinate transformation) with factor λ ̸= 0 if, given an autonomous or non-autonomous Hamiltonian
vector field fH on D, g∗(fH) is again Hamiltonian with Hamiltonian

K(y, t) = λ2H(g−1(y), t).

∅

In [HLW06] chapter VI.2, it is proven that canonical coordinate transformation with factor λ ̸= are equivalent
to extended symplectic maps with factor λ ̸= 0.

We now discuss time-dependent coordinate transformations g. Then the pushforward vector field is (Appendix
A.3)

g∗(f)(y, t) = Dy(g
−1)(y, t) ·

(
f(g−1(y, t), t)−Dt(g

−1)(y, t)
)
. (2.9)

Definition 2.16. If g ∈ C1(D× I,R2n) is a coordinate transformation and D is simply connected then g is
called extended canonical with factor λ ̸= 0 if

Dy(g
−1)(y, t)Dt(g

−1)(y, t) (2.10)

is symplectically symmetric (Definition 2.7) and for any Hamiltonian vector field fH , the pushforward vector
field f̃ = g∗(fh) is induced by the Hamiltonian

H̃ = λ2K −
∫ y

y0

JDy(g
−1)(γ, t)Dtg

−1(γ, t) + c dγ, (2.11)

where γ a path connecting y and a fixed y0 ∈ D (see the Integrability lemma 2.8), where K(y, t) :=
H(g−1(y, t), t) and where c > 0 is an unidentified constant. ∅

We will see next that actually, Equations (2.10) and (2.11) are superfluous (i.e. below stated as 1. =⇒ 2.)
, so that canonical maps may also be thought of as the maps which preserve Hamiltonian form, for any
Hamiltonian and that these are precisely the symplectic maps.
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Proposition 2.17 ([LY68; MO17; Car71], section 1.2). For an invertible map g ∈ C2(D × I,R2n) the
following are equivalent

1. g is such that if fH is a Hamiltonian vector field, then g∗(fh) is Hamiltonian.

2. g is extended canonical with factor λ ̸= 0

3. g is extended symplectic with factor λ ̸= 0 and invertible.

Proof. A proof can be found in [LY68], [MO17] section 2.6 or [Car71], section 1.2.

The equivalence of proposition 2.17 is mainly useful in two cases: The first is that, if one has a symplectic,
time-independent map g ∈ C1(D,R2n) and a Hamiltonian H(q, p, t) then we will without further notice use
that the pushforward vector field is induced by the Hamiltonian K(Q,P, t) = H(g−1(Q,P ), t). The second
is more speculative and is that equivalence of time-dependent symplectic maps and canonical transformation
indicates that also for non-autonomous Hamiltonian ODE the morphisms (see the next section, Section 2.4)
may be given by symplectic maps and equivalently canonical transformations.

2.4 Outlook: Structure of non-autonomous Hamiltonian ODE

In Section 2.2 a quote of [ACI83] indicated that, heuristically, the strength of the autonomous Hamiltonian
formalism lies in the separation of “geometry” (the symplectic form) and “dynamics” (the Hamiltonian). For
non-autonomous Hamiltonian ODE, however, “dynamics and geometry are coupled again” [ACI83]. Addi-
tionally [ACI83] mention that “the geometrical framework for describing time-dependent systems is not so
well established”. Even though this was in 1983, this shows some of the troubles to define the framework for
non-autonomous Hamiltonian ODE and consequently the respective structure-preserving numerical methods
(Section 4), see also the quotes of Marthinsen & Owren and Skeel & Cieslinski in the introduction, Section
1.

From the perspective of category theory, we suppose that the structure of non-autonomous Hamiltonian
ODE consists of ‘objects’ and ‘morphisms’. We mention now some ideas about the objects (the “geometrical
framework”) and morphisms (symplectic/canonical maps) of non-autonomous Hamiltonian ODE. For the
both the objects and the morphisms we mainly refer to other sources and speculate a bit in the Euclidean
case (for (q, p, t) ∈ Rn × Rn × R).

2.4.1 Objects: Geometric framework

Even today the geometrical framework does not seem well established as there seem to be several geometrical
frameworks: Using a presymplectic structure on a contact manifold [ACI83; Car+87; AM08; Bar+08], a
cosymplectic structure [LS17; EG18; Leó+22] or a precosymplectic structure, also see [BCT17; Riv21] and
references contained in these articles. Additionally, there are frameworks which seem more based on ‘dynam-
ics’ (instead of ‘geometry’): E.g. in [VV21] or a jet bundle representation [GMS97; Bar+08; Sar13a], but
it is not clear to the author how they relate to the geometric frameworks (if at all). Any of these may be
interesting to construct non-autonomous Hamiltonian structure-preserving methods.

We consider the case of Euclidean space. Phase space (q, p) ∈ R2n can be extended either to autonomously
extended space (q, p, t) ∈ R2n × R through the introduction of the new time variable t using a canonical
autonomous extension (Definition 2.5) or to extended phase space (q, p, t, s)R2n × R2 where the variable s
conjugate variable to t is introduced (Definition 2.16).

The space R2n × R has a special geometry similar to the symplectic form.

Proposition 2.18 ([Arn89] chapter 44.C or [AM08] theorem 5.1.13). Given a non-autonomous Hamiltonian
H ∈ C2(R2n ×R) (H = H(q, p, t). The flow ϕt,t0 of a non-autonomous Hamiltonian ODE with Hamiltonian
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H preserves the matrix

J̃ =

 0n −Idn DpH
Idn 0n DqH

−DpH −DqH 0


where 0n, Idn are respectively the n-dimensional zero and identity matrix and Hp = DpH, Hq = DqH. In
other words the flow ϕt,t0 satisfies

∇ϕt,t0 J̃∇ϕTt,t0 = J̃ ,

where the divergence ∇ = ∇q,p,t0 is now taken also with respect to time.

In particular this implies again that the non-autonomous flow is symplectic. The above mentioned contact
manifold is the space R2n × Rn together with this matrix, the contact form (or on a manifold an associated
two-form, see again [AM08]). Thus, we see in the Euclidean case that a contact form might induce extra
geometric structure.

On extended phase space R2n × R2, one may introduce the extended symplectic form J2(n+1). We extend

now the non-autonomous flow ϕt,t0 : R2n from R2n to R(2n+2) with the extra solutions

τ(t) = t+ τ0, s(t) = H(ϕt,t0(q0, p0, t0)−H(q0, p0, t0) + s0

for initial values q0, p0, τ0 and s0. Then the resulting autonomous flow on R2n+2 with autonomous Hamil-
tonian H(q, p, t) + s (Equation (2.7)) preserves the extended symplectic form. The non-autonomous flow
ϕt,t0 : R2n → R2n of a non-autonomous Hamiltonian H as in the proposition above does not have the dimen-
sions to preserve this symplectic flow. By construction, (q, p, t) (or (q, p, τ)) evolve independently of s and
one may ask if there is really a different structure than the contact structure involved.

2.4.2 Morphisms: Transformations, non-autonomous systems and extended phase space

We have encountered three types of transformations: Most importantly we have canonical (coordinate) trans-
formations and symplectic maps which are the structure preserving maps/morphisms of autonomous Hamil-
tonian ODE. Finally, we have time-reparametrisations, which seemed less important to consider for structure
preservation. Nevertheless, with the purpose of finding the morphisms of non-autonomous Hamiltonian ODE,
the relation between canonical transformations, symplectic transformations and time-transformations is in-
vestigated.

When considering regular phase space we have seen that, for invertible maps, the canonical and symplectic
maps are equivalent even when they are time-dependent (not that they do not transform time9, see also
[AM08] chapter 5.2.). Time-reparametrisation are also considered [CMM22] and they may be seen as an
infinitesimal canonical transformation [CIL87].
However, on the contact manifold and in extended phase space, where time may also be transformed, it
seems that the concept of canonical transformations can be generalised in various ways [ACI83; Car+87;
Joh89; GMS97; Tsi00; Str05; AM08] and the relation between canonical and symplectic maps is not set
in stone. Thus it is not clear to the author what the correct morphisms are and, giving an outlook on
structure preserving numerical methods, it is also not clear what type of transformation/morhpism a structure
preserving numerical methods for a non-autonomous, Hamiltonian ODE should be.

3 Integrability, action-angle coordinates, KAM theory and KAM
tori in the tidal wave system

Before proving the existence of persistent invariant tori (KAM tori) in the 2π-map (or the (tidal) Poincaré
map as in [Wal21]) of the numerically integrated tidal wave system, we first prove existence of invariant and
KAM tori in the 2π-Poincaré map of the theoretical tidal wave system. This is done using (continuous) KAM

9Of course the flow of a non-autonomous Hamiltonian ODE does transform time and one may really wonder whether
symplecticness is the only demand for a structure preserving numerical method.
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theory. Two strategies can be used (Figure 10).

Figure 10: A diagram that shows the two strategies
of proving the existence of KAM tori (and the extra
strategy in the footnote denoted with dashed lines).

Denote by ϕt,t0 the flow of the tidal wave
system of Section 1.5. The first strategy
is to view the 2π-Poincaré maps ϕt0+2nπ,t0

for n ∈ Z as a symplectic, discrete dy-
namical system (Appendix A). Indeed, since
the time-dependence is periodic with period
2π one sees that ϕt0+2nπ,t0 = ϕnt0+2π,t0 , so
that the 2π-Poincaré map forms, for fixed t0
a discrete dynamical system induced by the
map ϕt0+2π,t0 , which is symplectic (Proposition
2.14).

In this discrete 2-dimensional setting, one naturally
proves the existence of invariant tori using Mosers
(discrete) version of KAM theory for area-preserving
twist maps [Mös62] (or see Shang [Sha99]). To prove
the twist condition, one likely has to approximate the 2π-map ϕt+2π,t in some way. For example, an ap-
proximation of this map for the tidal wave system has been studied in [BRZ94] using the “orbit expansion”
(defined in [RZ92]). In the case of the tidal wave system, the orbit expansion seems to reduced to a Picard
iteration (as in [BBM22]). Moreover [BBM22] considers other expansions approximating the flow, which
are adapted specifically to non-autonomous, non-linear ODE and therefore might be useful. Furthermore
in [Wal21] section 7 it was mentioned that, for specific parameter values related to the Bessel function (the
Bessel function was found in [BRZ94] using the orbit expension) the 2π-Poincaré was near the identity. Thus,
it was suggested that the paper [BG94] could be used to find an autonomous Hamiltonian which interpolates
the symplectic map: It has time-1 flow very close to the 2π-Poincaré map10. We will not consider this case
in this thesis and come back to this for possible future research in Section 8.

We will adopt a second strategy: If the non-perturbed system is autonomous and phase space consists entirely
of invariant tori (e.g. the unperturbed examples in the introduction, Section 1) then there already exists a
KAM theory for small non-autonomous perturbations, depending quasi-periodically on time (Definition 3.1).
Therefore, one finds KAM tori in extended phase space from which invariant tori can be found in the Poincaré,
Section 3.3

The disadvantages of the second strategy are that one cannot say anything about the relation of the Poincaré
map to the Bessel functions using the fact that it is near the identity. Furthermore, the autonomous, ‘in-
terpolating’ Hamiltonian might give a different perspective of the Poincaré map. The main advantage of
the second strategy is that it seems to be easier. Instead of using an approximation expansion (e.g. one in
[BBM22]) of the 2π-Poincaré map and checking the twist conditions, one transforms to action-angle coordi-
nates and checks the simple conditions of the periodically perturbed KAM theorem. Therefore we use theory
which has already been developed and avoid lengthy proofs, which is in the spirit of the quotes of Douady
and Mclachan & O’Neale in the introduction. Furthermore, the action angle coordinates may also give some
additional information of the system.

To this end, we introduce complete integrable systems, for which action angle coordinates are available.
We discuss how action angle coordinates can be constructed in the 2-dimensional case and state the KAM
theorem for (quasi-)periodic perturbations. Afterwards we apply it to the tidal wave system and prove the
existence of KAM tori in the theoretical system: An appetiser for the numerical case.

First let us define quasi-periodicity.

10At this point one may also use an approximate KAM theorem for flows which are (exponentially) close to integrable ones,
see [HLW06] chapter X.5 and Section 6.
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Definition 3.1. Suppose f : Rn × R → Rm, n,m ∈ N, f = f(y, t). Then f is called quasi-periodic with
frequencies Ω ∈ Rs in the variable t there exists a function g : Rn × Ts → Rm (g is periodic in its last s
variables) such that

f(y, t) = g(y,Ω1t, . . . ,Ωst).

Nota bene that a quasi-periodic function should not be confused with quasi-periodic motion (on a torus) (see
Section 3.2).

3.1 Complete integrability and action-angle coordinates

In this section we discuss local Liouville and (global) Liouville/complete integrability of Hamiltonian systems
and action-angle coordinates. The treatment given here is heavily based on the treatment in [HLW06] chapter
X.1.

The phase space of global Liouville/complete integrable systems consists entirely of invariant tori (e.g. the
examples at the start of the introduction, Section 1) and we will see that the unperturbed tidal wave system
is completely integrable. Furthermore, global Liouville/complete integrability and action-angle coordinates
provide the mathematical framework for the application of KAM theory and can therefore be used to prove
the existence of KAM tori in the tidal-wave system.

A historical introduction for local Liouville integrability, (developed by Bour (for autonomous systems)
[Bou55]) and Liouville (allowing also time-dependence)) [Lio55] and (global) Liouville (or Liouville-Arnold)
integrability can be found in [HLW06] chapter X.1. In particular, the local integrability results were developed
to integrate the equations of motion of Hamiltonian systems:

“one of the great dreams of the 18th and 19th cenury analytical mechanics was to solve the
equations of motion of mechanical systems by “quadrature.” – Hairer, Lubich & Wanner [HLW06]

Local Liouville integrability was precisely the construction to do so, although only locally.

After the shattering of this dream by the first rigorous non-integrability results by Poincaré, focus shifted to
the study of not only solutions in quadrature, but global dynamics i.e. dynamical systems theory [HLW06]
chapter X.1.2. Therefore a global version was needed: Complete/Liouville integrability.

Thus, for completely (global Liouville) integrable systems phase space is very easy (only invariant tori) and the
flow can be solved exactly (in quadrature). This is a very strong statement, and as a consequence covers only
exceptions: very few systems are (completely) integrable [HLW06]. Nevertheless, many important systems
can be seen as small perturbations of completely integrable and perturbation theory (e.g. KAM theory) can
be applied to obtain results for these systems.

3.1.1 Locally Liouville integrable systems

The idea of local Liouville integrability is the following: Given a Hamiltonian H then a canonical transfor-
mation ℓ is sought which transforms the Hamiltonian ODE

q̇ = DpH(q, p), ṗ = −DqH(q, p)

into the ODE
ẋ = 0, ẏ = ω(x)

for some function ω = DxK, where K(x, y) = K(x) is a Hamiltonian depending only on x. Such a map ℓ is
constructed locally and explicitly using the powerhouse of Hamiltonian dynamics: Hamilton-Jacobi theory,
[HLW06] chapter VI.

Hamilton-Jacobi theory directs the search from such a symplectic map ℓ to the search of a generating function
S, which then induces the transformation ℓ, where S is defined by the Hamilton-Jacobi equation

H(DqS(x, q), q) = K(x).
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Heuristically, since dS = pdq + ydx (see [HLW06] chapter VI) and the x are first integrals (so dx = 0 along
the solution), the function S is given, heuristically, by S(x, q) =

∫ q

q0
p(x, s)ds for some fixed q0 (this follows

heuristically from integrability lemma 2.8, which also implies that S is defined locally).

The problem is now shifted to the construction of a function p(x, q) which is well-defined and has a symmetric
gradient so that S is well-defined. Such a map p can be constructed for locally Liouville integrable systems.

Definition 3.2. A Hamiltonian ODE on D ⊂ R2n is locally Liouville integrable at (q0, p0) ∈ D if there exist
n first integrals Fi ∈ C1(D) which are

• in involution locally around (q0, p0) i.e. there exists an open neighbourhood of (q0, p0) such that
{Fi, Fj} = 0 on this neighbourhood ({·, ·} is the Poisson bracket, Equation (2.2))

• and have linearly independent gradients ∇Fi at (q0, p0). ∅

It was realised by Bour [Bou55]) (for time-dependent F and H) and Liouville [Lio55] (including also time)
that this was sufficient to find such a coordinate change, which is stated in the next theorem.

Lemma 3.3 ([HLW06] chapter X.1). If an ODE on D ⊂ R2n is locally Liouville integrable at (q0, p0) ∈ D
with first integrals F1 . . . , Fn ∈ Ck(D) (analytic), then there exist G1, . . . , Gn ∈ Ck(U) (analytic), such that
the map

ℓ = (F,G) : (q, p), 7→ (x, y) where F = (F1, . . . , Fn), G = (G1, . . . Gn),

is symplectic and Ck(U) (analytic), for some open U ⊂ D.
Furthermore, if H =

∑
i viFi for some vi ∈ R then the flow ϕH,t satisfies

ϕH,t(q, p) = ℓ−1(x, y + tv) (3.1)

if ℓ(q, p) = (x, y).

Proof. A proof can be found in, for example, [HLW06] chapter X.1. We will sketch the idea of the construc-
tion of ℓ.
The first integrals xi = Fi(q, p), being linearly independent, can be inverted locally, so that p = p(x, q). Since
the first integrals are in involution, Dqp(x, q) is symplectically symmetric so that the Integrability lemma can
be used to construct the generating function S(x, q) =

∫ q

q0
p(x, q)dq locally (i.e. for U ⊂ D, for fixed q0 ∈ U),

which induce the map ℓ ([HLW06] chapter VI).

Furthermore, an ODE of the Hamiltonian Fi is transformed by ℓ (locally) into a constant ODE

ẋ = 0, ẏi = 1, ẏj = 0 for i ̸= j,

since the transformed Hamiltonian satisfies H(ℓ−1(x, y)) = Fi(ℓ
−1(x, y)) = xi (proposition 2.17). Moreover,

since {Fi, Fj} = 0, the flows commute ([HLW06]): ϕFi,t ◦ ϕFj ,t̃
= ϕFj ,t̃

◦ ϕFi,t. Therefore, if Hv =
∑

i viFi,
then ℓ transforms the ODE of Hy locally into

ẋ = 0, ẏ = v,

which proves Equation (3.1).

3.1.2 Complete integrability and action-angle coordinates

Complete integrability is found by demanding a more global version of local integrability.

Definition 3.4. A Hamiltonian system with Hamiltonian F1 = H on D ⊂ R2n is completely integrable if
there exist n functions Fi ∈ Ck(D) (analytic) such that

• All pairs Fi, Fj are in involution on D (i.e. {Fi, Fj} = 0 for all 1 ≤ i, j ≤ n)

• The gradients ∇Fi are linearly independent on D
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• The solutions of the Hamiltonian ODE induced by the Fi are defined globally in time (i.e. on all of R).

The involutivity implies that the level sets Mx = {(q, p) |F (q, p) = x} are invariant under the flows ϕFi,t

for all Fi, Equation (2.3). Moreover, if the gradients are independent then these sets are n-dimensional
manifolds. The following theorem proves the existence of action-angle coordinates on Mx for x in an open
set.

Theorem 3.5 (Arnold-Liouville; [Arn89] or [HLW06]). Let F1, . . . , Fd form a completely integrable system
as in Definition 3.4. Suppose that the level sets Mx are compact and connected for all x in a neighbourhood
of x0 ∈ Rn. Then, there are neighbourhoods B of x0 and D of 0 ∈ Rn such that:

• For every x ∈ B, the level set Mx is an n-dimensional torus that is invariant under the flow of the
system with Hamiltonian Fi (i = 1, ..., d).

• There exists a bijective symplectic transformation

ψ : D × Tn → ∪
x∈B

Mx ⊂ Rn × Rn : (a, ϕ) → (q, p)

such that (Fi ◦ ψ)(a, ϕ) depends only on a, i.e., Fi(p, q) = fi(a) for (p, q) = ψ(a, ϕ) (i = 1, . . . , n) for some
functions fi : D → R.

Proof. A proof can be found in [Arn89] section 49 and 50 or [HLW06] chapter X.1.3.

The variables (a, ϕ) = (a1, ..., an, ϕ1 mod 2π, ..., ϕn mod 2π) are called action-angle variables, where a de-
notes the action and ϕ the angle. In particular about the regularity of the transformation [HLW06] notes.

Remark 3.6. If the Hamiltonian is real-analytic, then the transformation ψ to action-angle variables vari-
ables is real-analytic.

Thus, for completely integrable systems, the level sets Mx depend only on the some action coordinate a and
are equal up to symplectic transformation to an (invariant) torus i.e. Mx = ψ(a,Tn). Therefore phase space
consists, locally, of invariant tori. Furthermore, the transformed Hamiltonian Ki = Fi ◦ ψ depends only on
a, such that the the transformed ODE of Fi satisfies

ȧ = 0 ϕ̇ = DaKi(a) =: ω(a)

where ω(a) ∈ Rn are the frequencies on the level set Mx. Thus, in action-angle coordinates it is a trivial task
to solve the equations of motion exactly. However, the construction of ψ is in general not easy.

3.1.3 Action-angle coordinates for autonomous, planar systems

For an autonomous, planar (n = 1) Hamiltonian system one only needs one invariant in involution to form a
complete integrable system Definition 3.4. Therefore autonomous planar systems are very often completely
integrable, in particular on parts of phase space where the orbits are compact.

For planar systems the generating function S, which induces the transformation ψ to action-angle coordinate,
can be found easily using the Hamilton-Jacobi equation

H(DqS(a, q), q) = K(a)

such that
p = DqS(a, q) and ϕ = DaS(a, q).

Since a should be constant along the flow ϕK we find, just like in Section 3.1.1, along solutions (q(t), p(t)),
the generating function

S(a, q) =

∫ q

q0

p(a, q) ds =

∫ t1

t0

p(t)q̇(t)dt.
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The condition that ϕ is 2π periodic i.e. 2π =
∮
Mx

dϕ implies that ([Arn89] section 50).

a(q, p) =
1

2π

∮
Mx

pdq =
1

2π

∮
Dx

dp ∧ dq, ϕ(q, p) = 2π
y(q, p)

T (q, p)
, (3.2)

where Mx is the curve with Hamiltonian value H(q, p) = x ∈ R, Dx is such that ∂Dx = Mx i.e. Mx is
the boundary and where T (q, p) is the period of the orbit with initial points (q, p). Thus in this case the
action-variable is the volume of Dx, the region enclosed by the orbit. Here we find that y and T are defined
by

y(q, p) =

∫ q

q0

∂

∂x
p(s,H(q, p)) ds T (q, p) =

∮
Mx

∂

∂x
p(s,H(q, p)) ds

for some fixed q0. Doing so, y is multi-valued with degeneracy addition of multiples of T but is well-defined
if work modulo T i.e. set 0 ≤ y ≤ T .

3.1.4 Integrability and action-angle coordinates for non-autonomous Hamiltonian systems

To be thorough we also mention briefly how integrability and action angle coordinates can be defined for
non-autonomous systems. This section is not important for application to the tidal wave system.

As mentioned above, it was Liouville [Lio55] who showed that the construction of integrability could be
extended to non-autonomous Hamiltonian systems. This is easily done by considering the extended Hamil-
tonian, Equation (2.7).

Definition 3.7. A non-autonomus Hamiltonian ODE on D ⊂ R2n with Hamiltonian H ∈ C2(D × R) is
called completely integrable if there exists F1, . . . Fn ∈ Ck(D × R) (for some k ∈ N) possibly depending on
time such that

• The Fi are first integrals of the flow of H

• The pairs Fi, Fj are in involution on R2n i.e. {Fi, Fj} = 0

• The functions Fi have linearly independent gradients everywhere

• The flow ϕH , ϕFi are exists globally in time

If the non-autonomous system is completely integrable in this sense, then one can see that the trivially
extended system (with Hamiltonian H̃ = H+s, as in Equation (2.7)) is completely integrable. The notion of
complete integrability of non-automous systems was further considered in [BB98; BC10; Sar13b]. Similarly,
notions of action-angle coordinates have been constructed for non-compact invariant sets [GMS02; FGS02;
Fio04; FS07], which is needed since in the canonically extended system ṫ = 1 and necesarily all orbits are
unbounded (non-compact).

3.2 KAM theory

Having discussed the right mathematical framework (action-angle coordinates), we now consider KAM theory.
As was mentioned in the introduction, Section 1, the KAM theory proves the persistence of invariant tori
when a completely integrable system i.e. with Hamiltonian H0(a) is perturbed with a small Hamiltonian
perturbation H1(a, ϕ). We again quote Arnold in his 1963 paper, with less omission, thus revealing the two
crucial conditions of an application of KAM theory in the right framework:

• A non-degeneracy condition for the unperturbed Hamiltonian H0(a) (or for the frequency ω0(a) :=
DaH0(a));

• a strong non-resonance condition on the frequencies ω.

“We assume [the non-degeneracy condition det
∣∣∣∂ω0(a)

∂a

∣∣∣ = det
∣∣∣∂2H0(a)

∂a2

∣∣∣ ̸= 0] [...]. It turns out that,

for a small perturbation, [H = H0(a)+µH1(a, ϕ)] (µ≪ 1), most of the tori with incommensurable
frequencies ω∗ satisfying [a non-resonance condition] do not disappear, but are merely slightly
deformed.” – V. I. Arnold [Arn63]
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Often it is said that Kolmogorov stated, without proof, the first KAM result in this form in the 50s. However,
Hubbard [Hub07] does state that some who were in Kolmogorov’s seminar in Amsterdam in 1957 say that
Kolmogorov gave a proof there. Thus, it is not entirely clear, but we refer to [Dum14] for an excellent
historical treatment of KAM, in particular chapter 5.3 on this issue. Further references on (short) historical
treatments of KAM theory are for example [Sev16; Val19; Fel22] and for an introduction to KAM theory one
could look at
[Arn89; Sev94; Way96; Mos99; De +01; Sev03; HI03; Bro04; HLW06; AKN07; Hub07; Chi09; Pös09; TZ09;
KN13; GS18; Fel22].
The non-degeneracy and strong non-resonance conditions are sufficient, but not necessary. In particular,
the non-degeneracy condition in the quote is called the Kolmogorov degeneracy condition. More general
non-degeneracy conditions are for example the isoenergetic non-degeneracy conditions and the Rüssmann
degeneracy conditions, the latter of which is also necessary, see also [Han11]. The non-resonance conditions
have also been relaxed, see the historical introduction in [Val19] and references therein.

Most often, the non-resonance condition is Siegel’s Diophantine condition (or the strong non-resonance con-
dition) [HLW06] (where ∥·∥1 is the 1-norm)

|k · ω| ≥ γ ∥k∥−σ
1 , k ∈ Zd \ {0} and some fixed γ > 0, σ ≥ 0 (3.3)

Definition 3.8. If ω ∈ Rs satisfies the strong non-resonance of Equation (3.3) condition with fixed γ >
0, σ ≥ 0 then ω is called (σ, γ)-Diophantine.
If ω ∈ Rn satisfies |k · ω| = 0 for some k ∈ Zn \ {0} then we say that the frequencies ω resonate.

∅

Mathematically, the non-resonance condition is due to a small divisor problem chapter X.2.1 where the term
k ·ω for k ∈ Zd \{0} arises due to a Fourier expansion [HLW06]. Intuitively, the non-resonance condition may
be interpreted as follows: On the unperturbed, completely integrable Hamiltonian system with Hamiltonian
H0(a) we have seen that phase space may consist (locally in a ball B ⊂ Rn) of invariant tori i.e. of the form
(a, ϕ) ∈ B × Tn with flow defined by the ODE

ȧ = 0, ϕ̇ = ω(a) = DaH0(a).

On a specific torus with action variable a∗ ∈ B the flow is conditionally periodic: It is periodic if |k ·ω(a∗)| = 0
for some k ∈ Z and quasi-periodic (e.g. [Arn89]) otherwise (quasi-periodic motion is not to be confused with
a quasi-periodic function of Definition 3.1). In the quasi-periodic case it is known that motion is aperiodic
and fills densely the torus ([HLW06] chapter X.1.4). Now, KAM theory tells us that, if the motion is periodic
(the frequencies are resonant) or nearly periodic, then this invariant tori with action variable a∗ will be de-
stroyed under the influence of a Hamiltonian perturbation H1(a, ϕ). Only when the motion is very aperiodic
(strongly non-resonant frequencies i.e. (σ, γ)-Diophantine) then the invariant torus persists.

If σ > n − 1 then a large measure of ω in any fixed ball in Rn are (σ, γ)-Diophantine for some γ > 0, see
[HLW06] chapter X.2.1. In the case n = 2 this is illustrated on the cover of this thesis in the figure taken
from [Han11]. Thus, one may expect a large number of invariant tori to persist, but this depends on the
strength of the perturbation.

3.2.1 A KAM theorem for time-dependent, periodic perturbations

Usually, KAM theorems are given for autonomous, completely integrable Hamiltonian ODE H0(a), with
autonomous perturbations H1(a, ϕ). If the perturbation is (2π-)periodic H1(a, ϕ, t + 2π) = H1(a, ϕ, t) or
quasi-periodic (Definition 3.1), then the KAM theorems can be adapted to this case with almost identical
proof [JS96]. These adapted KAM theorems are given, for example, in [Jor91; JS96; BSG03; TZ09], and
generalised in [JV97] (for lower-dimensional tori) and a very general setting in [Sev07] (for non-Hamiltonian,
parameterised analytic families of lower-dimensional tori and under the weaker Rüsmann non-degeneracy
conditions).
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When non-autonomously perturbed, Kolmogorov’s non-degeneracy condition is in general not valid on the
canonically extended phase space [Moa03] and one may consider for example other non-degeneracy conditions,
such as the isoenergetic one [Moa03]. However, one may notice that only the variables in the unperturbed
system need to satisfy the Kolmogorov non-degeneracy condition [JS96]11.

Thus, we now consider a perturbed Hamiltonian H on D ⊂ Rn × Tn × R in action-angle coordinates (a, ϕ)
of the form

H(a, ϕ, t) = H0(a) +H1(a, ϕ, t)

with H1 quasi-periodic in t i.e. ∃Ω ∈ Rs for some such that H1(a, ϕ, t) = K1(a, ϕ,Ω1t, . . . ,Ωst) with K1

2π-periodic in all of its last s ∈ N variables. The KAM theorem we will use (we do not aim for the most
general statement) is from [Jor91; JS96] together with an addition from [Sev07] (for which the conditions
are more general so that we may state the conditions of [Jor91; JS96]). Due to quasi-periodicity, s new
angle variables ψ ∈ Ts together with a conjugate variable b ∈ Rs are introduced, where ψ = Ωt so that the
extended Hamiltonian K is equal to

K(a, b, ϕ, ψ) = H0(a) +K1(a, ϕ, ψ) + Ω · b.

Thus, in the case s > 1 the amount of variables in the perturbation increase so that the perturbation K1

becomes periodic in its last s variables.

Theorem 3.9 ([Jor91] theorem 2.3, [JS96] theorem 3 and [Sev07] theorem 3.1). Consider the perturbed
Hamiltonian

K(a, b, ϕ, ψ) = H0(a) + µK1(a, ϕ, ψ) + Ω · b

defined on an open subset D × D̃ × Tn × Ts ⊂ Rn × Rs × Tn × Ts. Denote A = (a, b), Φ = (ϕ, ψ).

If, for some fixed ρ > 0, the Hamiltonian K can be extended analytically to the complex domain F := Fρ :=
{(A,Φ) |A ∈ G, Φ ∈ Ts × i[−ρ, ρ]s i.e. |im(Φi)| ≤ ρ} in a way such that K is 2π-periodic in the variables Φi

(i = 1 . . . n+ s), where G1 ⊂ D,G2 ⊂ D̃ compact and G := G1 ×G2 ⊂ Rn × Rs.
If furthermore H0 satisfies the non-degeneracy condition on F

det
∂2H0(a)

∂a2
= det

∂ω(a)

∂a
̸= 0,

where ω(a) = ∂H0(a)
∂a are the frequencies of the unperturbed system and if the frequencies Ω of the perturbation

are (σ, γ)-Diophantine, Equation (3.3) i.e.

⟨k,Ω⟩ ≥ γ

∥k∥σ1
, ∀k ∈ Zs − {0}.

with the requirement σ > s− 1, γ > 0 (where ∥·∥1 is the 1-norm).

Then ∀ϵ > 0, ∃C = C(ϵ, ρ,G,H0) such that, if

µ ≤ C, pointwise on F

then the motion defined by
Φ̇ = DAK(A,Φ) Ȧ = −DΦK(A,Φ)

has the following properties:

• Re F = F1 + F2 where F1 is invariant and the measure of F2 (denoted |F2|) satisfies |F2| ≤ ϵ|F |.
11In the periodic case, another proof of the periodic KAM theorem exists. Using a trick (considering the exponential of the

canonically extended Hamiltonian) to remove the non-degeneracy, an application of the KAM theorem on extended phase space
is possible in this case, see [TZ09] chapter 2.1 and 2.2.
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• F1 consists of a family of invariant (n+s)-dimensional analytic tori Iα = {(Bα,Ψ) |Ψ ∈ Tn+s}, defined
parametrically by

A = Bα + fα(Ψ), Φ = Ψ+ gα(Ψ),

where (fα, gα) : Tn+s → Rn are analytic and of period 2π in all its variables and the parametrisation
depends on α = (ω,Ω) [JS96] (because of the non-degeneracy condition, equivalently α = (a,Ω) as in
[Sev07]).

• The mapping is close to the identity

|(fα, gα)| = O(ϵ) pointwise on F

• On the invariant (n+ s)-tori Iα, the motion of the perturbed system is quasi-periodic with frequencies12(
∂H0(Bα)

∂a
,Ω

)
.

• Suppose moreover that the perturbation H1 can be holomorphically continued (is complex analytic) on
the set

F̃ρ = {(A,Φ) ∈ Cn+s × (C/2πZ)n+s |A ∈ G ⊂ Cn, |im(Φi)| ≤ ρ}

for some G ⊂ D × D̃ such that the closure Ḡ is contained in D × D̃ (the only stronger condition in
[Sev07]). Then, given a fixed α, the coordinate transformation mapping (A,Φ) 7→ (B,Ψ) (which is

given by (Id+ (fα, gα))
−1

) leaves the newly introduced angle variables ψ unchanged

ψ = ψ̄

and transforms the ODE into the form

Ḃ = O
(
∥B −Bα∥21

)
˙̄ϕ = ω′ +O (∥B −Bα∥) ,
˙̄ψ = Ω.

(3.4)

where Bα is the transformed coordinate parametrising the torus for the chosen α.

Thus, this theorem tells us that most invariant tori persist (all tori in F1), if the perturbation has frequen-
cies Ω which are strongly non-resonant ((σ, γ)-Diophantine) and satisfies the Kolmogorov non-degeneracy
condition in the action variables of the unperturbed system. In particular we mentioned above that the
tori with (almost) periodic motion were destroyed for autonomous perturbations, again this is the case for
non-autonomous perturbations: “The tori whose frequencies are in resonance with the ones of the perturba-
tions are destroyed” [JS96]. The surviving tori are, with increasing perturbation strength, the ones which
are increasingly non-resonant, quantified by the (strong) Diophantine property, just like in the case of an
autonomous perturbation. Furthermore, the mapping to the new coordinates is close to the identity.

Remark 3.10. We consider the case of a 2π-periodic perturbation, s = 1. In this case ψ = t. Now, does the
existence of KAM tori (using the KAM theorem above) in the transformed coordinates imply the existence of
invariant tori in the Poincaré map?

First of all, as stated in Sevryuk [Sev07] (p.567), the torus Iα as in Theorem 3.9, which lives in the space
D×D̃×Tn+s and is an invariant torus of the autonomously extendeed Hamiltonian system with Hamiltonian
H0(a) + µK1(a, ϕ, ψ) + s, may be projected to the space D × D̃ × Tn and so that the projected torus is an
invariant torus for the original, non-autonomous Hamiltonian system with Hamiltonian H0(a)+µK1(a, ϕ, ψ).
Furthermore, if the perturbation is periodic then we see that time ψ = ψ̄ = t is left untransformed, which
means that the projected invariant torus induces an invariant torus of the Poincaré map.

12The frequencies of the perturbed tori are in some cases equal [ZC10].
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3.3 Persistent invariant tori in the tidal wave system

We are now able to describe the tidal wave system in a mathematical framework, action-angle coordinates,
which makes rigorous the existence of invariant tori in the unperturbed system and allows for an application
of a KAM theorem on the tidal wave systems to prove the existence of persistent invariant tori. This is the
goal of this Section.

We use the transformed Hamiltonian of Equation (1.5)

L(q, p, t) = k(p− q) cos(t) + L1(q, p) + γL2(q, p, t)

where

L1(q, p) = H1(A
−1(q, p)) = −Cδk

2l
(
α cos(p) + β cos(q)

)
L2(q, p, t) = H2(A

−1(q, p), t) = Cδ2kl(r cos(t) + sin(t))(α sin(p) + β sin(q)),

which induces the ODE

q̇(t) = k cos(t) + Cδkl
(
kα sin(p) + 2α cos(p)(r cos(t) + sin(t))

)
ṗ(t) = k cos(t)− Cδkl

(
kβ sin(q) + 2β cos(q)(r cos(t) + sin(t))

)
.

3.3.1 Unperturbed system: Integrability and action-angle coordinates

For the unperturbed system we take the autonomous part K of the Hamiltonian L:

K(q, p) = −Cδk
2l[α cos(p) + β cos(q)]

where k, l ≥ 0 and f, r ∈ R and α = fk + rl, β = fk − rl. We rescale time by Cδk
2l ̸= 0 such that the ODE

q̇ = α sin(p), ṗ = β sin(q)

is obtained. One can remark that this is a special case of the ABC flow, so that symmetries (and reversible
KAM theory) become very important. However, in this thesis this will not be pursued. Note here that
α, β ∈ R may take on value since, for fixed k, l, the map (r, f) 7→ (α, β) = (fk + rl, fk − rl) is linear and
surjective. The case αβ = 0 is not interesting, however, so we will assume that α, β ∈ R \ {0}.

Considering the further time-scaling with factor α and using the extended symplectic transformations (q, p) 7→
(−p, q) and (q, p) → (p, q) allows us to assume without loss of generality that η := α/β ∈ [−1, 0). So we
consider

q̇ = sin(p), ṗ(t) = η sin(q), with Hamiltonian K̃(q, p) = − cos(p) + η cos(q), for η ∈ [−1, 0). (3.5)

We note that the solutions of this ODE are defined on the whole time domain, since the vector field is
bounded. Thus, one of the conditions of complete integrability is satisfied. Moreover, since the system is
planar and autonomous, the Hamiltonian K (and the transformed Hamiltonian K̃) is an invariant of motion
(in involution with itself. Thus, we may immediately conclude that, on sets where ∇K ̸= 0 (since K̃ is a
symplectic transformation of K, equivalently ∇K̃ ̸= 0), the system is completely integrable.

Before transforming to action angle coordinates, we first sketch a portrait of the phase plane. The fixed
points of the ODE occur in a rectangular grid with gridpoints q, p ∈ πZ with energy K̃(q, p) = ±1±η. These
fixed points are, alternating in the grid/in a checkerboard pattern, saddle (cos(q) cos(p) < 0) and elliptic
(cos(q) cos(p) > 0) fixed points (Figure 11):

J∇2K̃ =

(
0 ±1
±η 0

)
at the fixed points

with eigenvalues λ =
√
±η. Thus, the assumption η < 0 causes the origin to be an elliptic fixed point

(and the alternating stability type on the grid determines the rest). For the saddle points the eigenvectors
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(1,
√
−η), (1,−

√
−η) can be found.

Notice that K̃ : R2 → [−1 + η, 1− η]. The maxima and minima of the Hamiltonian are precisely the elliptic
points at (q, p) = (mπ, nπ) for n,m ∈ Z, n −m ∈ 2Z. The saddle points {(q, p) | q = mπ, p = nπ, m, n ∈
Z, m − n ∈ 2Z + 1} are contained in the set of maxima/minima of K̃, {(q, p) ∈ R2 | K̃(q, p) = ±(1 + η)},
which consists of the continuous curves

pm,±(q) = 2mπ ± arccos(−1− η(1− cos(q))) if K̃ = 1 + η, η ∈ (−1, 0) (3.6)

p̃m,±(q) = 2mπ ± arccos(1 + η(1 + cos(q))) if K̃ = −1− η, η ∈ (−1, 0) (3.7)

pm,±(q) = mπ ± q if η = −1, (3.8)

where m ∈ Z and arccos : [−1, 1] → [0, 2π). Using this one can show, for η ∈ (−1, 0), that

• Every saddle point lies on a curve pm,±, p̃m,± with m ∈ Z. Two saddle points with equal coordinate q
lie on the same curve pm,± or p̃m,± for some fixed m ∈ Z.

• Conversely, the curves pm,±, p̃m,± consist completely of the saddle points together with the heteroclinic
orbits of these saddle points (and form the unstable and stable manifolds).

• The curves pm,±, p̃m,± for fixed m ∈ Z form pairs of heteroclinic orbits, which partition phase space
into interior regions, containing elliptic fixed points and bounded orbits, and exterior regions.

• For η ̸= −1 these unbounded orbits exist in these exterior regions.

These are illustrated in Figure 11, where the symmetry of phase space due to the invariance of the ODE
under the map (q, p) → (q + 2πn, p+ 2πm) is evident.

Figure 11: The phase plane (q, p) for different values of η ∈ {−1,− 1
2 ,−

1
4} (from left to right). We see the

periodicity of the phase plane in (q, p) with period π. For η ̸= −1 we see also unbouned orbits in blue.
Equilibrium points are shown in red and stable/unstable orbits of the saddle points in cyan. Image made in
PPlane [Cas05].

For η = −1 similar statements hold, but this case is special in the sense that all unstable fixed points have
the same energy K̃ = 0. The heteroclinic orbits are lines and the bounded domains are rotated squares. No
two heteroclinic orbits meet at the same two saddle points, however, and no unbounded orbits exist (Figure
11 left).

Understanding the phase space, we now show that locally, phase space consists of invariant circles (action-
angle coordinates are found). Because of the symmetry arguments discussed above, we focus on a single ‘cell’
of the grid around the elliptic fixed point (q, p) = (0, 0), as in Figure 12. In other words we look at the set
B := {(q, p) ∈ R2 | K̃(q, p) < −1 − η, q ∈ (−π, π), p ∈ (−π, π)} = {(q, p) ∈ R2 | q ∈ (−π, π), p0,−(q) < p <
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p0,+}. This space is bounded, open and, as shown above, contains a single elliptic fixed point at the origin.

Therefore the orbits are compact and we may find action-angle coordinates on B \ {0} (at 0, ∇K̃ = 0 so the
conditions of the Arnold-Liouville theorem are not satisfied).

-3 -2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

q

p

Figure 12: A single ‘cell’ of the sys-
tem of Equations (3.5) for η = −0.5.
Plotted are the heteroclinic orbits p0,±
(dashed cyan lines), saddle points (red
dots), the set B (the interior region
bounded by p0,±) (cyan shade) and an
example orbit (blue line, with Hamil-
tonian value −1), with q0 and q1 (red
crosses).

From Section 3.1.3 the symplectic map (a, ϕ) : B \ {0} → R × T
defining the action-angle variables (using Equation (3.2)) is given by

a(q, p) =
1

2π
Π(q, p) =

1

π

∫ q1

q0

arccos
(
−K̃(q, p) + η cos(τ)

)
dτ, ϕ(q, p) = 2π

y1(q, p)

T (q, p)
,

(3.9)
which is well-defined since K̃ ∈ (−1+η, 1−η). Here q0(q, p), q1(q, p) ∈
(−π, π) are such that K̃(q, p) − η cos(qi) = ±1 and q0 < q1 = −q0,
see also Figure 12. For example, for (q, p) = (π/2, 0) we find −q0 =
q1 = π/2. The period T (q, p) = T (ϕt(q, p)) (t ∈ R) and the phase
y1(q, p) take the form

y1(q, p) = ±
∫ q

q0

1√
1− (η cos(τ)− K̃(q, p))2

dτ, T (q, p) = y1(q1(q, p), 0) > 0,

where the sign of y1 is non-negative if and only if p ≥ 0. Furthermore
y1(q, p) depends on the path of integration and is multivalued, but
well-defined if taken modulo T (q, p).

3.3.2 Perturbed system: KAM theory for the tidal-wave system

We now apply periodic KAM theory (Theorem 3.9) to periodic perturbations of the system of Section 3.3.1
and in particular to the “default” and “simple-B” case (Remark 1.1). In [Wal21] these parameter sets are
defined without vorticity term (γ = 0) i.e. with Hamiltonian

L(q, p, t) = k(p− q) cos(t)− µCδk
2l[α cos(p) + β cos(q)] (3.10)

where α = fk + rl, β = fk − rl. The first step is a time-rescaling t 7→
(
Cδαk

2l
)−1

t = χt of the ODE,
transforming the Hamiltonian into the form

L̃(q, p, t) = − cos(p) + η cos(q) + µχ(p− q) cos (χt) (3.11)

where we assume without loss of generality that η = η(k, l) = β/α ∈ [−1, 0) (see Section 3.3.1). Here µ ∈ R
is an artificially introduced perturbation parameter. The unperturbed Hamiltonian L̃ (with µ = 0) is equal
to the system K̃(q, p) = − cos(p) + η cos(q) (similarly L is equal to K for µ = 0).
Three of the four conditions of the KAM Theorem 3.9 (using notation thereof) are easily verified to be true:

• The unperturbed system (µ = 0) is completely integrable, which follows from the previous section
(together with the fact that K̃ and K are related by extended symplectic transformations).

• The Hamiltonian L̃ is complex analytic on the complex domain F = Fρ for any ρ > 0, since cos, sin

are complex analytic on the whole of C. Moreover K̃ is analytic (Remark 3.6) so it may be locally
extended to a complex analytic function. One may check using a Taylor series on T, y1 that they define
analytic functions (globally) on C.

• In any case the perturbation is periodic, therefore Ω = 2π is trivially (σ, γ)-Diophantine for every σ > 0
and sufficiently large γ > 0.

This only leaves the Kolmogorov non-degeneracy condition for the unperturbed Hamiltonian K̃ (or equiva-
lently for K) written in action angle coordinates (denoted again by K̃)

d2K̃(a)

da2
=

∂

∂a

2π

T ((q(a, ϕ), p(a, ϕ)))
=

∂

∂a

2π

T (a)
= − 2π

T (a)2
∂T (a)

∂a
̸= 0,
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which is checked next. It was used that the period T ((q(a, ϕ), p(a, ϕ))) only depends on the action a (since
the frecuency ω only depends on a and ω(a) = 2π

T (a) ), abusing notation we therefore write T = T (a). In par-

ticular, we have T (q, p) = T (q0(q, p), 0) and q0 depends on the action a only, such that q0 = q0(a). Therefore
we consider T (q0(a)) (with abuse of notation) and check Kolomogorov’s theorem using this function.

In the following, we make the assumption that integrals and derivatives without may be switched. This is
not straightforward, as the integrals are improper. First we prove that q0(q, p) depends only on the action
(q0 = q0(a)), which follows from the inverse function theorem and the fact that a′(q0) ̸= 0:

a(q0) =
1

π

∫ q1

q0

arccos
(
−K̃(q0, 0) + η cos(τ)

)
dτ, so a′(q0) = 0+

1

π

∫ q1

q0

DqK̃(q0, 0)√
1−

(
−K̃(q0, 0) + η cos(τ)

)2 =
η sin(q0)

2π
T (q0, 0) < 0,

where it was used that DqK̃(q0, 0) = η sin(q0) < 0. Here we are allowed to switch (impoper) integral and

derivative, because the integral on the right hand side is equal to DqK̃(q0, 0)
1
2πT (q0(a)) which is well-defined

(thus we may use the dominated convergence theorem with the dominant function simply the integrand itself).

Next we find that q0 < q̃0 implies that T (q0) > T (q̃0). Since ω is differentiable (K̃ is analytic and Remark

3.6) we find dT (q0)
dq0

> 0. Therefore

dT (q0(a))

da
=
dT (q0(a))

dq0

dq0(a)

da
> 0,

for all actions a(q, p) with (q, p) ∈ B. Intuitively one might expect that dT (q0(a))
da > 0 since increasing a means

that we are approaching the heteroclinic orbits. This proves the Kolmogorov non-degeneracy condition.

3.3.3 The “default” case

In the default case, k = l and γ = 0 (without vortivity), the rescaled system of Equation (3.11) has Hamil-
tonian

− cos(p) + η cos(q) + µkχ1(p− q) cos (χ1 t) .

here µ ∈ R is introduced as a perturbation parameter and χ1 := χ1(k, r, f) :=
20(k2+2r2+2)

3k → ∞ as k → 0 or
k → ∞. Varying k not only changes the strength of the perturbation, but also the frequency, see Figure 13.
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Figure 13: The amplitude
10(k2+10)

3k and the (scaled) period 3k2

10(k2+10) of the perturbation, for r = 2, f = −1.

(Made in Wolfram Mathematica, 10.2 ).
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Since the transformation into action-angle coordinates, of Equation (3.9) is symplectic and time-independent,
one may simply substitute (q, p) → (q(a, ϕ), p(a, ϕ)) such that the Hamiltonian becomes,

L(a, ϕ, t) = − cos(p(a, ϕ)) + η cos(q(a, ϕ))︸ ︷︷ ︸
H0(a)

+µ kχ1 cos(χ1t)H1(q(a, ϕ), p(a, ϕ))︸ ︷︷ ︸
H1(a,ϕ,t)

defined on D × T2.

Theorem 3.9 now states that for every µ > 0, there exists C = C(µ, ρ,G, γ, τ,H0) such that, if µ ≤ C on
Fρ (for a fixed ρ > 0), then there exists a symplectic mapping, near to the identity, to a coordinate system
which define a family of invariant tori in a subset of D × T2. From Remark 3.10 we may also conclude that
there exist persistent invariant tori of the Poincaré map.

Finally, as mentioned in the Introduction 1, one could, for a particular persistent torus, try to find the value
where it breaks, such as in [CFP87a], but this is not pursued in this thesis.

3.3.4 The “Simple-B” case

In the “Simple-B” case, with k = l and γ = 0 (without vorticity), the time-rescaled Hamiltonian of Equation
(3.11) takes the form

H(a, ϕ, t) = − cos(p(a, ϕ)) + η cos(q(a, ϕ))µkχ2(p(a, ϕ)− q(a, ϕ)) cos(χ2t),

where χ2 = χ2(k, r, f) :=
5r

3(f+r)k . This time, varying k only varies the period and not the strength of the

perturbation. We may use the same arguments as in the “default” setting and Remark 3.10 to prove that,
for small µ, KAM tori exist in the periodic Poincaré map of the perturbed system.

We see furthermore, that the rescaled “default” and “Simple-B” systems, without vorticity term (γ = 0) and
k = l, are easily related: The “default” system with parameters (k, µ) is equal to the ‘Simple-B’ system with

parameter ( kr
4(k2+2r2+2) , µ

4(k2+2r2+2)
kr ). In [Wal21], r = 2 is used so we expect the Simple-B case to have less

KAM tori (see also Section 4.4 and Figure 15).

4 Symplectic methods, induced methods for forced ODE and split-
ting methods for time-affine systems

In this section four topics in numerical methods are discussed. The focus is again on numerical (splitting)
methods for non-autonomous Hamiltonian ODE, in particular forced and time-affine ODE (Definitions 2.1
and 2.2). We also consider briefly splitting methods for non-autonomous ODE and for near-integrable Hamil-
tonian systems.

The first topic is a general presentation of (partitioned) Runge-Kutta ((P)RK) methods, splitting and com-
position methods and the adjoint method to solve (non-autonomous) ODE numerically. We present also a
particular (numerical) method introduced in [Wal21]. This method is adapted to forced ODE and we call it
the induced method. Second, we consider structure preserving methods, in particular symplectic methods and
we show that the induced method is symplectic. Third, we briefly give an outlook on structure preserving
numerical methods for non-autonomous Hamiltonian ODE which is a follow-up of Section 2.4. Fourth, the
splitting for the tidal wave system (time-affine) in [Wal21] is presented. This method splits the time-affine
Hamiltonian of the tidal wave system into ‘forced; Hamiltonians on which induced methods are used.

4.1 Induced methods and splitting methods for time-affine ODE

We will first define (partitioned) Runge-kutta and splitting methods for autonomous and non-autonomous
ODE. For forced ODE the induced method is discussed, which can be combined with the splitting method
to form numerical methods for time-affine systems. Finally, we discuss how splitting methods are sometimes
adapted to non-autonomous systems.

34



4.1.1 Partitioned Runge-Kutta, adjoint, composition and splitting methods

We consider (partitioned) Runge-Kutta ((P)RK) methods, splitting methods, the adjoint method and com-
position methods.

For an ODE with vector field f , an s-stage Runge-Kutta method with step size h > 0 is a map ψh : Rn+1 → Rn,
which can be constructed given a Butcher tableau B of coefficients (consisting of a matrix A ∈ Rs×s (with
elements ai,j and two vectors b, c ∈ Rs13). The Butcher tableau is usually written as [HLW06]

B =

c1 a1,1 . . . a1,s
...

...
...

cs a1,s . . . as,s
b1 . . . bs

.

We may write B = (A, b, c) to make the notation of the coefficients explicit. The RK method is then defined
as the map ψh : Rn+1 → Rn, given by

ψh(y, t) = y + h

s∑
i=1

biki, ki = f

(
y +

s∑
i=1

aijkj , t+ h

s∑
i=1

ci

)
.

RK methods for autonomous ODE are a special case in the sense that the values of ci can be omitted (and
may be considered as maps ψh : Rn → Rn).

Example 4.1. The explicit and implicit Euler method have Butcher tableaus ([HLW06] chapter II.1)

0 0
1

respectively
1 1

1
.

Definition 4.2. The local error of a numerical method ψh : Rn → Rn applied to an ODE with flow ϕ is (for
the Euclidean norm ∥·∥2) given by ψh − ϕh and is of order p ∈ N if

∥ψh(y)− ϕh(y)∥2 = O(hp+1) as h→ 0,

for all y ∈ Rn and all smooth f . A method is consistent if it is of order 1.
The global error after m steps is given by

sup
1≤j≤m

∥∥∥ψj
h(y)− ϕh(y)

∥∥∥
2
. (4.1)

∅

A RK method can be guaranteed to be consistent and of higher order if there are restrictions to the param-
eters a, b (and c) in the Butcher tableau e.g. as in [HLW06] chapter II and III.

Partitioned RK methods form a bigger class of numerical methods. A partitioned RK (PRK) method splits
the variable y into multiple parts, e.g. y = (z, w) and use different Butcher tableaus for these variables.

Suppose we have an ODE with vector field f̂ = (f, g) where f : Rn ×R → Rm and g : Rn ×R → Rn−m then
we can use two Butcher tableaus B, B̃ which describe s-stage (the number of stages must be the same) RK
methods to form the PRK method ϕ = (ϕ[1], ϕ[2]) given by

ϕ[1],h(y, z, t) = y + h

s∑
i=1

biki, ki = f

(
y + h

s∑
i=1

aijkj , z + h

s̃∑
i=1

âijℓj , t+ hci

)
,

ϕ[2],h(y, z, t) = z + h

s̃∑
i=1

b̂iℓi, ℓi = g

(
y + h

s∑
i=1

aijkj , z + h

s̃∑
i=1

âijℓj , t+ hc̃i

)
.

13Sometimes complex coefficients are considered [Sey16]
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The order conditions can be found in [HLW06] chapter II and III. A simple example of a PRK method is
a non-autonomous system in autonomously extended space (Definition 2.5) where one splits time y = (z, t)

and the vector field f̂ = (f, 1) (where 1 is the constant function with value 1).

Remark 4.3. If f(y, t) is (real-)analytic in y ∈ Rn and h > 0 is sufficiently small so that the conditions
of the analytic implicit function theorem hold, then a Taylor expansion of (partitioned) RK methods exists,
such that a numerical method ψh : Rn → Rn method can be given by a power series in h

ψh(y, t0) =

∞∑
i=0

hi

i!
di(y, t0),

For consistent methods d0(y, t) = y and d1(y, t) = f(y, t). The coefficient function di are analytic for
sufficiently small y ([HLW06] Section IX.7.1).

Next, we discuss the adjoint (numerical) method, useful for composition methods and to construct symmetric
integrators which respect reversible symmetries (Section 4.2 or [HLW06] chapter V).

Definition 4.4. The adjoint method ψ∗ of a method ψh : Rn → Rn is given by ψ∗
h = (ψ−h)

−114 i.e. the
inverse of the map ψ−h. ∅

Given numbers α1, . . . , αs, β1, . . . , βs with
∑

i(αi + βi) = 1 and a numerical method ψh : Rn → Rn, the
composition method Ψh with step sizes α1h, β1h . . . , αsh, βsh is given by

Ψh = ψαsh ◦ ψ∗
βsh · · · ◦ ψα1h ◦ ψ∗

β1h.

One can construct composition methods with higher order than the original method, [HLW06] chapter II and
III. For example, if ψ is of order 1 then ψ∗

h/2 ◦ ψh/2 is of order 2.

Finally we consider splitting methods. There are three steps to splitting methods

1. Split the vector field
∑

i fi.

2. Integrate the ODE with vector field fi in some way with a method ψfi .

3. Use a composition method to obtain a good approximation of ϕf .

The main idea is that the flows of fi are either ‘simpler’ or easier to integrate numerically [MQ02; BCM08].

Given a vector field f , we split f = f1+ f2. If we use two numerical methods ψ[1],h, ψ[2],h : Rn → Rn to solve
these methods then we may consider the numerical method

Ψh = ψ[2],h ◦ ψ[1],h Ψ∗
h = ψ∗

[1],h ◦ ψ∗
[2],h

which is called the Lie-Trotter splitting and its adjoint [HLW06], which are methods of order 1. One may
also consider

Ψh = ψ∗
[1],h ◦ ψ∗

[2],h/2 ◦ ψ[2],h/2 ◦ ψ[1],h/2

which is called the Strang or Marchuk splitting [HLW06] (compare with the composition method defined
above). Order conditions (using B-series, P-series or Lie algebra techniques) to produce methods of higher
order can be found in [HLW06] chapter II and III. We mention in Section 4.1.3 how splitting methods can
be adapted so as to become more suitable to the non-autonomous case.

4.1.2 Induced method for forced ODE

14For C1 vector fields and small h > 0, the inverse ψ−1
−h exists locally by the inverse function theorem.
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Figure 14: The idea behind the induced method
for forced ODE.

If ψh is a method for the ODE with autonomous vector
field f , then for any time-dependent g ∈ C0(R) there
exists a naturally induced method ψ̃h for the forced ODE
with vector field g(t)f(y). Indeed, from Equation (2.5),
the solution ϕ̃t,t0 of the non-autonomous ODE with vector
field g(t)f(y) satisfies

ϕ̃t,t0 = ϕG(t)−G(t0),0 = ϕG(t),G(t0),

where G(t) = Gτ (t) =
∫ t

τ
g(s) ds. Therefore, heuristically

(e.g. Figure 14) we expect for one timestep (at time t0)

ψh ≈ ϕh = ϕt0+h,t0 =⇒ ψη(t0,h) ≈ ϕG(t0+h),G(t0) = ϕ̃t0+h,t0 ,

where η = η(t0, h) = G(t0 + h) − G(t0). Therefore, ψη(t0,h) ≈ ϕ̃t0+h,t0 so it defines a numerical method for
the forced ODE.

Definition 4.5. The (naturally) induced (numerical) method (of gf) (from ψ) is defined as

ψ̃h,t0 := ψη(t0,h), where η(t0, h) = Gτ (t0 + h)−Gτ (t0) =

∫ t0+h

t0

g(s) ds (4.2)

with domain the extended phase space Rn × R (note that η is independent of τ). ∅

Definition 4.6. Suppose that f ∈ C∞(D,Rn), g ∈ C∞(R) (with D ⊂ Rn), G is well-defined, ψ is a
numerical method of the ODE with vector field f and h > 0 a fixed stepsize. Then the numerical method
Ψgf,h = Ψh : Rn × R → Rn × R defined by

Ψh(y, t0) =

(
ψ̃h,t0(y)
t0 + h

)
(4.3)

is called the extended induced method (of gf) (from ψ)15, where ψ̃h is the induced numerical method (of gf)
(from ψ). ∅

If ψh is of order N and η(t0, h) = O(h), then Ψh : Rn+1 → Rn+1 is a well-defined method of order N on the
(canonically extended) ODE with vector field (gf, 1) (and ψ̃h,t0 on the ODE of gf), since

ψh = ϕh+O(hN+1) =⇒ Ψh(y, t0) =

(
ψη(t0,h)(y)
t0 + h

)
=

(
ϕη(y) +O(ηN+1)

t0 + h

)
=

(
ϕ̃t0+h,t0(y)
t0 + h

)
+O(hN+1).

Remark 4.7. As for the adjoint method, one can check that the adjoint of Ψh (well-defined locally, for
sufficiently small h) satisfies

(Ψh)
∗(y, t0) =

(
ψ∗
−η(t0+h,−h)(y)

t+ h

)
.

Furthermore, we will need, in the numerical integration of the tidal wave system, the adjoint method of

Ψ̃h(y, t0) =

(
ψ̃h,t0(y)
t0

)
so that time t0 is not advanced. Its adjoint is given by

Ψ̃∗
h(y, t0) =

(
ψ∗
−η(t0,−h)(y)

t0

)
.

15cf. [HLW06] chapter VIII, equation (3.2)
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Example 4.8. In the case that g(t) = cos(t) and f on R2 one finds for example that η(t0, h) = sin(t0 +h)−
sin(t0). If ψh is the SE method (Example 4.18) then

ψ̃h,t0(yn, zn) = ψsin(t0+h),sin(t0)(yn, zn) =

(
yn + (sin(t0 + h)− sin(t0)) f1(yn, zn+1)

zn+1

)
where

zn+1 = zn + (sin(t0 + h)− sin(t0)) f2(yn, zn+1),

if f = (f1, f2). Since η = O(h) we have a method of order 4.

Furthermore. there are two ways of interpreting Ψh: From the perspective of the autonomous part of the
vector field f , we have a numerical method Ψη(t0, h) solving the ODE with vector field f which is a PRK
method but with non-constant time-step. From the perspective of forced ODE gf , we have the method
Ψh which has constant time-step but is not a PRK method.

This example shows the following important remark.

Remark 4.9. Given a numerical method ψ for a forced ODE g(t)f(y). Then the induced method can be seen
either as a PRK method with non-constant step-size solving the autonomous ODE with vector field f (Figure
14), or a method with constant step-size (but not a PRK method) on the non-autonomous ODE with vector
field gf .

We now look for a Taylor expansion of ψ̃, as in Remark 4.3. Suppose ψh =
∑∞

j=0
hi

i! di. Since ψ̃h,t0 =
ψ ◦ η(t0, h) is a composition, the Taylor expansion is given by Faà di Bruno’s formula (e.g. [Wik22])

ψ̃h,t0 = ψ ◦ ηt0(h) =
∞∑
j=0

dj
j!

 ∞∑
j=1

higi(t0)

j

= id+

∞∑
i=1

hi

i!

i∑
j=1

djBi,j(g0(t0), . . . , gi−j(t0)), (4.4)

since
∫ t0+h

t0
g(s) ds =

∑∞
j=1 h

igi(t0) for analytic g. Here gj = Djg and Bi,j are the exponential, partial Bell

polynomials (Appendix B). Thus, ψ̃h,t0 has coefficients d̃i given by

d̃i(y, t0) =

i∑
j=1

dj(y)Bi,j(g0(t0), . . . , gi−j(t0)).

In Appendix D it is seen (Equation (6.6)) that the exact flow of the forced ODE with vector field g(t)f(y),
denoted ϕ̃t+h,t, can be written as the (Lie-)series

ϕ̃t+h,t = id+

∞∑
i=1

hi

i!

i∑
j=1

Bi,j(g0(t0), . . . , gi−j(t0))D
j
f (id).

Comparing this series with the coefficient d̃i one finds the following equivalence of the order of the methods
and the induced method.

Proposition 4.10. Suppose f is a vector field on Rn and g ∈ C∞(R). Then ψh is a method of order N on
the ODE with vector field f if and only if ψ̃h is of order N on the ODE with vector field gf .

4.1.3 Splitting methods for non-autonomous ODE

In the non-autonomous case, splitting methods have to be adapted: time has to be split as well. One can do
this in a natural way by considering the canonically extended system (Section 2.1.3). However, this does not
seem to be a good idea in general.

“The simplest and most used trick for avoiding the time-dependent functions is to consider t as
a new coordinate [...], whereupon one solves the [extended ODE] with a standard algorithm [...].
In many cases this transformation is not very efficient for numerically solving the problem.” –
Blanes & Moan [BM01]
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and

“Splitting methods are frequently used as geometric numerical integrators, and they have been
designed for autonomous separable systems. A substantial number of methods tailored for differ-
ent [forms] of the equations [e.g. separable or near-integrabile equations] have recently appeared,
showing excellent performances in many cases. When these methods are used on non-autonomous
problems, usually their performance diminishes considerably, and they can even lose the order of
accuracy observed for the corresponding autonomous problems [...].” – Blanes, Diele, Marangi &
Ragni [Bla+10]

The papers [BM01; BC17] mention three problems which could occur:

• If the explicit time dependency of the vector field has a relatively short time scale, then the main
contribution to the error will originate from it (e.g. highly oscillatory equations as, example 2 of
[Bla+10] or the example in [BC06]).

• If the time-dependent functions appearing in the vector field are expensive to evaluate.

• In the case that the ODE has a special form which is lost when extending (for example separability
and applying RKN methods).

To avoid this “averaging” vs “frozen” treatment of time [Bla+10; BCM12], in particular integrators based
on the Magnus series [BM01; BC06], can be used.

Separable, Hamiltonian, non-autonomous systems which are near-integrable, such as the tidal wave system,
are considerd in [Bla+10], see also [BC06] for the separable, non-autonomous case. These methods might
make be suitable for an application to the tidal wave system. However, in this thesis we stick to the splitting
method as used in [Wal21].

We emphasise that the three disadvantages mentioned above, using splitting methods on extended phase
space, are disadvantages with respect to (time-)efficiency and accuracy due to causes which are unrelated to
structure preserving integration (which are treated in Section 4.2)

4.2 Structure preservation and symplectic integrators for autonomous Hamil-
tonian ODE

Next we discuss structure preserving methods and symplectic integrators. The idea of structure preserving
numerical integration is to focus on the global and qualitative behaviour, as opposed to the local behaviour.
In other words, one tries to preserve the structures of the orbits and of phase space instead of having the
focus only on the minimisation of the local error.

This shift of perspective (one could even say a paradigm shift) from the local behaviour to the global
behaviour of ODE happened, in the theoretical case, already around the 1900s with Poincaré’s results on
non-integrability and lead to dynamical systems theory. In the numerical case, this happened around the
1980s (see e.g. [LR04; HLW06] seen again as a paradigm shift in the former). Also in the numerical case,
it is important that the numerical method is a dynamical system: A first demand for structure preserving
numerical methods is therefore that they form a (discrete) dynamical system. The simplest example of this
are one-step methods with fixed step size:

Definition 4.11. A numerical method ψh (h > 0 the timestep) is a one-step method if domain and codomain
are equal e.g. ψh : Rn → Rn. ∅

One-step methods only depend on the previous step. For example: RK methods are one-step methods; mul-
tistep methods are not. For a forced ODE, the extended induced method, induced by a one-step method is
again a one-step method.

One-step methods with fixed step size h > 0 form discrete dynamical systems.
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Remark 4.12. The approximations ψh forms a discrete dynamical system (forward-in-time so with respect
to N) generated by ψh. However, this is in general not a one-parameter (semi)group in h since ψh+η ̸= ψh◦ψη

(in particular ψ−h ̸= ψ−1
h ).

Thus one-step methods open the door to (discrete) dynamical systems theory.

Beside the structure of a discrete dynamical system, other structures may be preserved, for example:

• may preserve inequalities i.e. if t > 0 then ϕt(y) ≤ y;

• may preserve conserved quantities, conserved by the flow ϕ;

• may preserve volume i.e. det(Dyϕf,t) = 1 for all t in the domain;

• may preserve a (reversible) symmetry ρ : D → D i.e. for some diffeomorphism ρ satisfying f ◦ ρ =
(−)f ◦ ρ (or equivalently ρ ◦ ϕt ◦ ρ−1 = ϕ±1

t ). A numerical method preserving this reversible symmetry
is called ρ-reversible. In particular, RK methods and many partitioned methods are ρ−reversible, if f
is ρ−reversible and if the method is symmetric (ψ−h = ψ−1

h , where the inverse exists at least locally)
then the reversible symmetry is preserved by ψ [HLW06] Chapter V.1;

• or, in the Hamiltonian case, may be symplectic, (Dyϕt)
TJDyϕt = J (Definition 2.7),

also see [MQ01; MO14; IQ18]. Symplectic methods are closely related to methods which conserve of quadratic
invariants, see [HLW06] chapter VI.4 and [Jay21].

4.2.1 Well-behavedness of symplectic integrators (and BEA)

Symplectic and reversible integrators are very important for accurate long-time integration and allow for an
application of KAM theory to perturbed integrable systems [HLW06] chapter X & XI. As shown in Section
3.3, the unperturbed tidal wave system is both autonomous, Hamiltonian and most likely contains many
(reversible) symmetries (it is a special case of the ABC flow). Therefore, we would like to choose symplectic
methods which are preferably symmetric as well and the method considered in [Wal21] is indeed symmetric.
In this thesis, we will not consider symmetric methods and reversible ODE any further, apart from a men-
tioning in the future research, Section 8.

We now ask the question of why it is important to choose a symplectic method. Intuitively, it is impor-
tant because, by Theorem 2.14, symplecticity of the flow characterises autonomous and non-autonomous
Hamiltonian flows on (a simply connected subset of) R2n. More rigorous arguments in favour of symplectic
integrators have been made over the years and include linear error growth for integrable systems over long-
times ([HLW06] chapter X.3), almost conservation of energy over exponentially long times ([HLW06] chapter
XI.8) and KAM (and Nekhoroshev) theorems on the discretised system ([Sha99; Moa03; FQ10; MO10]).

Backward error analysis (BEA), in particular Modified Equation Analysis (MEA), is very important for these
rigorous arguments16: Given a vector field f and a numerical method ψ for the ODE with vector field f and
a stepsize h > 0. If ψ is of order N with respect to the ODE with vector field f then MEA searches, for given

M > N for a modified vector field f̃
[M ]
h =

∑n
j=1 h

j−1fj , for some vector fields fj , such that ψ is of order M
with respect to the ODE with this modified vector field i.e.

ψh = ϕ̃
f̃
[M]
h ,h

+O(hM ). (4.5)

Using BEA one finds that the structure is indeed preserved and that energy is almost conserved over expo-
nentially long times:

Proposition 4.13 (extension of [HLW06] theorem 3.1, chapter IX.3 to non-autonomous case). Given a
Hamiltonian ODE with Hamiltonian H ∈ C∞(D×I), D×I ⊂ R2n×R and a symplectic numerical method ψ
of order N ∈ N, then the modified vector fields fj are locally Hamiltonian (globally if D is simply connected),
such that fj = J−1∇Hj for some Hj : D ⊃ D′ → Rn.

16An introduction to BEA is given in Appendix C.
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Proof. The proof for the autonomous case is in [HLW06], theorem 3.1 of chapter IX.3 and is identical for
the non-autonomous case, as shown next. The proof is by induction. Suppose fj(y, t) = J−1∇Hj(y, t) for

j = 1 . . . k. Then, by definition of the flow ϕ̃[k−1] := ϕ̃
f̃
[k−1]
h

, for all h > 0

Dyψh = Dyϕ̃
[k−1]
h + hkDyfk +O(hk+1)

for some non-autonomous vector field fk. This implies that

J = (Dyψh)
TJDyψh = J + hk

(
JDyfk − (JDyfk)

T
)
+O(hk+1).

Dividing by hk and letting h→ 0 we find that (JDyfk)
T = JDyfk. Thus Dyfk is symplectically symmetric

(Definition 2.7) and by Lemma 2.8 fk is locally Hamiltonian (globally on simply connected domains).

Thus, a modified Hamiltonian exist, which we denote by H̃ [M ] :=
∑N

j=1 h
j−1Hj . Using this modified Hamil-

tonian one may prove in the autonomous case almost conservation of energy up to exponentially long times.

Proposition 4.14 ([HLW06] chapter IX.7 & 8). Suppose H : R2n ⊃ D → R is analytic, ψ a symplectic
numerical method of order N with respect to the (autonomous) Hamiltonian ODE with vector field H and
K ⊂ D compact. Then, for y ∈ D, as long as {ψn

h(y)}n∈N ⊂ K, there exists h0 > 0 and M = M(h) such
that

H̃ [M ](ψn
h(y)) = H̃ [M ](y) +O(exp−h0/2h)

H(ψn
h(y)) = H(y) +O(hp+1)

over exponentially long time intervals: nh ≤ eh0/2h.

Usually, the well-behavedness of symplectic methods is solely attributed to autonomous systems [LR04;
HLW06]. Of course, there is no conservation of the Hamiltonian H for non-autonomous systems which ob-
structs the generalisation of Proposition 4.14. Nevertheless, one can still look for other positive advantageous
of symplectic integrators applied to non-autonomous Hamiltonian systems, such as the linear error growth
for integrable systems over long-times and KAM (and Nekhoroshev) theorems on the discretised system,
as mentioned above. It was stated that BEA is very important to prove this and the first step towards
this is Proposition 4.13 which (as opposed to Proposition 4.14) was a generalisation to the non-autonomous
case. In this thesis, a goal is to prove an ‘approximate’ KAM theorem for the non-autonomous case (Section
6) without considering extended phase space and therefore to generalise BEA, in particular MEA, to the
non-autonomous case (done in Section D and 6.3.6), contradicting the following statement.

“Backward error analysis is a significant tool for obtaining the qualitative behaviour of the numeri-
cal solution provided by a symplectic method when integrating autonomous Hamiltonian systems.
This theoretical informations is not directly available with non-autonomous Hamiltonian systems.
By extending the phase space [...], it is possible to construct an autonomous Hamiltonian, the so-
lutions of which project onto the solutions of the non-autonomous Hamiltonian17. Integrating the
new Hamiltonian system with a symplectic method leads to a numerical solution which also has
as a projection the numerical solution provided by the same integrator with the non-autonomous
Hamiltonian. However, the information obtained with backward error analysis about the numer-
ical solution in the extended phase space cannot be applied effectively to the projection.” – Cano
& Lewis [CL01]

4.2.2 Symplectic PRK methods and their generating function

Only some (P)RK methods are symplectic.

17This “projection” of the solutions is also mentioned in Section 2.1
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Proposition 4.15 ([HLW06] chapter VI.4 or [Jay21]). If the Butcher tableau (A, b, c) of an s-stage RK

method respectively (A, b, c), (Â, b̂, ĉ) of a PRK method satisfies/satisfy (element-wise)

biaij + bjaji = bibj , respectively,
bj âij + b̂jaji = bib̂j ,

bi = b̂i, ci = ĉi
(4.6)

for i, j = 1 . . . s, then it is symplectic.
However, for a separable Hamiltonian H = H(q, p, t) ∈ C2 (Definition 2.3) the conditions bi = b̂i and ci = ĉi
are superfluous.

Proof. The proof in the autonomous case can be found in [HLW06] chapter IV.2 and VI.4 and the proof in
the non-autonomous case is almost identical. A proof adapted to the non-autonomous case can be found (fo
PRK methods) in [Jay21] theorem 2.1 using generating functions ([HLW06] chapter VI).

As in the case of separable Hamiltonians, in the case of forced ODE the demand ci = ĉi is not necessary: If ψ
is a symplectic method on R2n, then, since Dyψ̃h(y, t) = Dyψη(t,h)(y), we find immediately that the induced
numerical method is symplectic:

Dyψ̃h(y, t)
TJ−1Dyψ̃h(y, t) = Dyψη(t,h)(y)

TJ−1Dyψη(t,h)(y) = J−1. (4.7)

Next we find the generating function for these symplectic maps ([HLW06] chapter VI). Consider the symplectic
(P)RK method ψh : (q, p) → (Q,P ). If q, P can be seen as a pair of independent variables then a near-identity,
type-2 generating function S(q, P ) ([HLW06] chapter VI) i.e. such that

p = P +DqS(q, P ), Q = q +DPS(q, P ),

can be found. This generating function will be useful for Hamiltonian BEA (Section 6.3.6). In the autonomous
case this generating function can be found, for (P)RK methods, in [HLW06] chapter VI.5. For PRK methods
applied to non-autonomous ODE we refer to [Jay21].

Proposition 4.16 ([Jay21]). For a symplectic RK method respectively PRK method as in Proposition 4.15
(using notation of Section 4.1.1), mapping (q, p) 7→ (Q,P ) the generating function S(q, P, t, h) = Sh(q, P, t)
is given by (Hq = ∇qH,Hp = ∇pH,Ti = t+ cih = t+ ĉih)

Sh(q, P, t) = h

s∑
i=1

biH(ki, Ti)−h2
s∑

i,j=1

biaijHq(ki, Ti)
THp(kj , Ti) resp. h

s∑
i=1

biH(ki, ℓi, Ti)−h2
s∑

i,j=1

biâijHq(ki, ℓi, Ti)
THp(kj , ℓj , Ti).

4.2.3 Symplectic splitting methods: Symplectic Euler and Störmer-Verlet

Splitting methods for Hamiltonian ODE should be constructed by splitting into Hamiltonian vector fields
H =

∑
iHi. Indeed, if the splitted Hamiltonians Hi are solved exactly/with symplectic methods, then the

method (e.g. Lie-Trotter/Strang splitting) are again symplectic (as was shown in Section 2.2.4). In this
sense, splitting methods are a useful example of symplectic integration methods and are widely used e.g.
[HLW06] chapter I.

Two important examples of symplectic PRK methods are presented as splitting methods: The symplectic
Euler method and the Störmer-Verlet method (e.g. [HLW06] chapter I, II & VI and [Jay21]). We consider
the autonomous case (Example 4.17) before the non-autonomous case (Example 4.18) and consider a system
partitioned into two variables q, p ∈ Rn (though one could equivalently take q, p to have different dimensions)
with respective vector field (f, g).

Example 4.17. In the autonomous case, the symplectic Euler (SE) method (with step-size h > 0)
ψSE,h(qn, pn) = (qn+1, pn+1) is a PRK method of order 1, given by

qn+1 = qn + hf(qn, pn+1)

pn+1 = pn + hg(qn, pn+1)
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with Butcher Tableaus B = (0, 1) and B̂ = (1, 1) used on the q variables respectively p variables. In other
words, one uses (the Butcher tablueas of) explicit and implicit Euler (Example 4.1). The adjoint of the SE
method ψSE (Section 4.1.1) is called the adjoint symplectic Euler method ψ∗

SE,h and given by

qn+1 = qn + hf(qn+1, pn)

pn+1 = pn + hg(qn+1, pn)

In the autonomous case, the symplectic Euler method and its adjoint can be interpreted as a splitting method:
It is to the Lie-Trotter splitting for the splitting (f, g) = (f, 0) + (0, g) where the forward and backward Euler
are used for the splitting elements [Jay21].

The symplectic Euler methods are very useful when they are applied to an ODE with a separable Hamiltonian
(Definition 2.3) such as the tidal wave system. Indeed, then it is explicit ([HLW06] chapter VI.3) so that it
is a relatively cheap method (with respect to computation time).

Still in the autonomous case, the symplectic Euler methods in a composition method one can construct the
Störmer-Verlet (SV) methods [HLW06; Jay21], which is a symplectic method of order 2 (explicit if the Hamil-
tonian is separable and split into separable pieces). They are given by

qn+1/2 = qn +
h

2
f(qn+1/2, pn) qn+1/2 = qn +

h

2
f(qn+1, pn)

pn+1 = pn +
h

2

(
g(qn+1/2, pn) + g(qn+1/2, pn+1

)
qn+1 = qn +

h

2

(
f(qn, pn+1/2) + f(qn+1, pn+1/2)

)
qn+1 = qn +

h

2
f(qn+1/2, pn+1) pn+1 = pn +

h

2
f(qn+1, pn+1/2)

in other words by the Butcher tableaus [Jay21]

0 0
1/2 1/2
1/2 1/2

1/2 0
1/2 0
1/2 1/2

.

The Störmer-Verlet (SV) methods can be seen as a composition method of the symplectic Euler methods
([HLW06] chapter VI.3 theorem 3.4 or [Jay21]) or as a composition of the midpoint method and the trapezoidal
method [Jay21].

Example 4.18. In the non-autonomous case, if the vector fields depend also on time (f, g) = (f(q, p, t), g(q, p, t))
then the SE methods are given by

qn+1 = qn + hf(qn, pn+1, t+ c1h)

pn+1 = pn + hg(qn, pn+1, t+ ĉ1h)

qn+1 = qn + hf(qn+1, pn, t+ c1h)

pn+1 = pn + hg(qn+1, pn, t+ ĉ1h)

which can, for special values of c1, ĉ1 still be seen as a splitting method on which explicit and implicit Euler are
used ([Jay21] section 3). This method is symplectic if c1 = ĉ1 or if the vector field is separable (Proposiiton
4.15). In particular the SE methods are symplectic if and only if this is the case, [Jay21] section 3.

In the non-autonomous case, the Störmer-Verlet method can be generalised to a method with Butcher tableaus

c1 0 0
c2 1/2 1/2

1/2 1/2

ĉ1 1/2 0
ĉ2 1/2 0

1/2 1/2
.

In particular, we define the (non-autonomous) Störmer-Verlet method method to be the numerical
method with c1 = ĉ1 = 0 and c2 = ĉ2 = 1, which is therefore symplectic (Proposition 4.15).
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4.2.4 Splitting methods for near-integrable systems

We briefly address splitting methods adapted to near-integrable systems i.e. of the form H0 + µH1 with H0

Liouville integrable (Definition 3.4) and µ small (e.g the tidal-wave system). Splitting methods adapted to
this case have been found to have good behaviour and have been developed [McL95] (and other constructions
in [Sey16]). Furthermore, splitting methods for perturbed, non-autonomous ODE have been considered in
e.g. [Bla+10]. In this thesis, however, we will stick to the splitting method used in [Wal21].

4.2.5 Induced method as method with time-adaptive step size and splitting time-affine sys-
tems

From Remark 4.9 it follows that the induced method can be seen either as well as a method with adaptive-
step size for the autonomous ODE with vector field f(y) (instead of a method with fixed step size for the
forced ODE with vector field g(t)f(y)). Thus, possibly results about autonomous symplectic methods imply
results about the induced methods (which are symplectic) on the respective forced ODE (using Equation
(4.2))18. However, the fact is that symplectic methods with adaptive step size (the adaptation depending
on time) are, at least in general, not as well-behaved as fixed step size symplectic integrators [RF11], see
also Remark 4.12. Therefore, we do not expect this implication of results for the induced methods about
well-behavedness/structure preservation.

A time-affine vector field
∑n

i=1 gi(t)fi(y) can be split into n > 1 forced ODE gifi and induced methods can
be used to integrate the split ODE numerically. Since all step sizes are different, one cannot compare in
this case to an autonomous ODE (e.g.

∑n
i=1)fi and the above perspective, of a time-adaptive method on an

autonomous ODE is, moreover, lost.

Remark 4.19. Thus, the view of the induced method as a time-adaptive step-size on an autonomous Hamil-
tonian ODE and the form of the tidal-wave system as a time-affine system seem to be of no help to prove
(approximate) KAM theorems or other similar results (based on structure preservation) for induced methods
applied to non-autonomous forced/time-affine (Hamiltonian) ODE.

The main advantage of the fact that we are dealing with forced and time-affine ODE seems to be that it
is easy to find high order (induced) methods for the forced/time-affine system since we only need to find a
high-order method for the autonomous part. Furthermore, the expressions for the flow using Lie-Gröbner
series and expressions for MEA are relatively simple (see Section D)).

Finally, for future research we speculate that a further advantage could be related to the “form” of the equa-
tions as in Section 4.1.3 (see the quotes therein) and 4.2.4. In [BC06; Bla+10] effort has been given to extend
splitting methods in a proper way to the non-autonomous case so as to preserve the advantageous proper-
ties of splitting methods adapted to the autonomous version of this (separable/near-integrable Hamiltonian)
form. Perhaps for forced/time-affine ODE, the induced method is easily found to imply such a preservation
of the advantageous properties. 19

4.3 Outlook: Non-autonomous structure preserving methods

We continue the discussion of Section 2.4 (this section may be seen as an intermezzo) and discuss now
the numerical side: non-autonomous structure preservation. We saw in that section that the structure of
non-autonomous Hamiltonian ODE is not entirely clear: There are multiple geometric frameworks (types
of objects) and, for example, multiple ways to define canonical transformations (types of morphisms) in
extended phase space. Furthermore, little progress has been made for structure-preserving methods of non-
autonomous Hamiltonian systems (see also the quotes in the introduction). We therefore will not make any

18Already in the theoretical case (without considering numerical methods) this is possible using Equation (2.5). For example
the flow of a forced ODE preserves the autonomous part of the Hamiltonian (Equation (2.4)

19One might complain at this point, since we have just argued that we do not expect the preservation of advantageous
properties related to structure preservation. However, it was emphasised in Section 4.1.3 that the papers [BC06; Bla+10] tried
to preserve advantages which were unrelated to structure preservation.
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rigorous statements about structure-preserving methods for non-autonomous Hamiltonian systems

Regarding the objects: presymplectic integrators have been constructed [Fra+21], although this was con-
structed for constrained Hamiltonian systems rather than non-autonomous ones. Moreover, KAM theorems
for presymplectic integrators have been constructed [AL12]. Regarding the morphisms: numerical methods
were constructed which were also canonical transformations [MO14], defined on extended phase space and
the contact manifold mentioned in Section 2.4. Furthermore, symplectic PRK methods were examples of
such a method ([MO14] Corollary 4.4.4).

Variational integrators ([HLW06] chapter VI.6) and generating function methods ([HLW06] chapter VI.5 or
[FQ10]), which construct symplectic integrators, are both generalised to the non-autonomous case [CL01]
respectively [Qin96].

The paper [Qin96] uses a generating function approach on the extended phase space and states moreover
that this seems to be a better approach than to adapt this approach directly to the autonomous case:

“In this way, the accuracy of the construction of symplectic schemes for nonautonomous systems
in some cases is not high. Another way is through [the extended phase space], so nonautonomous
systems are transformed to autonomous systems, then using [a generating function method], we
can get symplectic schemes for nonautonomous systems. In this way the construction is simple
and the accuracy of the construction of symplectic schemes is high.” – Q. Mengzhao [Qin96]

Thus, the symplectic structure on extended phase space could also be the right structure for non-autonomous
systems, in which case a symplectic PRK method is a good method to use ([MO14] corollary 4.4.4 or [Jay21]
section 5).

Finally, it might be the case that the symplectic structure on the original phase space is the right structure
after all. Indeed, [Jay21] section 1 and references therein mention that preservation of the symplectic structure
is a “desirable property”20. Furthermore, we will see in Section 6 that, for these (symplectic) methods MEA
can be adapted to the non-autonomous Hamiltonian case, which allows for a proof of an approximate KAM
theorem.

4.4 An affine splitting method for the tidal wave system

We now consider the affine splitting method as used in [Wal21]. In this section we integrate the tidal wave
system, with the Hamiltonian of Equation (1.5)

L(q, p, t) = k(p− q) cos(t)− Cδk
2l(α cos(p) + β cos(q)) + 2γCδkl[(r cos(t) + sin(t))(α sin(p) + β sin(q))]

where α = fk+ lr, β = fk− lr and Cδ = δ(k2+ l2)−1(k2+2r2+2)−1. The goal of the remaining part of this
thesis is to try to prove that KAM tori persist in the numerically integrated system e.g. by applying MEA
and using KAM theory on this particular numerical method as considered in [Wal21].

In [Wal21], the following parameter sets are considered, of which we only integrate the “default” and “Simple-
B” parameter sets.

r f γ δ α β
Default 2 0 0 0.3 2l -2l

Simple-B 2 0 0 6(k2+2r2+2)
10(kr) 2l -2l

Coriolis 2 1 0 0.3 k + 2l k - 2l
Vorticity-harmonic 2 0 1 0.3 2l -2l
Cor-VortHarm 2 1 1 0.3 k + 2l k - 2l

20However, due to the fact that symplectic PRK methods are both symplectic on the original as well as the extended phase
space ([MO14] corollary 4.4.4 or [Jay21] section 5) it is not entirely clear what structure should be preserved when only using
symplectic PRK methods, such as in this thesis.
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As in [Wal21] we split the Hamiltonian into forced, Hamiltonian ODE L(q, p, t) as

L1(q, p, t) = k(p−q) cos(t), L2(q, p, t) = Cδk
2l(α cos(p)+β cos(q)), L3(q, p, t) = γ2Cδkl[(r cos(t)+sin(t))(α sin(p)+β sin(q))]

These pieces are separable, so that the induced symplectic Euler methods are explicit, Remark 4.17 and
Equation (4.2). Since the system is non-autonomous, we also need to ‘split time’. To split time, we consider
the extended Hamiltonian L(q, p, t) + s (Equation (2.7)), where s is the variable conjugate to time. Time
will be treated independently, i.e. we add the split Hamiltonian L4(s) = s. In the “default” and “Simple-B”
case, γ = 0 so that L3 is not considered in the numerical integrations shown in this thesis. However, we will
consider L3 when describing the construction of the symplectic splitting method.

We discuss now the numerical method from the two perspectives as discussed in Remark 4.9. From the
autonomous perspective we use a method similar to the Strang-splitting (Section 4.1.1) but now split into 4
parts. On these part we will use either the exact flow or the (autonomous) SE method (Example 4.17). From
the time-affine perspective we split into 4 vector fields and use 4 induced methods with constant step-size.
Then, denoting the induced SE methods on Li (i = 1, 2, 3) as ψ̃i (with time-reparametrisation Gi, Equation
2.5) and the extended induced method Ψ4 of L4 we find

ψ̃1,h(q, p, t) =

(
q
p

)
+ k (G1(t+ h)−G1(t))

(
1
1

)
, with G1(t) = sin(t),

ψ̃2,h(q, p) =

(
q
p

)
+ (G2(t+ h)−G2(t))Cδk

2l

(
α sin(p)

−β sin
(
q + hCδhk

2lα sin(p)
)
)

)
, with G2(t) = t,

ψ̃3,h(q, p) =

(
q
p

)
+ 2γCδkl (G3(t+ h)−G3(t))

(
α cos(p)

−β cos
(
q + 2Cδkl (G3(t+ h)−G3(t))

kl
α cos(p)

)) , G3(t) = r sin(t) + cos(t),

Ψ4,h(q, p, t) =

 q
p

t+ h

 .

(4.8)

Note that the maps ψ̃1,h and Ψ4,h are equal to the exact time-h flow of the Hamiltonian L1 respectively L4.

Now, denoting the extended induced SE methods (without time-step) as Ψ̃i,h(y, t) = (ψ̃i,h(y, t), t), we use
the method

Φh = Ξ∗
h/2 ◦ Ξh/2

where
Ξh = Ψ4,h ◦ Ψ̃3,h ◦ Ψ̃2,h ◦ Ψ̃1,h. (4.9)
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Figure 15: This figure shows (for k = l, r = 2): The values of ν1 against ν2 which agree with the “Simple-B”

parameter set (red, ν2 = 3
20ν1) and with the “default” parameter set (blue, ν2 =

3ν2
1

20(ν2
1+10)

). Furthermore, it

shows the value of ν1 against ν2 for the plots in Table 1 (grey dots) and for the plots as in the paper [Wal21]
(green dots).

In other words, denoting ψ̃h = ψ̃3,h ◦ ψ̃2,h ◦ ψ̃1,h one finds the method

Ψh(q, p, t) =

((
ψ̃
)∗
h/2

(q, p, t+ h) ◦ ψ̃h/2(q, p, t)

t+ h

)
(4.10)

=

((
ψ∗
1,h̃1(t+h/2,h/2)

◦ ψ∗
2,h/2 ◦ ψ

∗
3,h̃3(t+h/2,h/2)

)
◦
(
ψ3,h̃3(t,h/2)

◦ ψ2,h/2 ◦ ψ1,h̃1(t,h/2)

)
(q, p)

t+ h

)
,

(4.11)

where Remark 4.7 was used to calculate the adjoint methods of the induced methods, such that(
ψ̃
)∗
h/2

(q, p, t+h) = ψ1,−h̃1(t+h,−h/2)◦ψ2,h/2◦ψ3,−h̃3(t+h,−h/2)(q, p) =
(
ψ∗
1,h̃1(t+h/2,h/2)

◦ ψ∗
2,h/2 ◦ ψ

∗
3,h̃3(t+h/2,h/2)

(q, p)
)

since −h̃i(t + h,−h/2) = − (Gi(t+ h/2)−Gi(t+ h)) = h̃i(t + h/2, h/2). Equation (4.10) implies that the
method is a symplectic method with respect to (q, p), reversible and of order 2. Equation (4.11) is the one
used in the code in Appendix E and equals the numerical integration method used in [Wal21], proving again
that it is indeed of order 2, symplectic (w.r.t. (q, p)) and symmetric.

As γ = 0 we find that ψ̃3 of Equation (4.8) equals the identity. Furthermore, the perturbation parameter µ
is introduced as in Section 3.3.3 and 3.3.4. Since k = l the Hamiltonian takes the form

L(q, p, t) = µk(p−q) cos(t)−Cδk
4 (α cos(p) + β cos(q)) = ν1(p−q) cos(t)+ν2 ((f + r) cos(p) + (f − l) cos(q))

for ν1 = µk, ν2 = −Cδk
4. The results of the numerical integration using the induced splitting method are

shown in Table 1 for various values of ν1, ν2 (or equivalently, k and µ, see Figure 15), cf. the figures in [Wal21].

The Table shows very interesting figures. We see that for small perturbations ν1 the tidal Poincaré has seems
to have many invariant tori but are destroyed when the perturbation µ is increased, if we may trust the
numerical figures.
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Table 1: Plots of the tidal map system without vorticity term k = l, r = 2 for (q, p) ∈ [−1, 4] × [0, 3]
(coordinate system for the Hamiltonian H as in Equation (1.4)) for various scaling factors of the splittings
ν1, ν2.
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5 Non-autonomous flow interpolation and exact KAM theory ap-
plied to the tidal wave system

In the next two sections, Sections 5 and 6, the goal is to show the existence of KAM tori (persistent invariant
tori) in the periodic Poincaré map (e.g. [Wal21] or [Wig03] chapter 10.2) of the numerically integrated tidal
wave system using the symplectic integrator of Section 4.4. Table 1 shows that we may indeed expect KAM
tori for some values of k and the added perturbation paramter µ.

To prove the existence of KAM tori in the numerically integrated, unperturbed and perturbed tidal wave
system we will use KAM theorems in the numerical case i.e. numerical KAM theorems. As discussed in
the Introduction 1, as in the theoretical case there exist a discrete [Sha99; HLW06] and continuous [KP94b;
Moa03; HLW06; MO10] way to construct numerical KAM theorems. In both cases, the step-size h > 0 enters
explicitly in the conditions of these discrete or continuous, numerical KAM theorems. Indeed, if some h∗ > 0
resonates with the frequencies ω∗ ∈ Rn of a particular invariant tori in the unperturbed system in R2n, then
this particular tori is destroyed when numerically integrating with the step-size h∗ [Sha99; Moa03; HLW06]
(this destruction due to resonance is also discussed in Section 3.2).

Two strategies for a proof of KAM tori in the theoretical tidal wave system were presented in Section 3 (see
also Figure 10): One using a discrete map/dynamical system i.e. considering the 2π-Poincaré map ϕt0+2π,t0 ,
the other using a continuous counterpart i.e. the non-autonomous (Hamiltonian) flow ϕt0+h,t0 for h ∈ R (see
also Figure 16). In the numerical case we have again two such strategies.

We will first discuss both strategies, one of which uses backward error analysis BEA. Afterwards we discuss
two types of BEA and arrive, using one of them, at a numerical KAM theorem which is applied to the tidal
wave system.

5.1 Strategies for the application of numerical KAM theorems to the tidal wave
system

Two strategies exist to prove KAM tori in the 2π-Poincaré map of the tidal wave system. The first strat-
egy is to consider the 2π-Poincaré map ϕt0+2π,t0 of the tidal wave system and use the symplectic numerical
integration method Ψh(q, p, t) = (ψh(q, p, t), t + h) of Section 4.4 to approximate this map. This is done by
choosing h = 2π/K, K ∈ N, and considering the map ψK

h (·, t0). For large K (small step-size h) ψK
h (·, t0)

approximates (for a consistent method) the 2π-Poincaré map, ψK
h (·, t0) ≈ ϕt0+2π,t0 , and ψK

h (·, t0) can be
seen as a numerical 2π-Poincaré map. If ϕt0+2π,t0 is a twist map then for large K, ψK

h (·, t0) is likely a twist
map (possibly locally, on a subset of R2n). Since it is also a symplectic map, one may then apply a discrete
KAM theorem [Sha99] to prove the existence of KAM tori in the numerical Poincaré map, which was the goal.

For this first strategy, it seems unavoidable that results from the theoretical case as stated in Section 3 are
needed e.g. that the Poincaré map ϕt0+2π,t0 is a twist map (locally). Since we have not done so we therefore
use a different strategy: Instead of considering the 2π-Poincaré one considers the numerical method Ψh of
Definition (4.3). The map Ψh is a symplectic map with respect to (q, p) ∈ R2, so that discrete KAM is natu-
rally applied (if it is a twist map) using again [Sha99] (or [Mös62]). One may also apply a continuous KAM
theorem21 by the use of backward error analysis (BEA) [LR04; HLW06]. BEA views the (symplectic) map
Ψh as the time-h flow of a (Hamiltonian) flow Φ̃h ≈ Ψh, so that a continuous KAM theorem can be applied
to Φ̃ [GS86; CMS94; Moa05; Moa06]. The map Φ̃ is seen as an (approximately) interpolating Hamiltonian
flow of the symplectic map Ψh (as discussed in 2.2.3).

The main reason to apply a continuous KAM theorem rather than a discrete KAM theorem is that BEA
is used. BEA explains, in the case of autonomous Hamiltonian ODE, why symplectic numerical integrators
behave very well (e.g. Proposition 4.14).

21This continuous KAM theorem then proves the existence of KAM tori in the numerically integrated tidal wave system. As
in Section 3 one then deduces, using Remark 3.10, the existence of KAM tori in the (numerical) 2π-Poincaré map
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“In our opinion, to the numerical analyst, the most appealing feature of symplectic integration is
the possibility of backward error interpretation.” – Sanz-Serna [San92]

As in Section 4.3, we are interested in the structure-preserving integrators of non-autonomous Hamiltonian
ODE and BEA will help us to show the well-behavedness of symplectic integrators on non-autonomous
Hamiltonian ODE in Section 6. Therefore we adopt the second strategy discussed above (Figure 16) and
apply a continuous, numerical KAM theorem but first discuss BEA.

Figure 16: The two strategies to prove the ex-
istence of KAM theory are via the discrete (2π
twist-map) or via the continuous (using BEA)

5.2 Backward error analysis: Modified
equation analysis and non-autonomous
flow interpolation

2π-Poincaré An introduction to backward error analy-
sis is given in Appendix C. It can be summarised as
follows: Forward error analysis considers the difference
between the exact solution ϕ and the approximate so-
lution ψ (called the forward error), which one wants
minimised. For numerical methods on ODE we find,
unsurprisingly, that ϕ is the flow and ψ the numeri-
cal method and the forward error is nothing other than
the global error (Equation (4.1)) i.e. of the form ϕ −
ψ.

In backward error analysis one instead considers (and sometimes minimises, Appendix C) the difference be-
tween the exact problem and the approximate problem. For ODE the problem is defined using a vector field
and therefore the backward error is of the form f̃ − f, where f is the vector field of the exact problem (thus
having flow ϕ) and f̃ a vector field of an approximate problem (with flow ϕ̃ which approximates ψ in some
sense). For example, the modified vector field f̃ := f̃ [M ] as in Section 4.2 may be used. The flow ϕ̃f̃ [M]

interpolates up to order M the flow of the differential equation as in Equation (4.5). More generally, BEA
for ODE one constructs a modified/interpolative vector field f̃ (or equivalently a modified/interpolative flow
ϕ̃f̃ )

In the Hamiltonian case, one looks for a modified Hamiltonian H̃. Therefore, in this case BEA has much
in common with the embedding of symplectic maps into Hamiltonian flows. Besides MEA, the embedding
of symplectic maps into Hamiltonian flows, or (non-autonomous) flow interpolation is a second method for
BEA, as discussed in Section 2.2.3 and the references in therein.

Thus, as mentioned in the Introduction 1, there are two types of BEA (discussed in this thesis): One us-
ing modified equations, called modified equation analysis (MEA), which constructs an autonomous modified
vector field f̃ [GS86; CMS94; San92; SC94; LR04; HLW06], the other using non-autonomous flow interpola-
tion which constructs a non-autonomous modified vector field f̃ [San92; Wan94; SC94; Moa05; Moa06]. In
both cases, the Hamiltonian structure is preserved when symplectic integrators are used and the autonomous
[HLW06] (or Proposition 4.13) and non-autonomous [Wan94] modified vector fields are again Hamiltonian.

The BEA methods can be described as follows.

• Modified equation analysis (e.g [GS86; LR04; HLW06]) finds a modified vector field f [M ], of which
(given step-size h > 0) the flow ϕf [M],h approximates the numerical method ψh to an order M > N

(Equation (4.5)). We will see that f [M ] is autonomous when applied to an ODE with autonomous
vector field f .

• Non-autonomous (Hamiltonian) flow interpolation constructs the modified vector field f̃ by using the
numerical method ψt as a casting, e.g. [Moa05] and the references in Section 2.2.3. For an autonomous
vector field f , one finds, using non-autonomous flow interpolation, a non-autonomous modified vector
field f̃ .
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Both methods, MEA and non-autonomous Hamiltonian interpolation, have (dis)advantages:
The advantage of MEA is that the construction is rather explicit (it can be found recursively). A big disadvan-
tage is that one cannot, in general, interpolate the flow exactly (M = ∞) but only approximately (M <∞):
It is well-defined for M = ∞, but only as a formal power series which in general diverges numerically/as a
function [HLW06]. For M < ∞ the flow approximates the numerical method and one can choose M∗ = M
optimally [BG94; HL97; Rei99; LR04; HLW06]. From the point of view of asymptotic analysis, this value is
often referred to as optimal truncation (of the diverging power series) [LR04; HLW06]. Truncating in such a
way (or with M < ∞), one obtains not an ‘exact’, numerical KAM theorem for the numerical method, but
an ‘approximate’, numerical KAM theorem e.g. [BG94] or [HLW06] chapter X.5. The approximate KAM
theorem, as opposed to the exact KAM theorem, does not prove the existence perpetual invariance of orbits
(invariant tori), but existence of approximate invariance (‘approximately invariant’, persistent tori). The
approximation is very good, however: The ‘approximate invariance’ is exponentially close in h−1 to actual
invariance for exponentially long times in h−1, where h the time-step.
The advantage of non-autonomous Hamiltonian interpolation is that, after a time transformation, this vector
field is well-defined and interpolates the flow exactly. This allows one to apply exact KAM theorems [Moa03;
MO10], such as the KAM theorem 3.9 in Section 3.2. A disadvantage is that this construction is much more
involved, e.g. [Moa05].

In this section, Section 5, we discuss such an exact (numerical) KAM theorem using non-autonomous flow
interpolation. In Section 6 we discuss an approximate (numerical) KAM theorem using MEA.

Note that, although we call the KAM theorems for the numerically integrated systems (using a symplectic
method) numerical KAM theorems, only discretisation error is considered and rounding error is ignored.
However, when taking rounding error into account, the approximate KAM theorem of Section 6 seems to be
more useful than the exact KAM theorem of Section 5.

Finally, we mention briefly that both types of BEA can be linked to classical perturbation theory [Cal04]
(linking MEA to Lie-Hori theory) and [Hen96] (linking MEA to Hori transformations in the autonomous case
and Deprit’s transformation in the non-autonomous case).

5.3 Non-autonomous Hamiltonian flow interpolation

In Section 2.2.3 it is seen that the theory of interpolation of (symplectic) flows by smooth/analytic (Hamil-
tonian) flows is well established. In the setting of BEA, it was mentioned by e.g. [San92; Wan94] but these
may not the first sources to mention this.

In particular, rigorous non-autonomous flow interpolation uses a construction, the suspension construction,
which is used to embed discrete dynamical systems into continuous dynamical systems [BS02]. This construc-
tion was used by Douady to prove the equivalence of discrete and continuouns KAM theory and was used by
Moan [Moa05; Moa06] for a rigorous treatement of this type of BEA, see also [Moa03; MO10]. In this sec-
tion we will discuss this treatment of non-autonomous flow interpolation, mainly based on the papers of Moan.

In this Section, Section 5.3, only autonomous systems are considered. The treatment for non-autonomous
systems is found by using the canonical autonomous extension of Section 2.1.

5.3.1 Constructing the non-autonomous interpolated vector field and flow

Given a numerical method ψt on Rn for an autonomous ODE, which is differentiable in t ∈ [0, h]. For a fixed
h > 0 and y0 ∈ Rn the numerical method ψt, for t ∈ [0, h], defines an integral curve y(t) = ψt(y0) along
which we can define the tangent vectors

ẏ(t) = Dtψt(y0) = Dtψt ◦ ψ−1
t (y(t)) (5.1)

assuming h > 0 is sufficiently small such that ψt is invertible. This vector field has ψt as a solution flow. This
construction can be extended to any y in the domain and t ∈ [0, h] to find the modified vector field [Moa05;
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Moa06]
f(y, t) = Dtψt(ψ

−1(y)).

This vector field is periodically extended from t ∈ [0, h] to t ∈ R+ (and for t ∈ R one may use ψ−1
h ). Doing

so, one finds that f has the numerical method ψt as solution flow ϕf,t for t ∈ [0, h] and, moreover ϕnf,h = ϕf,nh,
and the backward error analysis seems done since we have found a modified vector field. However, f is a
discontinuous vector field at the points t ∈ hZ (so that the solution flow may be non-existent), a problem
dealt with in for example [Moa06] (see also the references in Section 2.2.3) by smoothening the discontinuity
in time as discussed in Section 5.3.2.

Again, the modified equation is Hamiltonian (e.g. [Wan94]) since, by the symplecticness of Ψ, ∇ΨtJΨt = J ,
one finds

∇f(y, t)J(∇Ψt(y, t))
T −

(
∇f(y, t)J(∇Ψt(y, t))

T
)T

= 0.

Which means that (∇f(y, t)J)T = ∇f(y, t)J if ∇ψt is invertible, which holds for h > 0 sufficiently small
(and was already assumed) so that f is locally Hamiltonian from the Integrability Lemma 2.8. The modified
Hamiltonians can be found using generating functions. In [San92] it is seen that, if S̃(q, p0, t) is a generating
function, such that

ψt(Dp0
S̃(q, p0, t), p0) =

(
q

DqS̃(q, p0, t)

)
for t ∈ (0, h), then the modified, non-autonomous Hamiltonian H̃ is given by

H̃(q,DqS̃(q, p0, h), t) = −DtS̃(q, p0, t)

.

5.3.2 Smoothening the disconituity in time

The modified non-autonomous vector field f and Hamiltonian K are h-periodic in time and can be found
explicitly, but have discontinuities. These discontinuities can be smoothened and even be made analytic, see
[Moa06].

Theorem 5.1 ([Moa06] theorem 5). If ψh : R2n → R2n is a symplectic method (h > 0 fixed) applied to the
ODE with autonomous vector field f , where f is analytic for y ∈ Dδ1+δ2 := {z ∈ C2n | ∥z − y0∥∞ ≤ δ1 + δ2},
for some y0 ∈ R2n. Then there exists a non-autonomous modified vector field

f̃h(y, t) = f(y) + ϵ (r1(y) + r2(y, t)) (5.2)

analytic in Dδ1 and analytic and h-periodic in t (r2(y, t+h) = r2(y, t)). Moreover, the flow of the ODE with
modified vector field f̃ , ϕf̃ ,t,t0 exactly interpolates Ψh

ϕf̃ ,h,0 = Ψh

and satisfies, for h ∥f∥δ1+δ2
< 2πδ2

e ,

∥ϵr2∥ ≤ C exp

(
−2πδ2

2h ∥f∥δ1+δ2

)
,

where ∥f∥δ = supy∈Dδ
∥f(y)∥∞.

From [Moa05], Note 3 it follows that f̃ is again Hamiltonian if f is Hamiltonian, so that the modified vector
field, may be seen as a Hamiltonian perturbation. However, it seems from [Moa03; Moa05; Moa06; MO10]
that there are no strong conclusions about the size of ϵr1 and therefore it is not clear if h is a (small)
perturbation parameter, although it is stated once in [Moa03] it is stated that ϵ(r1 + r2) = O(hN ), N the
order of the method. There is a smooth (non-analytic) version of Theorem 5.1, where r1 = O(hN−1) if ψh is
of order N [Moa05] section 1, so that the step size h is a perturbation parameter. Again, it is not clear to
us whether, in the analytic case, there exists similar behavior of h as a perturbation parameter.
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5.4 An exact, numerical KAM theorem for symplectic methods

The non-autonomous flow interpolation (Theorem 5.1) leads to an exact, numerical KAM theorem for sym-
plectic integrators.

5.4.1 Exact numerical KAM theorem for symplectic methods of autonomously perturbed
completely integrable Hamiltonian systems

Suppose we have a Hamiltonian in action angle coordinates (Section 3.1), where H0 is real analytic on
a simply-connected domain D ⊂ Rn. We consider in particular an autonomously perturbed, completely
integrable Hamiltonian H

H(a, ϕ) = H0(a) +H1(a, ϕ).

If a symplectic numerical method ψh is applied to this system and H can be extended analytically to a
complex domain Dδ1+δ2 as in Theorem 5.1, then one can this Theorem to find a Hamiltonian

Ĥh(a, ϕ, t) = H0(a) +H1(a, ϕ) +H2(a, ϕ, t) (5.3)

so that Ĥh is analytic on Dδ1 and H2 is h-periodic in t i.e. H̃1(a, ϕ, t + h) = H̃1(a, ϕ, t). In particular, the
time-h flow ΦĤh

of the ODE with Hamiltonian Ĥh is equal to the numerical method ψh Furthermore, if
h > 0 is small enough then we have explicit bounds on the time-dependent part of H2 as in Theorem 5.1.
One may now apply the KAM theorem 3.9 to arrive at an exact, numerical KAM theorem.

Theorem 5.2. Consider the perturbed, completely integrable system

L(q, p) = L0(q, p) + L1(q, p),

written in action-angle coordinates as

H(a, ϕ) = H0(a) +H1(a, ϕ).

where Li(q, p) = Hi(a(q, p), ϕ(q, p)). Suppose a symplectic method ψh has been used on the ODE with Hamilto-
nian L and that L can be extended analytically to a complex set Dδ1+δ2 (defined as in Theorem 5.1) extending
the set D ⊂ R2n for some δ1, δ2 > 0 so that there exists a Hamiltonian L̂h, given by

L̂h(q, p, t) = L0(q, p) + L1(q, p) + L2(q, p, t)

which is h-periodic in t and of which the time-h flow interpolates the numerical method ψh. Similarly, in
action-angle variables (a, ϕ) we find a Hamiltonian Ĥh given by

Ĥh(a, ϕ, t) = H0(a) +H1(a, ϕ) +H2(a, ϕ, t)

which is h-periodic in t.

We consider the now the variable b conjugate to time t by extending the system so as to consider the Hamil-
tonian

K̂h(q, p, t, b) = H0(a) +H1(a, ϕ) +H2(a, ϕ, t) +
2π

h
b.

We write A = (a, b) ∈ Rn × R and Φ = (ϕ, t) ∈ Tn × T so F = Fρ ⊂ Rn+1 × Cn+1 as in Theorem 3.9. can
be defined for ρ > 0.

Suppose that K̂ can be analytically extended to Fρ for some ρ > 0 and suppose as well that H0 satisfies the
non-degeneracy condition

det
∂2H0(a)

∂a2
= det

∂ω(a)

∂a
̸= 0,

on Fρ, where ω(a) =
∂H0(a)

∂a .
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Then ∀ϵ > 0, ∃C = C(µ, ρ,G,H0) such that, if

|H1 +H2| ≤ C, pointwise on F

then the motion defined by
Φ̇ = DAK(A,Φ) Ȧ = −DΦK(A,Φ)

has the following properties:

• Re F = F1 + F2 where F1 is invariant and the measure of F2 (denoted |F2|) satisfies |F2| ≤ µ|F |.

• F1 consists of a family of invariant (n+1)-dimensional analytic tori Iα = {(Bα,Ψ) |Ψ ∈ Tn+1}, defined
parametrically by

A = Bα + fα(Ψ), Φ = Ψ+ gα(Ψ),

where (fα, gα) : Tn → Rn are analytic and of period 2π in all its variables and the parametrisation
depends on α = (ω,Ω) [JS96] (because of the non-degeneracy condition, equivalently α = (a,Ω) as in
[Sev07]).

• The mapping is close to the identity

|(fα, gα)| = O(ϵ) pointwise on F

• On the invariant (n+ s)-tori Iα, the motion of the perturbed system is quasi-periodic with frequencies22(
∂H0(Bα)

∂a
,Ω

)
.

Similar to Remark 3.10 one may use the results of [Sev07] to show that time is not transformed.

Proof. From Theorem 5.1 one finds the Hamiltonian

L̂h(q, p, t) = L0(q, p) + L1(q, p) + L2(q, p, t)

which is h-periodic in t and of which the time-h flow interpolates the numerical method ψh. Written in
action-angle coordinate this can be rewriten to

Ĥh(a, ϕ, t) = H0(a) +H1(a, ϕ) + ϵH2(a, ϕ, t),

where Hi(a, ϕ, t) = Li(q(a, ϕ), p(a, ϕ), t) if the variables (a, ϕ) can be transformed to (q, p) via the symplectic
map (q(a, ϕ), p(a, ϕ)) (see also Section 3). Ths Ĥh is h-periodic in t.

The remaining part of this theorem can be proven by applying to Ĥh the KAM theorem 3.9.

5.4.2 Approach to an exact periodic KAM theorem for symplectic methods on periodically
perturbed, completely integrable Hamiltonian systems

In view of an application to the numerically integrated tidal wave system, we consider a periodically perturbed
(2π-periodic in t), completely integrable Hamiltonian system in action angle coordinates,

H(a, ϕ, t) = H0(a) +H1(a, ϕ, t)

defined on D × Tn ⊂ Rn × Tn. Suppose a symplectic method ψh (symplectic with respect to (a, ϕ) is used
to integrate this system. Then we use Theorem 5.1 either on the canonically autonomised space (Definition
2.5) D×Tn+1 or on the extended phase space (Section 2.1.3) (D×R)×Tn+1. Doing the latter, we consider
the variable s conjugate to time t and the extended Hamiltonian (Equation (2.7))

H̃(a, ϕ, t, s) = H0(a) +H1(a, ϕ, t) + s.

22The frequencies of the perturbed tori are in some cases equal [ZC10].
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and find, if the conditions of Theorem 5.1 are met, a non-autonomously, periodically perturbed (in a new
time variabe τ) Hamiltonian which interpolates

K̃(a, ϕ, t, s, τ) = H0(a) +H1(a, ϕ, t) + s+H2(a, ϕ, t, s, τ).

The advantage of this method is that it is clear from [Moa05], Note 3 that the K̃ and H2 are again Hamilto-
nian. The disadvantage, however, is that H2 may depend on s, so that in general ṫ ̸= 1, which impedes the
use of the KAM Theorem 3.9.

If we use canonically autonomised space, without a conjugate variable s and with the vector field

f(a, ϕ, t) =

(
J∇a,ϕ(H0(a) +H1(a, ϕ, t))

1

)
then, if the conditions of Theorem 5.1 are met, a non-autonomously, periodically perturbed (in a new time
variabe τ) vector field

f̃(a, ϕ, t, s, τ) =

(
J∇H0(a) + J∇H1(a, ϕ, t) + s+ f2(a, ϕ, t, τ)

1 + f̃2(a, ϕ, t, τ)

)
is found, which interpolates the flow of the symplectic method (on the canonically extended phase space).
The advantage now is that, in the smooth case i.e. using the construction of Equation (5.1), the vector field
f̃2 = 0. Therefore it is likely that ṫ = 1, which we will see implies that f̃ can be seen as a quasi-periodically
perturbed ODE. However, it is not immediately clear whether f2 is Hamiltonian and whether f2 is again
periodic in t with the same period (2π).

As mentioned in Section 5.2, a disadvantage of non-autonomous flow interpolation (as opposed to modified
equation analysis) is that the construction is very involved (e.g. [Moa05; KP94b]). Therefore we will make
the following assumption on the analytic modified vector field f̃ (as in Theorem 5.1).

Assumption 5.3. We will assume that f̃2 = 0. We will assume furthermore that the vector field f2 is again
Hamiltonian in the sense that f2(a, ϕ, t, τ) = J∇a,ϕH2(a, ϕ, t, τ). We will assume additionally that f̃2 are
periodic in t with the same period (2π).

It is not clear to the author if they are met in general.

With these assumptions it becomes not too difficult to apply a KAM theorem to this system.

Theorem 5.4. Consider the 2π-periodically, non-autonomously perturbed completely integrable system

H̃(a, ϕ, t) = H0(a) +H1(a, ϕ, t)

Suppose a symplectic method ψh, symplectic with respect to (a, ϕ) is used to integrate the canonically au-
tonomised system (Definition 2.5). If the Hamiltonian H̃ is real analytic on D × Tn and can be analytically
extended to a domain Dδ1+δ2 as in Theorem 5.1, then there exists a vector field f̃ given by

f̃(a, ϕ, t, s, τ) =

(
J∇H0(a) + J∇H1(a, ϕ, t) + s+ f2(a, ϕ, t, τ)

1 + f̃2(a, ϕ, t, τ)

)
,

which is h-periodic in τ and the time-h flow of this vector field is equal to ψh.

If we assume the Assumptions 5.3, then a Hamiltonian Ĥ = Ĥ(a, ϕ, t, τ) exists given by

Ĥ(a, ϕ, t, τ) = H0(a) +H1(a, ϕ, t) +H2(a, phi, t, τ),

which is 2π-periodic in t and h-periodic in τ such that the vector field f̃ can be written as a vector field
f̃(a, ϕ, t, τ) given by

f̃(a, ϕ, t, τ) =

(
J∇a,ϕĤ(a, ϕ, t, τ)

1

)
,
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of which the time-h flow (with time τ = h) is still equal to the numerical method ψh.

We extend now the system by adding two variables b = (b1, b2) ∈ R2 conjugate to t, τ so as to consider the
Hamiltonian

K̂(a, ϕ, b, t, τ) = H0(a) +H1(a, ϕ, t) +H2(a, phi, t, τ) + ⟨Ω, b⟩,

where Ω = (1, 2πh ). We write A = (a, b) ∈ Rn × R and Φ = (ϕ, t) ∈ Tn × T so Fρ ⊂ Rn+1 × Cn+1 as in
Theorem 3.9. can be defined for ρ > 0.

Suppose that K̂ can be analytically extended to Fρ for some ρ > 0 and suppose as well that H0 satisfies the
non-degeneracy condition

det
∂2H0(a)

∂a2
= det

∂ω(a)

∂a
̸= 0,

on Fρ, where ω(a) =
∂H0(a)

∂a .
Suppose furthermore that H0 satisfies the non-degeneracy condition

det
∂2H0(a)

∂a2
= det

∂ω(a)

∂a
̸= 0,

on the complex domain Dδ1 , where ω(a) =
∂H0(a)

∂a . And that Ω = (2π, h) is (σ, γ)-Diophantine i.e.

⟨k, (Ω)⟩ ≥ γ

∥k∥σ1
, ∀k ∈ Z2 − {0}.

for some σ > 2.

Then ϵµ > 0, ∃C = C(ϵ, δ1,D, H0) such that, if

|H1(a, ϕ, t) + ϵH2(a, phi, t, τ)| < C, pointwise on Dδ1 × T2

then, denoting A = (a, b) ∈ Rn × R2 and Φ = (ϕ, t) ∈ Tn × T2, there exists a set F ⊂ Dδ1 × Tn such that

• Re F = F1 + F2 where F1 is invariant with respect to the flow of Ĥ and |F2| ≤ µ|F |.

• F1 consists of a family of invariant (n+ 1)-tori Iϵ = {(Bϵ,Ψ), |Ψ ∈ Tn+1}, defined parametrically by

A = Bϵ + fϵ(Ψ), Φ = Ψ+ gϵ(Ψ),

where fϵ, gϵ are analytic of period 2π in all its variables and the parametrisation depends on ϵ = (ω,Ω)
[JS96] (because of the non-degeneracy condition, equivalently ϵ = (a,Ω) as in [Sev07]).

• The mapping (fϵ, gϵ) close to the identity

|(fϵ, gϵ)| = O(ϵ) on F

• On the invariant (d+ n)-tori Iϵ, the motion of the perturbed system is quasi-periodic with frequencies(
∂H0(Bϵ)

∂a
,Ω

)
.

Proof. The proof is similar to the one of Theorem 5.2.

Remark 5.5. Again, the result by [Sev07] could be used, as in Remark 3.10, to find that t, τ are left unchanged
in the new coordinates i.e. Ψ = (ψ, t, τ) and that ṫ = τ̇ = 1.

56



This result together implies, if all the conditions and the Assumptions 5.3 are met, the existence of invariant
tori in the extended system with variables (a, b, ϕ, t, τ).
If 2π

h = N ∈ N then these conditions are not met, so we cannot use Theorem 5.4 to conclude that invariant
tori of the numerically approximated 2π-Poincaré map ψN

h exist, when integrating the periodically perturbed
system.

In the theoretical system described by the Hamiltonian H̃(a, ϕ, t) = H0(a) + H1(a, ϕ, t) one can prove the
existence of invariant tori in the Poincaré map ϕH̃,t0+2π,t0

, Section 3.3. However, if one wants to ‘see’ these
invariant tori by numerically integrating the system with a symplectic method ψh, then one must choose
2π
h = N ∈ N so as to approximate the Poincaré map i.e. ψN

h ≈ 2π
h = N ∈ N. Thus, Theorem 5.4 cannot

be used to conclude the existence of invariant tori in the symplectic integrated tidal wave system (since we
choose 2π

h ∈ N).

5.5 KAM tori in the Poincaré map of the unperturbed tidal wave system

We have discussed that we cannot use Theorem 5.4 to prove the existence of KAM tori in the numerically
approximated 2π-Poincaré map, when symplectically integrating the periodically perturbed tidal wave system.

However, we may use 5.2 to prove the existence of KAM tori (locally) in the numerically approximated 2π-
Poincaré map, when symplectically integrating the periodically unperturbed tidal wave system, which is done
below and similar to [MO10]. Again, a problem is that we are not sure that h is a perturbation parameter.

Indeed, we have shown already in Section 3.3 that the unperturbed system with Hamiltonian K(q, p) =
cos(p) + η cos(q) is completely integrable and can be analytically extended to a complex set domain Dδ1+δ2

for any such domain. Therefore, the perturbed Hamiltonian Ĥh as in Theorem 5.2 exists and, for sufficiently
small h, the time-dependent part of H2(a, ψ, t) is very small (from Theorem 5.1).

Furthermore we know that Ĥh is analytic on the domain Dδ1 and therefore also on Fρ (as in Theorem 3.9) for
ρ > 0 small enough and that H0 satisfies the Kolmogorov non-degeneracy condition. Moreover, since the fre-
quency of the perturbation equals Ω = 2π/h, it is trivially (σ, γ)-Diophantine for some choice of γ > 0, σ > 0.

Therefore, we may use, as in Section 3.3, Theorem 5.2 to conclude that there exist KAM tori in the extended
system D×T2 (for the action angle coordinates (a, ϕ) ∈ D×T) and use a remark similar to Remark 3.10 to
conclude that there exists invariant tori in the numerically approximated 2π-Poincaré map if the pertur-
bation size is small enough.

It is not clear if the step size can be used as a perturbation parameter, since only the time-dependent part
of H2 (as in Theorem 5.2) can be made small by decreasing the step size. This fact does give an indication
that one could expect to see more KAM tori if one makes decreases the step-size but we need a bound on
the time-independent of H2 with respect to h to make rigorous statements.

6 Modified equation analysis and approximate KAM theory ap-
plied to the tidal wave system

In this section, modified equation analysis (MEA) is considered and an ‘approximate’ numerical KAM the-
orem is constructed. As mentioned in Section 5.2, MEA is a type of BEA which is an alternative to the
non-autonomous flow interpolation considered in Section 5.

Furthermore, besides the fact that the exact numerical KAM theorem of Section 5 is not able to prove
the existence of invariant tori in numerically approximated 2π-Poincaré map of the perturbed tidal wave
system, another reason to consider such an approximate, numerical KAM theorem is round-off error. Indeed,
round-off error and (exact) KAM theory do not behave well together:
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“Further difficulties [in the verification of KAM theory for symplectic integrators] are introduced
by the finite precision effects of computers, guaranteeing that all steps are resonant. Furthermore,
it has also been numerically verified that roundoff effects are sufficient for a trajectory to cross
a torus, whereby showing that invariant tori are not strict barriers to the flows approximated by
[the symplectic integrator] on computers.” – Moan [Moa03]

Therefore, even if a proof was given of the existence of KAM tori in the numerically approximatesd 2π-
Poincaré map of the perturbed tidal wave system, round-off error could have a negative impact on the
‘invariance’ of these tori. A partial solution to this is the ‘approximate’ KAM theorem which is presented in
this Section. This approximate KAM theorem is based on [HLW06] chapter IX.7 and X.5.

Furthermore, Moan [Moa03] mentions that, similar to the exact numerical KAM Theorem 5.2, the orbit-
s/invariant tori which are not behaving ‘invariantly’, when numerically integrating a (perturbed) completely
integrable system, are due to resonances between the frequencies of the torus and the step-size h.

“A more careful analysis of the close-to-integrable Hamiltonian systems [...] shows that the ex-
ponential remainder term [...] originates from the step-size resonances, i.e. when some oscillatory
component of the exact solution has period equal to the step-size.” – Moan [Moa03]

Therefore we consider MEA and construct an approximate KAM theorem as in [HLW06]

6.1 Lie-Gröbner series and splitting of vector field for autonomous and Hamil-
tonian ODE

In this section, Lie-Gröbner series (often Lie Series) will be introduced. Lie series are a characterisation
of the flow ϕf,t(y) in the form of a formal power series, therefore generalising the matrix exponential map
to the non-linear setting. For autonomous ODE, the Lie-Gröbner series are presented in this Section. For
non-autonomous ODE, we refer to Appendix D. For smooth vector fields, this power series in general diverges
and is therefore only a formal power series. For analytic vector fields they are locally convergent.

Using Lie series, expressions for the modified vector fields can be found. Additionally, the error made when
splitting vector fields can be expressed in a Lie algebraic sense using the Baker-Campbell-Hausdorff formula
and Lie series are therefore useful to study numerical splitting methods.

6.1.1 The exponential map as flow of linear systems

For linear systems the exponential comes in very naturally.

Scalar, linear, autonomous IVP:

For a system
ẏ(t) = λy(t), y : R → R, λ ∈ R,

the flow is analytic and given by the function ϕt(y) = eλty, the exponent e· being defined in a plethora of
ways.

Systems of linear, autonomous ODE:

For a system
ẏ(t) = Ay(t), y : R → Rn, A ∈ Rn×n,

the flow is analytic and given by the function ϕt(y) = exp(tA)y, where exp(tA) is the matrix exponential,
which is often defined using power series, the Laplace transform or, if the field is C, via the Cauchy-integral.
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parabolic linear PDE:

For a system
ẏ = Ay y ∈ F , A ∈ Lin(F ,G),

where F ,G are appropriate function spaces and A is some sufficiently regular (e.g. sectorial), elliptic, linear
operator, then ϕt(y) = exp(tA)y, (y a function), defined using for example Laplace transform (in general not
via power series) [ENB00].

Thus, for linear ODE, or (in the infinite-dimensional case) parabolic, linear PDE, the flow is denoted by
the exponential function

ϕf,t(y) = exp(tf) (6.1)

where f is the corresponding linear operator.

6.1.2 Lie derivative

In the case of systems on Euclidean space a nonlinear generalisation of Equation (6.1) exists, which is a
power-series representation and is called the Lie series or Lie-Gröbner series [GK67; Grö67; Ste84; Ste86].

To this purpose we introduce the Lie derivative, as noted in [Ste86]: “Some of the results [...] need to be
translated to the Hamiltonian [and non-linear] setting. This is done by replacing operators (e.g., A) by
Lie derivatives (e.g., [f, ·]).”. For a vector field f ∈ C∞(Rn,Rn), the Lie derivative Lf : C∞(Rn,Rm) →
C∞(Rn,Rm) is defined by

Lf (g) := lim
t→0

g ◦ ϕf,t − g

t
=

d

dt
g(ϕf,t)|t=0 (6.2)

(the limit defined pointwise), which for Euclidean space reduces to

Lf (g)(x) = ∇g(x) · f(x) = Dg(x)(f(x))

One finds that

1. Lf is linear;

2. If g is a scalar function then Lgf = gLf ;

3. Lf satisfies Leibniz rule Lf (gh) = gLf (h)+Lf (g)h (where multiplication is defined component-wise in
Rm for the vector-valued case);

4. (1) and (3) above imply that Lf is a derivation, such that we may also write Df := Lf , where Df in this
case generalises the directional derivative: if f a constant function equal to f(0) = v, then Dfg =: Dvg
where Dv is the directional derivative. In particular

Df =

n∑
j=1

fj
∂

∂xj
.

Additionally Lj
f = Dj

f and for g = Id

dj

dtj
ϕt|t=0 = Dj

f (Id) (6.3)

in particular, in the case of linear f we see that Dj
f (Id) = fn and

∑
j≥0

hj

j!D
j
f (Id) = etf cf. Equation (6.1).
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6.1.3 Lie-Gröbner series for autonomous nonlinear ODE

The Lie derivative is now used to generalise Equation (6.1) to nonlinear f . For analytic flows ϕt(y) at t = 0,
one finds using the Taylor series for small t

ϕt(y) =

 ∞∑
j=0

tj

j!

(
dj

dtj
ϕ0(y)

) . (6.4)

Which suggests heuristically that ϕs =
(
exp (s d

dt )ϕt|t=0

)
with exp(s d

dt ) =
∑∞

j=1
1
j!

dj

dtj |t=0. From Equation

(6.3) we now find that

1

j!

dj

dtj

(
(et

d
dsϕs|s=0)

)
= Dj

f (Id), or more generally
1

j!

dj

dtj

(
(et

d
ds g(ϕs)|s=0)

)
= Dj

f (g)

for g ∈ C∞(Rn,Rm), which implies that, formally,

g(ϕf,t(y)) = (etDf g)(y) =⇒ ϕf,t(y) = (etDf Id)(y) = (etLf Id)(y). (6.5)

Definition 6.1. Given a smooth vector field, f on Rn. The formal power series

etDf =

∞∑
j=0

tj

j!
Dj

f

is called the Lie-Gröbner series for the (ODE with vector field) f .

In the special case that f and g are real-analytic (or holomorphic), the formal power series are also at least
locally convergent (and equal the flow) [GK67; Grö67; Ste84].

6.1.4 Lie-Gröbner series for forced ODE

Like in Section 4.1.2, the Lie series of forced ODE can be found via Faà di Bruno’s formula for the higher
order chain rule: For x ∈ C∞(R), y ∈ C∞(R,Rn) one has (again xi = Dix)

di

dti
y(x(t)) =

i∑
j=1

Bi,j(x1, . . . , xn−k+1)(D
jy(x(t))).

Combining this equation with the fact that ϕgf,t,t0 = ϕf,G(t) where G(t) =
∫ t

t0
G(t) (Equation (2.5)), one

finds
di

dti
ϕgf,t,t0 |t=t0 =

i∑
j=1

Bi,j(g0, . . . , gn−j)D
j
sϕgf,s,t0 |s=G(t0) =

i∑
j=1

Bi,j(g0, . . . , gn−j)D
j
f (Id).

Then one finds the Lie Series

ϕgf,t,t0 = Id+
∑
i≥1

ti

i!

i∑
j=1

Bi,jD
j
f (Id) = Id+

∑
i≥1

ti

i!

i∑
j=1

 ∑
l∈pj(i)

i!

l!
∏i

k=1(k!)
lk

i∏
ℓ=1

glii−1

Dj
f (Id), (6.6)

where notation as in Section B.1 was used (pj(i) denoting partition of the integer i into j integers).

6.1.5 Lie-Gröbner series for Hamiltonian ODE and Poisson brackets

For Hamiltonian ODE with Hamiltonian H, the symplectic structure can be used to get a different charac-
terisation of Lie series. The derivation in this case becomes Df =

∑
i fi

∂·
∂xi

= (∇·)T (J∇H). In other words

one finds, for g : R2n → R that

d

dt
g(ϕH,y0

(t)) =

n∑
j=1

(
n∑

i=1

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
= {g,H}.
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where the Poisson bracket {·, ·} is used. Combining the last equation and Equation (6.2), one finds that
D∇H := L∇H := −{H, ·} is a derivation/vector field and induces the Lie derivative L∇H := {·, H} :
C∞(R2n) → C∞(R2n). One then finds the Lie-Gröbner series

ϕH,t(q, p) = (et{·,H}Id)(q, p). (6.7)

6.2 Splitting of the vector field and the BCH formula

Besides numerical splitting methods, one might be interested in a theoretical splitting of the vector field: If
f = g+h then how are the (exact/theoretical) flows ϕf , ϕg, ϕh related? In particular, can we compose ϕg, ϕh
so that we can get accurate approximations to ϕh? The Baker-Campbell-Hausdorff (BCH) formula is helpful
to answer the latter question and is useful for BEA of splitting methods.

6.2.1 Baker-Campbell-Hausdorff formula for linear and non-linear ODE

We first consider linear, autonomous ODE of the form

ẏ(t) = (A+B)y(t)

where A,B ∈ Rn×n, with solution ϕA+B,t(y) = et(A+B)y. When splitting the vector field A + B into the
vector fields g1 = A and g2 = B, the composition of the solutions to g1, g2 gives

ϕB,t ◦ ϕA,t(t) = etBetA.

As mentioned above, we are interested in the order of accuracy i.e. the difference etBetA − et(A+B). Taylor
expanding both sides one finds

etBetA − et(A+B) =
t2

2
(A2 + 2AB +B2 − (A+B)2) +O(t3)

so that the order is O(t2) with coefficient [A,B] := AB −BA.

The order of accuracy can also be found using the Baker-Campbell-Hausdorff (BCH) formula which deter-
mines a matrix C(t) such that etBetA = eC(t). The matrix C is determined [HLW06] by the differential
equation

Ċ(t) = A+B +
1

2
[A−B,C(t)] +

∑
k≥2

Bk

k!
adkC(t)(A+B), (6.8)

where Bk are the Bernoulli numbers, adC = [C, ·] and adkC the k-th composition of adC . Using Equation
(6.8) and the ansatz C =

∑
i t

iCi one finds the terms

C1 = A+B

C2 =
1

2
[A,B]

C3 =
1

12
([A, [A,B]] + [B, [B,A]])

Cj =
1

2
[A−B,Cj−1] +

j−1∑
k=2

∑
ℓ∈pk(j−1)

Bk

k!
adCl1

. . . adClk
(A+B) . . .

(6.9)

where the partitions pk(j − 1) are used (Section B.2). Other equations exist for the matrix C(t), such as the
(explicit) Dynkin equation, but the expressions for the lower order Ci suffice in this thesis.

We now generalise these equations to the non-linear case, using again the Lie derivatives: The BCH formula
can be (formally) constructed for any Lie algebra. This includes the Lie algebra of derivations Df (or
equivalently Lie derivatives Lf ) which implies, similar to the matrix version, that

ϕg2,s ◦ ϕg1,t = exp (tD1) exp (sD2)Id = exp (D̃)Id, (6.10)
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(note the switching of the order or “Vertauschungssatz” as Gröbner calls it [GK67; Grö67]), where

D̃ = sD1 + tD2 +
st

2
[D1, D2] +O(s2t+ t2s), (6.11)

and the higher order terms in s, t consist again of higher order Lie brackets of D1, D2. These series are only
formal, but can be used numerically if truncated, see [HLW06] chapter III.5.1. The Lie derivative D̃ can be
seen as an interpolative/modified Lie derivative.

As for numerical splitting methods, more general theoretical splittings may be considered: Splitting into
more vector fields f =

∑n
i=1 fi or using different compositions. For example, the Strang-splitting

ϕg2, t2 ◦ ϕg1,t ◦ ϕg2, t2 = exp (D̃(s, t))Id (6.12)

may be used. The BCH formula can be first applied ϕg2, t2 ◦ ϕg1, t2 and then to ϕg1, t2 ◦ ϕg2, t2 to find that

(setting t = s)

D̃1 = Dg1 +Dg2 , D̃2 = 0 D̃3 = − 1

24
[Dg1 , [Dg1 , Dg2 ]] +

1

12
[Dg2 , [Dg2 , Dg1 ]] (6.13)

and due to to the symmetric composition, Ci = 0 for all even i so that the order of accuracy is O(t3).

6.2.2 BCH for time-affine and Hamiltonian ODE

For a non-autonomous vector field f̂ we may look at the canonical autonomous extension (f̂ , 1) (Appendix

D.1.1). One now splits the temporal part as well. For example, for the splitting f̂ = f̃1+f̃2 = (f1, a1)+(f2, a2)
(with a1 + a2 = 1) one may use the Lie-series with Df̃i

= Dfi +Dait to find the error in the spatial part:

[Df̃1
, Df̃2

] == [Df1 , Df2 ] +
1

2

(
∂(f)j
∂t

− ∂fj
∂t

)
∂

∂xj
= [Df1 , Df2 ]− a2Dḟ1

+ a1Dḟ2
, (6.14)

Remark 6.2. We consider a time-affine ODE with vector field
∑n

i=1 gi(t)fi(y) split into n forced ODE gifi.

We now show that the modified Lie derivative D̃ is a power series, in the step sizes, with time-affine vector
fields/Lie derivatives as coefficients.

We consider first the case n = 2, the splitting (g1f1, a1) + (g2f2, a2) where a1 + a2 = 1 split time and the
Lie-Trotter splitting

ϕg1f1,t1 ◦ ϕg2f2,t2 .

In this case Equation (6.9) implies that higher order terms of the modified Lie derivative D̃ consist of higher
order Lie brackets. Combining this with the fact that (6.14) implies that the Lie bracket of two ‘time-affine’
Lie derivatives produces a time-affine Lie derivative we may argue inductively that the modified Lie derivative
D̃ is a power series, in t1, t2, with time-affine vector fields/Lie derivatives as coefficients. In other words,
writing

D̃ =
∑
i,j≥0

ti1t
j
2Di,j

we find that Di,j(Id) are time-affine vector fields.

Moreover, this holds for more general n, ai and more general splitting methods than the Lie-Trotter splitting.
The importance of this lies in modified equation analysis. This will imply that the modified equation is again
time-affine, so that, in the Hamiltonian case (treated directly below), it can be seen as a periodically perturbed
Hamiltonian system, on which the KAM theorem 3.9 can be used.
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For Hamiltonian ODE with Hamiltonian H = H1 +H2 with vector fields fH1 , fH2 , the Lie-bracket of vector
fields satisties [DfH1

, DfH2
] = {H2, H1} such that

[DH1 , DH2 ]g = DH1DH2g −DH2DH1g = {{g,H2}, H1} − {{g,H1}, H2} = {g, {H2, H1}}

where the Jacobi identity was used. So, one may replace [DH1 , DH2 ] by {H2, H1} in the BCH formula. Thus,
one finds the formula

ϕt,H2
◦ ϕs,H1

= et{·,H2}es{·,H1} = e{·,H̃(s,t)}

with H̃ =
∑∞

i,j=1 t
isjH̃i,j given by

H̃1,0 = H1, H̃0,1 = H2, 2H̃1,1 = [DH2
, DH1

] = {H1, H2}, . . . ,

cf. Equation (6.11). As in the nonlinear case, for different composition methods or splitting into multiple
terms, similar equations can be found by applying the BCH formula recursively, see for example [HLW06]
chapter III.5.4, III.5.5.

6.3 Modified equation analysis

In much of the mathematical literature about modified equation analysis (MEA) (e.g. [CMS94; Moi10]) it is
stated that MEA found its first applications in the study of linear PDE, as in [WH74], in which applications
for nonlinear PDE are also discussed at the end. Here we apply it to autonomous ODE and IVP.

6.3.1 Formal modified equation analysis of (non-)autonomous ODE

As introduced in Section 4.2, MEA finds a formal expression for a vector field f̃ such that, for any fixed
step size h > 0, the time-h flow ϕf̃ ,h is equal to the numerical method ψh (up to some order M ∈ N). The
expression is formal: It is an asymptotic power series which generally diverges for non-linear ODE [LR04;
HLW06].

Suppose a consistent numerical method ψh : Rn×R → Rn of order N has been used on the ODE with vector
field f : Rn × R ⊃ D × I → Rn × R (thus ϕh − ψh = O(hN+1)), of the form

ψh(y, t) = y + hf(y, t) +

∞∑
i=2

hi

i!
di(y, t), (6.15)

see Remark 4.3. Given M > N and step size h > 0, MEA constructs a vector field f̃
[M ]
h : D × I → Rn such

that ψh is a numerical method of order M with respect to the ODE with vector field f̃
[M ]
h . Note, the case

M ≤ N is not interesting as then f̃
[M ]
h := f is the interpolant, unique in the set of CM interpolants.

Remark 6.3. If f, f̃
[M ]
h ∈ CM (D,Rn) as above and ψh is consistent, then the uniqueness of the Taylor

expansion of Equation (6.16) up to order M + 1 in h implies that the interpolant f̃
[M ]
h of order M is unique

(in the set of CM vector fields).

Definition 6.4. The vector field f̃
[M ]
h (or the flow ϕ

f̃
[M]
h

) depending on the step size h > 0, interpolates to

order M the numerical method ψh if the associated (non-)autonomous flow ϕ̃
[M ]
t := ϕ

f̃
[M]
h ,t

: D × I → Rn or

integral curve v (with v(t0) = y0) satisfies

ϕ̃
[M ]
t0+h,t0

(y0)− ψh(y0, t0) = O(hM+1) (pointwise) or v(t0 + h)− ψh(y0, t0) = O(hM+1) (6.16)

for all t0, y0 = v(t0) in the domain of the solution. Then f̃
[M ]
h is called the modified/interpolative vector field

of order M (with step-size h > 0). If a vector field f̃h : D × I → Rn interpolates f up to order M for all
M ∈ N then f̃h interpolates ψh exactly. ∅
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Suppose that for fixed step size h > 0, the flow ϕ̃
[M ]
h =: ϕ̃[M ] : (Rn × R) × R → Rn interpolates to order M

the numerical method ψh used on the ODE with vector field f , such that

∞∑
j=0

hj

j!

(
ϕ̃
[M ]

t,t̃0
− dj(·, t)

)
= O(hM+1), or

∞∑
j=0

hj

j!

(
djv

dtj
(t̃0)− dj(ỹ0, t̃0)

)
= O(hM+1). (6.17)

If we assume that Dj
t ϕ̃

[M ]

t,t̃0
|t=t0 = O(1) for all j ∈ N then equivalently

M∑
j=0

hj

j!

(
Dj

t ϕ̃
[M ]

t,t̃0
− dj(·, t)

)
|t=t̃0

= 0, or

M∑
j=0

hj

j!

(
Dj

t v(t̃0)− dj(ỹ0, t̃0)
)
= 0, (6.18)

which is an ODE of orderM , thus needingM−1 extra initial conditions ỹ
[j]
0 . Existence of ϕ̃[M ] is guaranteed

for ‘sufficiently small’ h ∈ R from ODE theory (for example [DE02] section 2.6 and 2.7).

Definition 6.5. Given a numerical method ψh (with step-size h > 0 fixed). The modified equation (of order
M) is the M -th order ODE given by Equation (6.18). ∅

The modified equation of a numerical method is the basis for MEA. In particular, it induces two different
ways to solve the modified equation. First on the level of the flow ϕ̃[M ] or integral curve v[M ] with modified
vector field f̃ [M ] := Dtϕ̃

[M ], treated immediately below and in Section 6.3.2. Second on the level of vector
fields: Replacing Dj

t ϕ̃
[M ] = Dj−1

t f̃ [M ] and trying to find equations which determine f̃ [M ] explicitly in terms
of dj and f , treated in Sections 6.3.3 and 6.3.4.

To find the modified equation, it was assumed that Dj
t ϕ̃

[M ] ∈ O(1). However, this is not true in general as
is shown in the following example, where N = 1 and M = 2 and behaviour is of order O( 1h ). Consequently,
the local error is not of order O(h3). and the error after n-steps i.e. ϕf̃ ,nh − ψn

h might behave badly.

Example 6.6. Consider the autonomous, scalar, linear initial value problem [GS86],

.
y0 = 0, t0 = 0

v′(t) = f(v(t)) = λv(t),

for λ ∈ R, on which forward Euler (first order, N = 1) is applied: ψh(U) = U + hf(U) = U + hλU . The
modified equation, Equation (6.18), with M = 2, together with a perturbed initial condition ỹ0 and an extra
initial condition ỹ[2] is then given by

ỹ0 : = U0, ỹ
[2]
0 := U1,

v′ +
h

2
v′′ = λv,

which has solution
v(t) = c1e

tr− + c2e
tr+

where r± = (±
√
1 + 2λh + 1))/h. Thus it is clear that, if U0, U1 are not such that c2 = 0 then the r+ term

causes behavior v′ = O(1/h) (so not O(1)). Thus O(h3) behaviour of Equation (6.17) is not attained, as is
shown for a similar example in [GS86].

6.3.2 Formal modified equation via differentiation and substitution

To solve the problem encountered in Example 6.6, approximations of the derivatives Dj ϕ̃[M ] which are
O(hM+1−j) are given next. The start is again Equation (6.17) rewritten as

Dtϕt = d1 +

M∑
j=2

hj−1

j!

(
dj −Dj

tϕt
)
+O(hM ), or v′ = d1(ỹ0, ·) +

M∑
j=2

hj−1

j!

(
dj(ỹ0, ·)−

djv

dt

)
+O(hM ) (6.19)

and approximations can be found by differentiation of this equation and substitution into itself [GS86; Moi10],
as shown in Example 6.7. This method of substitution actually reduces the modified equation to a first order
ODE, thus removing as well the problem of finding extra initial conditions.

64



Example 6.7. Continuing Example 6.6 we try to find an order M = 3 interpolant, such that Equation (6.19)
becomes,

v′ +
h

2
v′′ +

h2

6
v′′′ = f(v) +O(h3).

Differentiating 1 ≤ i ≤ 2 times one obtains

v′′ = −h
2
v′′′ + f ′(v)v′ +O(h2) (6.20)

v′′′ = (f ′′(v)v′v′ + f ′(v)v′′) +O(h). (6.21)

Substituting Equation (6.21) into Equation (6.20) then (6.20) into itself on the RHS we find an expression
for v′′ in terms of v′ and v. This expression can be substituted into equation (6.21) thereafter substituting
all into the original equation such that a first order ODE can be obtained. This method, and the order of
substituting the approximations, is described as well in, for example, [KP94a; AC97] where in the latter an
implementation in Maple is presented.

After substitution one finds the modified ODE

v′ = f(v)− h

2
f ′(v)v′ +

h2

12
(f ′′(v)v′v′ + f ′(v)v′′) +O(h3) (6.22)

This examples shows that the modified equation, obtained by differentiating and repeated substitution, is of
the form

v′ = f̃ [M ] with f̃ [M ] = f +

M∑
j=2

hj−1fj (6.23)

with terms fj : Rn × R → Rn. This holds in general and can be used as an ansatz to find the modified ODE
in a different way, shown in Section 6.3.3.

Thus, differentiating Equation (6.19), this type of MEA produces the terms Div (1 ≤ i ≤M) up to O(hM−i)
of the form (with Df̃di =

d
dtdi(v(t)) the Lie derivative)

hi−1Div =

M∑
j=i+1

−hj−1

(j − (i− 2))!
Djv +

M∑
j=i

hj−1

(j − (i− 1))!
Di−1

f̃
dj−i+1 +O(hM ) (6.24)

for one-step methods of the form of Equation (6.15). As in Example 6.7, the equation for 2 ≤ i ≤M can be
substituted (with order increasing in i) in the original equation (i = 1) to find the modified equation. For
M = 2, in other words after substituting 1

2hD
2v into the equation we find the equation

v′ +

M∑
j=3

hj−1(
1

j!
− 1

2(j − 1)!
)Djv =

M∑
j=1

hj−1

j!
dj −

M∑
j=2

hj−1

2!(j − 1)!
Df̃dj−1 +O(hM ).

Denoting now by ai,j the coefficient of the hj−1Djv in the modified equation after substituting the equation
for Div into the original Equation (6.18), then we find a1,j = 1

j! and a2,j = a1,j − 1
2(j−1)! . More generally,

suppose that we have substituted for increasing 2 ≤ ℓ ≤ i − 1 Equation (6.24) for Dℓv into the modified
Equation (6.18), then the substitution of Div gives the equation

v′ +

M∑
j=i+1

hj−1

(
ai−1,j −

ai−1,i

(j − (i− 1))!

)
Djv +O(hM ) =

i∑
k=1

M∑
j=k

hj−1 −ak−1,k

(j − (k − 1)!
Dk−1

f̃
dj−k+1

defining a0,1 := −1, a0,j = 0 for j > 1. Thus, the recursive formula for the coefficients ai,j are given by

a0,1 = −1, a1,1 = 1, a0,j = 0, ai,j =

{
0 if 1 ≤ j ≤ i

ai−1,j − ai−1,i

(j−(i−1))! if 1 ≤ i < j,
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with the recursively defined solution

ai,j = −
i∑

k=1

ak−1,k

(j − (k − 1))!

for 1 ≤ i < j. Defining ci := −ai−1,i one finds the modified equation

v′ +O(hM ) =

M∑
i=1

M∑
j=i

hj−1 ci
(j − (i− 1))!

Di−1

f̃
dj−(i−1) =

M∑
i=1

hi−1ci

M+1−i∑
j=1

hj−1

j!
Dj+i−2

f̃
dj , (6.25)

with

c1 = 1 ci = −
i−1∑
k=1

ck
1

(i− (k − 1))!
,

with solution a rescaling of the Bernoulli numbers Bi (with B1 = − 1
2 )

ci =
1

(i− 1)!
Bi−1

so that we arrive at

v′ +O(hM ) =

M∑
j=1

hj−1

j!
dj +

M−1∑
i=1

Bi

i!

M∑
j=i+1

hj−1

(j − i)!
Di

f̃
dj−i

=

M∑
j=1

hj−1

j!
dj +

M−1∑
i=1

Bi

i!

M∑
j=i+1

hj−1

(j − i)!

M+i−j∑
k=i

hk−i
∑

ℓ∈Pi(k)

Dfℓ1
. . . Dfℓi

dj−i

Collecting the terms of order hM−1 and calling this the vector field fM (cf. Section 6.3.3) we find

fq =
1

M !
dM+

M−1∑
i=1

Bi

i!

M−i∑
j=1

1

j!

∑
ℓ∈Pi(M−j)

Dfℓ1
. . . Dfℓi

dj =
1

M !
dM+

M−1∑
i=1

Bi

i!

∑
ℓ1+···+ℓi+1=M

1

ℓi+1!
Dfℓ1

. . . Dfℓi
dℓi+1

(6.26)
This seems to be a new recursive expression for the modified vector fields.

Remark 6.8. In the case that more information is known about the coefficient functions dj then the modified
equation in the form (6.25) can be rewritten accordingly. For example if ψh is a B-series method (cf. equation
(9.7) in [HLW06], section IX.9.1), a P -series method (cf. (10.6) in Section IX.10.2 of [HLW06]) or a
symplectic method (see Section 6.3.6, or [HLW06] chapter XI.3)

6.3.3 Formal modified equation via ansatz of polynomial modified vector field

A more common way of finding the modified equation [CMS94; HLW06] is discussed next. As discussed in
Section 6.3.1, the idea (e.g. [LR04; HLW06]) is to search immediately for a modified vector field f̃ [M ] and
not for a solution ϕ̃[M ] or v[M ]. In Example 6.7 and Equation (6.25) it was seen that a polynomial ansatz
(polynomial in h, Equation (6.28) below) is suitable.

Starting at Equation (6.18), we substitute Dk
t ϕ̃

[M ] = Dj−1
t

(
f̃ [M ] ◦ ϕ̃[M ]

)
or Dk

t v = Dk−1
t f̃ [M ](v) such that

M∑
j=1

hj

j!

(
Dj

t

(
f̃ [M ] ◦ ϕ̃

)
− dj

)
= 0, or

M∑
j=1

hj

j!

(
Dj

t (f̃
[M ](v(t̃0))− dj(ỹ0)

)
= 0, (6.27)

Now, as in Equation (6.23), the idea is to use the ansatz

f̃ [M ] =

M∑
j=1

hj−1fj,M f̃0,M = f, (6.28)
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with fj,M : Rn × R → Rn where in particular fj,M =: fj is independent of M (cf. Remark 6.3 and Example
6.6).

Substituting the ansatz into Equation (6.27) and comparing equal powers of h to the modified functions we
find in the autonomous case

f1 = d1

2f2 + f ′1(f1) = d2

6f3 + 3 (f ′2(f1) + f ′1(f2)) + f ′′1 (f1, f1) + f ′1(f
′
1(f1)) = d3

4!f4 + 12 (f ′3(f1) + f ′2(f2) + f ′1(f3))+

4
(
f ′′2 (f1, f1) + 2f ′′1 (f1, f2) + f ′1(f

′
1(f2)) + f ′1(f

′
2(f1)) + f ′2(f

′
1(f1))

)
+

D3f1(f1, f1, f1) + 3f ′′1 (f
′
1(f1), f1) + f ′1(f

′′
1 (f1, f1)) + f ′1(f

′
1(f

′
1(f1))) = d4

. . . = d5.

(6.29)

We use now the notation of Section 6.1.4. Gor a vector field f we write the lie derivative as Df (g)(y, t) =
Dyg(y, t)f(y, t), where g ∈ C1(Rn × R,Rn) and we denote by pi(j) the partitions of a number j into i
numbers, as in Section B. Then one finds the usual expression for the

Proposition 6.9 ([BG94] or [HLW06]). The autonomous modified vector field fj satisfy

fj =
1

j!
dj −

j∑
i=2

1

i!

∑
k∈Pi(j)

Dfk1
· · ·Dfki−1

fki
(6.30)

Proof. The proof is in e.g. [HLW06], chapter IX.7.2.

For example

f3 =
1

6
d3 −

1

2
(Df2f1 +Df1f2)−

1

6
Df1Df1f1

which agrees with Equation (6.29).

6.3.4 Formal modified eqation using a recursive definition

Finally, we briefly mention that another approach exists. A recursive approach was considered in [Rei99].
This recursive approach has been implemented numerically at least for scalar ODE [HL00]. A similar result
can be for higher order methods.

6.3.5 Modified equations of the induced method on forced ODE

We consider the induced method Ψh(y, t) = (ψ̃h,t(y), t + h) ∈ Rn × R as in Section 4.1.2, induced from

ψh = Id+
∑∞

i=1 dih
i, such that (using Equation (4.4)) ψ̃h has coefficients d̃j , j ∈ N0 given by

d̃0(y, t) = y, d̃i(y, t) =

i∑
j=1

dj(y)Bi,j(g0(t), . . . , gj−i(t)).

We now fix h > 0. Then from Proposition 4.10 one finds, if g is analytic, that

ψf,h − ϕ
f̃
[M]
h ,h

= O(hM+1) ⇐⇒ ψ̃t+h,t − ϕ̃t+h,h = O(ηM+1),

for all t in the domain, where ϕ̃t,t0 = ϕ∫ t
t0

g(s) ds, and f̃
[M ]
h =

∑M
j=1 h

j−1fj is the modified vector field of ψh

of order M and η(t, h) =
∑

j≥1 h
jDj−1

t g(t). In other words for the step-size η(t, h) one finds

ψ̃t+h,t − ϕ̃t+h,h = ψf,η − ϕ
[M ]

f̃
[M]
η ,η

.
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meaning that f̃
[M ]
η is the modified vector field of the induce method ψη of order M . Using again Faà di

Bruno’s formula and the fact that
∫ t

t0
g(s) ds =

∑
j≥1 h

jgj−1(t0) we find that

f̃ [M ]
η =

M∑
j=1

hj−1

j∑
i=1

Bi,j(g0, . . . , gj−i)fj , (6.31)

where fj are the modified vector fields of ψh applied to the non-forced vector field of f and where Bi,j are
the commutative Bell polynomials (Appendix B). Thus, Equation (6.31) expresses the modified equations of
the induced method.

6.3.6 Modified Hamiltonians using generating functions

If symplectic numerical methods are used, then Proposition 4.13 implies that there exists modified Hamilto-
nians Hj such that the modified vector fields satisfy fj = J∇H. Furthermore, the modified Hamiltonian Hj

are constructed explicitly (in quadrature) using the integrability lemma. Using this construction, the second
term H2 of the modified Hamiltonian satisfies

H2(q, p, t) =

∫ (q,p)

(q0,p0)

1

2
J
(
f ′f + ḟ − d2

)
dγ =

∫ 1

0

1

2
Jf ′f(sq, sp, t) ds− 1

2

∫ (q,p)

(q0,p0)

Jd2 dγ.

for some path γ with endpoints (q0, p0), (q, p) in the domain. We note that

f ′f = (J∇2HJ)∇H) =

(
−Hpp Hpq

Hqp −Hqq

)
∇H =

(
−HppHq +HpqHq

HpqHq −HqqHp

)
= ∇ (HqHp)

such that

H2(q, p, t) =
1

2
HqHp +

1

2
Ḣ +

∫ (q,p)

(q0,p0)

Jd2 dγ.

The next step is to find H3 in terms of di, H and H2 However, it is not easily done using path integrals (the
Integrability Lemma) on the formulas using Equations (6.26) or (6.30).

However, using generating functions, such expressions for the modified Hamiltonians (solving the quadrature)
can be found. Instead of looking for an interpolative vector field f̃ one looks at an interpolative generating
function S̃. The starting point is now not the modified equation 6.18 but the Hamilton-Jacobi equation
([HLW06] chapter VI). Still, there are many similarities with modified equation analysis of Section 6.3.3:
One uses a power series expansion of H̃ and S̃ in h and the goal is to find an expression for S̃(q, P, t) which
interpolates S(q, P, h) The following lemma is from [HLW06], where it is mentioned that it was found earlier
in [BG94] and [CMS94]. Here we provide a more thorough proof and a recursive expression for the modified
Hamiltonians.

Theorem 6.10 ([HLW06] chapter IX.3). If the symplectic method Φh (step-size h) has a generating function
of the form

S(q, P, h) =

∞∑
i=1

hiSi(q, P )

(e.g. Proposition 4.16) where the Sj are smooth and defined on an open set D ⊂ R2n.
Then the modified vector field fj have associated Hamiltonians Hj, smooth and defined on the whole of D,

such that the modified Hamiltonian H̃ is has a formal expansion of the form

H̃(q, p) = H(q, p) +

∞∑
j=1

hjH̃j(q, p)

given by

H1 = S1, Hn = Sn −
∑

r∈P2(n+1)−{(1,n)}

S̃r1r2 , (6.32)
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where S̃h =
∑

n,m≥1 t
nhm−1S̃nm is the interpolative generating function of S. Equation 6.32 can be solved

recursively combined with the fact that

nS̃nm =

n−1∑
j=1

1

j!

∑
k∈Pj(n−1)

∑
l∈Pj+1(m+j)

(Dj
qHl1)(DpS̃k1l1 , . . . , DpS̃kj lj+1

)

for n > 1,m ≥ 1.

Proof. The exact solution P (t), Q(t) of the Hamiltonian system corresponding to H̃ (for t in the maximal
interval of existence) is given by ([HLW06] chapter VI)

p = P (t) +DqS̃h(q, P (t), t), Q(t) = q +DP S̃(q, P (t), t),

where S̃h is the solution to the Hamilton-Jacobi differential equation

DtS̃h(q, P, t) = H̃h(q +DP S̃h(q, P, t), P ), S̃h(q, P, 0) = 0. (6.33)

Now, a Taylor expansion of Equation (6.33) in the second variable leads to

DtS̃(q, P, t) = H̃(q, P ) +DqH̃(q, P )(DP S̃(q, P, t)) +

∞∑
j=2

1

j!
(Dj

qH(q, P ))(DP S̃, . . . , DP S̃)(q, P, t).

One considers now a power series expansion of S̃h in the variables (t, h). Writing S̃h(q, P, t) =
∑∞

i=1 t
iS̃i(q, P, h)

and substituting this into Equation (6.33), one finds the expression

∞∑
i=1

iti−1S̃i(q, P, h) = H̃(q, P ) +

∞∑
j=1

1

j!
(Dj

qH(q, P ))(DP

∞∑
i=1

tiS̃i, . . . , DP

∞∑
i=1

tiS̃i)(q, P, h),

which is similar to the case in Section 6.3.3 but on the level of generating functions. Rewriting and comparing
powers leads to the expression

S̃1(q, P, h) = H̃(q, P )

2S̃2(q, P, h) = (DqH̃ ·DP S̃1)(q, P, h)

3S̃3(q, P, h) = (DqH̃ ·DP S̃2)(q, P, h) +
1

2
D2

qH(DP S̃1, DpS̃1)(q, P, h)

4S̃4(q, P, h) = (DqH̃ ·DP S̃3)(q, P, h) +D2
qH(DP S̃1, DP S̃2) +

1

6
D3

qH(q, P )(DP S̃1, DP S̃1, DP S̃1)

(6.34)

and more generally (for 2 ≤ n ∈ N)

nS̃n(q, P, h) =

n−1∑
j=1

1

j!

∑
k∈Pj(n−1)

(Dj
qH̃)(DpS̃k1 , . . . , DpS̃kj )

where Pj(n − 1) denotes the set of (ordered) partitions, as in Appendix B.1. Since Dj
qH̃ is a symmetric

multilinear function map, one might replace Pj(n− 1) by the ordered partition, together with a multinomial

factor. Substituting now S̃i =
∑∞

j=1 h
j−1S̃ij and H̃ =

∑∞
j=1 h

j−1Hj one finds

S̃1m(q, P ) = Hm(q, P )

2S̃2m(q, P ) =
∑

l∈p2(m+1)

DqHl1(q, P )(DP S̃1l2)(q, P )

3S̃3m(q, P ) =
∑

l∈p2(m+1)

(DqHl1(q, P )(DP S̃2l2)(q, P ) +
1

2

∑
l∈p3(m+2)

D2
qHl1(DP S̃1l2 , DP S̃1l3)(q, P )
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or more generally (for 2 ≤ n ∈ N, m ∈ N)

nS̃nm(q, P ) =

n−1∑
j=1

1

j!

∑
k∈Pj(n−1)

∑
l∈Pj+1(m+j)

(Dj
qHl1)(DpS̃k1l1 , . . . , DpS̃kj lj+1

). (6.35)

Similarly, by symmetry of Dj
qHl1 one might substitute Pj(n − 1),Pj+1(m + j) by the ordered partitions

together with a multinomial factor (distinguishing l1). It is clear from this expression that S̃nm only depends
on DpS̃ij , DqS̃ij with i < n, j ≤ m i.e. (i, j) element-wise smaller or equal than (n,m). Thus, the last
equation is not implicit, but can be used recursively.

Finally, the interpolation requirement (which has not been used up to this point) S(q, P, h) = S̃h(q, P, h) or∑
i≥1 h

iSi(q, P ) =
∑

i≥1

∑
j≥1 h

i+j−1S̃ij(q, P ) gives

S1 = S̃11 = H

S2 = S̃12 + S̃21 = H2 + S̃21

S3 = S̃13 + S̃22 + S̃31 = H3 + S̃22 + S̃31

S4 = . . .

and more generally

Sn =
∑

r∈P2(n+1)

S̃r1r2 =

n∑
r1=1

S̃r1(n+1−r2). or Hn = Sn −
∑

r∈P2(n+1)−{(1,n)}

S̃r1r2 . (6.36)

This implies that the domain of the Hj is again D (i.e. they are globally defined) and they are smooth.

Combining now the fact that S̃ is a solution to the Hamilton-Jacobi equation (leading to Equation (6.35))
and the interpolative property (leading to (6.36)), then

S1 = S̃11 = H1

Hn = Sn −
∑

r∈P2(n+1)−{(1,n)}

r1−1∑
j=1

1

j!r1

∑
k∈Pj(r1−1)

∑
l∈Pj+1(r2+j)

(Dj
qH̃l1)(DpS̃k1l2 , . . . , DpS̃kj lj+1),

(6.37)

which proves the theorem.

A corollary of this lemma is that S1 = H must hold for such methods.

If S̃(q, p, t) is a C2 the solution to the (non-autonomous) Hamilton-Jacobi equation

DtS̃(q, p, t) = H(q +DP S̃(q, P, t), P, t) S̃(q, P, 0) = 0

for a non-autonomous Hamiltonian H, then S̃ still generates, for sufficiently small t > 0 and some t0 ∈ R,
the solution of the Hamiltonian ODE via the equations

p = P (t) +DqS̃(q, P (t), t0 + t) Q(t) = q +DP S̃(q, P (t), t0 + t).

Indeed differentiating both equations with respect to time, one finds

Ṗ (I +DPDqS̃) = −Hq(I +DqDP S̃) Q̇ = DPDP S̃ · Ṗ +DPH +DPDpS̃ ·Hq

and one can use that S̃ is C2 and that I + DpDqS̃(q, P (t), t + t0) is invertible for sufficiently small t such

that (Q̇(t), Ṗ (t)) = J∇H(Q(t), P (t), t0 + t).

Theorem 6.11. In the setting of Theorem 6.10 one finds the non-autonomous modified Hamiltonian

H̃(q, p, t) =

∞∑
i,j≥0

hjHj(q, p, t)
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given by

S1 = H1, Sn =
∑

r∈p2(n+1)

r1−1∑
j=0

∑
k∈pj+1(r1+1)

∑
l∈pj(r2+j)

1

(k1 − 1)!(r1 − k1 + 1)!
(Dj

qD
k1−1
t H̃l1)(DpS̃k2l2 , . . . , DpS̃kj+1lj+1

).

(6.38)
which, given Sj, recursively define the Hj.

Proof. The proof similar to the one of Theorem 6.10, we look at how Equations (6.35) and (6.36) change.
Again, the start for Equation (6.35) is the Hamilton-Jacobi equation, shown above to be of the form

DtS̃h(q, P, t0 + t) = H̃h(q +DP S̃h(q, P, t0 + t), P, t0 + t) S̃(q, p, t0) = 0

and Taylor expanding

DtS̃h(q, p, t0 + t) =
∑
j,k≥0

tk

j!k!
Dj

qD
k
tH(q, p, t0)

(
DpS̃h . . . DpS̃h

)
writing again S̃h(q, p, t0 + t) =

∑
j≥1 t

jS̃j(q, p, t0, h) one finds

S̃1 = H̃h

2S̃2 = DtH̃h + (DqH̃h ·DpS̃1)

3S̃3 =
1

2
D2

t H̃h + (DqH̃h ·DpS̃2 +DqDtH̃h ·DpS̃1) +
1

2
D2

qH̃h(DpS̃1, DpS̃1)

(6.39)

and more generally (for n ∈ N)

nS̃n(q, P, h) =

n−1∑
j=0

∑
k∈pj+1(n+1)

1

(k1 − 1)!(n− k1 + 1)!
(Dj

qD
k1−1
t H̃h)(DpS̃k2

, . . . , DpS̃kj+1
)

where pα(β) denotes the set of (ordered) partitions, as in Appendix B.1. Substituting now S̃i(q, p, t0, h) =∑∞
j=1 h

j−1S̃ij(q, p, t0) and H̃h(q, p, t0) =
∑∞

j=1 h
j−1Hj(q, p, t0) one finds

S̃1m = Hm

2S̃2m = DtHm +
∑

l∈p2(m+1)

DqHl1(DP S̃1l2)

3S̃3m(q, P ) = D2
tHm +

∑
l∈p2(m+1)

(
DqDtHl1(q, P )(DP S̃2l2) +DqD

2
tHl1(q, P )(DP S̃1l2)

)
+

1

2

∑
l∈p3(m+2)

D2
qHl1(DP S̃1l2 , DP S̃1l3)(q, P )

or more generally

nS̃n(q, P, h) =

n−1∑
j=0

∑
k∈pj+1(n+1)

∑
l∈pj(m+j)

1

(k1 − 1)!(n− k1 + 1)!
(Dj

qD
k1−1
t H̃l1)(DpS̃k2l2 , . . . , DpS̃kj+1lj+1

).

The interpolative property, Equation (6.36) does not change, such that finally

S1 = H1, Sn =
∑

r∈p2(n+1)

r1−1∑
j=0

∑
k∈pj+1(r1+1)

∑
l∈pj(r2+j)

1

(k1 − 1)!(r1 − k1 + 1)!
(Dj

qD
k1−1
t H̃l1)(DpS̃k2l2 , . . . , DpS̃kj+1lj+1

).
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Consistency conditions, require H = S1 such that one finds, without making use of the Integrability lemma,
that

S2 = S̃12 + S̃21 = H2 + Ḣ + (DqH)TDpH,

which agrees with the calculations at the start of this Section.

Finally, we look, given a vector field f and a numerical method ψ at the induced method ψ̃ applied to the
forced ODE with vector field gf for some time-forcing g ∈ C∞(R). By Equation (4.7), the induced method
ψ̃ is symplectic. Using Equation (6.31) one finds that the modified Hamiltonians satisfy

Ĥi(q, p, t) =

i∑
j=1

Bi,j(g0(t), . . . , gi−j(t))Hj(q, p) (6.40)

where the Hj are determined recursively, as in Theorem 6.10 and hwere Bi,j are the Bell polynomials (Ap-
pendix B).

6.4 BEA for splitting methods

Suppose we split an autonomous vector field into the parts f = f1 + f2 and it is possible to find the flows
ϕfi of fi exactly. The BCH formula then allows us to find the modified vector fields: From Equation (6.10)
we find formally

ϕ
[2]
h ◦ ϕ[1]h = ehD1ehD2 = eD̃(h)

where, form Equation (6.11)

D̃ = D1 +D2 +
h

2
[D2, D1] +

h2

12
([D2, [D2, D1]] + [D1, [D1, D2]]) +O(h3),

where Di = Dfi . Thus, the modified vector field f̃ satisfies

f̃ = D̃Id = f1 + f2 +
h

2
(f ′1f2 − f ′2f1) +O(h2).

Similarly, for the Strang-splitting one may use Equation (6.13) to find the first three modified vector fields.

In the case that the flows of fi cannot be solved exactly, one simply substitutes, formally, Di by Df̃i
, where

f̃i is the modified vector field.

Finally, for Hamiltonian splittings with symplectic integrators, one may substitute the Poisson bracket for
the Lie bracket of vector fields, as in Section 6.2.2.

6.4.1 BEA for splitting methods on time-affine Hamiltonian ODE

We consider now splitting methods for time-affine, Hamiltonian ODE i.e. with Hamiltonian H(q, p, t) =∑n
i=1 gi(t)Hi(q, p) and show, if induced methods are used, that the modified Hamiltonian is again time-

affine.

Proposition 6.12. Suppose a splitting method is applied to the Hamiltonian ODE with Hamiltonian H so
that it is split into n forced Hamiltonians giHi on which an induced method is used. Then the modified
Hamiltonian H̃ =

∑∞
i=1 h

iH̃i(q, p, t) has the property that the H̃i are time-affine.

Proof. Suppose first that one integrates the n Hamiltonian systems with Hamiltonian gi(t)Hi(q, p) exactly
with flow ϕi.

Then, from Section 6.2.2 it follows that the modified Hamiltonians H̃i consist sums of repeated extended
Poisson brackets (i.e Poisson brackets in the extended phase space) which are equal to the Poisson bracket
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as in Equation (6.14) (replacing there the Lie bracket with the Poisson bracket).

Furthermore (cf. Remark 6.2), one sees easily from Equation (6.14) that the extended Poisson bracket of two
time-affine Hamiltonian is again a time-affine function. Thus, repeated evaluation of the extended Poisson
brackets produce time-affine vector fields, so that the modified Hamiltonians H̃i, which are sums of these
repeated extended Poisson brackets, are also time-affine.

In the case that giHi cannot be solved exactly i.e. one finds, using an approximate flow ψi,h ≈ ϕi,t. In the

BCH formula one then replaces giHi with the modified Hamiltonian Ĥi given by Equation (6.40). Thus Ĥi

is time-affine and the proof is done.

The importance of this Proposition is that, using a splitting method on a time-affine Hamiltonian ODE with
the induced methods on the split Hamiltonians, the modified Hamiltonian can be seen in the case of the tidal
wave system as a periodically perturbed Hamiltonian ODE on which the KAM theorem 3.9 can be used.

6.5 Approximate KAM theorem for symplectic PRK integrators on non-autonomous
periodically perturbed completely integrable systems

We follow [HLW06] chapter IX.7 and X.5 in this Section. The goal is to state an approximate KAM theorem
for a symplectic integrator ψh applied to a periodically perturbed, completely integrable Hamiltonian systems.

This is done in two parts: First, Sections 6.5.3-6.5.1 find a local error
∥∥∥ψh − ϕ̃

[M∗]
h

∥∥∥ between a PRK method

ψh applied to an ODE with vector field f and the solution ϕ̃[M∗] of the modified equation f̃M∗ , for some
optimally chosen M∗. Here f is assumed to be complex analytic and bounded on a complex neighbourhood
of B2R(y0) := {y ∈ Cn | ∥y − y0∥ ≤ 2R} of some y0 ∈ Rn (for R > 0, t ∈ I ⊂ R and ∥·∥ a norm on Cn):

∥f(y, t)∥ ≤M for y ∈ B2R(y0). (6.41)

To this end we follow [HLW06], who clearly state the strategy of Section 6.5.1-6.5.3:

“Our strategy is the following: using [(6.41)] and Cauchy’s estimates we derive bounds for the
coefficient functions dj(y) [as in Remark 4.3] on BR(y0) [...], then we estimate the vector fields
fj(y) of the modified differential equation on BR/2(y0) [...], and finally we search for a suitable

truncation for the formal series [f̃M∗ ] and we prove the closeness of the numerical solution to the
exact solution of the truncated modified equation [...].” – Hairer, Lubich & Wanner [HLW06].

The second part, Section 6.5.4, uses the bound on the local error
∥∥∥ψh − ϕ̃

[M∗]
h

∥∥∥ together with the KAM The-

orem 3.9 to show that a symplectic PRK method, applied to a periodically perturbed, completely integrable
Hamiltonian system, has ‘almost invariant’ tori.
At two points we differ from [HLW06]. First, when estimating of the coefficients fj , not only the recursive
expressions of Equation (6.30)

fj(y) = dj(y)−
j∑

i=2

1

i!

∑
k1+···+ki=j

(
Dk1 . . . Dki−1fki

)
(y).

is used (following [HLW06]) but also estimates using the recursive expressions of Equation (6.26)

fj(y) = dj(y)−
j−1∑
i=1

Bi

i!

∑
k1+···+ki+1=j

(
Dk1

. . . Dki
dki+1

)
(y).

are explored in Section 6.5.2) (Bi the Bernoulli numbers). The latter (new) approach is not fully developed
but numerical simulations suggest that this approach may lead to better estimates in some cases.

The second difference is that we consider periodically perturbed systems, whereas [HLW06] only treats
autonomously perturbed systems.

73



6.5.1 Estimation of the derivatives of a PRK method

We consider a consistent, s-stage PRK method ψh : Rn → Rn (Section 4.1.1) with butcher tableaus B =
(A, b, c), B̃ = (Ã, b̃, c̃) ∈ Rs×s × Rs with (Remark 4.3)

ψh(y) = y + hf(y) +
∑
j≥2

hjdj(y). (6.42)

Suppose the PRK method ψh splits the variable y as y = (z, w) ∈ Rn−m ×Rm and similarly the vector field
f = (ζ, χ) and assume that f(z, w, t) is analytic for (z, w) ∈ B2R1

(z0)×B2R2
(w0) (and t ∈ I ⊂ R) on which

∥ζ(z, w, t)∥ ≤M1

∥χ(z, w, t)∥ ≤M2.
(6.43)

Then the dj are analytic and can be bounded for sufficiently small h > 0.

Proposition 6.13 ([HLW06] theorem 7.2). Given an s-stage PRK method ψh as above, with Butcher tableaus
B = (A, b), B̃ = (Ã, b̃) on the splitting y = (z, w). Suppose that

µ =

s∑
i=1

|bi|

µ̃ =

s∑
i=1

|b̃i|
,

κ = max
i=1...s

s∑
j=1

|aij |

κ̃ = max
i=1...s

s∑
j=1

|ãij |.

If f(z, w, t) is analytic on the complex domain (z, w) ∈ B2R1
(z0) × B2R2

(w0) (t ∈ I) and satisfies Equation
(6.43). Then the functions dj(y, t) of Equation (6.42) are analytic on B2R1(z0)×B2R2(w0) (and t ∈ I) and
satisfy

∥dj(z, w, t)∥ ≤ (µM1 + µ̃M2)

(
2

[
κM1

R1
+
κ̃M2

R2

])j−1

for(z, w) ∈ B2R1
(z0)×B2R2

(w0). (6.44)

Furthermore suppose that ∥·∥ is a p-norm (1 ≤ p ≤ ∞). If f is analytic on B2R(y0) and satisfies Equation
(6.41) then

∥dj(y, t)∥ ≤ (µ0M)

(
2κ0M

R

)j−1

for ∥y − y0∥ ≤ R. (6.45)

where

µ0 =

s∑
i=1

max
(
|bi|, |b̃i|

)
, κ0 = max

i=1...s

s∑
j=1

max (|aij |, |ãij |)

Proof. The first estimate, for PRK methods is almost identical to the one for RK methods, for which we
refer to [HLW06] chapter IX theorem 7.2. In the case that ∥·∥ is a p-norm, then fact that∥∥∥∥(aijzãijw

)∥∥∥∥ ≤ max (|aij |, |ãij |)
∥∥∥∥(zw

)∥∥∥∥
will lead to the second estimate.

6.5.2 Estimation of the coefficients of the modified vector field

As mentioned, we not only state the approach of [HLW06] (using in its proof Equation (6.30)) but also use
the Equation (6.26). This latter approach is not made completely rigorous, since estimates are missing. But
a start is given and numerically the estimates may predict better results.

In this Section we also assume that the vector field is autonomous. For non-autonomous vector fields one can
either extend the system (Sections 2.1 and 2.1.3) and use the estimates for the non-autonomous vector field.
Alternatively, one can use the non-autonomous versions of the modified vector fields (Appendix D), but on
first sight this seems to be much harder.

First we state a proposition from [HLW06], where the proof can be found.

74



Proposition 6.14 ([HLW06] chapter IX theorem 7.5). Suppose ∥·∥ is a p-norm. Let f(y) be analytic on
y ∈ B2R(y0), let the Taylor series coefficients dj of the numerical method ψh be analytic on B2R(y0) and
assume that Equation (6.41) and (6.45) are satisfied. Then, we have for the coefficients of the modified
differential equation

∥fj(y)∥ ≤ ln 2ηM

(
ηMj

R

)j−1

for ∥y − y0∥ ≤ R/2, (6.46)

where η = 2max (κ0, µ0/(2 ln 2− 1)) ≥ 5.1773989.

The proof of Proposition 6.14 (see [HLW06] chapter IX theorem 7.5), Equation (6.30) is used. Next we
consider a similar idea as in the proof Equation, using instead (6.26).

We fix J ∈ N and try to estimate
∥fJ∥R/2

where δ = R/(2(J − 1)) and for r > 0 we denote ∥fj∥r := max{∥fj(y)∥ | y ∈ Br(y0)}. Following the proof in
[HLW06] chapter IX theorem 7.5 identically, up until equation (7.9), we then find

fj(y) = dj(y)−
j−1∑
i=1

Bi

i!

∑
k1+···+ki+1=j

(
Dk1

. . . Dki
dki+1

)
(y),

so that ∥fj∥j ≤ δχj for 1 ≤ j ≤ J with

χj =
γ

δ

qj−1 +

j−1∑
i=1

|Bi|
i!

j−i∑
r=1

qr
∑

k∈pi(j−r)

χk1 . . . χki

 , (6.47)

where q = 2κ0M
R , γ = µ0M and pi(j − r) denotes the set partitions of j − r into i integers (as in Section B).

Defining the generating function c(ζ) =
∑

j≥1 χjζ
j−1 we find formally

c(ζ) = γ/δ

 1

1− ζq
+
∑
j≥0

j−1∑
i=1

|Bi|
i!

j−i∑
r=1

ζr−1qr−1
∑

k∈pi(j−r)

ζk1χk1
. . . ζkiχki


= γ/δ

 1

1− ζq
+
∑
i≥1

|Bi|
i!

∑
r≥0

ζrqr
∑

k1+···+ki≥i

ζk1χk1
. . . ζkiχki


=

γ/δ

1− ζq

1 +
∑
i≥1

|Bi|
i!
c(ζ)i

 .

Now, for x ∈ R with |x| sufficiently small we find that (e.g. [DK04] in the preview exercises)

πx cot(πx) =
∑
n∈N0

(−1)n(2π)2n
B2n

(2n)!
x2n = 1− π2

3
x2 − π4

45
x4 −O(x6)

where cot is the cotangent. Combining this with the fact that the Bernoulli numbers Bi have changing signs
e.g. have the first couple of values (with the convention B1 = −1/2)

B0 = 1, B1 = −1

2
, B2 =

1

6
, B2n+1 = 0, B4 = − 1

30
, B6 =

1

42
, . . .

(so that |B2n| = (−1)n+1B2n for n ≥ 1) we find then for at least |c(ζ)| small enough that

1 +
∑
n≥1

|Bn|
n!

c(ζ)n = 2 +
1

2
c(ζ) +

∑
n≥0

(−1)n+1(2π)2n
|B2n|
(2n)!

(
c(ζ)

2π

)2n

= 2 +
1

2
c(ζ)

(
1− cot

(
1

2
c(ζ)

))
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Therefore, formally, the generating function c(ζ) satisfies

c(ζ) =
γ/δ

1− ζq

(
2 +

1

2
c(ζ)

[
1− cot

(
1

2
c(ζ)

)])
and, depending on where this holds not only formally but also numerically, this is the function which we
may need. Comparing with the proof of [HLW06] chapter IX theorem 7.5 at this point the implicit function
theorem is used and, after some estimates, Cauchy’s theorem but this approach does not seems to be harder
in this case. Numerically, we see that for µ0 = 123 the estimates of χJ seem to be better than the equivalent
of χJ in the proof of [HLW06] chapter IX theorem 7.5, denoted βJ , Figure 17. In particular, the quotient
χJ/βJ seems to be independent of M,R, Figure 18. For µ0 > 1 one could see that βJ started to become
smaller than χJ , so estimates from this approach are probably better only for µ0 ≈ 1.
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(c) κ0 = 23.5

Figure 17: Here we see ln(δχJ) (red) and ln(δβJ) (blue) without green (for J = 1 . . . 16). One can see more
clearly that, for different κ0 the χJ < βJ . We set µ0 = 1, R = 0.01,M = 0.1 in all three figures.
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Figure 18: Here we see ln(χJ/βJ) (for J = 1 . . . 16). In particular, this value has been numerically seen to
be independent of M,R. We set µ0 = 1 and different values of κ0

6.5.3 Optimal truncation and closeness of the flow

Using the bounds of the previous Sections on the coefficints dj and the modified vector fields fj we state
(similar to [BG94; HL97; Rei99]) chapter IX theorem 7.6 from [HLW06] (to which we refer for the proof)
about the local error between the numerical method and the flow of an optimally truncated modified vector
field.

Proposition 6.15 ([HLW06] chapter IX theorem 7.6). Let f(y) be analytic in B2R(y0), let the coefficients
dj(y) of the numerical method (of order N) be analytic in BR(y0), and assume that Equation (6.41) and

23One has µ0 = 1 for PRK methods with Butcher tableau (A, b), (Ã, b̃) such that b̃j = bj > 0, for example symplectic PRK
methods on non-separable Hamiltonian ODE e.g. Section 4.2.2
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(6.46) hold. If h ≤ h0/4 with h0 = R/(eηM), then there exists Ñ = Ñ(h) (namely Ñ equal to the largest
integer satisfying hÑ ≤ h0) such that the difference between the numerical solution y1 = (y0) and the exact

solution ϕ̃[Ñ ]t(y0) of the truncated modified equation f +
∑Ñ

j=N+1 h
j−1fj satisfies∥∥∥ψh(y0)− ϕ[Ñ ]h(y0)

∥∥∥ ≤ hγMe−h0/h, (6.48)

where γ = e(2 + 1.65η + µ0) > 31.37 depends only on the method.

6.5.4 An approximate KAM theorem for (quasi)-periodically perturbed completely integrable
systems

We now consider a quasi-periodically perturbed Hamiltonian system H : B × Tn × R → R, where B ⊂ Rn,
given by

H(a, θ, t) +H0(a) + µH1(a, θ, t), (6.49)

where H1 is quasi-periodic with frequencies Ω = (Ω1, . . . ,Ωs) ∈ Rs in the variable t (Definition 3.1) on which
a symplectic method ψh with step size h > 0 is used. The following theorem, which is almost identical to
[HLW06] chapter X.5 theorem 5.4, shows that there are are (n+ s)-dimensional ‘almost invariant’ tori of the
map ψh when extended to the phase space Rn ×Tn ×Ts. The difference with [HLW06] chapter X.5 theorem
5.4 is that we now consider quasi-periodic perturbations, instead of autonomous perturbations.

Theorem 6.16. Suppose a symplectic method ψh of order N is used on a periodically perturbed completely
integrable Hamiltonian K(q, p, t) = K0(q, p) + µK(q, p, t) defined on D × R ⊂ R2n × R (in action-angle
coordinates (a, θ) given by Equation (6.49)) satisfying the bound∥∥∥ψh(q, p, t)− ϕ

[Ñ ]
t+h,t(q, p)

∥∥∥
1
≤ hCe−h0/h for (q, p) ∈ D ⊂ D (6.50)

for some C, h0 > 0 and for all t ∈ R, where ϕ[Ñ ] is the flow of the modified Hamiltonian K̃ [Ñ ](q, p, t) (as in

Theorem 6.11) truncated at order hÑ .

Suppose furthermore that the unperturbed Hamiltonian H0(a) := K(q, p) (in action-angle coordinates (a, θ))
and the frequencies Ω satisfy the (non-degeneracy, complex analyticity, non-resonance) conditions of the
KAM Theorem 3.9 on some domain B × Tn.

Then for ‘most’ (see Theorem 3.9) invariant tori Tω = Tω(a) of the unperturbed system with Hamiltonian H0

with a ∈ B, there exists an n+ s-dimensional torus T̃(ω̃,Ω), O(hN + µ) close to Tω, carrying a quasi-periodic

flow with frequencies (ω̃,Ω) and a Hamiltonian H̃ (related to the modified Hamiltonian K̃ [Ñ ] defined on D×R),
such that T̃(ω̃,Ω) is an invariant torus for the flow of H̃. Furthermore, the difference between any numerical

solution (pn, qn) starting on the torus T̃(ω̃,Ω) and the solution (p(t), q(t)) of the modified Hamiltonian system
with the same starting values remains exponentially small in 1/h over exponentially long times:

∥(pn, qn)− (p(t), q(t))∥1 ≤ Ce−κ/h, for t = nh ≤ eκ/h. (6.51)

The constants C and κ are independent of n, h, µ (for h, µ sufficiently small) and of any initial value
(p0, q0, s0) ∈ T̃(ω,Ω).

Proof. The proof is similar to the proof of [HLW06] chapter X theorem 5.4, but is adapted to the case of a
quasi-periodic perturbations. As in [HLW06] chapter X theorem 5.4 we divide the proof into parts (a),(b)
and (c) (part (c) is unchanged).

(a). By the BEA of Section 6.3.6, the symplectic method induces the modified Hamiltonian

K̃ [Ñ ](q, p, t) = H0(a) + µH1(a, θ, t) +

Ñ∑
j=N+1

hj−1Hj(a, θ, t)
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where the Hj(a, θ, t) consist of terms involving only sums, scalings and producs of the Hj̃ , H0, H1 and their

derivatives for N ≤ j̃ ≤ j. This implies that Hj(a, θ, t) are again quasi-periodic with frequency Ω ∈ Rs. We

denote by H̃j their quasi-periodic extensions, with variable Θ ∈ Rs, such that

K[Ñ ](a, θ,Θ) = H0(a) + µH̃1(a, θ,Θ) +

Ñ∑
j=N+1

H̃j(a, θ,Θ),

where Hj(a, θ, t) = H̃(q, θ, tΩ) and

K̃ [Ñ ](q, p, t) = K[Ñ ](a, θ, tΩ).

We introduce next the conjugate action variables b = (b1, ·, bs) ∈ Rs of Θ ∈ Rs and consider in extended
phase space Rn+s × Tn+s the Hamiltonian (as in Theorem 3.9)

K̃[Ñ ](a, b, θ,Θ) = K[Ñ ](a, θ,Θ) + Ω · b = H0(a) + µH̃1(a, θ,Θ) +

Ñ∑
j=N+1

H̃j(a, θ,Θ) + Ω · b.

By applying the KAM theorem 3.9 to K̃[Ñ ] we find that there exists for ϵ, µ > 0 small enough a transforma-
tions from extended phase space (with s variables b1 . . . bs conjugate to the angle variables ψ = (ψ1, . . . , ψs)
(q, b, p, ψ) → (c, ψ̄) ∈ Rn+s × Tn+s which is O(hp + ϵ) close to the identity. Furthermore, using the last part
of the KAM theorem 3.9, Equation (3.4) find that we are in the setting of the proof of [HLW06] part (a) and
may use from this point their arguments untill part (b).

(b). We use again identically the proof of [HLW06], with the observation that∥∥∥ψh(y0, t0)− ϕ
[Ñ ]
t0+h,t0

(y0)
∥∥∥
1
≤ ∥yj − ỹ(tj , tj−1, yj−1)∥1 ,

(where the second term is in their notation). This inequality holds since we may choose yj = (ψn
h(q0, p0, t0), t0+

jh, s̃(jh)), where s(t) ∈ Rs is the exact solution of the newly introduced action variable of the modified Hamil-
tonian (transformed to the old coordinates), such that in fact∥∥∥ψh(y0, t0)− ϕ

[Ñ ]
t0+h,t0

(y0)
∥∥∥
1
= ∥yj − ỹ(tj , tj−1, yj−1)∥1 .

We may now use the rest of the proof in [HLW06] to conclude the bound of Equation (6.51).

To conclude the proof we notice the following: At this point we have (n + s)-dimensional invariant tori T
in the extended phase space Rn+s × Tn+s, which are invariant with respect to the flow of the Hamiltonian
K̃(a, b, θ,Θ). However, we want tori in the space (a, θ,Θ) ∈ Rn × Tn+s which are invariant with respect to
the flow of the Hamiltonian K̃. This conclusion comes from using Remark 3.10. Thus, in the notation of this
Theorem we have H̃ = K and the tori are simply a projection of the tori T in Rn+s × Tn+s on the space T
in Rn × {0}s × Tn+s.

One may notice that in the periodic case, s = 1 we find that H̃ (as in the previous Theorem) equals the

modified Hamiltonian i.e. H̃ = K[Ñ ] = K̃.

Remark 6.17. In the periodic case s = 1 with Ω = 2π, an easy consequence of this Theorem is that symplec-
tic methods satisfying the bound (6.50) have ‘approximately invariant’ tori in the numerically approximated
2π Poincaré map (see also Remark 3.10).

In particular, using Proposition 6.14 one sees that symplectic RK methods used on a 2π-periodically perturbed,
completely integrable Hamiltonian system have ‘approximately invariant’ tori in the numerically approximated
2π Poincaré map.
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6.6 Approximate KAM theory applied to the the induced splitting method on
the tidal wave system: “default” and “Simple-B” case

In this Section we use Theorem 6.16 on the tidal wave system. In particular, we consider the symplectic
splitting method of Section 4.4 applied to the parameter sets “Default” and “Simple-B”.

The splitting method applied to the tidal wave system, Ψh of Equation (4.10) reduces in this case (k = l, f =
0, r = 2) to

Ψh(q, p, t) =

(
ψ∗
1,h̃1(t+h/2,h/2)

◦ ψ∗
2,h/2 ◦ ψ2,h/2 ◦ ψ1,h̃1(t,h/2)

(q, p)

t+ h

)
=

(
ψ̃∗
1,h/2 ◦ ψ̃

∗
2,h/2 ◦ ψ̃2,h/2 ◦ ψ̃1,h/2(q, p)

t+ h

)
.

As mentioned, the SE method ψ1 is equal to the exact flow. The modified vector field of the method
ψ2,h/2 = ψ̃2,h/2 is calculated using Equations (6.30) and (6.32) (or the non-autonomous version) using Math-
ematica code as shown in Appendix E, where the modified vector fields are also presented.

As shown in Figure 19 it seems that the scaled Hamiltonians (−2Cδk
4)−jHj first reduce in size, but afterwards

increase, so that the expansion is seemingly only formal and non-convergent (see also [HLW06] chapter IX.7).
This form of the figure very much resembles the estimates of Proposition 6.14 of the form (cj)j−1. Using the
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Figure 19: The maximum (see also the values of the parameter sets in Section 1.5) of the absolute value of the
scaled Hamiltonians (−2Cδk

4)−jHj for 1 ≤ j ≤ 17. One sees that the size increases significantly towards the
end, so that the non-scaled Hamiltonians are not suspected to converge at least for large values of −2Cδk

4.

BCH formula and the theory in Section 6.2.2 (and the Mathematica code in Appendix E) one finds the first
few terms of the modified Hamiltonian of the method Ψ of which the first four, in the case of the “Default”
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and “Simple-B” parameter sets terms, are of the form

H1 = 2Cδk
4(cos(p)− cos(q)) + k(p− q) cos(t) + s

H2 =
1

2
Cδk

5
(
2Cδk

3 sin(p) sin(q) + cos(t)(sin(q)− sin(p))
)

H3 =
1

24

(
4C3

δ k
12
(
sin2(p) cos(q)− cos(p) sin2(q)

)
+ 2k cos(t)

(
2C2

δ k
8(2 sin(p) cos(q) + cos(p) sin(q))− p+ q

)
+ Cδk

6 cos2(t)(cos(q)− cos(p)) + 2Cδk
5 sin(t)(sin(q)− sin(p))

)
H4 = − 1

24
Cδk

5
(
cos(t)

(
sin(p)

(
2C2

δ k
8 sin(p) sin(q)− 1

)
+ sin(q)

)
+ Cδk

4
(
C2

δ k
7 sin(2p) sin(2q)− 2 sin(p) cos(q) sin(t)

)
+ Cδk

5 sin(p) sin(q) cos2(t)− Cδk
5 cos(p) cos(q) cos(t)

(
2Cδk

3(sin(p)− sin(q)) + cos(t)
) )

We next try to find an exponential estimate of the form of Equation (6.50) (We will not consider the domain
in the next section i.e. for which (q, p) ∈ R2 this holds). We start with the sympletic RK method ψ2,h

applied to the Hamiltonian L2(q, p) = 2Cδk
4(cos(p)− cos(q)). We immediately find from Proposition (6.14)

the bound (ommiting the entries (q, p) of the function)∥∥∥ψ2,h − ϕ̃
[Ñ ]
2,h

∥∥∥
1
≤ hCe−h0/h

for some C, h0 > 0. Where ϕ̃
[Ñ ]
2,h is the flow of the ODE induced by the modified Hamiltonian L

[Ñ ]
2 of the

Hamiltonian L2 truncated after terms of order hÑ , for some Ñ ∈ N.

Finally, we split the error∥∥∥∥(ψ2,h/2 ◦ ψ1,h̃1(t,h/2)

t+ h

)
− Φ̃

[Ñ ]
h/2

∥∥∥∥
1

≤
∥∥∥ψ2,h/2 ◦ ψ1,h̃1(t,h/2)

− ϕ̃
[Ñ ]
2,h/2 ◦ ψ1,h̃1(t,h/2)

∥∥∥
1
+

∥∥∥∥∥
(
ϕ̃
[Ñ ]
2,h/2 ◦ ψ1,h̃1(t,h/2)

t+ h

)
− Φ̃

[Ñ ]
h/2

∥∥∥∥∥
1

,

where Φ̃
[Ñ ]
h is the flow of the modified vector field of the symplectic method ψ2,h/2 ◦ ψ1,h̃1(t,h/2)

applied to
the Hamiltonian of the tidal wave system. The second term may be estimated using the BCH formula but
in this thesis we end on the assumption that this term may be estimated by an exponential estimate of the
form of Equation (6.50), and that this also implies that the conditions of the approximate KAM theorem
6.16 are satisfied.

Assumption 6.18. We assume that the following bound∥∥∥ψ2,h/2 ◦ ψ1,h̃1(t,h/2)
− Φ̃[Ñ ]

∥∥∥
1
≤ hC̃e−h̃0/h

exists for some C̃, h̃0 > 0, which implies the bound (for some Ĉ, ĥ0 > 0)∥∥∥ψ2,h/2 ◦ ψ1,h̃1(t,h/2)
− Φ̃[Ñ ]

∥∥∥
1
≤ hĈe−ĥ0/h.

We assume furthermore that this bound implies an exponential bound of the form∥∥∥Ψh − Φ̂h

∥∥∥
1
≤ hCe−k0/h

for some C, k0 > 0.

If this assumption holds where the domains are the ‘cell’ B as define in Section 3.3, then we may use the
KAM theorem 6.16 to conclude the existence of ‘approximately invariant’ tori in the tidal wave system (using
also Remark 6.17) . Indeed then we have used a symplectic method, with an exponential bound of the form
of Equation (6.50) on a periodially perturbed completely integrable system which satisfies the conditions of
Theorem 3.9 (shown in Section 3.3).
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7 Conclusion

In this thesis we have shown that, for the parameter sets “Simple-B” and “default”, the theoretical, unper-
turbed tidal wave system (Section 1.5) is completely integrable. Furthermore we have found explicitly (in
quadrature) the action-angle coordinates and have applied a KAM theory for periodic perturbations which
showed that there exist KAM tori in the 2π-Poincaré map of the perturbed tidal wave system (Section 3).
The KAM theorem was from [Jor91; JS96; Sev07].

Next, a special splitting method for time-affine (Definition 2.2) Hamiltonian ODE was considered, which
was developed in Section [Wal21]. This method splits the time-affine Hamiltonian into forced vector fields
(Definition 2.1), on which an induced method (Definition 4.5) is used which can easily be made symplectic
(Section 4). We applied this method to the tidal wave system with the parameter “Simple-B” and “default”
and numerically approximated the 2π-Poincaré map using this symplectic splitting method for the time-affine
tidal wave Hamiltonian. There we saw, as in [Wal21] that KAM tori seemed to be present in the numerically
approximated 2π-Poincaré map, for specific values of the (perturbation) parameter.

Afterwards, we used BEA to interpolate/embed the symplectic splitting method with/into a Hamiltonian
flow. Two types of BEA were considered: A non-autonomous version, based on [Moa03; Moa05] and an
autonomous version, based on [GS86; CMS94; LR04; HLW06], (also see Section 5.2) .

In Section 5 we used the non-autonomous version of BEA, non-autonomous flow interpolation (see Sections
2.2.3 and 5.2) to embed the symplectic integrator into a non-autonomous, periodically (in time) perturbed
Hamiltonian flow. We applied the KAM theorem for periodically perturbed Hamiltonian systems. Doing so
one could prove the existence of KAM tori in the numerically approximated 2π-Poincaré map of the unper-
turbed tidal wave system, although it was not clear if the step size was a perturbation parameter.

Therefore, and due to the consideration of rounding errors, an ‘approximate’ KAM theorem was stated in
Section 6. This was constructed as in [HLW06] chapter X.5 but now using the non-autonomous version of
BEA: modified equation analysis. This approximate KAM theorem proved, up to an assumption the exis-
tence of approximately invariant tori in the numerically approximated 2π-Poincaré map of the unperturbed
and perturbed tidal wave ODE, where in this case the step size h was seen as a perturbation parameter.

Furthermore, in Section 2 and 4. The structure of non-autonomous Hamiltonian ODE and structure-
preserving methods were considered. This consisted mostly of a short review of some developments. In
particular, in this thesis we saw that a symplectic method applied to a non-autonomous Hamiltonian ODE
has a modified vector field a non-autonomous Hamiltonian vector field. Using this modified, non-autonomous
Hamiltonian, we were able to prove an approximate KAM theorem for (quasi-)periodically perturbed Hamil-
tonian systems. Therefore, symplecticity (Definition 2.7) of the numerical method already seems to be a
good ‘structure’ to preserve for ‘structure-preserving integrators’.

8 Further research

We give a list of topics which could be interesting for the study of the tidal wave system and/or structure
preserving methods for non-autonomous Hamiltonian ODE.

• First of all, one could show the truth or negate the Assumptions 6.6

• First of all, one could develop the theory for non-autonomous Hamiltonian geometry. As mentioned
this could be contact geometry, presymplectic geometric, (per)cosymplectic or via dynamical systems
constructions as discussed in Section 2.2.

• Additionally, one could develop a theory for structure preserving integrators which preserve this struc-
ture for non-autonomous Hamiltonian. Possibly one can use the BEA of Section 6.3.6, for a non-
autonomous modified Hamiltonian (or of Appendix D) to study symplectic integrators on non-autonomous
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ODE. To this end, one could also consider other numerical integration schemes, such as the methods
in [MO14] or the methods based on the Magnus series [BM01], splitting schemes for non-autonomous,
perturbed ODE [Bla+10] or the Magnus expansion for non-autonomous, separable ODE as in [BM01;
BC06] to integrate the tidal wave system.

• One could also take symmetries/reversibility into account, see e.g. [HLW06; Sev06] In particular, the
unperturbed flow is a special case of the ABC flow, which is studied due to all its many symmetries.

• Instead of using continuous KAM theory, one could use discrete KAM theory (for twist maps) on the
2π-Poincaré map in the theoretial tidal wave system, see Figure 10. In particular, the application
of KAM theory via twist maps to 1 + 1/2 degree of freedoms has been previously studied [Con16;
CF]. The approach then typically consists of finding an approximation (in the form of an expansion),
to approximate the 2π map for example the “orbit expansion” in [BRZ94] or other expansions in
[BBM22].

• Similarly for the numerically approximated 2π-Poincaré map, one could use a discrete strategy, possibly
using again expansions as in [BBM22] as was discussed in 5.1.

• One can do better than ‘approximate KAM theorems’. The stronger version is the Nekhoroshevs
theorem. This has already been done by Moan [Moa03] on numerical systems. See also [WM14; FW16]
for the fluid dynamics perspective.

• As mentioned, one could use the tidal wave system to test if one could find rigorous bounds for the
destruction of particular invariant tori, as in [CFP87a] for the pendulum.
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A Notation and some preliminaries in ODE and dynamical sys-
tems theory

First we will set notation for derivatives, then we will give some short preliminaries on ODE and dynamical
systems theory. If f : ×k

i=1Rni → Rm is differentiable then we will denote by Df : ×k
i=1Rni → Rm×n the

(total) derivative (in the standard basis), where n :=
∑k

i=1 ni. If points in Rni are denoted by xi we will
denote the partial derivative with respect to the variables in Rni by

Dxi
f := Dif := ∂xi

f :=
∂f

∂xi
∈ Rm×ni

and sometimes as fxi
if no confusion arises. Most often f is a vector field such that k = 1 and n = m

(autonomous) or n = m+1 (non-autonomous). Then we will additionally use the notation (x1 =: x, x2 := t)

ḟ := Dtf f ′ := Dxf.

The notation t hints that it is often thought of as time. Although this could provide some intuition for the
geometry of the integral curves, one should sometimes rather see t as any variable describing an integral
curve (defined below), dropping the physical intuition.

One could say that the study of ODE consists of two theories: Geometry and dynamical systems. Since
we are working in Euclidean space, the (differential) geometry is very implicit and we do not need a lot of
tools from differential geometry, moreover, this thesis has little emphasis on the dynamical systems part so
we need little tools from this part as well. In the remainder of this section, which is therefore short, we will
define ODE from an (analytic) geometrical and geometrical perspective.

A.1 ODE vs IVP and flows vs integrable curves

A first distinction in ODE theory on Euclidean space D ⊂ Rn is between ordinary differential equations
(ODE) and initial value problems (IVP). An ODE problem is defined by a vector field f only. An IVP
problem additionally needs an initial point y0 ∈ D in space (and time t0 ∈ R, if non-autonomous).

Suppose f is a vector field on Rn, i.e. f : Rn × R ⊃ D × I → Rn, with D × I open.

Definition A.1. The IVP of (f, y0, t0) is the (set of) equation(s)

ẏ(t) = f(y(t), t) where y ∈ C1(J, D̃), such that y(t0) = y0.

In other words y is in the set a differentiable paths with specific ‘initial value’ y0 at t0, where J ⊂ I, D̃ ⊂ D
open. ∅

A solution of this IVP is a specific differentiable path z for which the IVP is true and is called an integrable
curve. Existence and uniqueness results of these solutions can be found in for example [Hal80; DE02].

An ODE does not need an initial value.

Definition A.2. The ODE of f is the (set of) equation(s)

ẏ(t) = f(y(t), t), where y ∈ C1(J, D̃). ∅

A solution is defined similarly and again called an integral curve. Existence and uniqueness results follow by
adding an initial value (and time), transforming the ODE into an IVP and subsequently considering exis-
tence. In general, there is no more uniqueness since there is a set B ⊂ D such that every y0 ∈ B produces
an integral curves of the ODE. For non-autonomous ODE one includes also a set K ⊂ I of initial times t0.

We now encounter a second distinction, to solve this non-uniqueness. There exists another, more global
version, of a solution of an ODE or initial value problem called a flow ϕ which naturally includes such B
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(and in the non-autonomous case also K) in the domain ϕ : B×K × J̃ → Rn (one actually needs to be more
careful with the domain J̃ , [DE02] chapter 2). One usually denotes ϕ(y0, t0, t) =: ϕt,t0(y0). Solution-paths
and flows are related by y(t) = ϕ((y0, t0), t) if y(t0) = y0

ODE can be defined as well using flows, now with a unique solution.

Definition A.3. The ODE of f is the equation

ϕ̇t,t0(y) = f(ϕt,t0(y), t), or ϕ̇ = f ◦ (ϕ, πt),

where ϕt,t0(y) := ϕ((y, t0), t) ∈ C1(D̃ × J, D̃) for some D̃ ⊂ D × I open and πt is the projection on the t
coordinate.

If D̃ × J = Rn × R× R then the flow is called entire. We denote ϕt := ϕ(·, t) and ϕt,t0 := ϕ((·, t0), t). If f is
autonomous then the flow ϕ is independent of t0 and we denote additionally ϕt := ϕt,0.

A flow of f which is entire defines, if f is autonomous, a one-parameter group ϕ 7→ ϕt ([DE02], chapter 2) or,
if f is non-autonomous, a groupoid ϕt,t0 (such that ϕt,t1 ◦ϕt1,t0 = ϕt,t0). In non-autonomous ODE/dynamical
systems theory, this groupoid is sometimes called a two-parameter group or a process [KR11] and the groupoid
property of ϕ is sometimes called the co-cycle property [Wig03].

A.2 Dynamical systems theory

Thus, an ODE induces in the autonomous one-parameter group of diffeomorphisms, which are studied from
another viewpoint by dynamical systems theory. The theory of dynamical systems will is used both for
theoretical systems, including Hamiltonian systems (c.f. [Ver06; MO17]), as well as for numerical methods
(c.f. Section 4.2 or [SH98]), where one could say that, in particular numerical methods for Hamiltonian
systems (c.f. [LR04; HLW06]).

Definition A.4. A discrete respectively continuous dynamical system (DS) is a tuple (ϕ,X), X a set and ϕ
respectively a one-parameter group ϕ : R×X → X or a map ϕ : X → X. ∅

Usually more structure is present (topological, (symplectic) geometrical) and the DS adapts accordingly. The
usual notions of phase space, orbits, limit sets and invariant sets can be introduced as in e.g. [BS02].

A.3 Coordinate transformation and pushforward vector fields

The isomorphisms of geometry are coordinate transformations.

Definition A.5. A Ck-coordinate transformation g is a Ck-diffeomorphism. For a coordinate transformation
g and vector field f , the vector field g∗(f) on Rn defined by

g∗(f)(y, t) = (Dg(g−1(y)) · f(g−1(y), t) or g∗(f) = D(g−1) ◦ (f ◦ g−1) (A.1)

is called the pushforward ODE of f/vector field f by g is the vector field g∗(f). ∅

The pushforward vector field g∗(f) of f is natural if one notices that g ◦ϕ and g ◦ y (and even g ◦ϕt,t0 ◦ g−1)
are (path)solutions to the ODE of g∗(f). If ϕt,t0 ∈ C1 is to the ODE of f .

The term “coordinate transformation” (as opposed to “Ck- diffeomorphism”) serves to emphasize the setting
of ODE (as opposed to the setting of the space/manifold). This is useful because in the setting of ODE one has
available an extra variable, coming from the dynamics, the ‘time t’ dimension/variable, which does not exist
on the underlying manifold. We see next how the time-dependent versions of the coordinate transformation
and pushforward vector field arise.

Remark A.6. If g(y, t) =: gt(y) is a time-dependent coordinate transformation (depending differentiably on
time t), then g ◦ ϕ (but not g ◦ ϕ ◦ g−1) is the solution to the ODE of g∗(f), defined by

g∗(f)(y, t) = Dy(g
−1
t )(y) ·

(
f(g−1

t (y), t)−Dt(g
−1
t )(y)

)
or (gt)∗(f) = D(g−1

t ) ◦
(
f ◦ g−1

t −Dt(g
−1
t )
)
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where the identity Dt(g(g
−1(y, t), t) = 0 = Dtg(z, t) + Dyg(z, t)Dtg

−1(y, t) with z = g−1(y, t) was used. A
special example of such a time-dependent coordinate transformation is a one-parameter group of transforma-
tions/flow ϕt.

If f is non-autonomous, such that initial time t0 is relevant, then we may equivalently take gt : Rn → Rn+1,
changing t0. In this case the statements and equations above are still valid (but changed accordingly e.g.
f(g−1

t (y), t) 7→ f(g−1
t (y)).

Furthermore, one may also consider Ck diffeomorphism gt with domain Rn+1, depending as well on initial
time t0. Then, for (gt)∗(f) to make sense we need not a vector field f on Rn but an extension to some vector
field g on Rn+1, this rises the demand for an extension of phase space, incorporating initial time into the
geometry.

A.4 Conjugacy of dynamical systems versus coordinate transformations

The epi-/isomorphisms of DS are respectively called (semi)conjugacy’s.

Definition A.7. Given two discrete (continuous) DS, D1 = (ϕ1, X1), D2 = (ϕ2, X2), where ϕi are endo-
morphisms (flows) then a (semi)conjugacy from D1 to D2 is a (surjective) bijective map g : X1 → X2 such
that

g ◦ ϕ1 = ϕ2 ◦ g.

Usually g preserves ‘more structure’ than only the ‘dynamical systems structure’, for example phase space
(Xi) is a smooth manifold and g is a diffeomorphism.

Time-independent isomorphisms of ODE (coordinate transformations) and the isomorphisms of dynamical
systems (conjugacy’s) behave well together: Suppose that two continuous DS Di = (ϕi, Rn) are induced by
ODE of fi i.e. ϕ̇i,t = fi ◦ (ϕt, πt) for some vector fields fi. Then by differentiation of g ◦ϕ1 ◦ g−1 we find that
f2 = g∗(f1), if g is a differentiable conjugacy from D1 to D2 Conversely, if g is a coordinate transformation
on the ODE of f1, and ϕ2 is the flow of g∗(f1) then, from Section A.5, ϕ2 := g ◦ ϕ1 ◦ g−1 so that g is a
conjugacy.

B Bell polynomials

Commutative Bell polynomials are useful to study cumulants [Wik21], compositions of analytic formulas (Faà
di Bruno’s formula) and come up as well in the Lie series and BEA of forced ODE. Non-commutative Bell
polynomials are used for non-autonomous Lie series, see e.g. [ELM14], [LM11].

B.1 Commutative Bell polynomials

In the study of cumulants, partitions of sets (in particular the sizes of the subsets) are an object of study
and helpful to understand Bell polynomials. We define for j ∈ N the commutative/unordered partitions of

j as the set of commutative tuples p(j) := {(n1, . . . , nj) ∈ Nj |
∑j

i=1 ini = j}}. For example 4 = 0 + 4 =
1+ 3 = 2+ 2 = 1+ 1+ 1+ 1 such that p(4) = {(0, 0, 0, 1), (1, 0, 1, 0), (0, 2, 0, 0), (4, 0, 0, 0)}. We define as well

pi(j) = {((n1, . . . , nj) ∈ p(j) |
∑j

i=1 ni}. For example p2(4) = {(1, 0, 1, 0), (0, 2, 0, 0)}.
The commutative, exponential Bell polynomials Bi, i ∈ N are defined as polynomials in the commutative

free algebra D over R on a countable set of letters (or variables) xi, so D = R⟨(xi)i∈N⟩. An element w ∈ D
is a polynomial (or sentence) and is called a word if it consists of a monomial.

The commutative algebra D is graded on the variables by |xi| = i and on a monomial w ∈ D of degree k (i.e.

cw = xj1xj2 . . . xjk for ji ∈ N, i ≥ 1, c ∈ R) as |w| =
∑k

i=1 |xji | and linearly extended to polynomials. We de-
note by #(w) the degree of a monomial w (e.g. #(xj1xj2 . . . xjk) = k). For example |x1x32x4| = 1+3·2+4 = 11
and #(x1x

3
2x4) = 5. We define Di := {w ∈ D | |w| = i} and Di,j := {w ∈ Di |#(w) = j}.
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A word w ∈ Di,j with coefficient c = 1 is 1-1 related to an unordered partition l ∈ pj(i) by the relation

wl = xl11 . . . x
lj
j with inverse l(w). For example the partition l = (2, 0, 1, 0, 0) ∈ p3(5) is related to the

monomial w(l) = x21x3 ∈ D5,3 and l(x21x3) = (2, 0, 1, 0, 0). Henceforth we skip the notation of partitions
(in the commutative case) and denote wi := l(w)i (thus wi = (xj1 . . . xjk)i ̸= xji) and #(l) := #(wl) for a
monomial w and w! := l(w)! = w1! . . . wi!.

Definition B.1. The commutative, exponential Bell polynomial Bi = Bi(x1, . . . , xi) is defined as the sum
over monomials w ∈ Di (or partitions l ∈ p(i)) of grade i, such that

Bi =
∑
w∈Di

α(w)w =
∑
l∈p(i)

α(wl)wl,

where the coefficient α(w) can be interpreted in a combinatorial way using set-partitions (e.g. [Wik21]) and
equals [ELM14]

α(w) =
i!∏i

k=1 wk! (k!)wk

=
i!

w!1!w1 . . . i!wi
. (B.1)

For example

B3(x1, x2, x3) = 3!

(
1

3!
x3 +

1

2!
x1x2 +

1

3!
x31

)
= x3 + 3x1x2 + x31.

Thus

Bi =
∑
w∈Di

i!

w!
∏i

k=1(k!)
wk

w =
∑
l∈p(i)

i!

l!
∏i

k=1(k!)
lk

i∏
ℓ=1

xlℓ (B.2)

Furthermore, the partial, commutative, exponential Bell polynomial Bi,j is defined as the part of Bi of degree

k, e.g. B3,1 = x3, B3,2 = 3x1x2, B3,3 = x31 (c.f. Table 4) such that Bi =
∑i

j=1Bi,j and

Bi,j =
∑

w∈Di,j

i!

w!
∏i

k=1(k!)
wk

w =
∑

l∈pj(i)

i!

l!
∏i

k=1(k!)
l(w)k

xl1 . . . xli . (B.3)

B.2 Non-commutative Bell polynomials

The non-commutative, exponential Bell polynomials B̂i and its partial version B̂i,j are non-commutative

versions of the commutative Bell polynomials. They are polynomials in the algebra D̂, defined as the non-
commutative version of D. We defined similarly D̂i and D̂i,j the subsets of grade i and degree j. A word
w ∈ Di,j is not in 1-1 relation with a partition in the non-commutative case, however it is in 1-1 relation with
the set of tuples l := (l1, . . . , lj) (li ∈ N) such that

∑
k lk = i, we denote the Pj(i) := {l ∈ Nj |

∑
k lk = i}

(which can be seen as non-commutative partitions). For example l = (2, 3, 1, 2) ∈ P4(8) is related 1-1 to the

word w = x2x3x1x2. Similar, to the commutative version, we define w! = l(w)! =
∏j

k=1 lk! for l ∈ Pj(i). One

has B̂i =
∑i

j=1 B̂i,j and the non-commutative, partial, exponential Bell-polynomials B̂i,j can be written as
[LM11; ELM14]

B̂i,j =
∑

w∈D̂i,j

i!

w!
κ(w)w =

∑
l∈Pj(i)

i!

l!
κ(l)

j∏
k=1

xlj (B.4)

where κ is defined as

κ(w) = κ(wl) :=

∏j
k=1 lk∏j

k=1

(∑k
n=1 ln

) . (B.5)

For example (c.f. Equation (D.5))

B̂3,2 = 3

(
2

6
x2x1 +

2

3
x1x2

)
= x2x1+2x1x2 or B̂4,3 = 12

(
2

8
x21x2 +

2

12
x1x2x1 +

2

24
x2x

2
1

)
= 3x21x2+2x1x2x1++x2x

2
1.
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C Introduction to backward error analysis

Backward error analysis (BEA) is a type of error analysis for numerical/approximation methods. It is an
alternative to forward error analysis (FEA). The general idea of BEA is to find an approximate problem, to
which a numerical approximation is the exact solution, as seen in Figure 20. There are multiple reasons to

Figure 20: The approximate problem p̃ ∈ P together with the BE ∥p− p̃∥ and FE ∥s− s̃∥ are shown in this
figure. A solution operator Φ and numerical method Ψ are shown, which produce s, s̃ from a problem p ∈ P.
A way to find an approximate problem p̃ (in other words to find some kind of map Φ−1) for ODE is by
modified equation analysis (MEA), see Section 6.3.1

take BEA into consideration:

• Explicitness: The backward error, as opposed to the forward error, is sometimes explicitly known,
or easier estimated, [CF13; Moi10].

• Constructiveness: It can be used to construct approximation algorithms, e.g. for a numerical
linear algebra problem (Section C.1) or for ODE/IVP as in [Moi10; CHV07].

• Allows forward error estimates: It can be used as well to analyse error the forward error in
numerical algorithms (for example to estimate the global error in IVP)[Moi10; CF13].

• Use of perturbation theory: Backward error relates a ‘nearby problem’ to the numerical method,
in particular the use of perturbation theory to analyse numerical methods .

• Justifies use of numerical methods for physical problems: From a more philosophical point
of view, the physicality of problems validates the use of BEA. In particular, the fact that physical
problems are often perturbed in some sense (e.g. cars passing near a harmonic oscillator) combined
with the fact that numerical methods solve a perturbed problem (shown using BEA) implies that, if
both perturbations are in some sense similar, a numerical method which controls the backward error
must give a useful solution, as is discussed in [Moi10], chapter 1, 2, & 5 and [Cor94].

We suppose that we have two normed spaces: A problem space P and solution space S and that we have
some problem p ∈ P, with solution operator Φ : P → S and numerical method Ψ : P → S. The goal is to
construct Ψ such that ∥Ψ− Φ∥ is small. We assume for simplicity that Φ is injective.

Definition C.1. Given a problems p ∈ P. The forward error is given by ∥s− s̃∥ , where s = Ψ(p), s̃ = Φ(p).
and backward error is by ∥p− p̃∥ , where p̃ = ϕ−1(Ψ(p)).

BEA is useful if there is some kind of continuity with respect to the problems: ∥s− s̃∥ ≤ k ∥p− p̃∥ such that
a small backward error guarantees a useful solution (with small forward error) if k ∈ R is not too large. The
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number k is often called the condition number, and a problem is well-conditioned if k is ‘not too large’24.

Sometimes a well-conditioned problem is called “backward stable” [Cor94], but stability is usually a property
which refers to numerical methods as opposed to the conditioning of a problem (and it can be argued that
the perspective of BEA helps to distinguish between the two [Enr89]). However, this does indicate that there
is also some kind of “forward stability” of the form ∥p− p̃∥ ≤ k̃ ∥s− s̃∥.

As mentioned, the backward error can be used to construct algorithms or to analyse the forward error. It
can be expected that an algorithm which has small backward error, applied to a well-conditioned problem,
finds an accurate solution. One is inclined to think, however, that that such an algorithm is useless for
ill-conditioned problems, but this is not the case, as is sometimes seen for chaotic IVP [Moi10].

C.1 Backward error analysis for numerical linear algebra

The origins of BEA lie in the theory of Numerical Linear Algebra (NLA) and are usually attributed to
Wilkinson [Moi10; LR04; HLW06]. Therefore, this setting is used to introduce the method.

Consider the following NLA problem p = (A, b):

For matrix-vector pair p = (A, b) ∈ Rn×n × Rn, calculate x ∈ Rn s.t. Ax = b (C.1)

and suppose an iterative method (BEA is also useful for direct methods [LR04]) is used with approximation
xi of x (i an iteration index).
The forward error of the NLA problem is ∥xi − x∥. The forward error is unknown since x is unknown.
As mentioned, the backward error constructs an approximate problem (Ai, bi) such that Aixi = bi (we as-
sume very shortly uniqueness, which is certainly not the case). The backward error of the NLA problem is
∥(Ai, bi)− (A, b)∥. The backward error is known if (Ai, bi) are explicitly constructed. It is sometimes called
the residual or defect25.

On well-conditioning: one finds
1

∥x∥
∥x− xi∥ ≤ κ(A)

1

∥b∥
∥b− bi∥ ,

such that the condition number of the matrix A is given by κ(A) = ∥A∥
∥∥A−1

∥∥ (assuming detA ̸= 0). Well-
conditioned problems have ‘small’ condition number of the associated matrix, and ill-conditioned matrices
can be regularized (e.g. by preconditioning).

In general, either Ai = A or bi = b, as varying both is not useful, thus multiple approaches to BEA are
possible. If Ai = A, numerical algorithms based on minimising the backward error can be constructed.
These include Krylov subspace methods and in particular the celebrated GMRES.

Example C.2. Consider the problem

A =

(
0.01 0
0 1

)
x = b

has solution x1 = (100, 1) for b1 = (1, 1) and x2 = (101, 1) for b2 = (1.01, 1), such that ∥x1 − x2∥ / ∥b1 − b2∥ =
10000. The condition number is K(A) = 100 for the operator norm so the relative error can be multiplied
by 100. Due to the ill-conditioning, this means that any algorithm which wants a forward error as small as
10−n digits needs possibly n+ 2 accurate digits in the backward solution.

24Ill-conditioned problems can be regularised, which is the subject of the mathematical field of Inverse Problems
25Sometimes in NLA the residual is the term ∥b− bi∥ instead of ∥(Ai, bi)− (A, b)∥. For IVP the redisual, the defect and the

backward error sometimes have different meaning [CF13], but not in this thesis
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Defect analysis Shadowing MEA
Vector field Variable Fixed Variable
Initial conditions Fixed Variable Variable

Analytic utility
Estimating global error
using Gröbner-Alekseev
formula [Moi10; CF13]

Identifying dynamics of ODE
such as structural stability.

Studying qualitatively the numerical
dynamical system, connect to
perturbation theory.
Studying ODE with geometric
structures

Example of algorithm Defect control Many types of shadowing
Automatic MEA solvers [AC97]
Structure preserving methods [CHV07]
Adaptive grid-size [DM21].

Algorithmic utility
Bounding global error.
Choosing step-size.
Studying chaotic systems.

Calculating with small forward
error in chaotic systems.

Understanding perturbed system
shown in numerical figures

Table 2: Table showing properties of three types of BAE. The first two rows should not be taken to rigidly,
as modified

C.2 Backward error analysis for initial value problems

The IVP (f, (y0, t0)) is considered (Definition A.2). The forward error is given by the global error, Equation
(4.1). The backward error can be constructed by finding an approximate vector field f̃ and/or a modified
initial condition/time ỹ0 or t̃0. Moir [Moi10] suggests that this distinguishes three different types of BEA:
Defect analysis, shadowing and modified equation analysis MEA, as shown in Table 2.

Since ODE, as opposed to IVP, have no initial value in the problem, Table 2 might suggest that defect
analysis is the correct setting for BEA of ODE. However, in our opinion, the distinction is not rigid: modified
equation analysis is useful for ODE as well. The distinction between BEA and defect analysis seems to be,
mainly, the way in which it is constructed, see Table 3.
Thus, defect analysis is about finding an path ũ : R → Rn and using it to estimates the backward error
∥ũt(t)− f(ũ(t), t)∥. In defect control algorithms, ũ : R → Rn is obtained by any kind of (differentiable)
interpolant and quantitative results are then obtained, which can be related to the global error (using e.g.
the Gröbner-Alekseev formula, [Enr89; KP94a; Moi10; CF13]) MEA, on the other hand, is about finding a

Defect analysis Modified equation analysis
Focus Pathwise solutions One-parameter flow
Results Quantitative (numerical) Qualitative (analytic)

Interpolation
type

Numerical Orbit flow interpolated using
any kind of differentiable
interpolation

Numerical dynamical system
interpolated using modified
vector field

Table 3: More (important) differences between defect analysis and MEA.

one-parameter flow ϕ̃t : Rn → Rn such that
∥∥∥Dtϕt,t0(y)− f(ϕ̃t,t0(y), t)

∥∥∥ = O(hq+1) for q ∈ N the order of

approximation, for all y in the domain. The one-parameter flow, ϕ̃t : Rn → Rn, is obtained by asymptotic
expansion techniques to find a modified vector field f̃p. Qualitative and quantitative results, such as those
of perturbation type, can then be found.

Finally, about conditioning. For IVP, ill-conditioning is somewhat equivalent to chaotic systems (in the
sense of initial value perturbations). For vector field perturbations, this is harder to define, but may include
Integrable systems, or systems close to bifurcation. Sometimes stiff equations are seen as a ”forward stably”
equivalent of ill-conditioned problems: there exist solutions with small forward error but large backward error
[Cor94].
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On top of the reasons given in the introduction of this chapter, there are more reasons to consider defect
control/MEA for IVP:

• For Hamiltonian systems, perturbation theory is extremely well-developed, which leads to interesting
results about symplectic algorithms.

• It is in general easier to relate the backward error to the global error than to relate the local error to the
global error, [Moi10; KP94a], and a relation between the local error and the backward error is found.
Sometimes BEA can also be used to discuss stability of numerical algorithms [WH74], but [GS86] argue
that this approach must be exception rather than rule.

• This makes it interesting to construct algorithms which bound the backward error and useful for error
analysis of general methods [Enr89; Moi10] i.e. to use BEA to explain the good behaviour of usual
local error-minimising algorithms using BEA. In particular, sometimes the global error can be estimated
without knowing the exact solution.

• BEA or backward error-minimising algorithms are sometimes useful to apply to chaotic systems [Cor92;
Moi10].

In this thesis, only MEA is considered. For a quick overview of the other two, together with implementations
and references, consult for example [Moi10].

D Lie-Gröbner series and modified equation analysis for non-autonomous
ODE

In this Section we find expressions for the Lie-Gröbner series and modified vector fields of non-autonomous
systems.

D.1 Non-autonomous Lie-Gröbner series

D.1.1 Equivalence of Lie-Gröbner series for non-autonomous ODE and canonically (autonomous)
extended ODE

For non-autonomous vector fields f one finds, using the integral curve solution, that

y(t+ h) = y(t) + hf(y(t), t) +
h2

2
(f ′(y(t), t)f(y(t), t) + ft(y(t), t)) + · · · .

In other words, Equation (6.5) becomes

ϕt0+h,t0(y) = (eh(Df+∂/∂t)Id)(y, t0). (D.1)

Equivalently one considers the canonical autonomous extension (Section 2.1) of f̄ = (f, 1), such that Df +
∂/∂t = Df̄ Indeed, one finds the Lie series(

ϕh(y, τ(t))
τ(t+ h)

)
=

(
(eh(Df̄ )Id)(y, τ(t))

τ(t) + h

)
.

Thus, the Lie series of a non-autonomous system is just the projected Lie series of the canonical autonomous
extension.

D.1.2 Different way to find the Lie Gröbner series of forced vector fields

This Section represents an alternative way to arrive at the Lie Series for a forced vector field i.e. Equation
(6.6).
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We consider a forced vector field g(t)f(y), where g ∈ C∞(R). Equation (D.1) becomes

ϕgf,t,t0 = etDgf+∂/∂t(Id) =
∑
i≥0

ti

i!
(Dgf +Dt)

i(Id) = Id+
∑
i≥1

ti

i!
(Dgf +Dt)

i−1(gf) (D.2)

It is now shown that the coefficients (Dgf+Dt)
i can be rewritten in terms ofDf i.e. of the form ti

i!

∑i
j=1 ai,jD

j
f (Id)

for coefficients ai,j depending on g and its derivatives: For the next two terms, if f̄ = (gf, 1), this can be
seen by writing

D2
f̄ = (Dt + gDf )

2 = g′Df + g2D2
f

D3
f̄ = (Dt + gDf )

3 = g′′Df + 3g′gD2
f + g2D3

f

where it was used that Dgf = gDf . Since (Dt + gDf )
i = (Dt + gDf )

(
(Dt + gDf )

i−1
)
, one finds

ai,j =
d

dt
(ai−1,j) + g ai−1,j−1 (D.3)

with initial values ai,1 = di

dti g and a1,j = 0 for i ≥ 1, j ≥ 2, which together with the recursive relations gives
ai,j = 0 for j > i and ai,i = gi+1.

Defining bi,j := ai+j,j (since ai,j = 0 for j > i) we find

bi,j =
d

dt
bi−1,j + g bi,j−1, bi,0 = gi b0,j = gj+1,

where gi :=
di

dti g, of which the first terms are shown in Table 4. The recursive relation of Equation (D.3) has

g g2 g3 g4

g1 3gg1 6g2g1 10g3g1
g2 4gg2 + 3g21 10g2g2 + 15gg21 20g3g2 + 45g2g21
g3 5gg3 + 10g1g2 15g2g3 + 15g31 + 60gg1g2 35g3g

3 + 105gg31 + 210g2g1g2
g4 6gg4 + 10g22 + 15g3g1 21g4g

2 + 70gg22 + 105g3gg1 + 105g21g2 56g3g4 + 280g2g22 + 105g41 + 420g2g3g1 + 840gg21g2

Table 4: Terms of the coefficients bi,j , for 1 ≤ i ≤ 5, 1 ≤ j ≤ 4.

as a solution the commutative, partial, exponential Bell-polynomials Bi,j as defined in Section B.1. Thus,
setting xi := gi−1 one finds (c.f. Table 4) ai,j(g) = Bi,j(x1, . . . , xi) such that (denoting Bi,j := Bi,j(g, ġ, . . . ))

ϕgf,t,t0 = Id+
∑
i≥1

ti

i!

i∑
j=1

Bi,jD
j
f (Id) = Id+

∑
i≥1

ti

i!

i∑
j=1

 ∑
l∈pj(i)

i!

l!
∏i

k=1(k!)
lk

i∏
ℓ=1

glii−1

Dj
f (Id), (D.4)

where notation as in Section B.1 was used (pj(i) thus notation partition of the integer i into j integers).

D.1.3 Lie series for non-autonomous ODE revisited

We return to the case of a non-autonomous ODE of f , such that the Lie-derivative becomes

di

dti
ϕt,t0(y) = (Dt +Df )

i(Id) = (Dt +Df )
i−1(f)

for example
(Dt +Df )

2(f) = D2
f(0)(f

(0)) + 2Df(0)(f (1)) +Df(1)(f (0)) + f (2) (D.5)

where f (i) = Di
tf . One can see that (Df +Dt)

i is a non-commutative version of the forced case (gDf +Dt)
i.

Therefore, the non-commutative versions B̂i (see Section B.1) of the Bell polynomials are needed to define
the Lie series, such that ([ELM14], chapter 3.1.2 or [LM11] chapter 4.2)

ϕt,t0 =

∞∑
i=0

hi

i!
B̂i(Df(0) , . . . , Df(i−1))(Id) =

∞∑
i=0

hi

i!

i∑
j=1

∑
l∈Pj(i)

i!

l!
κ(l)Df(l1) , . . . , Df(lj).

(Id) (D.6)
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D.2 Formal modified equation analysis for non-autonomous systems

For non-autonomous ODE the MEA can be approached directly or via the (canonical) autonomous extension
and we first show these approaches are equivalent c.f. Section D.1.1.

Afterwards, we change the MEA of the sections (6.25) and 6.3.3.

D.3 Equivalence of non-autonomous MEA andMEA for the canonical autonomous
extension

We check the equivalence of non-autonomous modified equation analysis and modified equation analysis of
the canonical autonomous extension.

For non-autonomous IVP (f, (y0, t0), the non-autonomous equivalent of the modified ODE (Equation (6.17))
is

y0 − ỹ0 = O(hp+1), t0 − t̃0 = O(hp+1)

v − ψh(id, v) =

∞∑
j=1

hj

j!

(
Dj

t v − dj(id, v)
)
= O(hp+1),

(D.7)

which is the same as the regular modified equation. Therefore, the methods of Sections 6.3.2 - 6.3.4 are un-
changed: Equation (6.25) is equal and the ansatz and recursive method just require instead non-autonomous
modified vector fields fj : R×D → Rn.

The second is by using a (canonical) autonomous extension. The corresponding (autonomous) modified vector
fields g̃[q] : Rn × R → Rn × R are equal to the non-autonomous modified vector field f̃ [q] : R × Rn → Rn in
the following sense.

Proposition D.1. Given a non-autonomous vector field f and a consistent numerical method ψh : Rn×R →
Rn then the modified vector fields g̃

g̃[q](y, t) = (f̃ [q], 1)

if the extended method ψ̃h(y, t) = (ψh(y, t), t+ h) is used on the canonical extension.

Proof. For a consistent numerical method we find the coefficient functions of ψ̃h being d̃1 = (d1, 1) and
d̃j = (dj , 0), j > 1. Therefore we find (if g̃[q] =

∑q
j=1 h

j−1gj) that g1 = (f1, 1). Moreover since Dfi(g)(y, t) =
Dyg(y, t)f(y, t) +Dtg(y, t)

Therefore from the formulas in Equation (6.29), the fact that

D.3.1 Non-autonomous MEA using polynomial ansatz

Repeating the setup of Section 6.3.3 one now finds the non-autonomous equivalent of Equation (6.29) (using
Lie derivatives, as in Proposition 6.9)

f1 = d1

2f2 +Df1f1 + ḟ1 = d2

6f3 + 3
(
Df1f2 +Df2f1 + ḟ2

)
+Df1Df1f1 + 2Df1 ḟ1 +Dḟ1

f1 + f̈1 = d3.

. . . = d4

(D.8)

where again the ansatz f̃ [M ] =
∑M

j=1 h
j−1fj is made where fj : Rn × R → Rn are non-autonomous vector

fields (notation fj is overloaded, in this case fj ̸= Dj
t f). We use the non-commutative, partial, exponential

Bell polynomials B̂i,j and the corresponding notation of Section B.2 to find an explicit formula for the non-
autonomous modified vector fields.
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Now the letters/variables xn = Df̃(n) , where n ∈ N, f̃ (n) = ∂nt f̃ , can be seen a power series in h ∈ R i.e.

xl =
∑

ℓ≥1 h
ℓ−1xl,ℓ (since we want to apply the ansatz). Substituting this power series expansion into B̂i,j

one finds that B̂i,j is a polynomial in the free, non-commutative algebra Ê = R⟨{xl,ℓ}l,ℓ∈N⟩ which is a sum

of polynomials B̂i,j,k of order hk (for k ≥ 0) For example

B̂3,2(x1, x2, x3) = 2x1x2 + x2x1 =
∑
k≥0

hk

( ∑
l1+l2=k+2

2x1,l1x2,l2 + x2,l1x1,l2

)
=
∑
k≥0

hkB̂3,2,k(x1, x2, x3)

such that B̂3,2,k =
∑

l1+l2=k+2 2x1,l1x2,l2 + x2,k1x1,k2 . More generally, we can find for k ≥ 0 (using again

notation of Section B.2) that the substitution f̃ =
∑

j≥1 h
j−1fj gives

B̂i,j(Df̃ , . . . , Df̃(i−j)) =
∑

l∈P̃j(i)

i!

l!
κ(l)Df̃(l1) . . . Df̃(lj) =

∑
l∈P̃j(i)

∑
ℓ∈Nj

i!

l!
κ(l)hℓ1+···+ℓj−j

j∏
n=1

D
f
(l1)

ℓ1

. . . D
f
(lj)

ℓj

such that

B̂i,j,k(Df̃ ) :=
∑

l∈Pj(i)

∑
ℓ∈Pj(k+j)

i!

l!
κ(wl)

j∏
n=1

D
f
(ln)
ℓn

,

where f
(ln)
ℓn

= ∂lnt fℓn .

Proposition D.2. The non-autonomous modified vector fields fj satisfy

fm − 1

m!
dm =

m∑
i=2

1

i!

i∑
j=1

B̂i,j,m−i(Df̃ )(Id) = −
m∑
i=2

1

i!

i∑
j=1

∑
l∈Pj(i)

∑
ℓ∈Pj(m−i+j)

i!

l!
κ(wl)

(
j∏

n=1

D
f
(ln−1)
ℓn

)
(Id).

(D.9)

Proof. The proof is similar to the one of Proposition 6.9. Equation (D.6) gives

ϕh =

∞∑
i=0

hi

i!

i∑
j=1

∑
l∈Pj(i)

i!

l!
κ(l)Df̃(l1) , . . . , Df̃(lj)(Id)

Substituting f̃ =
∑∞

i=1 h
i−1fi one finds for a numerical method ψh =

∑
i≥0

hi

i! di that ϕh − ψh = 0 implies

∑
i≥1

hi−1

i!
di =

∑
i≥1

hi−1

i!

i∑
j=1

∑
l∈Pj(i)

∑
k≥0

hk
∑

ℓ∈Pj(k+j)

i!

l!
κ(wl)

j∏
n=1

D
f
(ln−1)
ℓn

.

using again notation of Section B.2. Comparing equal powers of h one finds that

1

m!
dm =

m∑
i=1

1

i!

i∑
j=1

∑
l∈Pj(i)

∑
ℓ∈Pj(m−i+j)

i!

l!
κ(wl)

(
j∏

n=1

D
f
(ln−1)
ℓn

)
(Id) =

n∑
i=1

1

i!

i∑
j=1

B̂i,j,m−i(Df̃ )(Id).

D.3.2 Non-autonomous MEA using substitution

We start at equation (6.25) and use that Didj = (Df̃ + Dt)D
i−1dj . This resembles extremely the case of

Section D.1.3 and
D2dj = Df̃Df̃dj +D ˙̃

f
dj + 2Df̃ ḋj + d̈j

where ḋj(y, t) =
∂
∂tdj(y, t). The only change is to replace in the non-commutative, partial Bell polynomials

B̂i,k(Df(1) , . . . , Df(n)) =
∑

l∈Pk(i)

i!

l!
κ(l)Df(l1) , . . . , Df(lk)(Id)
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the term Df̃(lk)(Id) by d
(lk)
j , where d

(lk)
j = ∂lk

∂tlk
dj(y, t), such that

v′ +O(hM ) =

M∑
j=1

hj−1

j!
dj +

q−1∑
i=1

Bi

i!

M∑
j=i+1

hj−1

(j − i)!

∑
l∈P(i)

i!

l!
κ(l)

(
k−1∏
n=1

Df̃(ln)

)
(d

(lk)
j−i)

=

M∑
j=1

hj−1

j!
dj +

q−1∑
i=1

Bi

i!

M∑
j=i+1

hj−1

(j − i)!

i∑
k=1

∑
l∈P(i)

q−j+k∑
k̃=k−1

∑
ℓ∈Pk−1(k̃)

hk̃−k+1 i!

l!
κ(l)

(
k−1∏
n=1

D
f
(ln)
ℓn

)
(d

(lk)
j−i)

where k = #(l) is the degree of l. Substituting f̃ =
∑

j≥1 h
j−1fj one finds, collecting terms of hq−1, that

fq =
1

q!
dj +

q−1∑
i=1

Bi

i!

M∑
j=i+1

1

(j − i)!

∑
l∈P(i)

∑
ℓ∈Pk−1(q−j+k−1)

i!

l!
κ(l)

(
k−1∏
n=1

D
f
(ln)
ℓn

)
(d

(lk)
j−i). (D.10)

D.3.3 Modified equation analysis for forced ODE

We look finally at forced ODE of g(t)f(y). For a consistent method, d1 = gf so that the first few modified
vector field satisfy

f1 = gf

2f2 + g2f ′f + ġf = 2f2 +B2,2(g)f
′f +B1,2(g)f = d2

6f3 + 3
(
Df1f2 +Df2f1 + ḟ2

)
+Df1Df1f1 + 2Df1 ḟ1 +Dḟ1

f1 + f̈1 = d3.

. . . = d4

(D.11)

One can then use Equation (D.9). In the case that all dj and all its time derivatives satisfy that the Lie
derivative Ddj

commutes with Dgf then all the D
f
(l)
ℓ

commute and the modified vector fields satisfy

1

m!
dm − fm =

n∑
i=2

1

i!

i∑
j=1

Bi,j,m−i(Df )(Id) =

m∑
i=2

1

i!

i∑
j=1

∑
l∈pj(i)

i!

l!
∏i

n=1(n!)
ln

∑
ℓ∈pj(m−i+j)

(
j∏

n=1

D
f
(ln−1)
ℓn

)
(Id),

(D.12)
such that Bi,j,k is the commutative version of B̂i,j,k. When using the induced method, equations simplify
greatly (Equation (6.31)).

E Mathematica programs

E.1 Calculating the modified vector fields of the tidal wave system

Using Mathematica Version 10.2.0.0 we use the following code to calculate the modified vector fields of
autonomous, one degree of freedom vector fields.

Listing 1: Modified vector fields

1 LieDerivN[ f0 , g0 ] := Module[{fmod = f0, gmod = g0, A},
2 D[fmod, {{q, p}}].gmod]
3

4 ModVFN[vecf , psi , n , ord ] :=
5 (∗Calculates the Modified vector field of order n, with vector field
6 ”vecf” which is Order ”ord” accurate , and to which ”psi” is the numerical method applied∗)
7 Module[{x, modF, fTermPart, listP, lieTermL, lieList , m, time},
8 modF = Table[0, n, 2];
9

10 For[m = 1, m <= ord, m++,
11 modF[[m]] = SeriesCoefficient [ vecf [q, p ], {h, 0, m − 1}];
12 ];
13
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14 tay [q , p , h ] := Series [ psi [q, p, h ], {h, 0, n}];
15

16 For[ j = ord + 1, j <= n, j++,
17 modF[[j ]] = SeriesCoefficient [ tay [q, p, h ], {h, 0, j}] ;
18 pp = IntegerPartitions [ j ];
19

20 For[k = 2, k <= PartitionsP[j ], k++,
21 x = pp[[k ]]; m = Length[x]!;
22 listP = Permutations[x];
23

24 For[ l = 1, l <= Length[listP], l++,
25 lieList = listP [[ l ]];
26 lieTermL = modF[[ lieList [[1]] ]];
27 For[ r = 2, r <= Length[lieList ], r++,
28 lieTermL = LieDerivN[lieTermL, modF[[ lieList [[ r ]] ]]];
29 ];
30 modF[[j ]] = (modF[[j]] − 1/m lieTermL);
31 ]
32 ];
33 modF[[j ]] = Simplify[modF[[j ]]];
34 ];
35 modF[[ord + 1 ;; −1]]
36 ]

The vector field for the method ψ2,h applied to the Hamiltonian L2 as in Section 4 has the following modified
vector fields

sin(p) sin(q)
1
2 cos(p) sin(q) − 1

2 sin(p) cos(q)
− 1

12 sin(p) sin
2(q)− 1

6 sin(p) cos(p) cos(q) − 1
12 sin

2(p) sin(q)− 1
6 cos(p) sin(q) cos(q)

− 1
24 cos(2p) sin(2q)

1
24 sin(2p) cos(2q)

 (E.1)

Listing 2: Modified Hamiltonians

1 ModHam[H , S , nrH , dim ] := Module[{x, sTab, tayS, i , j , time, ord},
2 ord = 1/2 (−1 + Sqrt[1 + 8 Length[H]]);
3 tayS = Series[S, {h, 0, nrH}];
4 sTab = Table[0, ((nrH + 1) (nrH))/2];
5 For[ j = 1, j <= Length[H], j++,
6 Print [”j = ”, j ];
7 (∗Print [” j = ”,j , ” invindex = ”,invIndexM[ord, j ]]; ∗)
8 sTab[[ indexM[nrH, #[[1]], #[[2]]] &@invIndexM[ord, j] ]] = H[[j ]];
9 ];

10 (∗Print [sTab];∗)
11

12 time = Timing[
13 For[ j = 1, j <= ord, j++,
14 For[ i = ord + 2 − j, i <= nrH + 1 − j, i++,
15 Print [”i = ”, i ” j = ”, j ];
16 sTab[[ indexM[nrH, i , j ] ]] =
17 Simplify [Scalc [ i , j , sTab, nrH, dim ]];
18 (∗sTab[[ i ]]=Scalc [ i ,1, sTab,nrH,dim];∗)
19 (∗Print [” i , j = ”,i ,” ”, j , ” ” ,sTab];∗)
20 ]
21 ]
22 ];
23 Print [”time = ”, time [[1]]];
24 (∗Print [sTab];∗)
25

26 For[ j = ord + 1, j <= nrH, j++,
27 Print [”j = ”, j ];
28 sTab[[indexM[nrH, 1, j ]]] =
29 Simplify [ Hcalc[ j , sTab, SeriesCoefficient [tayS, {h, 0, j }], nrH ]];
30 (∗sTab[[indexM[nrH,1,j ]]] = Hcalc[ j ,sTab, SeriesCoefficient [
31 tayS,{h,0, j }], nrH];∗)
32

33 time = Timing[For[i = 2, i <= nrH + 1 − j, i++,
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34 Print [”i = ”, i ];
35 sTab[[indexM[nrH, i , j ]]] =
36 Simplify [Scalc [ i , j , sTab, nrH, dim ]];
37 (∗sTab[[indexM[nrH,i, j ]]] = Scalc[ i , j ,sTab,nrH,dim];∗)
38 ]
39 ];
40 Print [”time = ”, time [[1]]];
41 ];
42 (∗sTab[[indexM[nrH,1,#]&/@Table[s,{s,1,nrH}]]]∗)
43 sTab
44 ]
45

46 Hcalc[ j , sTab , Sj , nrH ] := Module[{outT, i},
47 outT = Sj;
48 (∗Print [outT];∗)
49 For[ i = 1, i < j, i++,
50 outT = outT − sTab[[indexM[nrH, 1 + i, j − i ]]];
51 (∗Print [outT];∗)
52 ];
53 (∗ FullSimplify [outT]∗)
54 outT
55 ]
56

57 Scalc [n , m , sTab , nrH , dim ] :=
58 Module[{termS, termSj, termSk, termSl, DsTab, r, i , ii , k, l , j ,
59 partK, partL, facL, facK, dHr, dHL},
60 (∗dHL=Table[0,m,2];∗)
61 (∗Print [” Calculating S {”, n,” ”, m, ”}”];∗)
62 termS = 0;
63 DsTab = dStabCalc[n, m, nrH, dim, sTab];
64

65

66 For[ j = 1, j < n, j++,
67 termSj = 0;
68 partK = IntegerPartitions [n − 1, {j }];
69 (∗Print [” j = ”, j , ” Partitions of K are ”, partK];∗)
70 dHL = DqJHcalc[j, sTab, n, m, nrH, dim];
71

72 For[ r = 1, r <= m, r++,
73 partL = IntegerPartitions [m + j − r, {j }];
74 (∗Print [”r = ”, r , ” Partitions of L are ”, partL ]; ∗)
75 dHr = dHL[[r ]];
76

77 For[ i = 1, i <= Length[partK], i++,
78 termSk = 0;
79 k = partK[[ i ]];
80

81

82 For[ ii = 1, ii <= Length[partL], ii++,
83 l = partL[[ ii ]];
84 facL = 1/facCoeff[ l , m − r + 1];
85 (∗Print [”Error here ?”];
86 Print [”{k, l} = ”, Transpose[{k, l }]]; ∗)
87 (∗termSk=termSk + (facL dHr Times[DsTab[[ indexM[
88 nrH ,#[[1]],#[[2]]]&/@Transpose[{k,l }]]]]) [[1]]; ∗)
89 termSk =
90 termSk +
91 facL dHr Times @@ (Extract[DsTab, Transpose[{k, l}] ]) ;
92 (∗Print [”Term = S”,k,l,” = ”,facL dHr Times@@(Extract[DsTab,
93 Transpose[{k, l }] ]) ]∗)
94 (∗Print [”Error here ?”];∗)
95 (∗Print [Times[DsTab[[ indexM[2,#[[1]],#[[2]]]&/@Transpose[{k,
96 l }]]]]]; ∗)
97 ];
98 facK = 1/facCoeff[k, n − j ];
99 termSj = termSj + facK termSk;

100 ]
101 ];
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102 termS = termS + (j!) termSj;
103 ];
104 1/n termS
105 ]
106

107 DqJHcalc[ord , sTab , n , m , nrH , dim ] := Module[{ouT, l, j},
108 l = If [n == 1, m − 1, m];
109 ouT = Table[0, l , dim/2];
110 For[ j = 1, j <= l, j++,
111 ouT[[j ]] = D[sTab[[indexM[nrH, 1, j ]]], {q, ord}]
112 ];
113 ouT
114 ]
115 dStabCalc[n , m , nrH , dim , sTab ] := Module[{dSTab, j, i},
116 dSTab = Table[0, n, m , dim/2];
117 For[ j = 1, j < m, j++,
118 For[ i = 1, i <= n, i++,
119 dSTab[[i , j ]] = D[sTab[[indexM[nrH, i, j ]]], p ];
120 ];
121 ];
122 For[ i = 1, i < n, i++,
123 dSTab[[i , m]] = D[sTab[[indexM[nrH, i, m ]]], p ];
124 ];
125 dSTab
126 (∗dSTab = Table[0,((nrH+1)nrH)/2−indexM[nrH,n,m],dim/2];
127 For[ j=1,j\[LessEqual]Length[dSTab],j++,
128 dSTab[[j ]] = D[sTab[[j ]], p ];
129 ];
130 dSTab∗)
131 ]
132

133 indexM[nrH , n , m ] := n + (m − 1) (nrH + 1 − m/2);
134 invIndexM[nrH , j ] := Module[{q, j0 = j},
135 Assert [ j <= ((nrH + 1) nrH)/2, ”index of Table out of bounds”];
136 q = 0;
137 While[j0 − nrH + q > 0, j0 = j0 − nrH + q; q++];
138 {j0 , q + 1}]
139

140 facCoeff [ part , x ] := Module[{m, n},
141 m = 1;
142 For[n = 1, n <= x, n++,
143 m = m∗((Length[Select[part, # == n &]])!);
144 ];
145 m
146 ]
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[Bar+08] Maŕıa Barbero-Liñán et al. “Unified formalism for nonautonomous mechanical systems”. In:
Journal of mathematical physics 49.6 (2008), p. 062902.

[BB98] S Bouquet and A Bourdier. “Notion of integrability for time-dependent Hamiltonian systems:
Illustrations from the relativistic motion of a charged particle”. In: Physical Review E 57.2 (1998),
p. 1273.
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[Gol95] Christophe Golé. “Suspension of symplectic twist maps by Hamiltonians”. In: Hamiltonian Dy-
namical Systems. Springer, 1995, pp. 163–169.

[GPS02] Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. American Association of
Physics Teachers, 2002.

[Grö67] Wolfgang Gröbner. Die Lie-reihen und ihre Anwendungen. Vol. 3. Deutscher Verlag der Wis-
senschaften, 1967.

[GS18] Mauricio Garay and Duco van Straten. “KAM Theory. Part I. Group actions and the KAM
problem”. In: arXiv preprint arXiv:1805.11859 (2018).

[GS86] DF Griffiths and JM Sanz-Serna. “On the scope of the method of modified equations”. In: SIAM
Journal on Scientific and Statistical Computing 7.3 (1986), pp. 994–1008.

[GV18] Vassili Gelfreich and Arturo Vieiro. “Interpolating vector fields for near identity maps and aver-
aging”. In: Nonlinearity 31.9 (2018), p. 4263.

[Hal80] J.K. Hale. Ordinary Differential Equations. Dover Books on Mathematics Series. Krieger Pub
Co, 1980. isbn: 9780898740110.

[Han11] Heinz Hanßmann. “Non-degeneracy conditions in kam theory”. In: Indagationes Mathematicae
22.3 (2011). Devoted to: Floris Takens (1940–2010), pp. 241–256. issn: 0019-3577. doi: https:
//doi.org/10.1016/j.indag.2011.09.005. url: https://www.sciencedirect.com/
science/article/pii/S0019357711000474.

[Hen96] Jacques Henrard. “Symplectic integrators”. In: Analysis and Modelling of Discrete Dynamical
Systems. Gordon and Breach, 1996.

[HI03] John Hubbard and Yulij Ilyashenko. “A proof of Kolmogorov’s theorem”. In: Discrete and Con-
tinuous Dynamical systems 4 (2003), pp. 1–20.

[HL00] Ernst Hairer and Christian Lubich. “Asymptotic expansions and backward analysis for numerical
integrators”. In: Dynamics of algorithms. Springer, 2000, pp. 91–106.

[HL97] Ernst Hairer and Christian Lubich. “The life-span of backward error analysis for numerical inte-
grators”. In: Numerische Mathematik 76.4 (1997), pp. 441–462.

[HLW06] Ernst Hairer, Christian Lubich, and GerhardWanner.Geometric Numerical integration: structure-
preserving algorithms for ordinary differential equations. Springer, 2006.

[Hub07] John H. Hubbard. “The KAM Theorem”. In: Kolmogorov’s Heritage in Mathematics. Ed. by
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[Leó+22] Manuel de León et al. “Time-dependent contact mechanics”. In: arXiv preprint arXiv:2205.09454
(2022).
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Mathématiques Pures et Appliquées (1855), pp. 201–202.

[Lla+05] Rafael de la Llave et al. “KAM theory without action-angle variables”. In: Nonlinearity 18.2
(2005), p. 855.

[LM11] Alexander Lundervold and Hans Munthe-Kaas. “Hopf algebras of formal diffeomorphisms and
numerical integration on manifolds”. In: Contemp. Math 539 (2011), pp. 295–324.

[LR04] Benedict Leimkuhler and Sebastian Reich. Simulating hamiltonian dynamics. 14. Cambridge uni-
versity press, 2004.

[LS17] Manuel de León and C Sardón. “Cosymplectic and contact structures for time-dependent and
dissipative Hamiltonian systems”. In: Journal of Physics A: Mathematical and Theoretical 50.25
(2017), p. 255205.

[LY68] GSS Ludford and DW Yannitell. “Canonical transformations without Hamilton’s principle”. In:
American Journal of Physics 36.3 (1968), pp. 231–233.

[McL95] Robert I McLachlan. “Composition methods in the presence of small parameters”. In: BIT nu-
merical mathematics 35.2 (1995), pp. 258–268.

[Mei15] JD Meiss. “Thirty years of turnstiles and transport”. In: Chaos: An Interdisciplinary Journal of
Nonlinear Science 25.9 (2015), p. 097602.

[Mei92] JD Meiss. “Symplectic maps, variational principles, and transport”. In: Reviews of Modern
Physics 64.3 (1992), p. 795.

[MMP84] RS MacKay, JD Meiss, and IC Percival. “Transport in Hamiltonian systems”. In: Physica D:
Nonlinear Phenomena 13.1 (1984), pp. 55–81. issn: 0167-2789. doi: https://doi.org/10.
1016/0167-2789(84)90270-7. url: https://www.sciencedirect.com/science/article/
pii/0167278984902707.

[MO10] Robert I McLachlan and Dion RJ O’Neale. “Preservation and destruction of periodic orbits by
symplectic integrators”. In: Numerical Algorithms 53.2 (2010), pp. 343–362.

[MO14] H̊akon Marthinsen and Brynjulf Owren. “Geometric integration of non-autonomous Hamiltonian
problems”. In: arXiv preprint arXiv:1409.5058 (2014).

[MO17] Kenneth R. Meyer and Daniel C. Offin. Introduction to Hamiltonian Dynamical. Springer Inter-
national Publishing, 2017. isbn: 978-3-319-53691-0.

102

https://doi.org/10.1017/CBO9780511530036.006
https://doi.org/10.1017/CBO9780511530036.006
https://doi.org/https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/https://doi.org/10.1016/0167-2789(84)90270-7
https://www.sciencedirect.com/science/article/pii/0167278984902707
https://www.sciencedirect.com/science/article/pii/0167278984902707


[Moa03] Per Christian Moan. “On the KAM and Nekhoroshev theorems for symplectic integrators and
implications for error growth”. In: Nonlinearity 17.1 (2003), p. 67.

[Moa05] PC Moan. On rigorous modified equations for discretizations of ODEs. Tech. rep. Technical Re-
port 2005-3, Geometric Integration Preprint Server, 2005 . . ., 2005.

[Moa06] Per Christian Moan. “On modified equations for discretizations of ODEs”. In: Journal of Physics
A: Mathematical and General 39.19 (2006), p. 5545.

[Moi10] Robert HC Moir. “Reconsidering backward error analysis for ordinary differential equations”.
PhD thesis. School of Graduate and Postdoctoral Studies, University of Western Ontario, 2010.
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