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Abstract

MCMC samplers are widely used in Bayesian inference. Samplers for mod-
els with continuous parameters are highly efficient and scalable. Creating algo-
rithms for models with discrete parameters seems to be a lot more challenging.
W. Grathwohl et al. claimed that their newly proposed sampler, Gibbs with
Gradients, outperforms the current best samplers. We evaluated their claims on
a series of randomly generated models as well as Ising and Potts models. The
Gibbs with Gradients sampler is compared against the Gibbs sampler, and we
empirically show that while Gibbs with Gradients decreases the autocorrelation
of draws, the additional computational cost causes it to have a lower effective
sample size per second, making it worse in practice.
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1 Introduction and Motivation

The goal of this thesis is to review and evaluate the practical relevance of a new
MCMC algorithm ‘Gibbs with Gradients’ [17].

Frequentist statisticians assume that the world is described by parameters
that are fixed and unknown. These parameters get estimated by taking a ran-
dom sample from the population and then computing some statistic over that
sample. The computed value then becomes the estimate for the parameter.
Usually the parameter is computed with a form of maximum likelihood estima-
tion.

This approach has been successfully applied by statisticians and data scien-
tists for centuries. Yet this approach does not allow us to reason probabilistically
about the parameters. Bayesian statisticians take a different approach. They
consider parameters not as fixed values, but as draws from a distribution. Since
the parameters are drawn from distributions, we can then reason about them
like random variables.

This approach has many advantages:
Confidence intervals. Bayesian statistics allows us to directly reason

about confidence intervals. While Frequentist statistics can ask what the value
is of some parameter, it cannot provide a confidence interval without performing
multiple experiments. Bayesian statistics can directly give a confidence interval
for the parameters as the parameters are assumed to follow some distribution.

Prior information. In general it is non-trivial to add prior information
in Frequentists statistics. In Bayesian statistics we can simply assume that a
parameter is drawn from some prior distribution. Adding prior information is
then equal to multiplying it with the likelihood.

Hierarchical models. The values of the parameters are drawn from some
distribution. This distribution might have more parameters itself, which are
again drawn from some distribution. Bayesian statistics makes it very intuitive
to model something very complex into simpler parts hierarchically.

Bayesian statistics is based on Bayes‘ theorem [24] and updating beliefs
using this theorem is known as Bayesian inference. Probabilistic programming
languages, like Stan [3], rely heavily on sampling to do Bayesian inference. To
fully benefit from the advantages of Bayesian statistics we therefore need good
samplers.

When, in Bayesian inference, we have an (unnormalized) posterior distribu-
tion, more often than not we would like to compute the expectation of some
function f over that distribution. To compute E[f ] we need the normalized
posterior distribution. A naive approach to compute the normalization factor
(of a discrete distribution) is to sum over each state and divide each probability
by this sum. One of the biggest challenges we face when working with data is
the curse of dimensionality. If we have n categorical variables with d options
each, then our state space is of size nd. Computing the normalization factor for
a state space with size nd becomes incredibly computationally expensive even
for low values of n and d, and is in most cases intractable. A more feasible way
to compute the posterior is to use the factorization of the distribution and then
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propagate probabilities through this factorization, known as belief propagation
[34]. However, this requires knowledge about the factorization of the distribu-
tion. This is not always available and would require a separate analysis of the
distribution, if there even exists a useful factorization in the first place.

Instead of computing the posterior directly, we can use Monte Carlo inte-
gration to estimate the expectation E[f ] over our distribution. Monte Carlo
integration requires a sample from the posterior distribution. While sampling
is a well studied problem in the continuous space [1, 8, 20, 30], samplers for
discrete state spaces have received less attention. Nevertheless, if we want to
estimate E[f ] effectively using a sample, we need samplers that can effectively
approximate the posterior distribution. In this thesis we will compare discrete
samplers using the effective sample size, sampling speed, and scalability to high
dimensions. Using these metrics we will try to answer the following question:

• How does Gibbs with Gradients compare to other discrete samplers, based
on effective sample size, speed, and scalability to higher dimensions?

This naturally leads to the following sub-questions:

• How many draws can Gibbs with Gradients generate per second? How
does this compare to other samplers?

• How many effective samples can be drawn per second? Is Gibbs with
Gradients able to draw more effective samples in the same amount of
time?

• How does an increasing number of dimensions affect the sampling speed
and effective sample size?

1.1 Bayesian Inference and MCMC Samplers

Suppose we have some data D and we want to interpret D using a model with
parameters θ. One way of doing this is to use the likelihood function P (D | θ).
We can find the parameters θ such that this probability is maximized. This is
known as maximum likelihood estimation.

Even though this approach is commonly used, it is somewhat counterintu-
itive. We care about the parameters yet we compute the probability of the
data. In Bayesian statistics we take a different approach. Instead of computing
P (D | θ) we compute

P (θ |D) =
P (D | θ)P (θ)

P (D)
(1)

This equation consists of four parts: P (θ | D) is the posterior; P (D | θ)
the likelihood; P (θ) the prior; and P (D) =

∫
θ
P (D | θ)P (θ) the marginal

likelihood.
The likelihood and the prior define an (unnormalized) probability mass func-

tion f(·). We can compute the estimate of any function h : X → R on discrete
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state space X with respect to the posterior [41]:

Ef [h(X)] =

∑
X h(x)f(x)∑

X f(x)
(2)

Unfortunately, computing this expected value is in general intractable. So,
instead we turn to sampling to estimate the expected value of functions. More
precisely we can use Monte Carlo integration to compute this estimate. Given
draws x1, . . . ,xn from f(·) we can estimate E[h(X)] as

Ef [h(X)] ≈ 1

n

n∑
i=1

h(xi) (3)

In a perfect world we would be able to get i.i.d. draws for any distribu-
tion. Unfortunately, in practice we have complex distributions from which
it is really hard to sample. We will denote the i-th d-dimensional draw as
xi = {xi1, xi2, . . . xid}. Instead of trying to get i.i.d. draws from the posterior, we
will settle for draws that are correlated. That is, we produce a Markov Chain
where draw xi+1 is dependent on draw xi. Because the draws are correlated our
estimation error will decrease slower than for uncorrelated samples (see section
2.3.1).

We need to make sure that the probability of finding some state in our
Markov Chain is equal to the probability in the posterior distribution f(·). To
accomplish this we need the concept of a stationary distribution of a Markov
Chain. Suppose we have a set of states with a transition probability matrix
T , containing a transition probability for each pair of states. The stationary
distribution of a Markov Chain is a probability vector s over the states of the
chain such that sT = s. If we can get Markov Chain with stationary distribution
f(·) and our samples converge to the stationary distribution, then we can take
(correlated) draws from our posterior distribution.

There are two parts to this. Firstly, we need to design our transition prob-
abilities in such a way that we get the right stationary distribution. A Markov
chain has the right stationary distribution if it satisfies reversibility (also known
as the detailed balance condition) [41]:

p(x)T (y | x) = p(y)T (x | y) (4)

If we sum over all states x we get:∑
x

p(x)T (y | x) = p(y)
∑
x

T (x | y) = p(y), (5)

which is equivalent to our definition of the stationary distribution.
Secondly, to converge, the Markov chain needs to be irreducible and ape-

riodic. It is periodic if, starting from a state s, there exists a t such that the
probability of returning to state t is non-zero only at steps n = t, 2t, . . . , other-
wise it is aperiodic. It is irreducible if each state can be reached from any other
state. If both these conditions hold then any Markov chain with a finite number
of states is uniformly ergodic [41].

6



Definition. [41] A Markov chain having stationary distribution f(·) is uni-
formly ergodic for some ρ < 1 and M <∞ if

||Pn(x, ·)− f(·)|| < Mρn, n = 1, 2, 3, . . .

While this gives us a guarantee that such a Markov chain will converge, both
M and ρ might be values such that convergence can take a long time. In fact,
the Central Limit Theorem tells us that the distribution of the sample mean
tends toward the normal distribution as the sample size increases, regardless of
the distribution from which we are sampling. Using the Central Limit Theorem,
we know that the Markov Chain will converge with an error approximately equal
to 1/

√
n, when we have n i.i.d. draws. Since the draws are auto-correlated, the

error decreases by 1/
√
neff as the effective sample size neff increases (see section

2.3.1). Slow convergence can have several causes some of which are: highly
correlated draws (an issue of Gibbs sampling [33]), expensive draws, and lastly
it might take a while before we reach the stationary distribution. The latter is
known as the warm-up and it is common practice to discard some of the first
draws.

The family of samplers that define transition probabilities and generate
Markov Chains are known as Markov Chain Monte Carlo (MCMC) samplers.
In this thesis we will compare two of such samplers. Namely, the Gibbs sampler
and the Gibbs with Gradients sampler. We compare their performance using
effective sample size, time per draw, and time per effective sample, which will
be defined in section 2,

1.2 Structure of the Thesis

In this thesis we will compare the Gibbs with Gradients sampler with the Gibbs
sampler. Section 2 explains the necessary background information on both the
samplers and the metrics used to compare the samplers. Besides that, it provides
examples of commonly used models with discrete parameters and some of their
applications. In section 3 we propose a way to generate random models. These
randomly generated models allow us to experiment on far more models. Section
4 first shows that, with high probability, our implementation of the samplers is
corrent and then presents the results from the comparison between Gibbs and
Gibbs with Gradients. Using these results we answer our research questions in
the conclusions in section 5.

2 Literature Summary

2.1 Sampling and Markov Chain Monte Carlo

2.1.1 Metropolis-Hastings

One of the most commonly used MCMC algorithm is the Metropolis-Hastings
algorithm [29, 19]. Metropolis-Hastings is not necessarily always used as a
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sampler for discrete spaces, but is used as a standard framework by a lot of
other samplers. It samples directly from the posterior distribution, and it does
so in two steps.

The first part is generating a candidate draw. We define q(x′ | x) as the
proposal distribution. Now, given our previous sample x, we draw a new can-
didate x′ ∼ q(x′ | x). An example for such a proposal distribution might be a
normal distribution around x. Sampling from the proposal distribution alone
is not enough, as it might move the draws toward areas with arbitrarily small
probabilities.

Therefore, in the second step an acceptance ratio is added. The algorithm
should be more likely to accept samples with relatively high probability in the
posterior distribution than those with low probability. To achieve this we add
an acceptance ratio

A = min

(
1,
f(x′)

f(x)

q(x | x′)

q(x′ | x)

)
,

where f(x) is the probability mass of x. With probability A we accept the newly
proposed state, otherwise the new state is the current state. The pseudo-code
can be seen in algorithm 1.

Algorithm 1: Metropolis-Hastings

Data: x the current state, q(x′ | x) the proposal distribution
Result: x′ a new sample
x′ ∼ q(x′ | x)
Accept with probability:

min

(
1,
f(x′)

f(x)

q(x | x′)

q(x′ | x)

)

The detailed balance condition can easily be shown for the Metropolis-
Hastings algorithm [41]. It is also irreducible under the mild assumption that

q(x′ | x) > 0 ∀(x, x′) ∈ X × X (6)

and aperiodic if the current state is accepted with a non-zero probability [40].

2.1.2 Gibbs Sampling

The Gibbs sampler [12] is a special case of the Metropolis-Hastings algorithm
where the proposed new state is accepted with probability 1. We will denote
θ\i as all parameters except for i. A Gibbs sampler is especially useful when
it is easy to sample from P (θi | θ\i), but hard to sample from P (θ). Random
Scan Gibbs Sampling works by first drawing a dimension d from a uniform
proposal distribution q(i) and then drawing a new value for xd given all other
dimensions. Gibbs Sampling is both irreducible and aperiodic, as a result it
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converges. However, since it performs a random walk through the state space,
convergence can be slow [33].

The pseudo-code for a (Random Scan) Gibbs Sampler is given in algorithm
2.

Algorithm 2: Random Scan Gibbs Sampling

Data: x the current state
Result: x′ a new sample
d ∼ q(i)
x′ ∼ P (xd | x1, . . . , xd−1, xd+1, . . . , xn)

This algorithm can be tweaked in a couple of ways. First of all, we could
say that changing all dimensions (sequentially) gives a new draw. Secondly, we
could draw from more than one dimension at a time, known as Block-Gibbs. Fi-
nally, we could draw the dimension from any other proposal distribution, e.g. a
uniform proposal distribution, known as Random Scan Gibbs. Combining these
changes leads to many Gibbs-like algorithms, one of which will be discussed
below.

Adaptive Gibbs
Adaptive Gibbs samplers [26] try to learn a proposal distribution q(i) from
which the dimension can be drawn. This is useful, as some dimensions might
not have a lot of effect on the function we are trying to estimate. The updated
algorithm is shown in algorithm 3. Adaptive Gibbs does require some more

Algorithm 3: Adaptive Gibbs with some update function Rn

Data: X(n−1) . . . X(1) the previous samples, q(i) the current proposal
distribution

Result: x′ a new sample
q′(i)← Ri(q(i), X

(n−1), . . . , X(1))
d ∼ q′(i)
Xd ∼ P (xd | x1, . . . , xd−1, xd+1, . . . , xn)

thought as we both need to design an update rule Rn. This update rule takes
the current proposal and a the previous draws and creates a new proposal dis-
tribution. Finding a good update rule is hard, but even more importantly a
simple Adaptive Gibbs sampler might fail to converge [15]. An example of such
an Adaptive Gibbs sampler is the Adaptive Random Scan Gibbs Sampler [5].

2.1.3 Gibbs with Gradients

A more recent approach to sampling from discrete distributions is Gibbs with
Gradients [17]. It combines most of the ideas discussed in the samplers above
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and adds gradient information to the proposal distribution. This is possible
because most discrete distributions have an underlying continuous and differen-
tiable distribution (see section 2.2), which is only evaluated on a discrete subset
of values. One idea would be to sample from these underlying distributions as
done in preceding work [31, 18]. We can transform draws from the continuous
distribution to draws from the discrete distribution, but this has the problem
that the continuous distribution may be arbitrarily difficult to sample from.
Instead, Gibbs with Gradients directly uses the gradient information.

One of the problems that using gradient information tries to solve is that
some dimensions might hardly ever change. Take for example the MNIST
dataset, consisting of 255x255 images of handwritten digits. By far the largest
part of the image is the (black) background. If our sampler proposes to change
one of the dimensions which is nearly always black it will most likely be wasted
computation, as the proposed value will be accepted with a very small proba-
bility.

Let us reconsider the proposal distribution q(x | x′). Note that while we have
previously seen q(i), which was a proposal distribution over the dimensions,
q(x | x′) is a proposal distribution for a new state. In other words, what is
the probability that we propose a new state x, given that we are currently in
state x′. If we sample a single dimension we can rewrite it as q(x | x′) =∑

i q(x | x′, i)q(i) where q(i) is a distribution over the dimensions. Here we split
sampling a new candidate into: sampling the dimension i ∼ q(i); and proposing
a change in dimension i. Sampling a dimension which hardly ever changes, like
the background in the MNIST dataset, is wasteful. To tackle this problem Gibbs
with Gradients uses an input dependent proposal distribution q(i | x) to choose
the dimensions to sample from. The algorithm uses gradient information about
the distribution to create this more informed proposal distribution.

This gradient information is used in a locally-informed proposal. That is

q(x′ | x) ∝ e 1
τ (f(x′)−f(x))1(x′ ∈ Hm(x)), (7)

where Hm(x) is the Hamming ball of some size m around x, hence the ‘locally-
informed’, f(x) is the log-probability of state x. A Hamming ball Hm(x) with
maximum distance m is defined as the neighborhood of x:

Hm(x) = {x′ : d(x, x′) ≤ m,x′ ∈ x}, (8)

where d(x, x′) is the Hamming distance between the states x and x′. Hm(x) is
also known as a Hamming window of size m and τ is a temperature parameter
which controls how much effect the local likelihood difference has. It has been
shown that τ = 2 gives an optimal acceptance rate [45]. We can approximate
f(x′)− f(x) with a first order Taylor-series. For binary data we estimate it as

d̃(x) = −(2x− 1)⊙∇xf(x), (9)

and similarly for categorical data

d̃(x)ij = ∇xf(x)ij − xTi ∇xf(x)i (10)
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In practice ∇xf(x) can be computed using automatic differentiation [2]. Com-
bining this with τ = 2 gives us the estimated likelihood

q∇(x′ | x) ∝ e
d̃(x)
2 1(x′ ∈ H(x)), (11)

which can be used in the standard Metropolis-Hastings algorithm.
For binary data and a Hamming window of size 1 this simplifies to choosing

a dimension and then flipping that dimension. For categorical data we also need
to choose a value. This is accomplished by making the proposal distribution a
D(K − 1)-way Softmax, where K is the number of options for the categorical
parameters. The new value is then assigned using the deterministic flipdim(x, i)
as can be seen in algorithm 4. Choosing one out of the D dimension is equivalent
as sampling from a categorical distribution over D choices:

q(i | x) = Categorical

(
Softmax

(
d̃(x)

2

))
(12)

The pseudo-code for Gibbs with Gradients is given in algorithm 4.

Algorithm 4: Gibbs with Gradients

Data: Unnormalized log-prob f(·), current sample x
Result: x′ a new sample
Compute d̃(x) (Eq. 9 if binary, Eq. 10 if categorical)

q(i | x)← Categorical
(

Softmax
(

d̃(x)
2

))
i ∼ q(i | x)
x′ ← flipdim(x, i)

q(i | x′)← Categorical
(

Softmax
(

d̃(x′)
2

))
Accept with probability:

min

(
exp(f(x′)− f(x))

q(i | x′)
q(i | x)

, 1

)

2.2 Models and Applications

In order to evaluate samplers we need to have some distributions to sample from.
In this section we will look at commonly used models and their distributions.
Each of the models will have a distribution similar or equal to

p(x) =
1

Z
ef(x), (13)

where Z is a normalization constant such that the log-probability is f(x)−logZ.
The models have been selected based on their popularity. We would prefer

the samplers to perform well on widely applicable models. Many of the selected
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models have applications in biology, physics, natural language processing, and
many other fields. Specific applications will be mentioned in the following sub-
sections.

2.2.1 Ising Model

The Ising model [22] is originally designed as a mathematical model of ferro-
magnetism in statistical mechanics. The Ising model also finds use in modelling
the motion of atoms [7], and neuroscience [42]. The model consists of discrete
variables that represent magnetic dipole moments of atomic spins which can be
in two states +1 or −1. Neighboring spins that agree have lower energy and the
system tends to the lowest possible energy. Heat can disturb this tendency.

The 1-dimensional Ising model was solved by Ernst Ising in his thesis. It
took almost twenty more years before a closed solution for the 2-dimensional
Ising model was found by Lars Onsager [32]. Non-planar higher dimensional
Ising models are known to be NP-complete [23]. Sampling the states can help
us approximate the solution for higher dimensional Ising models, if we can do
it efficiently.

The probability of being in a state x with energy E(x), and constant β (the
inverse temperature), is

f(x) =
1

Z
e−βE(x)

The Ising model originally modelled the spins of atoms. Each atom has a spin
σi ∈ {+1,−1} and the total energy, with “interaction constant” J is

E(x) = −J
∑
i,j

σiσj

2.2.2 Energy vs Probability

The Ising model defines an energy function E. This is because the Ising model,
like many other models, is a so called energy-based model. Energy-based models
(EBMs) are probabilistic models where the probability of being in a certain state
is described by an energy function. As EBMs originate from physics, the energy
in a system with state x is given by a Hamiltonian function H. Besides H, there
is commonly some constant factor β, like temperature in the Ising model, which
affects the probabilities. Using this Hamiltonian we can define the probability
of being in any state as

f(x) =
1

Z
e−βH(x) (14)

2.2.3 Potts Model

The Ising model has a very strict assumption on the direction of the spins,
namely that the atomic spin is either up or down. A generalization of the Ising
model is the Potts model [37]. Instead of two states for each spin it consists of

12



q states. With q = 2 we get the Ising model and in the limit q →∞ it is known
as the XY Model.

σn ∈ {1, 2, . . . , q}

The energy in a state x then becomes

E(x) = −J
∑
i,j

δ(σi, σj)

where δ(σi, σj) is the Kronecker delta, that is

δ(σi, σj) =

{
1, if σi = σj

0, otherwise

Cell Sorting
One of the applications of the Potts model is biological cell sorting. Cell sorting
has been experimentally observed in vitro in embryonic cells. The sorting of
cells does not involve any cell division, but only spatial rearrangement. Such
rearrangement can be modelled using an extension of the Potts model [16].

One of the key differences with the normal Potts model is that we would
like to keep the number of cells roughly constant. That is, for every state s and
constant V (s) we would like to have

∑
i δ(σi, s) − V (s) ≈ 0. We introduce a

volume term v(s) =
∑

i δ(σi, s) which measures the number of cells which are
in state s. The new energy function for a state x is now

E(x) = −J
∑
<i,j>

δ(σi, σj)−
∑

s=1...q

(v(s)− V (s))2 (15)

This leads to cell sorting through the rearrangement of cells rather than through
cell growth. This model is more commonly known as the Cellular Potts Model.

2.2.4 Restricted Boltzmann Machine

A general Boltzmann Machine consists of two layers, one with hidden and one
with visible nodes. The nodes have binary states and its energy function is
therefore similar to that of an Ising model. Instead of J , a constant, we have a
weight matrix w and we split our nodes into visible nodes v and hidden nodes
h. Each of the nodes has a bias βi. We only observe v. The other variables w,
h and β are unobserved. This gives the following energy function for a general
Boltzmann Machine

E(v,h) = −

∑
i<j

wijsisj +
∑
i

βisi

 , (16)

where s is the union of the visible and hidden nodes. General Boltzmann Ma-
chines allows both visible and hidden nodes to be interconnected. In practice,

13



this makes it very hard to approximate the real distribution from which we
observe data.

Instead, we will restrict the network from having any inter-layer connections.
This is known as a Restricted Boltzmann Machine. For any state of v with
corresponding bias a; and h with corresponding bias b respectively, we can now
compute its energy function as:

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwi,jhj , (17)

giving us the following distribution:

p(v,h) =
1

Z
e−E(v,h) (18)

Since the underlying structure of an RBM is bipartite, the hidden nodes
are mutually independent given the visible nodes and vice versa. That is, the
conditional independencies are

P (v | h) =
∏
i

P (vi | h),

P (h | v) =
∏
j

P (hj | v)
(19)

The individual probabilities of a node are dependent on its own bias and the
weight of the connections between nodes. We then get a valid probability with
the sigmoid function. That is, the probabilities are given by

P (vi | h) = σ

ai +
∑
j

wi,jhj


P (hj | v) = σ

(
bj +

∑
i

wi,jvi

) (20)

This allows for easy training using contrastive divergence [4].

2.2.5 Conditional Random Fields

Labelling a sequence of observations is a task which is used in many fields. Some
examples of applications are protein sequences [9], computational linguistics [27]
and part-of-speech tagging [38].

In CRFs the probability of seeing a label sequence y given observations x
can be defined as a product of potential functions [25]

exp

∑
j

λjtj(yi−1, yi,x, i) +
∑
k

µksk(yi,x, i)

 , (21)
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where tj are transition feature functions and sk are state feature functions.
Allowing the potential functions to take the entire observation sequence as an
input allows for arbitrary relations between the input.

To define feature functions, we use a set of real-valued features b(x, i) mod-
elling some characteristic of the data. An example b(x, i) could be:

b(x, i) =

{
1, if xi is uppercase

0, otherwise

We could then define a feature function:

sk(yi,x, i) =

{
b(x, i), if yi is a proper noun

0, otherwise

The only difference between tj and sk is that sk does not consider yi−1. As
a result, it only gives information about the probability of seeing yi given the
observed sequence x.

We can simplify the notation by saying that sk(yi,x, i) = sk(yi−1, yi,x, i)
and define fj(yi−1, yi,x, i) as being either a transition or a state function. The
probability can then be written as

p(y | x,λ) =
1

Z
e
∑

j λjFj(y,x), (22)

where Fj(y,x) =
∑

j fj(yi−1, yi,x, i) and Z is a normalization factor.

2.2.6 Mixture Models

Mixture models assume that the distribution consists of K mixture components.
It splits f(x) into

∑
x′ f(x, x′), where x′ is a categorical parameter with K pos-

sible values. Often these values are unobserved (latent) variables. Marginalizing
out a parameter is convenient when we suspect that different values of x′ follow
a different distribution. Because of this, mixture models are mostly used to
perform clustering, a form of unsupervised learning.

The final distribution is a mixture of the K components, such that

f(x) =
1

Z

∑
x′

f(x′)f(x | x′) (23)

Mixture models find many applications, some examples are text clustering
[44], speaker identification [39], graph structure discovery [6], gene subset selec-
tion [28] and time series clustering [11].

While all of the mentioned models are widely used, each with its own appli-
cations, in our experiments we will focus on Ising and Potts models as well as
randomly generated models, which we will discuss in section 3. Ising and Potts
models are known to be hard to sample from. Performing well on these models
would therefore indicate that the sampler will, most likely, also performs well
on other models.
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2.3 Evaluation Metrics

In order to evaluate Gibbs with Gradients against other discrete samplers we
will need to compare some metrics of performance. We would like to have a
sampler which efficiently explores the posterior distribution. MCMC samplers
take correlated draws by taking local steps in the distribution. These correlated
draws can have less information than i.i.d. draws. In the most extreme case
where we take n samples {x1, ..., xi} where xi = xj for all pairs of i and j we
really only have one effective sample. In general if our n samples are correlated,
we need to adjust for that correlation. This adjusted sample size is known as the
effective sample size (ESS). Since a perfect sampler has an ESS equal to, or even
exceeding, the sample size, this will be our first evaluation metric. In addition,
a high ESS is only useful if the sampler is able to generate draws at an adequate
speed, and lastly we would want our samplers to scale well to high-dimensional
models.

2.3.1 Effective Sample Size

If we have independent draws we can bound the uncertainty in estimates by the
central limit theorem. However, if our samples are correlated we need to use
the number of effective samples (Neff) instead. Using the central limit theorem
we can now see that the estimation error decreases with 1/

√
Neff rather than

1/
√
N . The effective sample size is directly affected by the autocorrelation.

The autocorrelation is a measure of how correlated a sequence is with respect
to itself at some lag t. We denote this ρt. The effective sample size of N samples
generated by a process with autocorrelations ρt is defined by

Neff =
N∑∞

t=−∞ ρt
=

N

1 + 2
∑∞

t=1 ρt
(24)

In practice, it is not tractable to compute ρt as it requires integrating the prob-
ability function. Instead, the autocorrelation has to be estimated. Fortunately,
we can estimate each time lag at the same time using a fast Fourier transform
[13].

2.3.2 Autocorrelation Time

While high ESS is mostly preferred over a low ESS, speed has a significant
impact in practice. We need to consider both how many draws do we need to
get a high enough ESS and how fast we can generate a single draw.

An alternative to the effective sample size, which we chose not to use, is the
autocorrelation time [10]. It is a direct measure of the number of evaluations
needed before a sampler produces independent draws. A low autocorrelation
time means that we need fewer draws to produce a representative sample. More
formally, the autocovariance of a sequence X(t) is

Cf (T ) = lim
t→∞

cov[f(X(t+ T )), f(X(t))], (25)
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where Cf (T )→ 0 measures the number of draws that must be taken to ensure
independence, assuming that Cf (T ) converges to 0 for some number of draws.
The autocorrelation time is defined as [10]:

τf =

∞∑
T=−∞

Cf (T )

Cf (0)
= 1 + 2

∞∑
T=1

Cf (T )

Cf (0)
(26)

Where Cf (T ) for a Markov chain can be estimated by1

Cf (T ) ≈ 1

M − T

M−T∑
m=1

[f(X(T +m))− ⟨f⟩][f(X(m))− ⟨f⟩], (27)

where ⟨f⟩ is the mean of f(X(m)) for all m in the sequence.

2.3.3 Time per Draw

The effective sample size only measures how well we can explore the distribu-
tion. It does not tell us anything about the speed at which it is explored. A
combination of a high effective sample size with a slow sampler might be worse
than a sampler with a slightly worse effective sample size, but with faster draws.
As the error decreases by 1/

√
Neff and the speed at which we can take an ef-

fective sample is t N
Neff

, we need both a low t and a high effective sample size to
efficiently reduce the error. We will measure the time per draw in milliseconds.
From this time, in combination with the effective sample size, we compute the
time per effective sample.

2.3.4 Dimensions

One of the reasons we need sampling in the first place is because of high di-
mensional models. It is crucial that samplers can deal with this. For example,
modelling protein sequences might include hundreds of amino acids [21], quickly
leading to the inability to efficiently sample from their distributions. Being able
to sample from such models allows us to train and examine larger models, pos-
sibly leading to large improvements.

Therefore, each of the evaluation metrics mentioned above will be com-
puted on an increasing number of dimensions, until it becomes infeasible to
take enough draws. This allows us to compare the scalability of different sam-
plers. Which, with the ever growing size of models, is an incredibly important
aspect.

3 Random Models

In addition to the models discussed in section 2.2, we propose to generate ran-
dom models. Random models can be used to study the behavior of sampling

1Implemented in a python package https://github.com/dfm/acor
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algorithms on a large number of different models. This will allow us to subjec-
tively assess how well a sampling algorithm performs. For a single algorithm it
is preferable to perform well on a large set of models rather than a specific one.

The first thing to notice is that a model is simply a distribution over the
parameters θ and the data. We will assume that there is no observed data.
Therefore our random models will be distributions over the parameters only.
Such a distribution can be factorized into k factors, where factor ψi is dependent
on θi ⊆ θ:

f(θ) =
1

Z
· ψ1(θ1) · ψ2(θ2) · . . . · ψk(θk)

We generate f(θ) randomly in two parts. We first generate a random fac-
torization over the parameters. Secondly, we generate random functions ψi(θi)
for all i. The normalization constant Z will remain unknown in the most cases,
but can be computed using brute-force on smaller models. We will use this to
test the correctness of the samplers.

3.1 Generating random factorizations

There are many ways to represent the conditional dependence structures be-
tween random variables, one of which is the use of probabilistic graphical mod-
els (PGMs). A PGM represents conditional (in)dependencies in a directed or
undirected graph. Instead of generating a random factorization directly, we
can instead generate such a graph. As there are many kinds of probabilistic
graphical models, we will discuss some of the options below.

3.1.1 Bayesian Networks

Bayesian networks (or directed graphical models) are directed acyclic graphs
which encode the factorization of the joint probability distribution. More for-
mally, a bayesian network is a pair B = (G,Γ) such that

• G is a directed acyclic graph with nodes representing random variables x

• ψ = {ψxi | xi ∈ x} is a set of assessment functions

This defines a joint probability distribution

p(x) =
∏
xi∈x

ψxi
(xi | ρ(xi))

with ρ(xi) the set of parents of xi in G. A downside of Bayesian networks is that
reading of conditional independencies is not trivial, as it requires the concept of
d-separation [35].

3.1.2 Markov Random Fields

Markov random fields (or undirected graphical models) are undirected graphs
which, again, encode the factorization of the joint probability distribution. In a
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Markov random field, a set of variables A is conditionally independent of another
set B given a set of variables S, if all paths from A to B pass through S. The
conditional independencies are encoded by definition. Given all maximal cliques
C in the Markov random fields gives its factorization:

p(x) =
1

Z
·
∏
c∈C

ψc(c)

However, finding all maximal cliques is not trivial either. Instead, we want to
find a representation in which we easily define the factors and read off indepen-
dencies. To do so, we will look at a third representation.

3.1.3 Factor Graphs

A factor graph is a bipartite graph G = (V, F,E) of parameters V , factors F
and edges E, such that each edge connects a factor to a variable. It provides a
factorization of a distribution p(θ) into factors over sets of parameters:

f(θ) =
∏
fi∈F

fi(θfi)

where θfi is the set of parameters which are connected to fi by an edge in E.
This allows a factor graph to give us direct control over both the independencies
and the factors. Since we need to know the independencies to generate factors,
we care mostly about the factorization of the probability distribution. For this
purpose factor graphs suit our needs perfectly.

We can randomly generate a factor graph using the Erdős-Rényi-Gilbert
model [14]. That is, we take n parameters and m factors. Then, we add an edge
between each of the pairs of parameters and factors with probability p. Two
examples of generated factor graphs can be seen in figure 1.

3.2 Generating random factors

The second, and arguably harder, part is to generate random functions. These
functions have to be differentiable as Gibbs with Gradients uses gradient in-
formation. Besides that, it would be infeasible to have completely random
functions. Instead, the functions will be generated in a form such that they are
an element of the exponential family.

In statistics the exponential family [36] is a parametric set of probability
distributions. That is, a set of probability distribution where the number of
parameters is finite. Exponential families provide a general framework for se-
lecting a parameterization of a parametric family of distributions, in terms of
natural parameters. Different choices for the natural parameters result in dif-
ferent distributions.

The exponential family of distributions with parameters θ and variables x
is a set of probability distributions which can be expressed in the form

f(x | θ) = h(x) exp (η(θ) · T (x)−A(η)) (28)
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f1 f2 f3

θ1 θ2 θ3 θ4 θ5 θ6

(a)

f1 f2 f3 f4 f5

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

(b)

Figure 1: (a) A factor graph generated with n = 6, m = 3 and p = 0.75. (b) A
factor graph generated with n = 10, m = 5 and p = 0.5

where η(θ) are known as the natural parameters. In this form A(η) is a
log-normalization factor (more commonly known as the log-partition function),
which can easily be shown as follows:

f(x | θ) = h(x) exp (η(θ) · T (x)−A(η))

= h(x) exp (η(θ) · T (x)) exp (−A(η))

=
h(x) exp (η(θ) · T (x))

exp (A(η))

=
h(x) exp (η(θ) · T (x))∫

h(x) exp (η(θ) · T (x)) ν(dx)

(29)

therefore

f(x | θ) =
1

Z
· h(x) exp (η(θ) · T (x))) (30)

where logZ = A(η).
Many of the distributions commonly found in data science can be rewritten

as an exponential family distribution. This provides us with a useful general-
ization of those distributions. Some examples can be seen in table 1.

Our goal is to generate a random function of this form. We assume that the
data is unknown, this effectively makes h(x) a constant and T (x) a vector of
constants. We can therefore focus on generating η(θ), the natural parameters.
Each likelihood will be a linear combination of the natural parameters.

We can clearly see that we would (at a minimum) need the following oper-
ators: addition and subtraction f + g, f − g; logarithm: log f ; negation: −f ;
inverse: f−1; square: f2; multiplication: fg; and constants: c.
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Distribution Parameters θ Natural parameters η

Bernoulli p log p
1−p

Poisson λ log λ
Exponential λ −λ

Normal µ, σ2

[
µ
σ2

− 1
2σ2

]
Table 1: Some examples of popular distributions with their natural parameters.

If we define η(θ) as

η(θ) =


η1(θ)
η2(θ)

...
ηk(θ)

 (31)

then ηi(θ) should at least require θi to be a part of the function. ηi(θ) is
therefore a generated tree of operations containing θi as a leaf. Repeating this
for all k parameters results in η(θ). To actually generate the functions ηi(θ) we
will use a context-free grammar.

A context-free grammar G is a 4-tuple G = (M,T,R, S). M is the set of non-
terminal symbols, T is the set of terminal symbols (in our case the operations),
R is the set of production rules, and lastly S is the start symbol. A context-free
grammar has production rules in the form of

S → α

where S is a non-terminal (start) symbol and α consists of non-terminal and
terminal symbols. A probabilistic context-free grammar adds a fifth symbol
P . P is the set of probabilities associated with our production rules. The
probabilities of the production rules of a non-terminal symbol always sum to one.
A probabilistic context-free grammar allows us to generate a tree of operations.
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The following PCFG will be used to generate our random functions:

ηi → FunctionWithParam [1.0]

FunctionWithParam → Add Function FunctionWithParam [0.08]

| Add FunctionWithParam Function [0.08]

| Subtract Function FunctionWithParam [0.08]

| Subtract FunctionWithParam Function [0.08]

| Multiply Function FunctionWithParam [0.08]

| Multiply FunctionWithParam Function [0.08]

| Log FunctionWithParam [0.08]

| Square FunctionWithParam [0.08]

| Inverse FunctionWithParam [0.08]

| Negate FunctionWithParam [0.08]

| Parameter [0.2]

Function → Add Function Function [1/14]

| Subtract Function Function [1/14]

| Multiply Function Function [1/14]

| Log Function [1/14]

| Square Function [1/14]

| Inverse Function [1/14]

| Negate Function [1/14]

| Parameter [4/14]

| AnyParameter [2/14]

| Constant [1/14]

where Parameter is θi for ηi and AnyParameter is an uniformly chosen
parameter. A constant is either -1, 1 or 2, each with probability 1/3. The
probabilities of each rule are determined experimentally balancing freedom with
depth of the trees.

We can now generate a wide variety of functions, for example the natural
parameters of a normal distribution with θ1 = µ and θ2 = σ:

η1(θ) = Multiply (Parameter) (Inverse (Square (AnyParameter)))

η2(θ) = Negate (Inverse (Multiply (Constant) (Square (Parameter))))

or the natural parameter of the exponential distribution

η1(θ) = Negate (Parameter)

which will be generated with probability

P (η1) = P (FunctionWithParam) · P (Negate FunctionWithParam) · P (Parameter)

= 1.0 · 0.08 · 0.2 = 0.016
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η(θ)[
θ0 − θ−1

0

(θ2
1 + θ1)2

]
[
θ0

2θ1

]
[

θ0 ∗ θ0

θ0 · log log(θ1 + θ1) · θ1

]
Table 2: Randomly generated functions with two parameters using the PCFG
defined above

More examples can be seen in table 2.
To summarize, for a set of parameters θ we can generate a random factor

by generating

• h: a random number

• T : a vector of random number with length |θ|

• η(θ): a function containing η0 up to η|θ|

The full procedure to generate a random factor can be seen in algorithm 5.

Algorithm 5: Generating a random factor

Input: Number of parameters |θ|
Result: η(θ)
h ∼ N (0, 1)
T ← random vector of numbers drawn from N (0, 1)
for i ∈ [0, |θ|] do

f ← generate function using PCFG
ηi ← f

end
return λθ → h exp (

∏
i ηi(θ) · T )

3.3 Generating random models

Now that we can both generate a random factorization and random factors, we
can put it all together. First, we generate a random factor graph with n param-
eters and m factors, each of which are connected with chance p. Then, for each
factor in the factor graph, we generate a random factor from the exponential
family. Lastly we return a function which takes all parameters θ and returns
the product of the factors, where each factor is computed using θi ⊆ θ, which
is the subset of parameters connected to the factor in the factor graph. The
procedure of generating a random model can be seen in algorithm 6.
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Algorithm 6: Generating a random model

Result: A random model with parameters θ
Input: n, m, p
graph ← generate bipartite graph with n parameters and m factors,
connected with probability p

for factor node ∈ graph do
factor ← generate factor with θi ⊆ θ (algorithm 5)

end
return λθ →

∏
f∈factors f(θi)

3.4 Limitations of the generated models

While generating models randomly allows us to increase the number of models
to sample from, they have some limitations. Firstly, our PCFG allows for the
generation of functions which are undefined for a subset of the parameter space.
For example, f(θ) = log(θ0−θ0) will always result in log(0) which is undefined.
To simplify the process of generating models we will assume that e−∞ = 0.
Secondly, divisions by zero can occur. A simple example of this is f(θ) = 1/θ0.
We will consider this an invalid model, which we discard.

4 Results

In this section we will discuss the results we gathered on the Gibbs and Gibbs
with Gradients sampler. It consists of four subsections.

Section 4.1 discusses the correctness of the implementation of the samplers.
If the samplers are correct they will approximate the posterior distribution.
We test whether the samplers do indeed sample from the posterior distribution
using Chi-Square tests.

In section 4.2 the performance of both samplers on Ising models are analyzed.
We compute the number of effective samples and time per effective sample on
Ising models with increasing dimensionality and different values of J . Similarly,
section 4.3 discusses the same measures computed on Potts models with both
an increasing number of dimensions and categories per parameter.

Lastly, section 4.4 discusses the performance of the samplers on randomly
generated models. We compute the number of effective samples and time per
effective sample on models with a varying amount of parameters and factors. If
one sampler is truly better than the other we would expect to see these results
in our randomly generated models.

Both the models and the samplers are implemented in python using pytorch2.
We ran all experiments on a 6-core Ryzen 5600X processor running at a base
clock of 3.7GHz using 32GB of RAM, using Windows 10 version 21H2 as the
operating system.

2https://pytorch.org/
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4.1 Correctness

Proving correctness of any implementation of a probabilistic algorithm is non-
trivial. In this section we will statistically show that both the Gibbs and the
Gibbs with Gradients sampler, truly sample from the posterior distribution. To
do this we will perform a Chi-Square test on both an Ising model and some
randomly generated models. If the samplers draw from the posterior we would
expect the estimated probability mass to approach the posterior as the number
of draws goes to infinity.

A Chi-Square (goodness-of-fit) test is a statistical test, where the null hy-
pothesis assumes that there is no difference between the expected and the ob-
served value. The alternative hypothesis assumes that there is a significant
difference between the observed and the expected value. First we compute the
χ2 value, defined as

χ2 =
∑
i

(Oi − Ei)
2

Ei
(32)

where Oi is the ith observed value and Ei is the ith expected value. In our case
Oi is the number of times we have drawn the ith state, and Ei is the number
of draws we expected for state i.

We compute the expected values using brute-force. That is, we compute the
normalization constant Z by summing over all possible states. This limits our
ability to test the algorithms on larger models, but will be sufficient to show,
with high confidence, that we have a correct implementation.

4.1.1 Correctness of the Gibbs Sampler

As the (Random Scan) Gibbs Sampler is a relatively simple algorithm we will
start with it. Let us first sample from a relatively small model. We sample from
a 2 by 2 Ising model with J = 0.1. As this model only has 16 distinct states, we
can easily visualize how the posterior gets estimated in figure 2. With only 100
draws the estimated probability mass does not resemble the true posterior very
well. As we increase it to 1000 we can clearly see the improvement. At 10000
draws the estimated probability mass is nearly identical to the true posterior.

While sampling from this 2 by 2 Ising model seems to indicate that every-
thing should work correctly, we will still perform a Chi-Square test on a larger 4
by 4 Ising model. With 216 states it is very unlikely that we would get anywhere
near the posterior with an incorrect implementation. We sample from a 4 by 4
Ising model with J = 0.1. We run 10 chains and take 10.000 draws per chain,
giving us a 100.000 draws in total. Then the count of each state is averaged over
all chains. This results in our observed values. Since our model has 216 states,
the Chi-Square test is performed with 216 − 1 degrees of freedom. The critical
value for α = 0.01 is 66380. Using the observed values as described we get
χ2 = 21345.5. This value is well below the critical value and we can therefore
accept the hypothesis that the Gibbs sampler samples from the posterior.
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(a) (b)

(c)

Figure 2: The true distribution of an Ising model with J = 0.1 vs. the estimated
distribution using draws from the Gibbs sampler. (a) 100 draws, (b) 1000 draws,
(c) 10.000 draws.

4.1.2 Correctness of the Gibbs with Gradients Sampler

Similar to the Gibbs Sampler we will first (informally) show that the Gibbs
with Gradients sampler can approximate the posterior of a 2 by 2 Ising model.
In figure 3 we can see that at 100 draws the observed values do not match the
posterior very well. It does however provide a much better approximation than
the Gibbs sampler at 100 draws. The approximation is a lot better at a 1000
draws and very close to the true posterior at 10.000 draws.

To prove the correctness of the Gibbs with Gradients sampler we will again
use a Chi-Square test with α = 0.01. The setup is equivalent to that of the Gibbs
sampler. We sample using 10 chains with 10.000 draws per chain and average the
observed counts. The critical value for α = 0.01 and 216−1 degrees of freedom is
66380. For the Gibbs with Gradients sampler we get χ2 = 7783.3, which is again
smaller than the critical value 66380. We therefore accept the hypothesis that
the Gibbs with Gradients sampler samples from the true posterior distribution.
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(a) (b)

(c)

Figure 3: The true distribution of an Ising model with J = 0.1 vs. the estimated
distribution using draws from the Gibbs with Gradients sampler. (a) 100 draws,
(b) 1000 draws, (c) 10.000 draws.

4.2 Sampling from Ising Models

An Ising model is a binary energy-based model arranged in a graph (usually
a lattice). The correlation between neighbors in the graph depends on the
interaction constant J . In our experiment we compute the effective sample
size for various values of J . If J is low the neighboring nodes are (close to)
independent and as J increases they become more dependent.

In our experiment we create a N×N lattice Ising model where N is between
1 and 20. We take J = 0.1 until J = 0.9 incrementing it by 0.1 each step. For
both Gibbs and Gibbs with Gradients we take 1000 draws for each combination
of N and J and compute the effective sample size and time per draw.
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(a) J = 0.1 (b) J = 0.5

(c) J = 0.9

Figure 4: The number of effective samples (out of 1000 draws) from a Gibbs
Sampler and a Gibbs with Gradients Sampler from 1 to 20 dimensions and
J ∈ { 0.1, 0.5, 0.9 }

Figure 4a shows the effective sample size at J = 0.1. At this value Gibbs
with Gradients outperforms the Gibbs Sampler on low dimensions by a small
amount. Both samplers perform very poorly, even with as little as 5 dimensions.
At J = 0.9 Gibbs with Gradients starts outperforming the Gibbs sampler up
until N = 13, as can be seen in figure 4c. The real difference between the two
samplers can be seen at J = 0.5, when the nodes are only partially correlated.
At this value Gibbs with Gradients easily outperforms the Gibbs Sampler in
terms of the effective sample size (figure 4b). Both samplers clearly struggle
with N greater than 10. That might, however, not be that surprising given that
N = 10 gives 2100 states. The full result can be seen in appendix A.

More interesting than the effective sample size, is the time per effective sam-
ple size. At J = 0.5 Gibbs with Gradients, which outperformed Gibbs in terms
of the effective sample size, only has a lower time per effective sample up until
10 dimensions (figure 5b). After that Gibbs becomes the better sampler when
it comes to time per effective sample. If we compare figure 4b to figure 5b
this makes sense as both samplers struggle to sample from the distribution, but
Gibbs with Gradients has the additional cost of computing the gradient infor-
mation. In general, this makes the Gibbs with Gradients sampler significantly

28



slower on Ising models. Looking at J = 0.1 and J = 0.9 Gibbs with Gradi-
ents performs worse on time per effective sample regardless of the number of
dimensions (figure 5a, 5c).

Gibbs with Gradients outperforms Gibbs when the atomic spins (or nodes)
are partially correlated. That is, it can produce effective samples more efficiently
than Gibbs around J = 0.5. When the atomic spins are highly correlated, or
barely correlated at all, it quickly loses it advantage to the increased cost of
computing the gradient information.

(a) J = 0.1 (b) J = 0.5

(c) J = 0.9

Figure 5: The time per effective sample for both the Gibbs and the Gibbs with
Gradients sampler with a lattice size from 1 up to 20 and J ∈ { 0.1, 0.5, 0.9 }.

4.3 Sampling from Potts Models

As mentioned in section 2.2.3, the Potts model is an extension of an Ising model
which is categorical instead of binary. In this section we will investigate the
effect of increasing the number of categories on the effectiveness of sampling.
We sample from Potts models with 3 up to 10 categories (q).

The first thing to note is that Gibbs with Gradients scales better for higher
values of q. In figure 6 we can see, for J = 0.5, that while the Gibbs sampler is
initially faster, the Gibbs with Gradients sampler matches the speed at q = 7
and surpasses it at q = 10. Other values of J result in similar times. To
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propose a new state the Gibbs sampler has to loop over all categories. This is
faster at a low value of q, but quickly slows down as we increase the number
of categories. On the other hand, Gibbs with Gradients is able to compute the
gradient information with only a slight increase in computational cost. This
gives it an advantage over the Gibbs sampler, making it able to achieve a lower
time per sample.

(a) q = 4, J = 0.5 (b) q = 7, J = 0.5

(c) q = 10, J = 0.5

Figure 6: The time per sample on a Potts model at 4, 7 and 10 categories with
J = 0.5.

We can see the effect of the faster draws for Gibbs with Gradients in the
time per effective sample as well. For nearly all values of q and J Gibbs with
Gradients outperforms the Gibbs sampler. This advantage increases as the
number of categories in the Potts model becomes larger. At q = 10 and J =
0.5 the Gibbs with Gradients sampler can draw an effective sample size at
approximately twice the speed. Besides that, at lower values of q Gibbs with
Gradients is just as fast at drawing effective samples as a Gibbs sampler. It is
therefore a slightly better sampler for Potts models.
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(a) q = 4, J = 0.5 (b) q = 4, J = 0.5

(c) q = 10, J = 0.5

Figure 7: The effect of the number of dimensions and number of categories on
the time per effective sample size for various values of n out and J .

4.4 Sampling from Random Models

Randomly generated models allow us to increase the models to test the samplers
against. We generate models as described in section 3. Some of these models
might be invalid (section 3.4), therefore we will use rejection sampling to gather
a set of models. We sample from a model, and if we find that a model produces
an invalid output we will generate a new one.

Using this method we generate modes with 2, 5, and 10 factors, up to 10
parameters and with p = 0.25, 0.5 and 0.75. p being the probability that a
parameter is connected to a factor in the factor graph. For each combination of
these values we generate 100 random models giving us a total of 8100 models.
From these models we take 1000 draws each and compute the effective sample
size, the time per effective sample and the time per sample.

Figures 8 and 9 show the effective sample size for sparse and dense models
respectively. Similar to Ising and Potts models we see that the effective sample
size is larger for the Gibbs with Gradients sampler. However, where the Gibbs
sampler performs almost equally well on all 100 models for a given number of
parameters, the effective sample size of the Gibbs with Gradients sampler has
a much higher standard deviation. This is likely caused by models where the
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gradients are relatively uninformative due to their random nature.

(a) 2 factors (b) 5 factors

(c) 10 factors

Figure 8: The effective sample size on sparse random models (p = 0.25) with 2,
5 and 10 factors.
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(a) 2 factors (b) 5 factors

(c) 10 factors

Figure 9: The effective sample size on dense random models (p = 0.75) with 2,
5 and 10 factors.

When we look at the time per sample (figure 10) we can see that for all
values of p the time per sample increases in a similar fashion. It is no surprise
that the time per sample slowly increases, as we generate each factor with a
list of functions with length equal to the number of parameters. Increasing
the p value results in a steeper increase in the time per sample. This can be
explained by the fact that a higher p value will increase the expected number of
parameters for each factor, thus making them computationally more expensive.
Figure 10 shows the results for 5 factors, but similar results are found for 2 and
10 factors (see Appendix B). The Gibbs with Gradients sampler is about 2.5-4
times slower than the Gibbs sampler. This is a major impact on the sampling
performance and would require a large increase in the effective sample size to
be worth it.
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(a) p = 0.25 (b) p = 0.5

(c) p = 0.75

Figure 10: The time per sample on random models with 5 factors and varying
factor densities.

Indeed, if we measure the time per effective sample, the Gibbs with Gradients
sampler is outperformed by the Gibbs sampler. Figure 11 show the time per
effective sample for 2, 5, and 10 factors. While both samplers have a higher
time per effective sample if we increase the number of factors, the Gibbs sampler
always performs better than the Gibbs with Gradient sampler. For other values
of p similar, and even more extreme, differences have been found. Always in
the favour of the Gibbs sampler. The additional computational cost of Gibbs
with Gradients has no additional benefits on our randomly generated models.
For these models, the Gibbs sampler always outperforms Gibbs with Gradients
with the additional benefit that it is a far simpler algorithm.
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(a) 2 factors (b) 5 factors

(c) 10 factors

Figure 11: The time per effective sample on random models with 2, 5, and 10
factors and p = 0.25.

5 Conclusions

We have analyzed the performance of samplers in terms of effective sample
size, time per effective sample and time per sample. Using these metric, we
compared two Markov Chain Monte Carlo samplers; the Gibbs sampler and the
Gibbs with Gradients sampler. W. Grathwohl et al. [17] claimed that the latter
outperforms the Gibbs sampler. We tested this claim against various models.

The first model we used was the Ising model, a model of ferromagnetism in
statistical mechanics. Additionally, we sampled from Potts models, an extension
of the Ising model with categorical values. Lastly, we generated random models
where each factor in the factorization is a distribution from the exponential
family and sampled from those.

Sampling from Ising models showed that, while Gibbs with Gradients man-
ages to have a higher effective sample size, it failed to do this fast enough. The
time per sample was significantly slower, resulting in a worse time per effective
sample. This difference in sampling speed caused an increase in time per effec-
tive sample of up to three times. Therefore, it is faster to approximate expected
values using the Gibbs sampler, making it the better choice for Ising models.

Potts models with few categorical values gave similar results, as that of the
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Ising model. However, increasing the number of categorical values per parameter
resulted in a significant decrease in the speed of the Gibbs sampler. Something
by which the Gibbs with Gradients sampler was affected far less. Gibbs with
Gradients seems to perform better on models with categorical parameters. The
question remains whether this holds for other models with non-binary parame-
ters.

Generating thousands of random models gave a more complete picture of
the relative performance of the samplers. Gibbs with Gradients improves the
effective sample size, as that was higher for nearly all tested randomly generated
models. But, as we have seen with the Ising models, it lacks the sampling speed
to truly compete with the Gibbs sampler. For random models, we see that the
time per effective sample is again worse than that of the Gibbs sampler.

These experiments have allowed us to answer our research questions as stated
in section 1:

How many draws can Gibbs with Gradients generate per second?
How does this compare to other samplers?
For binary parameter discrete models, Gibbs with Gradients is a constant fac-
tor slower than the Gibbs sampler. Increasing the number of values for the
parameter from binary to n categorical values, gives the advantage to Gibbs
with Gradients for higher values of n.

How many effective samples can be drawn per second? Is Gibbs with
Gradients able to draw more effective samples in the same amount of
time?
Gibbs with Gradients is able to get a higher effective sample size. The slower
sampling speed for models with binary parameters makes the effective sample
size per second lower than that of the Gibbs sampler. For models with param-
eters with many categorical values both the sampling speed and the effective
sample size are higher for Gibbs with Gradients and as a result the effective
sample size per second is higher as well.

How does an increasing number of dimensions affect the sampling
speed and effective sample size?
For both samplers the number of dimensions affects the effective sample size
strongly. In Ising and Potts models, increasing the size of the sides of the lat-
tice by one, severely decreases the effective sample size. In random models the
effective sample size becomes less than 10% of the number of draws at as little
as 10 dimensions.

How does Gibbs with Gradients compare to other discrete samplers,
based on effective sample size, speed, and scalability to higher dimen-
sions?
Gibbs with Gradients is clearly the better sampler when comparing the effective
sample size to the Gibbs sampler, as is claimed by W. Grathwohl et al. [17].
However, due to the increased computational cost of the gradient information,
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it does not have the sampling speed to give a practical advantage over the Gibbs
sampler. Models with parameters with many categorical values might be the
exception, but this would require further research.

6 Open questions

In section 4.3 we saw that Gibbs with Gradients could outperform the Gibbs
sampler when the number of categorical values increased. One of the remaining
open questions is whether these results will hold for more than 10 categorical
values. And more generally, is there a class of models for which Gibbs with
Gradients outperforms other state of the art samplers?

Secondly, section 4.4 discussed the results of sampling from random models.
Due to the random nature of those models, it might have been the case that the
gradients were simply too uninformative for Gibbs with Gradients. This raises
a similar question as stated above, but more specifically it raises the question
how the shape of the distribution affects Gibbs with Gradients. As Gibbs with
Gradients makes of use the fact that most discrete distribution use an under-
lying continuous distribution, which is evaluated only at discrete points. These
underlying continuous distributions do not have to be unique, as there can be
infinitely many continuous distributions resulting in the same likelihood on some
set of discrete values. Being able to effectively sample from a discrete distri-
bution using gradient information relies heavily on these underlying continuous
distributions. It would be interesting to see how Gibbs with Gradients would
be effected by the choice of these distributions and how the gradients within
those distribution affect the performance.

A more general problem facing these locally-informed samplers, is that they
can easily get trapped in areas surrounded by low probability. If the Gibbs with
Gradients sampler is in a state where each neighbor with hamming distance 1
has probability 0, it will never get out of that state. The same problem exists
for the neighborhoods with hamming distances greater than 1, except that every
neighbor of hamming distance up to some value k has to have a probability of
0. It might be that being locally-informed is not the best way to sample from
models with discrete parameters. This problem is not unique to models with
discrete parameters, as most samplers for models with continuous parameters
can just as well get stuck in states surrounded by low probabilities. Solving this
problem might benefit MCMC samplers, but might also prove to be very hard.

Lastly, a new sampler has been proposed by Sun et al. [43]. Their proposed
Path Auxiliary Sampler (PAS) uses path auxiliary proposals, that is, proposals
with hamming distance up to some value k. They claim that increasing the
search space for the proposals can significantly improve Gibbs with Gradients.
Besides this, they propose a faster version of their algorithm, named PAFS.
As the main problem with the Gibbs with Gradients sampler is that the time
per effective sample is usually worse than the Gibbs sampler, PAFS, or maybe
even PAS, might provide us with a better alternative. Further research could
compare PA(F)S to the Gibbs and Gibbs with Gradients samplers.
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A Ising model result graphs

Figure 12: Gibbs Sampler: The effective sample size of an N ×N lattice Ising
model.
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Figure 13: Gibbs with Gradients Sampler: The effective sample size of an N×N
lattice Ising model.
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B Random model result graphs

(a) p = 0.25 (b) p = 0.5

(c) p = 0.75

Figure 14: The effective sample size on random models with 2 factors and
varying factor densities.
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(a) p = 0.25 (b) p = 0.5

(c) p = 0.75

Figure 15: The effective sample size on random models with 10 factors and
varying factor densities.
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