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ABSTRACT. When studying elliptic curves over a field K one can define their n-torsion
fields to be K adjoined with the x, y-coordinates of the n-torsion points. Then we can
look at the Galois representations associated to these n-torsion fields and ask when these
representations are surjective. It turns out that there are multiple ways in which the im-
age can fail to be surjective, corresponding to different kinds of entanglement. We focus
mainly on so-called horizontal entanglements and different ways in which these can occur.
Of particular interest will be Weil entanglement and Serre entanglement. The latter occurs
because of the fact that the discriminant of an elliptic curve is always contained in a cy-
clotomic field, as implied by the Kronecker-Weber theorem. One of the main contributions
will be on how Serre entanglement induces horizontal entanglement. Furthermore we will
study Weil entanglement by looking at the conductor of corresponding quadratic and cubic
number fields.
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1 Introduction

For an elliptic curve E/Q it is a fact that the torsion subgroup of E, given by E[n], is a
Z/nZ-module for n ∈ N isomorphic to Z/nZ × Z/nZ. The automorphisms of E[n] form
a group, denoted by Aut(E[n]), which is isomorphic to GL(2,Z/nZ). A Galois represen-
tation is defined as a continuous group homomorphism from the absolute Galois group
GQ := Gal(Q̄/Q) to a general linear group GL(n,R) with R a topological ring. We have
that σ ∈ GQ permutes n-torsion points of E, and therefore this gives rise to a Galois
representation

ρE,n : GQ → Aut(E[n]) ∼= GL(2,Z/nZ).

We also have the following Galois representations, induced by the ℓ-adic Tate module Tℓ(E)
and adelic Tate module T (E):

ρE,ℓ∞ : GQ → Aut(Tℓ(E)) ∼= GL(2,Zℓ),

ρE : GQ → Aut(T (E)) ∼= GL(2, Ẑ).

The different reasons for which the images of these Galois representations can be non-
surjective are defined as entanglement, which is mainly divided in vertical entanglement
and horizontal entanglement. Vertical entanglement happens when ρE,ℓ∞ is non-surjective
for some prime ℓ, while horizontal entanglement happens when ρE,n is non-surjective but
ρE,pe is surjective for all p primes such that pe | n. This occurs when Q ⊊ Q(E[a])∩Q(E[b])
for a, b coprime divisors of n, as we will show in Chapter 3.

There has been a lot of research already aimed at understanding when the full represen-
tation ρE is non-surjective, see for instance [5],[8],[9],[11],[27],[28]. If E has no CM then it
has been shown by Serre [33] that the image of ρE is always an open subgroup of GL(2, Ẑ)
and therefore it has finite index iE . This is refered to as Serre’s open image theorem. Serre
also showed that iE is always ≥ 2 for an elliptic curve over Q, so the full representation
is never surjective. For E/Q an elliptic curve with CM we have that the image of the full
representation is very small [4].

In Chapter 2 we will start by listing necessary properties of elliptic curves and results of
Galois theory. Then we will be able to define the notion of Galois representations and in
particular Galois representations of elliptic curves.

Then in Chapter 3 we will define different kinds of entanglement, starting with vertical
and horizontal entanglement, mainly following [11]. We will then focus in more detail on
Serre entanglement, which is entanglement induced by Q(∆E) ⊆ Q(E[2])∩Q(ζn) for some
n ≥ 3 with ∆E being the discriminant of E. Some new contributions done by myself are
for instance showing in what ways Serre entanglement is responsible for a smaller image
of ρE and providing infinite non-isomorphic families of elliptic curves over Q which have
Serre entanglement for specific n ≥ 3.
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In Chapter 4 we will introduce modular curves. By studying non-cuspidal rational points
on the modular quotient curve XH with H ⊆ GL(2,Z/NZ)/{−I}, one can try to classify
all elliptic curves E/Q for which Im(ρE,N ) is conjugate to a subgroup of H. This is
called Mazur’s Program B [24] and has been extensively studied, see for example [27], [28].
For instance in [27] all elliptic curves over Q are classified which have a certain form of
vertical ℓ-entanglement by studying rational points on the modular quotient curve XH with
H ⊆ GL(2,Zℓ)/{−I}.

Finally in Chapter 5 we will focus in more detail on Weil entanglement, which for instance
occurs for elliptic curves with a rational point of order p with p prime and is induced by
Q(P ) ⊆ Q(E[p])∩Q(ζn) for some n ∈ N. Here n is equal to the conductor of Q(P ), which
is an abelian cyclic field. We will mainly focus on the cases where p = 2, 3. I contributed
to this topic by studying the conductor of Q(P ), which is the smallest integer n ≥ 1 for
which Q(P ) ⊆ Q(ζn), and using this to pinpoint where the Weil entanglement occurs. We
will also list infinite families of non-isomorphic elliptic curves over Q which have certain
forms of Weil entanglement, following [11].
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2 Galois representations of elliptic curves

2.1 Elliptic curves

We start this chapter by stating a few important properties of elliptic curves. For this
subsection we refer to [35].

Definition 2.1. Let K be a field. An elliptic curve E defined over K is a projective
curve described by the homogenisation of a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ K and ∆E ̸= 0. ∆E is called the discriminant of E and is a polynomial
expression in the coefficients ai. Another important variable is the j-invariant of E,
usually referred to as j(E). E also has the point at infinity O := (0 : 1 : 0) ∈ P2(K).

An important property of the aforementioned j-invariant is that for elliptic curves E,E′/K
we have that E ∼= E′ over K̄ if and only if j(E) = j(E′) [35,III.1.4].

We have that if char(K) ̸= 2, 3, then every elliptic curve E : y2+a1xy+a3y = x3+a2x
2+

a4x + a6, over K is isomorphic to an elliptic curve E′ over K given by a so-called short
Weierstrass equation

E′ : y2 = x3 +Ax+B (1)

with A,B ∈ K [35, III.1.3]. In this case we have

∆E = −16 · (4A3 + 27B2) and j(E) = 1728 · 4A3

4A3 + 27B2
.

In this case the isomorphism between E and E′ is given by

(x, y)→
(
x− 3(a21 + 4a2)

36
,

1

216
(y − a1x− a3)

)
.

Note that this isomorphism is defined over K. For such an elliptic curve E/K we say that
E can be written in short Weierstrass form.

We have that rational maps between elliptic curves E,E′/K are called isogenies, which are
given by rational maps of algebraic curves for which OE is sent to OE′ . If these maps are
not the zero map, then they always have a finite kernel [35, III.4.9]. If K is separable we
say that E has a n-isogeny if it has an isogeny with kernel of order n. This is also known
as the degree of the isogeny. If an isogeny has an inverse map which is also an isogeny,
we call it an isomorphism. We furthermore have that the set of endomorphisms End(E)
of isogenies from E(K̄) → E(K̄) forms a group and for most elliptic curves we have that
End(E) is isomorphic to Z. If End(E) is strictly larger then we say that E has complex
multiplication, or in short that E has CM.
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Later on we shall mainly focus on elliptic curves defined over Q, and as char(Q) = 0 every
elliptic curve over Q is isomorphic over Q to an elliptic curve which can be written in short
Weierstrass form. We also denote the following lemma, which we shall use a couple of
times in later chapters.

Lemma 2.2. Let E,E′/Q be elliptic curves such that E ∼= E′ over Q̄. Then ∆E ≡ ∆E′

(mod (Q∗)2).

Proof: First of all we have that every elliptic curve over Q is isomorphic over Q to an
elliptic curve of the form E : y2 = x3+Ax+B by the isomorphism given in Definition 2.1.
So we get that E,E′ are isomorphic respectively to Ē : x3+Ax+B and Ē′ : x3+A′x+B′

with A,A′, B,B′ ∈ Q. Therefore Ē ∼= Ē′ over Q̄ as well. We have by [35, III.1.3] that
an isomorphism between these two curves corresponds to an element u ∈ (Q̄)∗ such that
u4A = A′, u6B = B′. If A,B ̸= 0 this implies that u4 ∈ Q∗ and that u6 ∈ Q∗, but then
u2 = u6

u4
∈ Q∗ as well. If A = 0 = A′ we only get that u6 ∈ Q∗ and If B = 0 = B′ we only

get that u4 ∈ Q∗. In all cases we get that u12 is a square. As [35, III.1.3] also gives that
u12∆Ē = ∆Ē′ we get that ∆Ē and ∆Ē′ differ a square. Furthermore when looking at the
explicit isomorphism given in Definition 2.1 between E and Ē, we find in [35, Table 3.1]
with u = 1

6 that ∆E and ∆Ē differ by (16)
12 which is a square. The same argument holds

true for E′ and Ē′ and so

∆E ≡ ∆Ē ≡ ∆Ē′ ≡ ∆E′ (mod (Q∗)2).

We continue with elliptic curves over general fields K. We write E(K̄) (sometimes denoted
as just E) for the set of points with coordinates in K̄ that satisfy the Weierstrass equation
defining E. We write E(K) for the points on E with coordinates in K, often called the
rational points on E. An important property of elliptic curves is that while the curve itself
is defined in geometric terms, we have that its points E(K̄) form an abelian group. The
addition formulas which explicitly give the operation of this group can be found in [35,
III.2.3]), and are given by rational functions over Q. The identity element of E(K̄) is the
point O, and E(K) is a subgroup of E(K̄). It turns out that isogenies of elliptic curves
preserve this group structure.

For every n ≥ 1 we therefore define the n-torsion group

E[n] := {P ∈ E | [n]P = O},

where [n] : E → E is the multiplication by n map sending a point P to the sum of itself
n times. Note that the map [n] is a group homomorphism. An element of E[n] we call an
n-torsion point. We similarly have that E[n](K) consists of all n-torsion points which lie
in E(K) (rational n-torsion points) and that this forms a subgroup of E[n].
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We have for every elliptic curve E/K and n ≥ 2 coprime to char(K) that

E[n] ∼= Z/nZ× Z/nZ

as can be seen in [35, III.6.4]. This implies in particular for elliptic curves E/Q that we
have for n ≥ 2 that E[n] ∼= Z/nZ× Z/nZ.

2.1.1 Tate module

Before we define the Tate module of an elliptic curve we first quickly recall the notion of
inverse limits, as seen in Definition 1.2 in [23]. Let {Ai}i∈I be a collection of groups (or
sets, rings, topological spaces) with I a partially ordered set and let ϕij : Ai → Aj for j ≤ i
be morphisms (maps, homomorphisms, continuous maps) for which ϕii : Ai → Ai = idAi

and ϕij ◦ ϕjk = ϕik for k ≤ j ≤ i. These maps we call projection maps. Then we define
the inverse limit of ({Ai}, {ϕij}) as follows:

Definition 2.3. The inverse limit of ({Ai}, {ϕij}) is given by

lim←−
i

Ai := {(ai)i∈I ∈
∏
i∈I

Ai | ϕij(ai) = aj for all j ≤ i}.

In the case of topological spaces we endow lim←−
i

Ai with the subspace topology obtained by

the inclusion lim←−
i

Ai ⊆
∏
i∈I

Ai.

Example 2.4. An example of an inverse limit is the ℓ-adic integers Zℓ given by lim←−
n

Z/ℓnZ.

We take the standard ordening on N and the projection maps are given by the standard
maps

Z/ℓnZ (mod ℓm)−−−−−−−→ Z/ℓmZ

for m ≤ n. Another example is the so-called profinite integers Ẑ = lim←−
n

Z/nZ where we

take m ≤ n if and only if m | n as ordening on N with projection maps

Z/nZ (mod m)−−−−−−−→ Z/mZ.

Similar to the inverse limit construction of ℓ-adic numbers we have the following inverse
limit obtained by taking the limit of the ℓn-torsion groups of an elliptic curve:

Definition 2.5. Let E/K be an elliptic curve and ℓ prime. Then we have the ℓ-adic Tate
module of E given by

Tℓ(E) := lim←−
n

E[ℓn],

where the limit is defined by the multiplication by ℓ maps [ℓ] : E[ℓn+1] −→ E[ℓn].
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By [35, III.6.4] we also have for every n ≥ 1 that E[n] is a finite Z/ℓnZ-module, so
this implies that Tℓ(E) has the structure of a Zℓ-module. We therefore get the following
proposition for the structure of the ℓ-adic Tate module:

Theorem 2.6. [35, III.7.1]
We have for the ℓ-adic Tate module that:
(a) Tℓ(E) ∼= Zℓ × Zℓ if ℓ ̸= Char(K),
(b) Tℓ(E) ∼= {0} or Zℓ if ℓ = Char(K).

Proof: Let ℓ be a prime such that ℓ ̸= Char(K). Then we have for all n ≥ 1 that
E[ℓn] ∼= Z/ℓnZ × Z/ℓnZ as Z/ℓnZ-modules. We also have the following commutative
diagram:

E[ℓn+1] E[ℓn]

(Z/ℓn+1Z)× (Z/ℓn+1Z) (Z/ℓnZ)× (Z/ℓnZ)

[ℓ]

∼= ∼=

mod ℓn

To show that this diagram commutes we note that [ℓ] is a surjective map by [35, II.2.3]
combined with the fact that [ℓ] is non-constant [35, III.4.2]. If P,Q is a basis for E[ℓn+1],
we get that [ℓ]P, [ℓ]Q is a basis for E[ℓn] by surjectivity of [ℓ] combined with the fact
that [ℓ] is a group homomorphism. But this equivalent to commutativity of the diagram
above, which tells us that the isomorphisms E[ℓn] ∼= Z/ℓnZ × Z/ℓnZ for n ≥ 1 can be
extended to an isomorphism between the inverse limits of both these objects. Therefore
we get Tℓ(E) ∼= Zℓ × Zℓ as Zℓ-modules. If ℓ = Char(K) then for all n ≥ 1 we have that
E[ℓn] ∼= {0} or for all n ≥ 1 we have that E[ℓn] ∼= Z/ℓnZ and this also clearly induces an
isomorphism on the level of inverse limits. So in these cases Tℓ(E) ∼= {0} or Tℓ(E) ∼= Zℓ.

Furthermore we can also copy the construction of the profinite integers Ẑ = lim←−
n

Z/nZ to

get the adelic variant of the Tate module:

Definition 2.7. Let E/K be an elliptic curve. Then we have the adelic Tate module
of E given by

T (E) := lim←−
n

E[n],

where the projection maps are given for n | m. If m = kn then this is the map [k] :

E[kn]
[k]−→ E[n].
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Remark 2.8. We get that T (E) has the structure of a Ẑ module. If Char(K) = 0 (for
instance if K = Q) then we get by the same argument as for the ℓ-adic Tate module that

T (E) ∼= Ẑ× Ẑ.

Also note that for the profinite integers Ẑ we have that Ẑ ∼=
∏
ℓ

Zℓ, and similar to this we

get for Tate modules that

T (E) ∼=
∏
ℓ

Tℓ(E).

2.1.2 Weil pairing

We end this subsection by introducing the Weil pairing. We will not give the explicit
definition, which can be found in [35, III.8], but we state the following proposition:

Theorem 2.9. [35,III.8.1] Let µn ⊆ (K̄)∗ be the group of n-th roots of unity. Then the
Weil en-pairing is given by a map

en : E[n]× E[n]→ µn

with the following properties:
(a) It is bilinear:

en(S1 + S2, T ) = en(S1, T )en(S2, T ),

en(S, T1 + T2) = en(S, T1)en(S, T2).

(b) It is alternating:
en(T, T ) = 1.

In particular this implies that en(S, T ) = en(T, S)
−1.

(c) It is non-degenerate:

If en(S, T ) = 1 for all S ∈ E[n], then T = O.

(d) It is Galois invariant:

σ(en(S, T )) = en(σ(S), σ(T )) for all σ ∈ Gal(K̄,K).

Here σ(P ) with P = (x, y) is defined as σ(P ) := (σ(x), σ(y)) and σ(O) = O as O is defined
over K.

(e) It is compatible with projections:

enn′(S, T ) = en([n
′]S, T ) for all S ∈ E[nn′] and T ∈ E[n].
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2.2 Galois theory and Galois representations

This subsection we introduce the notion of general Galois representations, after which we
will focus our attention on Galois representations of elliptic curves.

2.2.1 Galois Theory

We start by listing a few important facts from Galois theory. We will mainly use [3] and
[23] as a reference.

Let K be a field and let L/K be a finite field extension of K. Then we have the following
definition of its Galois group:

Definition 2.10. Let K be a field and let L/K be a finite field extension of K. Then we
define the Galois group of L/K as

Gal(L/K) := Aut(L/K) = {σ ∈ Aut(L) | σ|K = idK}.

Recall that an algebraic extension L/K is normal if every irreducible polynomial over K[X]
with a root in L has all roots in L, and L/K is separable if every irreducible polynomial over
K[X] with roots in L has no roots with multiplicity bigger than 1. For L/K both normal
and separable we have that |Gal(L/K)| = [L : K] and we call L a Galois extension
of K. For these extensions we have that K is precisely the subfield of L on which all
σ ∈ Gal(L/K) restrict to the identity.

Example 2.11. An easy example of a Galois extension is a quadratic extension. For
instance Q(

√
2) is a Galois extension with Galois group isomorphic to Z/2Z. It is generated

by the element σ of order 2 sending
√
2 → −

√
2. We also have for every integer n the

cyclotomic field Q(ζn) given by adjoining Q with a primitive n-th root of unity (i.e. an
element ζn for which ζnn = 1). These cyclotomic fields are also Galois extensions with
Galois group Gal(Q(ζn)/Q) ∼= (Z/nZ)∗ by the homomorphism σ → α where α is given by
σ(ζn) = ζαn for ζn ∈ µn.

We have even more, which is called the fundamental theorem of Galois theory. This
states that there is a one-to-one connection between intermediate fields K ⊆ M ⊆ L and
subgroups H of Gal(L/K). Note that for an intermediate field M with K ⊆ M ⊆ L
we have that L/M is again a Galois extension [3, Theorem 8.3.6]. We also define for a
subgroup H of Gal(L/K) its fixed field

LH := {x ∈ L | σ(x) = x for all σ ∈ H}.

Now we state the theorem:

Theorem 2.12. [3,Theorem 9.2.1, Theorem 9.2.2] Let L/K be a Galois extension. Then
there is a one-to-one correspondence between intermediate fields K ⊆M ⊆ L and subgroups
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H of Gal(L/K) given by the map:

M → Gal(L/M),

its inverse being
H → LH .

The intermediate fields K ⊆ M ⊆ L with M/K a Galois extension correspond to normal
subgroups of Gal(L/K). In this case we have that

Gal(M/K) ∼= Gal(L/K)/Gal(L/M).

Remark 2.13. Note that this correspondence is inclusion-reversing: If we have K ⊆M ⊆
M ′ ⊆ L with L/K Galois, then we have that Gal(L/M ′) ⊆ Gal(L/M). For instance if we
have an element σ ∈ Gal(L/M ′), then σ is the identity on M ′ and therefore also on M . So
σ ∈ Gal(L/M). Conversely if we have that H ⊆ H ′ ⊆ Gal(L/K), then LH

′ ⊆ LH as every
element which is fixed by H ′ is also fixed by H.

Example 2.14. As an example we look at the Galois extension Q(
√
2,
√
3). We have

that an element σ of its Galois group is determined by what it does on
√
2 and

√
3. It

must send zeroes of polynomials to zeroes of the same polynomials, so σ can only send√
2 to ±

√
2 and

√
3 to ±

√
3. We get that Gal(Q(

√
2,
√
3)/Q) ∼= Z/2Z× Z/2Z. Its normal

proper non trivial normal subgroups are {0} × Z/2Z and Z/2Z × {0} and we summarize
the correspondence between these normal subgroups and their fixed fields in the following
diagram:

Q(
√
2,
√
3) {e}

Q(
√
2) Q(

√
3) Z/2Z Z/2Z

Q Z/2Z× Z/2Z

Definition 2.15. We define the compositum L1L2 of two fields L1, L2/K as the smallest
field extension of K containing both L1, L2 as subfields.

We have the following two lemmas concerning the intersection and compositum of two
Galois extensions.
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Lemma 2.16. Let L/K be a Galois extension of K and let L1, L2 ⊆ L be two intermediate
subfields of L. Then

Gal(L/L1 ∩ L2) ∼= ⟨Gal(L/L1),Gal(L/L2)⟩,

which is the subgroup of Gal(L/K) generated by elements of Gal(L/L1) and Gal(L/L2.

Proof: Let H1 := Gal(L/L1) and let H2 := Gal(L/L2). Then we claim that

Gal(L/L1 ∩ L2) ∼= ⟨H1, H2⟩.

Let x ∈ L1∩L2 and let σ ∈ H := ⟨H1, H2⟩, then σ is the finite composition of σi ∈ H1 and
τj ∈ H2, write σ = σ1·...·τ1·...σn·...·τm. We get that σ(x) = σ1(x)·...·τ1(x)·...σn(x)·...·τm(x).
As x ∈ L1∩L2 we get that σi and τj leave x fixed and so σ leaves x fixed. This implies that
x ∈ LH = {x ∈ L | σ(x) = x for all x ∈ H} and so L1∩L2 ⊆ LH . As H1 ⊆ H and H2 ⊆ H
we get by Remark 2.13 that LH ⊆ LH1 = L1 and LH ⊆ LH2 = L2, so L

H ⊆ L1 ∩ L2. This
now gives that L1 ∩ L2 = LH and so H = Gal(L/L1 ∩ L2).

Lemma 2.17. Let L1, L2/K be Galois extensions of K. Then the compositum L := L1L2

is also a Galois extension of K. We have that the group homomorphism

ϕ : Gal(L/K)→ Gal(L1/K)×Gal(L2/K)

defined by
ϕ(σ) = (σ|L1 , σ|L2)

is an isomorphism if and only if L1 ∩ L2 = K.

Proof: We first show that L is finite. We have that L1 is a finite extension, so [L1 : K] = n
for some n ∈ N. Let α1, ..., αn be a generating set for L1. We have that L2 is also finitely
generated, so L2(α1) is finitely generated as well. We inductively see that

L2 ⊆ L2(α1) ⊆ ... ⊆ L2(α1, ..., αn)

and so that L2(α1, ..., αn) is finitely generated. As L1 ⊆ L2(α1, ..., αn) ⊆ L we must have
that L2(α1, ..., αn) = L as L was the smallest field containing both L1 and L2. So L is
finitely generated and [L : K] = d for some d ∈ N. If we have α ∈ L, then 1, α, ..., αd must
form a linearly dependent set of vectors over K, so there exist c0, ..., cd ∈ K such that
0 = c0 + c1α+ ...+ cdα

d. But this gives an element in K[x] defined by c0 + c1x+ ...+ cdx
d

for which α is a root and so α is algebraic. Therefore L/K is an algebraic extension.

Note that if K̄ is an algebraic closure of K then we define its Galois group by Gal(K̄/K) ∼=
lim←−
M

Gal(M/K) with M/K finite Galois. By Lemma 9.3.2 in [3] we get that L is normal
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if and only if for σ ∈ Gal(K̄/K) we have that σ(L) ⊆ L. As L1, L2 are normal we get
for σ ∈ Gal(K̄/K) that σ(L1) ⊆ L1 and so all αi get mapped into L1. We also get that
σ(L2) ⊆ L2 and so σ(L) ⊆ L as L = L2(α1, ..., αn). Therefore L is normal.

For separability we take α ∈ L. Then α ∈ L2(α1, ..., αn). If [L2 : K] = m for some m ∈ N
and we take β1, ..., βm as a generating set for L2, then L = K(α1, ..., αn, β1, ..., βm) with
α1, ..., αn, β1, ..., βm separable as L1, L2 are separable. So α = k1α1 + ... + knαn + l1β1 +
... + lmβm with k1, ..., kn, l1, ..., lm ∈ K. As sums and products of separable elements are
separable we get that α is separable. Therefore L is separable and we conclude that L is
a Galois extension.

Let the map
ϕ : Gal(L/K)→ Gal(L1/K)×Gal(L2/K)

be given by
ϕ(σ) = (σ|L1 , σ|L2).

Note that σ|L1 is well defined as L1 is normal and so σ(L1) ⊆ L1, similarly for L2. This is a
group homomorphism as (σ+ τ)L1 = σ|L1 + τ |L1 for σ, τ ∈ Gal(L/K) and similarly for L2.
If σ|L1 = idL1 and σ|L2 = idL2 then σ = idL as every element of L is a linear combination
of elements in L1 and L2. So ϕ is an injective group homomorphism.

Assume L1∩L2 = K. Let (σ1, σ2) ∈ Gal(L1/K)×Gal(L2/K) and write L1 = K(α1, ..., αn)
and L2 = K(β1, ..., βm). We have that σ1 as a map is completely determined by its image
of α1, ..., αn and σ2 by its image of β1, ..., βm. As L1 ∩ L2 = K we get that αi ̸= βj
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. As an element of Gal(L/K) is completely determined
by its image of α1, ..., αn, β1, ..., βm we get that σ1, σ2 together give rise to an element
σ ∈ Gal(L/K) for which σ|L1 = σ1 and σ|L2 = σ2. So in the case where L1 ∩ L2 = K we
get that ϕ is also surjective. If L1 ∩ L2 ̸= K, then there exists a αi that is a K-rational
combination of βj , ..., βl. This implies that σ1, σ2 do not necessarily give rise to an element
σ ∈ Gal(L/K) as then σ1(αi) is dependent on σ|L2(βj), ..., σ|L2(βl). So ϕ is surjective if
and only if L1 ∩ L2 = K.

Galois theory provides us with the ability to prove the following theorem, which states that
every prime cyclotomic field has a unique quadratic subfield.

Theorem 2.18. Let p be an odd prime number and let ζp be a primitive p-th root of unity.
Then the prime cyclotomic field Q(ζp) has a unique quadratic subfield given by Q(

√
ϵp)

where ϵ = (−1)
p−1
2 .

Proof: We want to show Q(ζp) has a unique quadratic subfield. To show the existence of
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this quadratic subfield we will make use of the so called Gaussian sum

τ =
∑

0≤i<p
ζi

2

p .

Note that τ ∈ Q(ζp). We have the following important fact for the p-th root of unity ζp,
namely that

∑
0≤n<p ζ

i
p = 0. This can be seen by studying the minimal polynomial of ζp,

which is given by
xp − 1

x− 1
= xp−1 + xp−2 + ...+ x+ 1.

If we evaluate this polynomial at ζp we get

0 =
ζpp − 1

ζp − 1
= ζp−1

p + ζp−2
p + ...+ ζp + 1 =

∑
0≤i<p

ζip.

We now claim that τ τ̄ = p. Note that for roots of unity we have that ζip = ζ−ip for all

0 ≤ i < p, as ζip · ζip = |ζip|2 = 1. So we get that

ττ =
∑

0≤i<p
ζi

2

p ·
∑

0≤j<p
ζ−j

2

p =
∑

0≤i,j<p
ζi

2

p · ζ−j
2

p =
∑

0≤i,j<p
ζ(i−j)(i+j)p .

We see that the values of i− j modulo p cover every value in Z/pZ if we vary i and j, and
so we can substitute i − j with r ∈ Z such that 0 ≤ r < p. We get that i + j = r + 2j
which for fixed r also covers every value in Z/pZ if we vary j, so we can substitute this
as well with the variable s such that 0 ≤ s < p. We can therefore rewrite the sum as the
following:

ττ =
∑

0≤r,s<p
ζrsp .

If r = 0 then we get that ζrsp = 1 for all 0 ≤ j < p and therefore we get that

ττ = p+
∑

1≤r<p,0≤s<p
ζrsp .

Now note that for each fixed 1 ≤ r < p we have that∑
0≤s<p

ζrsp =
∑

0≤s<p
ζsp = 0

as rs covers the same values as s if we vary s because r ̸≡ 0 (mod p). We conclude that
ττ = p.

Now we show that either τ is a real number, or it is totally imaginary. Recall that p is an
odd prime, so p ≡ 1, 3 (mod 4). We claim that if p ≡ 1 (mod 4), then τ ∈ R and if p ≡ 3
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(mod 4) then τ/i ∈ R. First assume p ≡ 1 (mod 4), then we have that −1 is a square
modulo p. If −1 ≡ a2 ≡ (mod p) for some a ∈ Z/pZ with a ̸≡ 0 (mod p), then we get
that

τ =
∑

0≤i<p
ζ−i

2

p =
∑

0≤i<p
ζ(ai)

2

p .

As ai covers every value in Z/pZ if we vary i (because a ̸≡ 0 (mod p)) we get that

τ =
∑

0≤i<p
ζ(ai)

2

p =
∑

0≤i<p
ζi

2

p = τ

and therefore τ is real.

Now conversely assume that p ≡ 3 (mod 4). In this case −1 is not a square modulo p.
As half of the elements of (Z/pZ)∗ are quadratic residues, we claim that multiplying those
elements with −1 gives the other half of the elements of (Z/pZ)∗ which are not quadratic
residues. If this was not the case, then i ≡ a2 (mod p) and −i ≡ b2 (mod p) for some
i, a, b ∈ (Z/pZ)∗. But then −1 ≡ (ab )

2 (mod p) with a
b ∈ (Z/pZ)∗ which cannot be. So we

get that

τ + τ =
∑

0≤i<p
ζi

2

p +
∑

0≤j<p
ζ−j

2

p = 2 ·
∑

0≤i<p
ζip = 0

which implies that τ = −τ and therefore τ must be fully imaginary.

We have now shown that if p ≡ 1 (mod 4) we have that τ2 = ττ = p, as τ is real and so
τ = τ . In this case we have that

√
p = τ ∈ Q(ζp) and therefore Q(

√
p) ⊆ Q(ζp).

In the other case where p ≡ 3 (mod 4) we get that τ = −τ and so τ2 = −ττ = −p. We
now have that τ =

√
−p and so Q(

√
−p) ⊆ Q(ζp).

We conclude that Q(
√
ϵp) ⊆ Q(ζp) where ϵ = (−1)

p−1
2 . To show that this is the unique

quadratic subfield we need some Galois theory. We have that Gal(Q(ζp)/Q) ∼= (Z/pZ)∗,
which is a cyclic group of order p− 1. Because p is odd, this number is even, and as every
cyclic group with order n has a unique subgroup of order d for every d | n, we get that
Gal(Q(ζp)/Q) has a unique subgroup of order 2, which fixed field must be Q(

√
ϵp).

We now get the following corollary, which is a simple case of the Kronecker-Weber Theorem
(this theorem in general states that every Galois extension over Q with abelian Galois group
lies in some cyclotomic field).

Corollary 2.19. Let n ∈ Z with n ̸= 0 and squarefree. Then{
Q(
√
n) ⊆ Q(ζ|n|) if n ≡ 1 (mod 4)

Q(
√
n) ⊆ Q(ζ4|n|) if n ≡ 2, 3 (mod 4).
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Note that the absolute value of the discriminant of Q(
√
n) is in both cases the same as the

number corresponding to the cyclotomic field in which it lies. This value is defined as the
conductor of Q(

√
n).

Proof: First of all let n ≡ 1 (mod 4). As n is squarefree we can write n = ±p1 · p2 · ... · pn
with p1, ..., pn distinct primes. By Theorem 2.18 we have for all primes pi with pi ≡ 1
(mod 4)= that

√
pi ∈ Q(ζpi), while for all primes pi with pi ≡ 3 (mod 4) we have that

√
−pi ∈ Q(ζpi). As Q(ζpi) ⊆ Q(ζ|n|) we get that

√
n =

∏
1≤i≤n

√
ϵipi ∈ Q(ζ|n|) with ϵi =

(−1)
pi−1

2 . This works out because n ≡ 1 (mod 4): If n is positive, then an even number
of primes is equivalent to 3 (mod 4) which gives an even amount of minus signs in the
product. If conversely n is negative, then an odd number of primes is equivalent to 3
(mod 4), which gives an odd number of minus signs.

If n ≡ 3 (mod 4) then −n ≡ 1 (mod 4) and by the previous statement we get that
√
−n ∈

Q(ζ|n|). As
√
−1 ∈ Q(ζ4) we get that

√
n =
√
−1
√
−n ∈ Q(ζ4|n|).

Finally if n ≡ 2 (mod 4), then n = 2 ·m with m ≡ 1, 3 (mod 4). In either case we have
that Q(

√
m) ⊆ Q(ζ4|m|) ⊆ Q(ζ4|n|) as m | n. Now note that

(ζ8 + ζ78 )
2 = ζ28 + 2ζ8ζ

7
8 + ζ68 =

√
−1 + 2−

√
−1 = 2

as ζ28 =
√
−1 and ζ68 = −

√
−1. This implies that

√
2 = ζ8 + ζ78 ∈ Q(ζ8) ⊆ Q(ζ4|n|). We

therefore get that
√
n =
√
2
√
m ∈ Q(ζ4|n|), which concludes the proof.

2.2.2 Infinite Galois theory

So far we have only been able to define the Galois group for finite extensions L/K, but
this definition can be extended to infinite extensions as well.

First note that for an algebraic extension L/K we define its Galois group to be Gal(L/K) :=
Aut(L/K). If we have L/K an algebraic extension which is not necessarily finite, then we
take the set of intermediate fields K ⊆ M ⊆ L such that M is a finite normal separable
extension (Galois extension). We can order this by M ≤ M ′ if and only if M ⊆ M ′ and
take as projection maps the maps Gal(M/K) → Gal(M ′/K) given by sending σ to σ|M ′

(these maps are well defined group homomorphisms by [3, Lemma 9.2.3]). This defines the
inverse limit

lim←−
M

Gal(M/K) = {(σM ) ∈
∏
M

Gal(M/K) | σM |M ′ = σM ′}.
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We have the following theorem in [23], which shows for L/K a normal separable exten-
sion which is not necessarily finite that the Galois group of L/K is isomorphic to the
aforementioned inverse limit:

Theorem 2.20. [23, Theorem 1.7] Let L/K be a normal separable extension. Then we
have the following isomorphism of groups:

Gal(L/K) ∼= lim←−
M

Gal(M/K),

the limit ranging over all K ⊆M ⊆ L with M a finite Galois extension of K.

Example 2.21. We have the following important example of a Galois group of an infinite
extension: Take Q̄ to be an algebraic closure of Q, then Q̄ is an infinite algebraic extension
of Q. This extension is by construction normal and it is separable as extensions over Q
are always separable. Therefore we get that Gal(Q̄/Q) ∼= lim←−

M

Gal(M/Q) with M/Q a finite

Galois extension. We call this Galois group the absolute Galois group of Q.

We also endow these Galois groups with a topology as follows: For each finite Galois ex-
tension M/K we give Gal(M/K) the discrete topology. Then lim←−

M

Gal(M/K) (seen as an

inverse limit of topological spaces) has the subspace topology obtained from the topological
space

∏
M Gal(M/K). This is called the Krull topology (note that we can endow the rings

Zℓ and Ẑ with a topology in the same fashion). Using this topology we have the follow-
ing analogue of the fundamental theorem of Galois theory for infinite normal separable
extensions L/K:

Theorem 2.22. [23,Theorem 1.12] Let L/K be a normal separable extension. Then we
have a one-to-one correspondence between closed subgroups H of Gal(L/K) and interme-
diate fields K ⊆M ⊆ L given by the map

M → Gal(L/M)

with inverse
H → LH .

This bijection restricts to a one-to-one correspondence between normal closed subgroups
H of Gal(L/K) and intermediate Galois extensions K ⊆ M ⊆ L and to a one-to-one
correspondence between open and closed subgroups H of Gal(L/K) and intermediate finite
extensions K ⊆M ⊆ L.

2.2.3 Galois representations

Now we focus on Galois representations, which are representations of the absolute Galois
group of Q to some matrix group over a given topological field. For this part we follow
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again [23]. Write GQ := Gal(Q̄/Q) for the absolute Galois group over Q. We have the
following definition:

Definition 2.23. A Galois representation (of dimension n) over a (topological) ring R
is a continuous group homomorphism

ρ : GQ → GL(n,R).

If R is a subring of a field extension of Qℓ we call this representation an ℓ-adic Galois
representation

Note that GQ has the Krull topology and that GL(n,R) has the subspace topology given
by GL(n,R)n with Rn having the product topology.

Example 2.24. An example of an ℓ-adic Galois representation is the so-called ℓ-adic
cyclotomic character, which is given by the following: We have that µn ⊆ (Q̄)∗ is the
group of n-th roots of unity in Q̄. We have for every n ≥ 1 that Q(µn)/Q is Galois and
that Gal(Q(µn)/Q) ∼= (Z/nZ)∗.

Now let ℓ be a prime number, then we define µℓ∞ :=
⋃
n

µℓn . By Theorem 2.20 we get that

Gal(Q(µℓ∞)/Q) ∼= lim←−
n

Gal(Q(µn)/Q).

For all n ≥ 1 we have Gal(Q(µℓn)/Q) ∼= (Z/ℓnZ)∗ and we have the following commutative
diagram for m ≤ n:

Gal(Q(µℓn)/Q) Gal(Q(µℓm)/Q)

(Z/ℓnZ)∗ (Z/ℓmZ)∗

r

∼= ∼=

mod ℓm

Here we write r for the restriction map. Note that this commutes as ζℓm is also an ℓn root
of unity if m ≤ n and so if σ(ζℓm) = (ζℓm)

α with α ∈ (Z/ℓnZ)∗, then σ gets sent to the
element α. For β = α (mod ℓm) we have that (ζℓm)

α = (ζℓm)
β as (ζℓm)

km = 1 and so
σ|Q(µℓm ) gets sent to the element β.

This implies that
lim←−
n

Gal(Q(µn)/Q) ∼= lim←−
n

(Z/ℓnZ)∗ ∼= (Zℓ)∗.

As we also have the restriction map GQ → Gal(Q(µℓ∞)/Q) we now define the ℓ-adic
cyclotomic character of an element σ ∈ GQ as the image of σ under the following maps:

GQ → Gal(Q(µℓ∞)/Q) ∼= (Zℓ)∗ ∼= GL(1,Zℓ)∗.

Note that this is now an ℓ-adic Galois representation of dimension 1.
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2.2.4 Galois representations of elliptic curves

Before we define Galois representations of elliptic curves we first introduce the notion of
n-division fields of E with E an elliptic curve over Q:

Definition 2.25. Let E/Q be an elliptic curve and let n ≥ 1, then we define the n-division
field of E as

Q(E[n]) := Q(x1, y1, ..., xm, ym)

where xi, yi ∈ Q̄ are the x, y-coordinates of the affine n-torsion points of E for 1 ≤ i ≤ m.
Note that Q(E[1]) is just Q.

Remark 2.26. We recall that the compositum of two fields K,L is defined as the smallest
field containing both L,K as subfields. We have by [6, Lemma 2.1.1] that for n1, n2 ≥ 1
the compositum of the division fields Q(E[n1]) and Q(E[n2]) is the division field Q(E[n])
with n = lcm(n1, n2).

We note that the Weil pairing implies for E/Q that the n-cyclotomic field is always a
subfield of its n-division field:

Lemma 2.27. Let E/Q be an elliptic curve and let n ≥ 1. Then Q(ζn) ⊆ Q(E[n]).

Proof: We first of all note that there exist points S, T ∈ E[n] such that en(S, T ) is a
primitive n-th root of unity [35, III.8.1.1]. We also have that Q̄/Q(E[n]) is Galois as Q̄/Q
is Galois, and as we have for σ ∈ Gal(Q̄/Q(E[n])) that

σ(en(S, T )) = en(σ(S), σ(T )) = en(S, T )

(recall that for S = (x, y) we have that σ(S) := (σ(x), σ(y))) we get by the fundamental
theorem of Galois theory that en(S, T ) ∈ Q(E[n]). So Q(E[n]) contains a primitive n-th
root of unity and therefore Q(ζn) ⊆ Q(E[n]).

Example 2.28. Take the elliptic curve E : y2 = x3 + x+ 1. Then we can compute using
Sage that [Q(E[2]) : Q] = 6 and that Q(E[2]) ∼= Q[x]/(x6−3x5+7x4−9x3+7x2−3x+1).
For n = 3 we compute that [Q(E[3]) : Q] = 48 (note that the degree quickly grows very
large if we increase n) and we can also compute that Q(E[3]) has a unique quadratic
subfield given by Q(

√
−3) = Q(ζ3), which is consistent with the previous lemma.

Definition 2.29. We will now define Galois representation of elliptic curves. First of all
let σ(P ) for P ∈ E(Q̄) be defined by σ(P ) = (σ(x), σ(y)) for σ ∈ GQ. As the Weierstrass
equation of E is a polynomial with coefficients in Q, we have that (σ(x), σ(y)) is also a
solution to this equation and therefore σ(P ) ∈ E(Q̄). Therefore σ induces a map σ :
E(Q̄) → E(Q̄) given by sending P → σ(P ). We also have that the addition formulas for
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points on elliptic curves over Q are rational functions with coefficients in Q. So if we have
P,Q ∈ E(Q̄) then P +Q = (r(P,Q), s(P,Q)) with r, s ∈ Q(x). This implies that

σ(P +Q) = (σ(r(P,Q), σ(s(P,Q)) = (r(σ(P ), σ(Q), s(σ(P ), σ(Q)) = σ(P ) + σ(Q).

So σ : E(Q̄)→ E(Q̄) is a group homomorphism. In particular this means that σ sends n-
torsion points to n-torsion points and therefore we get an action of GQ on E[n] for all n ≥ 1.
We can formalise this as the homomorphism: GQ → Aut(E[n]). As E[n] ∼= Z/nZ× Z/nZ
for n ≥ 1 we get that this induces a Galois representation of elliptic curves given by

ρE,n : GQ → Aut(E[n]) ∼= GL(2,Z/nZ)

(here we endow Z/nZ with the discrete topology to make it into a topological ring.)

Note that ρE,N (GQ) depends on the choice of isomorphism between E[n] and Z/nZ×Z/nZ
and is therefore only defined up to conjugation. This means that different isomorphisms
ϕ, ϕ′ : E[N ] : Z/nZ × Z/nZ induce different Galois representations ρE,N (GQ), ρ

′
E,N (GQ)

with ρE,N (GQ) = g(ρ′E,N (GQ))g
−1 for some g ∈ GL(2,Z/NZ).

We now prove the following lemma:

Lemma 2.30. Let E/Q be an elliptic curve and let n ≥ 1. Then Q(E[n]) is a Galois
extension.

Proof: The n-division field is a finite extension which is algebraic by the Weierstrass
equation for E. It is also separable as it is an extension of Q. For normality we recall that an
element σ ∈ GQ sends n-torsion points to n-torsion points. So x, y-coordinates of n-torsion
points get sent to x, y-coordinates of n-torsion points and therefore σ(Q(E[n])) ⊆ Q(E[n]).
As we have the following tower of field extensions Q ⊆ Q(E[n]) ⊆ Q̄ we get by [3, Lemma
9.2.3] that Q(E[n]) is normal.

Remark 2.31. The kernel of the Galois representation ρE,n consists of all σ ∈ GQ with
σ(P ) = P for P ∈ E[n], or in other words all σ ∈ GQ such that σ(x) = x for all x ∈ Q(E[n]).
By the fundamental theorem of Galois theory this is precisely the subgroup of GQ given
by Gal(Q̄/Q(E[n])). So we get that ρE,n induces an injective Galois representation

ρ̃E,n : GQ/Gal(Q̄/Q(E[n]))→ GL(2,Z/nZ).

By [3, Theorem 9.2.2] combined with the fact that Q(E[n])/Q is a Galois extension we
get that GQ/Gal(Q̄/Q(E[n])) ∼= Gal(Q(E[n])/Q) and therefore we get the injective Galois
representation

ρ̃E,n : Gal(Q(E[n]/Q)→ GL(2,Z/nZ).
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Note that the first isomorphism theorem of groups now implies that

ρE,n(GQ) ∼= Gal(Q(E[n]/Q).

We now focus on the Galois group of Q(E[n])/Q in the case where n = 2:

Lemma 2.32. [1, Proposition 5.4.2] Let E/Q be an elliptic curve. Then we have that the
Galois group of Q(E[2]) over Q is isomorphic to the following:

Gal(Q(E[2])/Q) =


GL(2,Z/2Z) ∼= S3 if ∆E /∈ (Q∗)2 and E[2] contains no rational points,

Z/3Z if ∆E ∈ (Q∗)2 and E[2] contains no rational points,

Z/2Z if ∆E /∈ (Q∗)2 and E[2] contains a rational point,

{0} if ∆E ∈ (Q∗)2 and E[2] contains a rational point.

In particular we have that Q(
√
∆E) is the unique quadratic subfield of Q(E[2]).

Proof: We first assume E/Q is of the form y2 = x3 + Ax + B with A,B ∈ Q. We have
that Q(E[2]) consists of the coordinates of 2-torsion points of E. The 2-torsion points are
then precisely the points of E with y-coordinate 0 and x-coordinate a root of x3+Ax+B.
Note that the discriminant ∆E of E is given by ∆E = 16(α1 − α2)

2(α1 − α3)
2(α2 − α3)

2

with α1, α2, α3 the roots of x3 +Ax+B. We see that√
∆E = 4(α1 − α2)(α1 − α3)(α2 − α3) ∈ Q(E[2]).

We claim that Q(E[2]) = Q(α1,
√
∆E). The inclusion from right to left is obvious. For the

other inclusion note that first of all we have that

x3 +Ax+B = (x− α1)(x− α2)(x− α3).

Note that −α1 · α2 · α3 = B. We have that not both A,B are zero, as then ∆E = 0. So
there is at least one root which is non-zero. Without loss of generality we can assume
α1 ̸= 0. Also we have that the coefficient of x2 is zero, so α1 + α2 + α3 = 0. We therefore
get that √

∆E = 4(α1 − α2)(α1 − α3)(α2 − α3) =

4(α2
1 − α1α2 − α1α3 + α2α3)(α2 − α3) =

4(2α2
1 + α2α3)(α2 − α3) =

4(2α2
1 +

B

α1
)(α2 − α3).

This implies that α2 − α3 ∈ Q(α1,
√
∆E). As also α2 + α3 = −α1 we get that

Q(E[2]) = Q(α1, α2, α3) ⊆ Q(α1,
√
∆E).
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So we have thatQ(E[2]) = Q(α1,
√
∆E). Its Galois group must therefore have order dividing

6. We consider multiple cases.

If x3 + Ax + B is irreducible over Q[X], then there is no rational root, so Q(α1) ̸= Q
and [Q(E[2]) : Q] ≥ 3. If

√
∆E ∈ Q then Q(E[2]) = Q(α1), [Q(E[2]) : Q] = 3

and Gal(Q(E[2])/Q) = Z/3Z. If this is not the case then [Q(E[2]) : Q] = 6 and so
|Gal(Q(E[2])/Q)| = 6. In order to see what group structure its Galois group has we
note the following: We have that Gal(Q(E[2])/Q) is generated by σ, τ with first of all σ
defined by σ(α1) = α2, σ(α2) = α3 and σ(α3) = α1 and σ(

√
∆E) =

√
∆E (note that this

is well defined as permuting the roots in this way does not change the sign of the discrim-
inant), while τ is defined by τ(α1) = α3, τ(α3) = α1, τ(α2) = α2 and τ(

√
∆E) = −

√
∆E

(Interchanging only two roots does change the sign of the discriminant). We get that
σ3 = id and that τ2 = id. We also see that στ(α1) = α1, στ(α2) = α3, στ(α3) = α2

and στ(
√
∆E) = −

√
∆E . On the other hand we have that τσ2(α1) = α1, τσ

2(α2) = α3,
τσ2(α3) = α2 and τσ2(

√
∆E) = −

√
∆E , which implies that στ = τσ2 and therefore that

Gal(Q(E[2])/Q) = S3.

Now we assume x3 + Ax+ B is reducible. Then either [Q(E[2]) : Q] = 2 or Q(E[2]) = Q.
As
√
∆E ∈ Q(E[2]) we get that Q(E[2]) = Q(

√
∆E) and so either

√
∆E /∈ Q which implies

that [Q(E[2]) : Q] = 2 and Gal(Q(E[2])/Q) = Z/2Z, or we have that
√
∆E ∈ Q and

Q(E[2]) = Q.

We have the following diagram which gives the Galois correspondence of the (normal)
subgroups of S3 and the corresponding fixed fields of Q(E[2]):

Q(E[2]) {e}

Q(α) Q(
√
∆E) Z/2Z Z/3Z

Q GL(2,Z/2Z)

Now for the general case we note that every E/Q is isomorphic over Q to an elliptic
curve E′/Q in short Weierstrass form, and we have just seen for elliptic curves E′ in short
Weierstrass form that Q(E′[2]) = Q(α,

√
∆E′) for some α ∈ Q̄. Because E ∼= E′ over Q we

get that ∆E ≡ ∆E′ (mod (Q∗)2) and so ∆E /∈ (Q∗)2 if and only if ∆E′ /∈ (Q∗)2. We also
get that E has a rational point if and only if E′ has a rational point. Now we also get that
∆E ≡ ∆E′ (mod (Q∗)2) implies that

Q(E′[2]) = Q(α,
√

∆E′) = Q(α,
√
∆E).

The isomorphism between E′ and E induces a group isomorphism between E′[2] and E[2],
and as the isomorphism between E and E′ was given over Q we get that the coordinates
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of E[2] are rational combinations of the coordinates of E′[2]. We have that Q(E′[2]) =
Q(α,

√
∆E) and so the coordinates of the points of E′[2] are given by rational combinations

of α and
√
∆E . This now also holds for the coordinates of the points of E[2] as they where

given by rational combinations of the coordinates of E′[2] in turn. Therefore Q(E[2]) =
Q(α,

√
∆E) as well. In particular we have that Q(

√
∆E) ⊆ Q(E[2]). Now finally recall

that E has a rational point if and only if E′ has a rational point and that ∆E /∈ (Q∗)2 if
and only if ∆E′ /∈ (Q∗)2. This then concludes the proof.

2.2.5 ℓ-adic- and full Galois representations of elliptic curves

We have constructed a Galois representation on E/Q for all n ≥ 1 by using the fact that
GQ acts on En. But we can also extend this and show that GQ acts on the ℓ-adic Tate
module Tℓ(E) and the adelic Tate module T (E) as well.

Definition 2.33. First of all note that for σ ∈ GQ the following diagram commutes:

E[ℓn+1] E[ℓn+1]

E[ℓn] E[ℓn]

σ

[ℓ] [ℓ]

σ

This follows because for P ∈ E[ℓn+1] we have that [ℓ](σ(P )) = σ([ℓ](P )). Therefore we get
that the actions of GQ on all E[ℓn+1] by sending P 7→ σ(P ) for n ≥ 1 induce an action of
GQ on Tℓ(E). We get the ℓ-adic Galois representation

ρE,ℓ∞ : GQ → Aut(Tℓ(E)) ∼= GL(2,Zℓ)

where the last isomorphism follows from the fact that for elliptic curves E/Q we have that
Tℓ(E) ∼= Zℓ × Zℓ (Theorem 2.6).

We can repeat this argument for the adelic Tate module.

Definition 2.34. The following diagram also commutes:

E[kn] E[kn]

E[n] E[n]

σ

[k] [k]

σ

So we also get an induced action GQ on T (E) which gives rise to the Galois representation

ρE : GQ → Aut(T (E)) ∼= GL(2, Ẑ)
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where the last isomorphism follows from the fact that for elliptic curves E/Q we have that
T (E) ∼= Ẑ× Ẑ (Remark 2.8) We call this representation the full Galois representation
of E.

We close this chapter by showing, using the properties of the Weil pairing, that the de-
terminant of the image of σ ∈ GQ under ρE,n is equal to the n-th cyclotomic character of
σ:

Lemma 2.35. [6, Proposition 1.3.14 Let E/Q be an elliptic curve, let ℓ be a prime and let
σ ∈ GQ. Then

σ(ζn) = ζ
det(ρE,n(σ))
n

for all n-th roots of unity ζn. If we define det(ρE,n(GQ)) as the group given by

{det(ρE,n(σ) | σ ∈ GQ},

then we get that det(ρE,n(GQ)) ∼= (Z/NZ)∗.

Proof: For this proof we refer to [6]. The Weil pairing is surjective [35, III.8.1.1], so there
exist S, T in E[n] such that for ζn a primitive n-th root of unity we have that ζn = en(S, T ).
We now show that S, T generate E[n]. To do this we show that S, T are linearly independent
over Z/nZ. Assume that there are α, β ∈ Z/nZ such that αS+βT = O. Then by properties
of the Weil pairing we get that

1 = en(O, T ) = en(αS + βT, T )
(a)
= en(S, T )

α · en(T, T )β
(b)
= ζαn

which implies that α = 0. We can repeat this argument to show that β = 0 and therefore
S, T are linearly independent. Now we have that

σ(ζn) = σ(en(S, T )) = en(σ(S), σ(T )).

This implies that there are p, q ∈ Z/nZ such that σ(S) = pS + qT and v, w ∈ Z/nZ such
that σ(T ) = vS + wT . We get

en(σ(S), σ(T )) = en(pS + qT, vS + wT )
(a)
=

en(S, S)
pven(S, T )

pwen(T, S)
qven(T, T )

qw (b)
= en(S, T )

pw−qv = ζ
det(ρE,n(σ))
n .

Here the last equality follows from the fact that σ sends S, T to respectively pS + qT

and vS + wT and therefore σ gets sent to the matrix

(
p v
q w

)
∈ GL(2,Z/nZ) which has

determinant pw − qv. Now because σ(ζn) = ζ
det(ρE,n(σ))
n for a primitive n-th root of unity,

and every n-th root of unity is a power of a primitive n-th root of unity, we get that

σ(ζn) = ζ
det(ρE,n(σ))
n holds for all n-th roots of unity as σ is a homomorphism. Note that
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this does not depend on the choice of Galois representation, as the determinant of ρE,n(σ)
is always the same for every choice of ρE,n.
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3 Entanglement of Galois representations of elliptic curves

In this chapter we shall study different reasons why the images of the Galois representations
attached to elliptic curves are not as big as they could be. We give definitions of different
kinds of obstructions for surjectivity of these representations, of which the most important
ones are called vertical entanglement and horizontal entanglement. We list multiple known
results for these kinds of obstructions and provide a few examples. We shall mainly follow
[11].

Let E/Q be an elliptic curve over Q and let GQ = Gal(Q̄/Q) be the absolute Galois group
of Q with Q̄ an algebraic closure of Q. We have for n ≥ 1 the n-torsion group E[n] of E(Q̄)
and the associated Galois representation

ρE,n : GQ → Aut(E[n]) ∼= GL(2,Z/nZ).

We also have for ℓ prime the ℓ-adic Tate module Tℓ(E) and we get an ℓ-adic Galois repre-
sentation

ρE,ℓ∞ : GQ → Aut(Tℓ(E)) ∼= GL(2,Zℓ).

Finally we have the adelic Tate module T (E) and its associated full Galois representa-
tion

ρE : GQ → Aut(T (E)) ∼= GL(2, Ẑ).

Definition 3.1. Recall that elliptic curves E can have N -isogenies ϕ : E → E′, where we
have that ker(ϕ) ⊂ E[N ] is a cyclic group of order N . We call ϕ a cyclic N-isogeny if
ker(ϕ) is cyclic and we call ϕ a rational N-isogeny if ker(ϕ) is stable under the action
of GQ, meaning that for σ ∈ GQ and P ∈ ker(ϕ) ⊂ E[N ] we have that σ(P ) ∈ ker(ϕ).

Remark 3.2. We note that every subgroup of E(C) of order N gives rise to an N -isogeny
[35, III.4.12] and the kernel of every N -isogeny is a subgroup of E(C) of order N . Also a
subgroup of E(C) is GQ stable and/or cyclic if and only if the corresponding N -isogeny
is rational and/or cyclic. This implies that E/Q having a (rational/cyclic) N -isogeny is
equivalent to E(C) having a (GQ stable/cyclic) subgroup.

For elliptic curves E/Q which have rational points of given order or have a rational n-
isogeny we can show that the image of ρE,n is of the following particular forms:

Proposition 3.3. Let E/Q be an elliptic curve. Then we have the following:

1. E contains a point P ∈ E(Q) of order N if and only if ρE,N (GQ) ⊆ gHg−1 with

H =

{(
1 b
0 d

)
∈ GL(Z/NZ) | b, d ∈ Z/NZ

}
for some g ∈ GL(2,Z/NZ).

26



2. E has a rational cyclic N -isogeny (or equivalently E(C) has a rational cyclic sub-
group) if and only if ρE,N (GQ) ⊆ gHg−1 with

H =

{(
a b
0 d

)
∈ GL(Z/NZ) | a, b, d ∈ Z/NZ

}
for some g ∈ GL(2,Z/NZ).

Proof: We first prove 1. Take σ ∈ GQ and let P ∈ E(Q) be the point of order N , then
we can choose a isomorphism ϕ : E[N ] ∼= Z/NZ/× Z/NZ in such a way that P gets sent
to (1, 0). This induces the Galois representation ρE,N (GQ). Note that P is rational and
therefore we get that σ(P ) = P . Let Q ∈ E[N ] be the point for which ϕ(Q) = (0, 1), then
we must have that σ(Q) = bP + dQ for some b, d ∈ Z/NZ. This means that

ρE,N (σ) =

(
1 b
0 d

)
for some b, d ∈ Z/NZ and so we get that ρE,N (GQ) ⊆ H with

H =

{(
1 b
0 d

)
∈ GL(Z/NZ) | b, d ∈ Z/NZ

}
.

Note that Lemma 2.35 implies that d corresponds to the N -th cyclotomic character of
σ. As ρE,N (GQ) is defined up to conjugation in GL(2,Z/NZ), we get that in general
ρE,N (GQ) ⊆ gHg−1 for some g ∈ GL(2,Z/NZ). Conversely if ρE,N (GQ) ⊆ gHg−1 for some
g ∈ GL(2,Z/NZ), then there exists a Galois representation ρ′E,N such that ρE,N (GQ) ⊆ H.
But then σ(P ) = P for some point P ∈ E[N ] of order N , which implies that P ∈ E(Q).

Now we prove 2. Again take σ ∈ GQ and let ϕ be the rational cyclic N -isogeny of E. Then
there exists a P ∈ E(Q) of order N which generates the kernel of ϕ. We can choose a
isomorphism ϕ : E[N ] ∼= Z/NZ/ × Z/NZ in such a way that P gets sent to (1, 0). This
induces the Galois representation ρE,N (GQ). As ϕ is rational we get that σ(P ) ∈ ker(ϕ)
and therefore σ(P ) = aP for some a ∈ Z/NZ. Let Q be the point for which ϕ(Q) = (0, 1),
then we must have that σ(Q) = bP +dQ for some b, d ∈ Z/NZ. This means that in general
ρE,N (GQ) ⊆ gHg−1 with

H =

{(
a b
0 d

)
∈ GL(Z/NZ) | b, d ∈ Z/NZ

}
for some g ∈ GL(2,Z/NZ). Conversely if ρE,N (GQ) ⊆ gHg−1 for some g ∈ GL(2,Z/NZ),
then there exists a Galois representation ρ′E,N such that ρE,N (GQ) ⊆ H. But then E[N ]
contains a cyclic subgroup stable under GQ, or in other words E has a rational cyclic
N -isogeny.
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Remark 3.4. Note that the isomorphism ϕ : Ẑ ∼=
∏
ℓ

Zℓ induces an isomorphism GL(2, Ẑ) ∼=∏
ℓ

GL(2,Zℓ) which restricts to an injective map

ρE(GQ)
ψ−→
∏
ℓ

ρE,ℓ∞(GQ) ⊆
∏
ℓ

GL(2,Zℓ) ∼= GL(2, Ẑ)

where ψ sends the matrix X = (xi) ∈ ρE(GQ) ⊆ GL(2, Ẑ) to the tuple of matrices (Xℓ)ℓ,

which is given by sending each coordinate xi ∈ X to ϕ(xi) ∈
∏
ℓ

Zℓ. Thi sshows that

we have two main ways in which the image of the full representation is smaller than it
could be. We either have for at least one prime ℓ that ρE,ℓ∞ is non-surjective, so-called
vertical entanglement. Or we have that the map ψ is not surjective which we call horizontal
entanglement. We first define vertical entanglement.

3.1 Vertical entanglement

Definition 3.5. Let E/Q be an elliptic curve and let ℓ be a prime number. Then we have
vertical ℓ-entanglement if ρE,ℓ∞ : GQ → GL(2,Zℓ) is not surjective.

Example 3.6. We have shown in Lemma 2.32 for E/Q that the Galois group of Q(E[2])/Q
is isomorphic to the following:

Gal(Q(E[2])/Q) =


GL(2,Z/2Z) ∼= S3 if ∆E /∈ (Q∗)2 and E[2] contains no rational points,

Z/3Z if ∆E ∈ (Q∗)2 and E[2] contains no rational points,

Z/2Z if ∆E /∈ (Q∗)2 and E[2] contains a rational point,

{0} if ∆E ∈ (Q∗)2 and E[2] contains a rational point.

We have that ρE,2∞ is only surjective if ρE,2 is surjective. Furthermore as ρE,2(GQ) ∼=
Gal(Q(E[2])/Q) we have that ρE,2∞ is only surjective if Gal(Q(E[2])/Q) ∼= S3.

We have the following known results for vertical entanglement: First of all for ℓ ̸= 2, 3 we
have that ρE,ℓ∞ is surjective if and only if ρE,ℓ : GQ → GL(2,Z/ℓZ) is surjective as shown
by Serre [32].

For ℓ = 2 we have that ρE,2∞ is surjective if and only if ρE,8 : GQ → GL(2,Z/8Z) is
surjective [14] and for ℓ = 3 we have that ρE,3∞ is surjective if and only if ρE,9 : GQ →
GL(2,Z/9Z) is surjective [15].

It also follows from Serre’s open image theorem [33] that if K is an algebraic number field
and E/K an elliptic curve with no CM, then for only finitely many ℓ prime the ℓ-adic
representation can have vertical entanglement. For Q it is generally believed that the
ℓ-adic representation can only have vertical entanglement for ℓ ≤ 37 [33].
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In [27] all elliptic curves over Q are classified which have a certain form of vertical ℓ-
entanglement by studying rational points on the modular quotient curve XH with H ⊆
GL(2,Zℓ)/{−I}.

3.2 Horizontal entanglement

Before we define horizontal entanglement we first note the following. Assume we have that
ρE,n is not surjective with n = pe11 · ... · pemm but for all 1 ≤ i ≤ m we have that ρE,peii

is

surjective. We showed earlier that the image of the full representation factors through the
images of the ℓ-adic representations, so we must have that the injective map

ρE,n(GQ)
ψ−→
∏
i

ρE,peii
(GQ)

is not surjective. We recall that ρE,n(GQ) ∼= Gal(Q(E[n])/Q) and that ρE,peii
(GQ) ∼=

Gal(Q(E[peii ])/Q). So we get an injective map

Gal(Q(E[n])/Q)
ψ̂−→
∏
i

Gal(Q(E[peii ])/Q).

Note that Q(E[n]) is the compositum of Q(E[p
ej
j ]) for all 1 ≤ j ≤ m and that ψ̂ is the

restriction map, so Lemma 2.17 now gives us that ψ̂ is surjective if and only if Q(E[a]) ∩
Q(E[b]) = Q for all a, b coprime divisors of n. This indicates that the second way in which
the image of the full representation can be non-surjective is when Q(E[m])∩Q(E[n]) ̸= Q
form,n coprime integers. This brings us to the definition of horizontal entanglement.

Definition 3.7. Let E/Q be an elliptic curve and let a < b be integers with d = gcd(a, b).
Then we have horizontal (a, b)-entanglement if

Q(E[d]) ⊊ Q(E[a]) ∩Q(E[b]).

We define the type of this entanglement to be the isomorphism class of the Galois group
corresponding to Q(E[a]) ∩Q(E[b])/Q(E[d]).

Corresponding to this definition we have the following diagram:

Q(E[a]) Q(E[b])

Q(E[a]) ∩Q(E[b])

Q(E[d])
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We have from Lemma 3.4 in [9] that horizontal (fa, fb)-entanglement induces horizontal
(a, b)-entanglement if gcd(a, f) = gcd(b, f) = 1. For a proof of this lemma we refer to
the proof of Lemma 3.26. If furthermore a, b are coprime we have shown that the full
representation ρE is non-surjective. This is the reason why we do not immediately restrict
our definition of horizontal entanglement to coprime integers.

Example 3.8. Take the elliptic curve E : y2 = x3 + 3. Its discriminant is given by
∆E = −3888 = −1 · 24 · 35. Lemma 2.32 shows us that Q(

√
∆E) = Q(

√
−3) ⊆ Q(E[2]).

We also have by Theorem 2.18 that Q(
√
−3) is the unique quadratic subfield of Q(ζ3) and

by Lemma 2.27 that Q(ζ3) ⊆ Q(E[3]). Combining all this we get that

Q(
√
−3) ⊆ Q(E[2]) ∩Q(E[3])

and so we get horizontal (2, 3)-entanglement. As 2,3 are coprime we get that Gal(Q(E[6])/Q)
is not of maximal rank and therefore that ρE,6 is non-surjective. This entanglement is
induced by the Weil pairing (and the Kronecker-Weber Theorem) and is called Weil entan-
glement. This kind of entanglement we will discuss in more detail in the next subsection.

Note that our two definitions of vertical and horizontal entanglement coincide with the
definitions given in [11].

Horizontal entanglement is less well understood than vertical entanglement, but there have
been recent results ([9],[10],[11]).

3.3 Abelian and Weil entanglement

Following [11] we now define another type of entanglement, called abelian entanglement.
We denote by Qab the largest Galois extension of Q such that the Galois group of the
extension is abelian. This implies that the intersections of other Galois extensions with
Qab are abelian as well, as these intersections are subfields of Qab and quotients of abelian
groups are abelian.

Definition 3.9. Let E/Q be an elliptic curve and let a < b be integers with d = gcd(a, b).
Then E has abelian (a, b)-entanglement if

Q(ζd) ⊊ Q(E[a]) ∩Q(E[b]) ∩Qab.

We have the following diagram corresponding to this definition:
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Q(E[a]) Q(E[b])

Q(E[a]) ∩Q(E[b])

Q(E[a]) ∩Q(E[b]) ∩Qab

Q(ζd)

Note that Q(ζd) ⊆ Q(E[a]) ∩ Q(E[b]) ∩ Qab as Q(ζd) ⊆ Q(E[d]) ⊆ Q(E[a]) ∩ Q(E[b]) and
Q(ζd) ⊆ Qab. The name abelian entanglement comes from the fact that the intersection
field Q(E[a])∩Q(E[b])∩Qab is an abelian extension of Q. Note that if E has abelian (m,n)-
entanglement with m,n coprime, then we get horizontal (m,n)-entanglement of coprime
integers which leads to a smaller image of the full representation.

We also have a subclass of abelian entanglement, which is called Weil entanglement.

Definition 3.10. Let E/Q be an elliptic curve and let a < b be integers with d = gcd(a, b).
Let Ka = Q(E[a])∩Qab and Kb = Q(E[b])∩Qab. Then E has Weil (a, b)-entanglement
if

Q(ζd) ⊊ Ka ∩Q(ζb) or Q(ζd) ⊊ Q(ζa) ∩Kb.

We have the following diagram corresponding to this definition:

Q(E[a]) Q(E[b])

Ka = Q(E[a]) ∩Qab Kb = Q(E[b]) ∩Qab

Q(ζa) Q(ζb)

Kb ∩Q(ζa) Ka ∩Q(ζb)

Q(ζd) Q(ζd)
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To see that Weil entanglement is a form of abelian entanglement, we note that if Q(ζd) ⊊
Ka ∩Q(ζb), then Q(ζd) ⊊ Ka ∩Q(ζb) ⊆ Q(E[a])∩Q(E[b])∩Qab as Q(ζb) ⊆ Q(E[b]) by the
Weil pairing. Similarly Q(ζd) ⊊ Q(ζa) ∩Kb also implies that Q(ζd) ⊊ Q(E[a]) ∩Q(E[b]) ∩
Qab.

Remark 3.11. The name Weil entanglement comes from the fact that it gives rise to
(abelian) entanglement by properties of the Weil pairing. We also note that by the
Kronecker-Weber Theorem an abelian extension is always contained in some n-cyclotomic
field, so Weil entanglement for elliptic curves over Q can be seen as a consequence of the
Weil pairing combined with the Kronecker-Weber Theorem.

Example 3.12. We have in [11] the following example of abelian entanglement which is
not Weil. Let E/Q be the elliptic curve over Q given by LMFDB label 448.g3. Then
Q(E[2]) = Q(

√
2) and Q(E[3]) = Q(

√
2,
√
−3), so Q(E[2]) ⊆ Q(E[3]) and therefore

Q(E[2]) ∩Q(E[3]) = Q(
√
2).

The Galois extension Q(
√
2) has Galois group Z/2Z, which is abelian and therefore we

have abelian entanglement. On the other hand Q(
√
2) ⊊ Q(ζ2) and Q(

√
2) ⊊ Q(ζ3), so

this is not Weil entanglement.

3.4 Serre entanglement

We have a very important example of Weil entanglement in the form of Serre entanglement,
which is given by Weil (2, n)-entanglement of type Z/2Z (meaning that its corresponding
Galois group is isomorphic to Z/2Z). The following theorem [11, Theorem 3.7] states that
for an elliptic curve there is always Serre entanglement, except when the discriminant is a
square which leads to vertical 2-entanglement:

Theorem 3.13. [11, Theorem 3.7]
Let E/Q be an elliptic curve over Q. Then we have the following two cases:

(1) ∆E is a square and E has vertical 2-entanglement.
(2) ∆E is a not a square and E has Serre (2, 4|∆E |)-entanglement.

Proof: The first case follows from the fact that if ∆E is a square, then Gal(Q(E[2])/Q) ∼=
Z/3Z or Gal(Q(E[2])/Q) is trivial by Lemma 2.32 and therefore ρE,2∞ cannot be surjective.

Now assume ∆E is a not a square. Then Lemma 2.32 shows that Q(
√
∆E) is a non-trivial

subfield of Q(E[2]). By Corollary 2.19 we have that Q(
√
∆E) ⊆ Q(ζm) with m = 4|∆E |

(here
√
∆E should be read as the square root of the squarefree part of ∆E). This implies

that Q(
√

∆E) ⊆ Q(E[2]) ∩Q(ζm) and as Qab ∩Q(E[2]) = Q(
√

∆E) we get

Q ⊊ Q(
√

∆E) = Q(E[2]) ∩Q(ζm) ∩Qab.
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This gives a (2, 4|∆E |) Weil-entanglement with Galois group Z/2Z, or in other words Serre
entanglement.

To expand on the work done in [11] we now highlight the connection between Serre entan-
glement and horizontal entanglement in the following two examples:

Example 3.14. Take the elliptic curve E : y2 = x3 + x+ 3. Its discriminant ∆E is given
by −3952 = −1 · 24 · 13 · 19. This is not a square and therefore E has Serre (2, 4 · ∆E)-
entanglement. As the squarefree part of −3952 is given by −13 · 19 = −247 we get
that Q(

√
∆E) = Q(

√
−247) and as −247 ≡ 1 (mod 4) we get by Corollary 2.19 that

Q(
√
∆E) ⊆ Q(ζ|247|). Note that Q(ζ|247|) ⊆ Q(E[247]) by Lemma 2.27 and so because 247

is odd E also has horizontal (2, 247)-entanglement.

Example 3.15. Take the elliptic curve E′ : y2 = x3 − x + 2. Its discriminant ∆E′ is
−1664 = −1 · 27 · 13. Here we get that E′ has Serre (2, 4 · ∆E′)-Serre entanglement.
We have that Q(

√
∆E′) = Q(

√
−26), and as −26 ≡ 2 (mod 4), Corollary 2.19 gives that

Q(
√
∆E′) ⊆ Q(ζ|104|). But 104 is even and so this does not induce horizontal entanglement.

This shows that abelian (in this case Weil) entanglement does not always directly lead
to horizontal entanglement. Now note that 13 = −26

−2 ≡ 1 (mod 4) and therefore that

Q(
√
13) ⊆ Q(ζ13) ⊆ Q(E[13]). We have that

√
−26 ∈ Q(E[2]), and as the Weil pairing

implies that √
−1 ∈ Q(E[4]) ⊆ Q(E[8])

and that
√
2 ∈ Q(E[8]) we get that

√
13 =

√
−26√
−2
∈ Q(E[8]) and so E′ does have horizontal

(8, 13)-entanglement.

The previous two examples shows that Serre entanglement is very closely related to hor-
izontal entanglement between coprime integers, and therefore to the fact that for every
elliptic curve E/Q the index of the full representation ρE is bigger than 1, which is what
Serre showed in [33]. Like we have stated in Remark 3.4 that the image of the full repre-
sentation ρE can only get smaller by either vertical or horizontal entanglement, we expand
the previous theorem in terms of these kinds of entanglement:

Proposition 3.16. Let E/Q be an elliptic curve and let ∆E be the squarefree part of its
discriminant ∆E with ∆E ∈ Z. Then we have four cases:

(1) E has vertical 2-entanglement,
(2a) ∆E ≡ 1 (mod 4) and E has horizontal (2, |∆E |)-entanglement,
(2b) ∆E ≡ 3 (mod 4) and E has horizontal (4, |∆E |)-entanglement,

(2c) ∆E ≡ 2 (mod 4) and E has horizontal (8, |∆E
2 |)-entanglement.

In particular we have that the full representation ρE is non-surjective.
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Proof: Serre has shown in [32] that vertical 2-entanglement occurs if and only if ρE,8
is non-surjective. In [14] Dokchitser and Dokchitser in turn have shown that if ρE,8 is
surjective, then ∆E ̸∈ ±1 · (Q∗)2 and ∆E ̸∈ ±2 · (Q∗)2. So we can assume that either E
has vertical 2-entanglement or we have that ∆E ̸∈ ±1 · (Q∗)2 and ∆E ̸∈ ±2 · (Q∗)2.

Let m := ∆E be the squarefree part of ∆E and assume m ≡ 1 (mod 4). The following part
of the proof is very similar to the proof of the previous theorem. As ∆E is not a square
we get that Q(

√
m) is non-trivial. By Corollary 2.19, which was the simple case of the

Kronecker Weber Theorem, we get that Q(
√
m) ⊆ Q(ζ|m|) asm ≡ 1 (mod 4). Furthermore

by Lemma 2.27 we get that Q(ζ|m|) ⊆ Q(E[|m|]) and so

Q(
√
m) ⊆ Q(ζ|m|) ⊆ Q(E[|m|]).

We also have by Lemma 2.32 that Q(
√
m) ⊆ Q(E[2]) as Q(

√
m) = Q(

√
∆E). Therefore

we have that
Q(
√
m) ⊆ Q(E[2]) ∩Q(E[|m|]).

As Q(
√
m) is non-trivial and 2, |m| are coprime, we get that Q ⊊ Q(E[2])∩Q(E[|m|]) and

so E has horizontal (2, |∆E |)-entanglement. Note that this entanglement is induced by the
Serre entanglement from Theorem 3.13.

Now assume m ≡ 3 (mod 4). In this case we have that −m ≡ 1 (mod 4) and therefore√
−m ∈ Q(ζ|m|) by Corollary 2.19. By Lemma 2.27 we get that Q(

√
−m) ⊆ Q(ζ|m|) ⊆

Q(E[|m|]). Recall that
√
m ∈ Q(E[2]) ⊆ Q(E[4]). Lemma 2.27 also implies that Q(ζ4) ⊆

Q(E[4]), so
√
−1 ∈ Q(E[4]) and therefore

√
−m =

√
−1
√
m ∈ Q(E[4]). We get that

Q(
√
−m) ⊆ Q(E[4]) ∩Q(E[|m|]).

As ∆E ̸∈ −1 · (Q∗)2 we have that Q(
√
−m) is non-trivial. Also 4, |m| are coprime and so

E has horizontal (4, |∆E |)-entanglement. Also here the entanglement is induced by Weil
entanglement, but this time it is not Serre entanglement.

Now finally if we have that m ≡ 2 (mod 4), then m
2 ≡ 1, 3 (mod 4). If m

2 ≡ 1 (mod 4)
then again by combining Corollary 2.19 and Lemma 2.27 we get that

√
m
2 ∈ Q(E[|m2 |]).

By Corollary 2.19 combined with Lemma 2.27 we get that
√
2 ∈ Q(ζ8) ⊆ Q(E[8]), and as

by Lemma 2.32 we have that
√
m ∈ Q(E[2]) ⊆ Q(E[8]) we get that

√
m
2 =

√
m√
2
∈ Q(E[8]).

Therefore we get that

Q
(√

m

2

)
⊆ Q(E[8]) ∩Q(E[|m

2
|]).

As ∆E ̸∈ 2 · (Q∗)2 we have that Q
(√

m
2

)
is non-trivial, and because 8, |m2 | are coprime E

has horizontal (8, |∆E
2 |)-entanglement (induced by Weil entanglement).
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If m
2 ≡ 3 (mod 4) then we have that

√
−m
2 ∈ Q(E[|m2 |]). By Lemma 2.27 we had that

√
−m ∈ Q(E[4]) ⊆ Q(E[8]), so we get that

√
−m
2 =

√
−m√
2
∈ Q(E[8]). Now we get that

Q

(√
−m
2

)
⊆ Q(E[8]) ∩Q(E[|m

2
|]).

As ∆E ̸∈ −2 · (Q∗)2 we have that Q
(√

−m
2

)
is non-trivial, and so like before E has

horizontal (8, |∆E
2 |)-entanglement (induced by Weil entanglement).

Note that in all cases E either has vertical 2-entanglement leading to smaller image of ρE
or E has horizontal entanglement between coprime division fields also leading to a smaller
image of ρE . This explains why the index of the image of ρE is always bigger than 1.

Remark 3.17. Theorem 1 in [14] proven by Dokchitser and Dokchitser actually states the
following:
Let E : y2 = x3 +Ax+B an elliptic curve over Q, then
(1) ρE,2 is surjective if and only if x3 +Ax+B is irreducible over Q[X] and ∆E ̸∈ (Q∗)2.
(2) ρE,4 is surjective if and only if ρE,2 is surjective, ∆E ̸∈ −1·(Q∗)2 and j(E) ̸= −4t3(t+8)
for some t ∈ Q∗.
(3) ρE,2 is surjective if and only if ρE,4 is surjective and ∆E ̸∈ ±2 · (Q∗)2.

We now continue with Serre entanglement, first of all showing that for all quadratic num-
ber fields K/Q we can find an elliptic curve E which has Serre entanglement given by
Q(
√
∆E) = K. We then continue by giving for any odd prime number an infinite family of

elliptic curves with Serre (2, p)-entanglement. Every elliptic curve which has Serre (2, p)-
entanglement is isomorphic to a curve of this family. We then generalise this from odd
primes to integers. We first need the following lemma.

Lemma 3.18. [11, Remark 3.8]
Let E/Q be an elliptic curve with j-invariant j(E) ̸= 1728 and let d ∈ Q∗ be squarefree.
Then we have that ∆E ≡ d (mod (Q∗)2) if and only if j(E) = dt2 +1728 for some t ∈ Q∗.

Proof: We provide two proofs for this lemma, the first proof done by myself. For the first
proof we start by assuming E is of the form E : y2 = x3 + Ax + B with A,B ∈ Q. We
have that

∆E = −16(4A3 + 27B2) and j(E) = 1728 · 4A3

4A3 + 27B2
.
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So we get that

j(E)− 1728 = 1728 · 4A3

4A3 + 27B2
− 1728 =

1728 · ( 4A3

4A3 + 27B2
− 1) = 1728 · ( −27B2

4A3 + 27B2
) =

−2636 B2

4A3 + 27B2
= −16(4A3 + 27B2) · 2236B2

(4A3 + 27B2)2
.

And therefore ∆E ≡ j(E)−1728 (mod (Q∗)2) (note that here we need that j(E) ̸= 1728)).
If now ∆E ≡ d (mod (Q∗)2) then d ≡ j(E)− 1728 (mod (Q∗)2) and so j(E) = dt2 + 1728
for some t ∈ Q∗. If conversely j(E) = dt2+1728 for some t ∈ Q∗ then ∆E ≡ j(E)−1728 ≡ d
(mod (Q∗)2).

Now by Lemma 2.2 we have for isomorphic elliptic curves over Q̄ that their discriminants
differ by a square and by [35, III.1.4] that their j-invariants are the same. As every elliptic
curve E/Q is isomorphic over Q to an elliptic curve in short Weierstrass form we get that
for general E/Q with j(E) ̸= 1728 that E ∼= E′ with E′ in short Weierstrass form and
∆E′ ≡ ∆E (mod (Q∗)2). If now ∆E ≡ d (mod (Q∗)2) then ∆E′ ≡ d (mod (Q∗)2) and so
j(E′) = dt2 + 1728 for some t ∈ Q∗. If conversely j(E) = dt2 + 1728 for some t ∈ Q∗, then
j(E′) = j(E) and so ∆E ≡ ∆E′ ≡ d (mod (Q∗)2). This concludes the first proof.

For the second proof we refer to the proof of [11, 3.8]. Here the universal elliptic curve
provided by Silverman in the proof of [35, III.1.4] is used. This universal elliptic curve is
given for j0 ∈ Q \ {0, 1728} by

Ej0 : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728

and this curve has j-invariant j(Ej0) = j0 and discriminant ∆Ej0
=

j20
(j0−1728)3

. For these

elliptic curves we then get that ∆E ≡ j(E)−1728 (mod (Q∗)2). We also have for j0 = 0 the
elliptic curve y2 + y = x3 with ∆ = −27 and also for this curve ∆ ≡ −1728 (mod (Q∗)2).
So we have found for every j0 ∈ Q\{1728} an elliptic curve E such that ∆E ≡ j(E)−1728
(mod (Q∗)2). For these curves a similar argument to the first proof then gives that ∆E ≡ d
(mod (Q∗)2) if and only if j(E) = dt2 + 1728 for some t ∈ Q∗.

Now for general elliptic curves E/Q with j(E) ̸= 1728 we note that there is always an
elliptic curve Ej0 with j0 = j(E). We get that E ∼= Ej0 over Q̄ and therefore that their
discriminants differ a square. Again a similar argument to the first proof then gives that
also for E we have that ∆E ≡ d (mod (Q∗)2) if and only if j(E) = dt2 + 1728 for some
t ∈ Q∗.

36



This lemma will prove useful in the following theorem:

Theorem 3.19. [11, Proposition 3.9]
For a quadratic number field K/Q there are infinitely many Q̄-isomorphism classes of
elliptic curves E/Q with Serre entanglement given by K.

Proof: First note that elliptic curves E/Q are isomorphic over Q̄ if and only if their j-
invariant is equal [35, III.1.4]. Now if we have K = Q(

√
d) for d ∈ Z∗ squarefree, then

for all elliptic curves E/Q such that jE = dt2 + 1728 for t ∈ Q∗ (such an elliptic curve
always exists by [35, III.1.4]) we get that ∆E ≡ d (mod (Q∗)2) by the previous lemma.
Therefore we get that Q(

√
∆E) = Q(

√
d). As d is squarefree we have that E has Serre

(2, 4d)-entanglement given by Q(
√
d). As for every t ∈ Q∗ there exist such an elliptic curve

and for different t they have different j-invariants (so they are not isomorphic over Q̄) we
get infinitely many Q̄-isomorphism classes of elliptic curves E/Q with Serre entanglement
given by K.

We also give an infinite family of non-isomorphic elliptic curves which have Serre (2, p)-
entanglement:

Theorem 3.20. [11, Example 3.10]

Let p be an odd prime and let ϵ = (−1)
p−1
2 . For t ∈ Q∗ we take the elliptic curve

Et,p : y
2 + ϵptxy = x3 − 36(ϵp)3t2x− (ϵp)5t4.

We get that Et,p has Serre (2, p)-entanglement. Furthermore we have that every elliptic
curve E/Q with Serre (2, p)-entanglement is isomorphic over Q̄ to Et,p for some t ∈ Q∗.

Proof: Using Sage we find that jEt,p = ϵpt2 + 1728. This implies that ∆Et,p ≡ ϵp
(mod (Q∗)2) and so Q(

√
ϵp) ⊆ Q(Et,p[2]). As also Q(

√
ϵp) ⊆ Q(ζp) by Theorem 2.18

we get that
Q(
√
ϵp) ⊆ Q(Et,p[2]) ∩Q(ζp)

and therefore Et,p has Serre (2, p)-entanglement.

Now if we have another elliptic curve E/Q with Serre (2, p)-entanglement, then this must
be given by the quadratic subfield Q(

√
∆E) ⊆ Q(ζp). By Theorem 2.18 this can only

be Q(
√
ϵp) and therefore ∆E ≡ ϵp (mod (Q∗)2.) This then implies by Lemma 3.18 that

j(E) = ϵpt2+1728 for some t ∈ Q∗ and so E is isomorphic over Q̄ to Et,p as they have the
same j-invariant.
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Instead of only looking at primes, I improved on this by for integers m > 2. We can say
the following:

Proposition 3.21. Let m > 2 be an integer. Then there exist infinitely many non-
isomorphic elliptic curves which have Serre (2,m)-entanglement.

Proof: Let m̄ be the squarefree part of m. Then it is enough to show there are infinitely
many non-isomorphic elliptic curves which have Serre (2, m̄)-entanglement as Q(ζm̄) ⊆
Q(ζm) and so these elliptic curves also have Serre (2,m)-entanglement. First of all let m̄
be odd. If m̄ ≡ 1 (mod 4) we get that

Et,m̄ : y2 + m̄txy = x3 − 36m̄3t2x− m̄5t4

for t ∈ Q∗ is an elliptic curve with jEt,m̄ = m̄t2 + 1728 (computed using Sage). We have
that ∆Et,m̄ ≡ m̄ (mod (Q∗)2) and therefore Q(

√
m̄) ⊆ Q(Et,m̄[2]). By Corollary 2.19 we

get that Q(
√
m̄) ⊆ Q(ζm̄) as well and therefore Et,m̄ has Serre (2, m̄)-entanglement. If on

the other hand m̄ ≡ 3 (mod 4), then

Et,−m̄ : y2 − m̄txy = x3 + 36m̄3t2x+ m̄5t4

for t ∈ Q∗ is an elliptic curve with jEt,−m̄ = −m̄t2+1728 and so ∆Et,−m̄ ≡ −m̄ (mod (Q∗)2).
So Q(

√
−m̄) ⊆ Q(Et,m̄[2]) and again by Corollary 2.19 we get that Q(

√
−m̄) ⊆ Q(ζm̄).

Therefore Et,−m̄ has Serre (2, m̄)-entanglement.

Now let m̄ be even. As m̄ is squarefree and bigger than 2 we get that m̄
2 is odd and bigger

than 1. Depending on whether m̄
2 ≡ 1, 3 (mod 4) we then get that Et, m̄

2
or Et,−m̄

2
has Serre

(2, m̄2 )-entanglement. As Q(ζ m̄
2
) ⊆ Q(ζm̄) this also leads to Serre (2, m̄)-entanglement.

We also list for every elliptic curve E/Q with Serre (2,m)-entanglement for m > 2 another
elliptic curve such that E is isomorphic to that curve over Q̄.

Proposition 3.22. Letm > 2 and let E/Q be an elliptic curve with Serre (2,m)-entanglement.
Then for some squarefree d | m we have that ∆E ≡ d (mod (Q∗)2) and that E is isomorphic
over Q̄ to Et,d : y

2 + dtxy = x3 − 36d3t2x− d5t4 for some t ∈ Q∗.

Proof: If E has Serre (2,m)-entanglement this must mean thatQ(
√
∆E) ⊆ Q(ζm). We will

therefore establish the different quadratic subfields of Q(ζm). We write m = 2k ·pe22 · ... ·penn
with pi prime, k ≥ 0 and ei ≥ 1 for 2 ≤ i ≤ n. We have that

Gal(Q(ζm)/Q) ∼= (Z/mZ)∗ ∼= (Z/2e1Z)∗ × (Z/pe22 Z)∗ × ...× (Z/penn Z)∗

by the Chinese remainder theorem.
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We have for pi ̸= 2 that (Z/peii Z)∗ is cyclic [7, Theorem 4], and as it is of even order it has
a unique subgroup of order 2 which by the Galois correspondence is linked to the quadratic
subfield

Q(
√
ϵp) ⊆ Q(ζp) ⊆ Q(ζpei )

where ϵ = (−1)
p−1
2 .

For p = 2 we have that (Z/2kZ)∗ is cyclic if k = 1, 2 and is the product of two cyclic groups
if k ≥ 3 [7, Theorem 5]. If k = 1 then (Z/2kZ)∗ is trivial and so has no subgroup of order
2. If k = 2 then (Z/2kZ)∗ has order 2 and therefore has a unique subgroup of order 2
corresponding to the quadratic subfield

Q(
√
−1) ⊆ Q(ζ4).

Finally if k ≥ 3 then (Z/2kZ)∗ is the product of two cyclic groups and so it has three
subgroups of order 2, corresponding to

Q(
√
−1),Q(

√
2),Q(

√
−2) ⊆ Q(ζ8) ⊆ Q(ζ2k).

We see that that (Z/peii Z)∗ has one subgroup of order 2 for 2 ≤ i ≤ n and that (Z/2kZ)∗
has zero subgroups if k = 1, one if k = 2 and two if k ≥ 3. So we get that the amount of

subgroups of (Z/mZ)∗ of order 2 is given by


2n−1 − 1 if k = 1

2n − 1 if k = 2

2n+1 − 1 if k ≥ 3.

These subgroups correspond to the quadratic subfields

Q(
√
d) ⊆ Q(ζ|d|) ⊆ Q(ζm)

with d | 2p2 · ... · pn (note that d can be negative). We conclude that Q(
√
∆E) = Q(

√
d)

for some d | 2kp2 · ... · pn and so ∆E ≡ d (mod (Q∗)2). By Lemma 3.18 we get that
j(E) = dt2 + 1728 for some t ∈ Q∗. It is then isomorphic over Q̄ to

Et,d : y
2 + dtxy = x3 − 36d3t2x− d5t4

as j(Et,d) = dt2 + 1728 as well (Computed by Sage).

3.5 Serre curves

Definition 3.23. If we take an elliptic curve E/Q, then we have shown in Proposition
3.16 that for the index iE of the full representation ρE we have that iE ≥ 2. If for an
elliptic curve E/Q we have that iE is precisely 2, then we call E a Serre curve.
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There has been a lot of research about these kinds of elliptic curves ([5],[8],[20]). First of
all it was also shown in [5] by Brau and Jones using modular curves that for an elliptic
curve E/Q being a Serre curve is equivalent to having no exceptional primes (meaning ρE,ℓ
is surjective for all ℓ prime), ρE,8 and ρE,9 being surjective, and Q(E[2]) ̸⊆ Q(E[3]). This
implies that if an elliptic curve has no vertical entanglement but is not a Serre curve, we
must have that Q(E[2]) ̸⊆ Q(E[3]). The authors also showed a necessary property of the
j-invariant of elliptic curves for which Q(E[2]) ⊆ Q(E[3]), which are therefore non-Serre
curves. It was shown later on in [20] by Jones that almost all elliptic curves over Q are
Serre curves. Daniels in [8] also gave an infinite family of Serre curves dependent on a
parameter t.

3.6 CM entanglement

We will mainly focus on entanglements on elliptic curves without CM, but we note the
following important result about elliptic curves with CM:

Lemma 3.24. [4, Lemma 3.15]
Let E/Q be an elliptic curve with CM given by an order OK of an imaginary quadratic
field K. Then K ⊆ Q(E[n]) for all n ≥ 3.

This lemma implies that for all a, b ≥ 3 we have horizontal (a, b)-entanglement induced by
K ⊆ Q(E[a]) ∩ Q(E[b]). This shows that the image of the full representation ρE is very
small for an elliptic curve E/Q with CM.

3.7 Horizontal entanglement in terms of group theory

In the final part of this chapter we will introduce another definition of horizontal entan-
glement. In [9] the first and last author of [11], Daniels and Morrow, have found a method
to describe horizontal entanglement in group theoretic terms. This is done as follows: Let
E/Q be an elliptic curve, n be an integer and a < b divisors of n, and let d = gcd(a, b) and
c = lcm(a, b). Then we have

Gn := ρE,n(GQ) ⊆ GL(2,Z/nZ).

Recall that Gn ∼= Gal(Q(E[n])/Q). There is the reduction map πc : GL(2,Z/nZ) →
GL(2,Z/cZ), which just sends every coordinate in Z/nZ to its image in Z/cZ, and we set
Gc := πc(Gn). Note that if a, b are coprime, then n = c and Gn = Gc. For e ∈ {a, b, d} we
also have reduction maps πe : GL(2,Z/cZ)→ GL(2,Z/eZ). We take Ne := ker(πe)∩πc(G)
and we define the following:

Definition 3.25. [9, Definition 3.1]
We say that the group Gn has (a, b)-entanglement if we have

⟨Na, Nb⟩ ⊊ Nd.
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By properties of Galois theory we have that Gn has (a, b)-entanglement if and only if E
has horizontal (a, b)-entanglement. To see this we note that first of all Gc := πc(Gn) ∼=
Gal(Q(E[c])/Q) as πm ◦ ρE,n = ρE,m for all m | n. Then for e ∈ {a, b, d} we also get
πe(Gc) ∼= Gal(Q(E[e])/Q). Now by Theorem 2.12 we have that

Gal(Q(E[e])/Q) ∼= Gal(Q(E[c])/Q)/Gal(Q(E[c])/Q(E[e]))

as Q(E[e])/Q is a Galois extension and so Gal(Q(E[c])/Q(E[e])) is normal. On the other
hand we have that

Gc/(ker(πe) ∩Gc) ∼= πe(Gc)

by the first isomorphism theorem for groups. AsNe = ker(πe)∩Gc and as Gal(Q(E[e])/Q) ∼=
πe(Gc) and Gal(Q(E[c])/Q) ∼= Gc we get that Ne

∼= Gal(Q(E[c])/Q(E[e])). This implies
by the Galois correspondence that Ne is the subgroup of Gc corresponding to the subfield
Q(E[e]) of Q(E[c]). We also know from Lemma 2.16 that the subgroup corresponding to
Q(E[a] ∩Q(E[b]) must then be ⟨Na, Nb⟩ and we get that

⟨Na, Nb⟩ ⊊ Nd

if and only if
Q(E[d]) ⊊ Q(E[a] ∩Q(E[b]).

We summarize this Galois correspondence in the following picture:

Q(E[c]) {e}

Q(E[a]) Q(E[b]) Na Nb

Q(E[a]) ∩Q(E[b]) ⟨Na, Nb⟩

Q(E[d]) Nd

Q Gc

Note that using this group theoretic definition of horizontal entanglement we can prove [9,
Lemma 3.4], which implies that (a, b)-entanglement for integers a, b can lead to entangle-
ment of smaller integers dividing a, b:
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Lemma 3.26. [9, Lemma 3.4]
Let n ≥ 1, let a < b < f be divisors of n, and let d = gcd(a, b). If gcd(a, f) = gcd(b, f) = 1
and Gn has (f · a, f · b)-entanglement then Gn has (a, b)-entanglement as well.

Proof: Suppose Gn does not have (a, b)-entanglement. Then ⟨Na, Nb⟩ = Nd which implies
that for all 2 by 2-matrices X = (xij)1≤i,j≤2 ∈ Gc with c = lcm(a, b) we have that d | xij
for all xij if and only if a | xij for all xij or b | xij for all xij . We claim that for Y ∈ Gf ·c
(note that f · c = lcm(f · a, f · b)) we have that f · d | yij if and only if f · a | yij for all yij
coordinates of Y or f · b | xij for all yij coordinates of Y . This implies that

⟨Nf ·a, Nf ·b⟩ = Nf ·d

which means that Gn does not have (f · a, f · b)-entanglement, but this contradicts our
assumption.

Now we prove our claim: If f · a | yij for all yij or f · b | yij for all yij , then also f · d | yij
for all yij as d | a, b. If conversely f · d | yij for all xij , then we can look at the image of Y
under the map

π : GL(2,Z/f · cZ)→ GL(2,Z/cZ).

If we write Y := π(Y ) with coordinates yij , then for all yij we have that

yij = yij + kij · c.

As f · d | yij for all yij , we get that

d | f · d | yij

for all yij . Also d | c and so
d | yij = yij − kij · c

for 1 ≤ i ≤ 2. Therefore either a divides all yij or b divides all yij . Assume that a | yij for
all yij , then a | yij for all yij as yij = yij + kij · c and a | c. As also gcd(a, f) = 1 and f | yij
for all yij we must have that f · a | yij for all yij . This works similarly in the case that
b | yij and therefore f · d | yij for all yij if and only if f · a | yij for all yij or f · b | yij for
all yij . So we have proven our claim and the contradiction follows. We therefore conclude
that Gn has (a, b)-entanglement as well.

Daniels and Morrow also define the following type of group theoretic entanglement:

Definition 3.27. [9, Definition 3.7]
The group Gn has explained (a, b)-entanglement if Gn has (a, b)-entanglement and

[(Z/cZ)∗ : det(⟨Na, Nb⟩)] = [πc(Gn) : ⟨Na, Nb⟩].
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They then claim thatGn having explained (a, b)-entanglement means that the entanglement
is entirely explained by E having Weil (a, b)-entanglement. Note that by Lemma 2.35
det(⟨Na, Nb⟩) is the c-th cyclotomic character.
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4 Modular curves

This section we will give an introduction to the theory of modular curves, which are complex
algebraic curves with points corresponding to isomorphism classes of elliptic curves with
specific level structure. This will be useful in listing elliptic curves with specific images of
their corresponding Galois representations. These modular curves are given by quotients
of the complex upper half plane by subgroups of the quotient group SL(2,Z)/{−I}, which
are called congruence subgroups. We will start this section by recalling the connection
between elliptic curves over C and complex lattices.

4.1 Elliptic curves over C and complex lattices

Definition 4.1. A complex lattice Λ ⊂ C is given by a discrete subgroup of the complex
plane. If we have such a lattice Λ then {ω1, ω2} is a basis for Λ if for all x ∈ Λ we have
that x = αω1 + βω2 for some α, β ∈ Z. We call Λ1,Λ2 homothetic if Λ1 = αΛ2 for some
α ∈ C∗.

The quotient C/Λ for some lattice Λ is a complex Riemann surface of genus one with the
structure of an abelian group, so in particular it is a complex Lie group. This is called a
complex torus. Every complex torus is of the form C/Λ and is isomorphic as a complex
Lie group to an elliptic curve EΛ over C [35, Proposition VI.3.6]. The Uniformization
Theorem [35. Theorem VI.5.1] also states that every elliptic curve over C is isomorphic
(as a complex Lie group) to C/Λ for some lattice Λ ⊂ C. As by [35. Corollary VI.4.1]
we get that EΛ1

∼= EΛ2 if and only if Λ1 and Λ2 are homothetic, we get a bijection
between isomorphism classes of elliptic curves over C and homothety classes of complex
lattices:

Complex lattices

C∗
∼=

Elliptic curves over C
isomorphic over C

.

For the following subsection we refer to [34, Chapter 1, §1,2]. We will show that the com-
plex upper half plane is closely related to the set of complex lattices which we shall denote
by L. To see this we note that if we have a complex lattice Λ ∈ L with basis {ω1, ω2},
then we can always swap ω1 and ω2 such that the angle from ω2 to ω1 is always positive,
or in other words that Im(ω1

ω2
) > 0. This implies that Λ is homothetic to another complex

lattice Λ
′
with basis {ω1

ω2
, 1} for which Im(ω1

ω2
) > 0. As ω1

ω2
then lies in the complex upper

half plane H ⊂ C this precisely means that the map H→ L/C∗ given by sending τ ∈ H to
the lattice Λτ = Zτ + Z is surjective. To make this map injective as well we need to see
for which τ1, τ2 ∈ H we get that Λτ1 is homothetic to Λτ2 . For this we have the following
lemma:
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Lemma 4.2. 34, Lemma 1.2]
Let τ1, τ2 ∈ H. Then we have that Λτ1 is homothetic to Λτ2 if and only if

τ1 =
aτ2 + b

cτ2 + d

for some

(
a b
c d

)
∈ SL(2,Z). Recall that SL(n,Z) ⊆ GL(n,Z) is the subgroup of matrices

with determinant equal to 1.

Proof: First assume Λτ1 is homothetic to Λτ2 . We get that Zτ1+Z = Zατ2+Zα for some
α ∈ C∗. Therefore there are integers a, b, c, d, a′, b′, c′, d′ ∈ Z such that

τ1 = aατ2 + bα, ατ2 = a′τ1 + b′

1 = cατ2 + dα, α = c′τ1 + d′.

Substituting the left expressions into the right ones gives us

ατ2 = a′(aατ2 + bα) + b′(cατ2 + dα).

As we have that τ1 and τ2 are linearly independent from 1, we must have that a′a+ b′c = 1
and that a′b + b′d = 0. Similarly we get that c′a + d′d = 1 and that c′b + d′c = 0. This
implies that (

a′ b′

c′ d′

)(
a b
c d

)
=

(
1 0
0 1

)
.

One can similarly show that (
a b
c d

)(
a′ b′

c′ d′

)
=

(
1 0
0 1

)
.

Note that

τ1 =
τ1
1

=
aατ2 + bα

cατ2 + dα
=
aτ2 + b

cτ2 + d
.

We also have, as stated in [34, Lemma 1.1], if we write τ2 = e+ fi with e, f ∈ R, that

aτ2 + b

cτ2 + d
=

(cτ̄2 + d)

(cτ̄2 + d)

(aτ2 + b)

(cτ2 + d)
=

(ce− cfi+ d)(ae+ afi+ b)

(cτ2 + d)(cτ2 + d)
=

ac(e2 + f2) + (ad+ bc)e+ bd+ (ad− bc)fi
|cτ2 + d|2

.

45



This implies that

Im(
aτ2 + b

cτ2 + d
) =

(ad− bc)f
|cτ2 + d|2

and because Im(aτ2+bcτ2+d
) = Im(τ1) > 0 and f = Im(τ2) > 0 we must have that ad − bc > 0.

But this means that

(
a b
c d

)
∈ SL(2,Z).

Conversely assume τ1 = aτ2+b
cτ2+d

for some

(
a b
c d

)
∈ SL(2,Z). Then we have that Z(aτ2 +

b) +Z(cτ2 + d) = Zτ2 +Z as the matrix

(
a b
c d

)
is invertible and so {aτ2 + b, cτ2 + d} and

{τ2, 1} both form a basis for the same lattice. Note that

Z(aτ2 + b) + Z(cτ2 + d) = Z(cτ2 + d)τ1 + Z(cτ2 + d) = (cτ2 + d)Λτ1 .

This implies that

(cτ2 + d)Λτ1 = Z(aτ2 + b) + Z(cτ2 + d) = Zτ2 + Z = Λτ2 .

As c, d cannot both be equal to 0 and τ2 and 1 are linearly independent we must have that
cτ2 + d ∈ C∗ and therefore that Λτ1 is homothetic to Λτ2 . This concludes the proof.

If we define the action of SL(2,Z) on H by sending τ to aτ2+b
cτ2+d

then the previous lemma
implies that we have a bijection

H/SL(2,Z)→ L/C∗

given by sending τ to Λτ = Zτ + Z. Note that the matrix −I =

(
−1 0
0 −1

)
acts trivially

on H. We denote the quotient group SL(2,Z)/{−I} by Γ(1) (this notation will become
clear later) and get that

H/Γ(1) ∼= L/C∗.

We stated at the beginning of Subsection 4.1 that we also have a bijection between L/C∗

and elliptic curves over C up to isomorphism. Therefore we get that points τ ∈ H/Γ(1)
are in one-to-one connection with isomorphism classes of elliptic curves over C.

Definition 4.3. We let Y (1) := H/Γ(1) be the modular curve corresponding to the
group Γ(1). We have by [34, Section 1.2] that Y (1) can be turned into a topological space,
which looks like a sphere with a point missing. We can extend this sphere into a compact
Riemann surface [34, Theorem 2.5] by instead of H taking the space H∗ := H ∪ P1(Q) and
taking X(1) := H∗/Γ(1) (this is possible as Γ(1) also acts on P1(Q) by sending (x, y) ∈
P1(Q) to (ax + b, cy + d)). We call X(1) a compactified modular curve. We call the
point in X(1) \ Y (1) the cusp of X(1).

46



Because X(1) is a compact Riemann surface of dimension 1 it is equivalent to a projective
algebraic curve, which is the reason it is called a modular curve. We have that X(1) is
isomorphic to the Riemann sphere P1(C) as its genus is zero [34, Theorem 2.5].

4.2 Congruence subgroups Γ

We have that non-cuspidal points of X(1), or in other words points of Y (1), correspond
to isomorphism classes of elliptic curves over C. But we can also look at modular curves
which parametrize elliptic curves over C with more structure. In order to define these we
will need more theory on groups similar to Γ(1). For this we shall closely follow [13]. We
first define the following subgroups of Γ(1):

Definition 4.4. We define for N ∈ N the subgroup

Γ(N) :=

{(
a b
c d

)
∈ Γ(1) | a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}
as the principal congruence subgroup of level N.

Note that this subgroup fits in the following exact sequence:

0→ Γ(N)→ Γ(1)→ SL(2,Z/NZ)/{−I} → 0

where the first non-trivial map is the inclusion map and the second non-trivial map is

the map sending each coordinate of a matrix

(
a b
c d

)
∈ Γ(1) = SL(2,Z)/{−I} to its

corresponding residue class in Z/NZ. The first isomorphism theorem of groups then gives
us that

Γ(1)/Γ(N) ∼= SL(2,Z/NZ)/{−I}.

We also have the following class of subgroups of Γ(1):

Definition 4.5. We call a subgroup Γ ⊆ Γ(1) a congruence subgroup if Γ(N) ⊆ Γ for
some N ∈ Z.

Example 4.6. The two most important examples of congruence subgroups are

Γ0(N) :=

{(
a b
c d

)
∈ Γ(1) | c ≡ 0 (mod N)

}
and

Γ1(N) :=

{(
a b
c d

)
∈ Γ(1) | a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}
.

Note that we have the following chain of inclusions of subgroups:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ Γ(1).
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These congruence subgroups also act on the complex upper half plane H in the same way
as Γ(1) acts on H. If we quotient H with these subgroups, we then end up with different
modular curves.

Definition 4.7. We define
Y (N) := H/Γ(N)

as the modular curve corresponding to the group Γ(N) and X(N) := H∗/Γ(N) as
its compactified modular curve.
We similarly define

Y0(N) := H/Γ0(N)

as the modular curve corresponding to the group Γ0(N) and

Y1(N) := H/Γ1(N)

as the modular curve corresponding to the group Γ1(N). Their corresponding
compactified modular curves we have as X0(N) := H∗/Γ0(N) and X1(N) := H∗/Γ1(N).

Like X(1) and Y (1) these modular curves are topological spaces and their compactified
forms are compact Riemann surfaces which are therefore equivalent to complex projective
curves [13, Chapter 2]. We will show in Subsection 4.4 that the modular curves X(N) can
be defined over the cyclotomic field Q(ζn) and furthermore that X0(N) and X1(N) can be
defined over Q.

4.3 Elliptic curves with level structure

We have seen that the modular curve Y (1) parametrizes elliptic curves over C. We have
that Y (N), Y0(N), Y1(N) also parametrize elliptic curves but with more structure. What
we mean by this we shall define in more detail. We first recall the fact that for elliptic
curves E/C we have for N ∈ N that

E[N ] ∼= Z/NZ× Z/NZ.

If we take a complex lattice Λ = Zω1 +Zω2 then for EΛ we have that its N -torsion points
correspond to the points in

(Z
ω1

N
+ Z

ω2

N
)/Λ ⊂ C/Λ

(see [35, VI,5,4]). The isomorphism between E[N ] and Z/NZ × Z/NZ is dependent on a
choice of basis. We therefore have the following definition:

Definition 4.8. Let E/C be an elliptic curve. We call an isomorphism α : Z/NZ ×
Z/NZ→ E[N ] a level N structure.
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Recall that for E/C we have the Weil pairing eN : E[N ]× E[N ]→ µN ⊂ C∗ sending two

N -torsion points to a complex N -th root of unity e
2πki
N with k ∈ Z. This brings us to the

next definition:

Definition 4.9. Let E/C be an elliptic curve and let α : Z/NZ × Z/NZ → E[N ] be a
level N structure. We say that α is a canonical level N structure if

eN (α(1, 0), α(0, 1)) = e
2πi
N .

Note that an elliptic curve E/C with a canonical level N structure is equivalent to a tuple
(E,P,Q) with {P,Q} the N -torsion points forming an E[N ] basis given respectively by

the images of α(1, 0) and α(0, 1) such that eN (P,Q) = e
2πi
N .

Before we prove our main theorem of this subsection, Theorem 4.10, we look at the following
three sets: We first have the set

S(N)1 := {(E,P ) | E/C an elliptic curve and P a point of E of order N}

where (E,P ) ∼= (E′, P ′) if there exists an isomorphism E ∼= E′ sending P to P ′. We also
have the set

S(N)0 := {(E,G) | E/C an elliptic curve and G a cyclic subgroup of E(C) of order N}

where (E,G) ∼= (E′, G′) if there exists an isomorphism E ∼= E′ sending G to G′. Finally
we have the set

S(N) := {(E,P,Q) | E/C an elliptic curve and {P,Q} defining a canonical level N structure}

where (E,P,Q) ∼= (E′, P ′, Q′) if there exists an isomorphism E ∼= E′ sending P to P ′ and
Q to Q′. This leads to the following theorem linking these sets to points on the modular
curves Y0(N), Y1(N), Y (N):

Theorem 4.10. [13, Theorem 1.5.1]
We have a bijection between the following sets:

1. Y1(N) ∼= S(N)1/ ∼

2. Y0(N) ∼= S(N)0/ ∼

3. Y (N) ∼= S(N)/ ∼.

Proof: For this proof we refer to the proof of [13, Theorem 1.5.1]. We start by proving 1.
First of all we take the map

ϕ : H→ S(N)1/ ∼
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defined by sending τ ∈ H to the isomorphism class of (EΛτ ,
1
N ) with 1

N the point of EΛτ

of order N corresponding to 1
N ∈ C/Λτ . We will first show that this map is surjective and

then that ϕ(τ1) = ϕ(τ2) if and only if τ1 =
aτ2+b
cτ2+d

for some

(
a b
c d

)
∈ Γ1(N).

Let E be an elliptic curve over C and let P be a point of E of order N . Then there exists a
τ ∈ H such that E ∼= EΛτ by what we have have seen in Subsection 4.1. We have that the
basis of EΛτ [N ] is given by the points corresponding to τ

N ,
1
N ∈ C/Λτ . This implies that P

corresponds to a point kτ
N + l

N ∈ C/Λτ with k, l ∈ Z. Because the order of P is exactly N
we get that gcd(k, l,N) = 1 and therefore there exist a, b, c ∈ Z such that al− bk− cN = 1.

But now we can take the residue class of the matrix

(
a b
k l

)
∈ Mat(2,Z) and get a matrix

in SL(2,Z/NZ). Because the reduction map SL(2,Z)→ SL(2,Z/NZ) is surjective we can

lift this into a matrix

(
a′ b′

k′ l′

)
∈ SL(2,Z). Note that the point k′τ

N + l′

N ∈ C/Λτ still

corresponds to P as k′, l′ are equivalent to respectively k, l modulo N . we take τ ′ := a′τ+b′

k′τ+l′ .
Then similarly to the proof of Lemma 4.2 we get that k′τ + l′Λτ ′ = Λτ and so Λτ ′ and Λτ
are homothetic. This implies that E ∼= EΛτ

∼= EΛτ ′ . We also have that

k′τ + l′
(

1

N

)
=
k′τ

N
+
l′

N

which is the point corresponding to P . So we get that the isomorphism between EΛτ ′ and
E sends the point corresponding to 1

N ∈ C/Λτ ′ to P and therefore

(E,P ) ∼=
(
EΛτ ′ ,

1

N

)
and ϕ is surjective.

Now assume for τ1, τ2 ∈ H we have that τ1 =
aτ2+b
cτ2+d

for some

(
a b
c d

)
∈ Γ1(N). This implies

that a, d ≡ 1 (mod N) and that c ≡ 0 (mod N) Then EΛτ1

∼= EΛτ2
as Γ1(N) ⊂ Γ(1). We

have for 1
N ∈ C/Λτ1 that

(cτ2 + d)
1

N
=
cτ2
N

+
d

N
≡ 0

N
+

1

N
(mod N)

and so (cτ2 + d) 1
N is is equivalent to 1

N ∈ C/Λτ2 modulo Λτ2 . This implies that the point
of EΛτ1

corresponding to 1
N ∈ C/Λτ1 gets sent to the point of EΛτ2

corresponding to
1
N ∈ C/Λτ2 and so (

EΛτ1
,
1

N

)
∼=
(
EΛτ2

,
1

N

)
.
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If conversely we have that (EΛτ1
, 1
N ) ∼= (EΛτ2

, 1
N ) for some τ1, τ2 ∈ H, then we must have

that there exists some α ∈ C such that αΛτ1 = Λτ2 and α
N ≡

1
N (mod Λτ2). The proof of

Lemma 4.2 tells us that ατ1 = aτ2 + b and that α = cτ2 + d for some

(
a b
c d

)
∈ SL(2,Z).

We can take its residue class in Γ(1). We also get that cτ2+d
N ≡ 1

N (mod Λτ2) and so
a ≡ 1 (mod N) and c ≡ 0 (mod N). We must have then that d ≡ 1 (mod N) as well as
ad− bc ≡ 1 (mod N) and so we get that(

a b
c d

)
∈ Γ1(N).

This concludes the proof of 1. We will now prove 2. We take the map

ϕ : H→ S(N)0/ ∼

defined by sending τ ∈ H to the isomorphism class of (EΛτ , ⟨ 1N ⟩) with ⟨ 1N ⟩ the subgroup
of EΛτ (C) of order N generated by the point corresponding to 1

N ∈ C/Λτ . This map is
surjective by the same reasoning as in the proof of 1. We have for G a subgroup of E that
G is generated by a point P of order N . So by the same argument as before we have that
(E,P ) ∼= (EΛτ ′ ,

1
N ) for some τ ′ ∈ H. But then (E,G) ∼= (EΛτ ′ , ⟨

1
N ⟩). Now assume that

for τ1, τ2 ∈ H we have that τ1 = aτ2+b
cτ2+d

for some

(
a b
c d

)
∈ Γ0(N), so c ≡ 0 (mod N) and

a, d ∈ (Z/NZ)∗. Then for 1
N ∈ C/Λτ1 we have that

cτ2 + d(
1

N
) ≡ d

N
(mod N).

Because d is invertible modulo N we get that d
N generates the same subgroup as 1

N and so
we get that

(EΛτ1
, ⟨ 1
N
⟩) ∼= (EΛτ2

, ⟨ 1
N
⟩).

If conversely we have that (EΛτ1
, ⟨ 1N ⟩) ∼= (EΛτ2

, ⟨ 1N ⟩) for some τ1, τ2 ∈ H, then we must

have that there exists some α ∈ C such that αΛτ1 = Λτ2 and α
N ≡

k
N (mod Λτ2) with

k ∈ (Z/NZ)∗. We get, similarly to before, that ατ1 = aτ2+b and that α = cτ2+d for some(
a b
c d

)
∈ SL(2,Z). We again take its residue class in Γ(1). We now have that cτ2+d

N ≡ k
N

(mod Λτ2) and so c ≡ 0 (mod N) and we get that(
a b
c d

)
∈ Γ0(N).

Finally we prove 3. We take the map

ϕ : H→ S(N)/ ∼
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defined by sending τ ∈ H to the isomorphism class of (EΛτ ,
τ
N ,

1
N ) with τ

N ,
1
N the points of

EΛτ corresponding to τ
N ,

1
N ∈ C/Λτ . We have that

eN (
τ

N
,
1

N
) = e

2πi
N

by [17], so this map is well-defined as ( τN ,
1
N ) defines a canonical level N structure. We

now show this map is surjective. Assume we have an elliptic curve E/C and two points
P,Q ∈ E[N ] which define a canonical level N structure. Then E ∼= EΛτ for some τ ∈ H.
EΛτ has the canonical level N structure given by the points corresponding to τ

N ,
1
N ∈ C/Λτ .

We get that P,Q correspond respectively to points

aτ

N
+

b

N
,
cτ

N
+

d

N
∈ C/Λτ .

We get by properties of the Weil pairing that

eN (P,Q) = eN (
aτ

N
+

b

N
,
cτ

N
+

d

N
) = eN (

τ

N
,
1

N
)ad−bc = (e

2πi
N )ad−bc.

Because eN (P,Q) = e
2πi
N as well we must have that ad−bc ≡ 1 (mod N) and so we get that(

a b
c d

)
∈ SL(2,Z/NZ).We can lift this matrix to a matrix

(
a′ b′

c′ d′

)
∈ SL(2,Z). Again we

have that P,Q correspond to the points a′τ
N + b′

N ,
c′τ
N + d′

N ∈ C/Λτ as well because a, b, c, d

are equivalent to a′, b′, c′, d′ modulo N . We similarly to the proof of 1 take τ ′ := a′τ+b′

c′τ+d′ .
Then (c′τ + d′)Λτ ′ = Λτ and so these lattices are homothetic. We also have that

(c′τ + d′)
1

N
=
c′τ

N
+
d′

N

and that

(c′τ + d′)
τ ′

N
=
a′τ

N
+
b′

N

and so the isomorphism between EΛτ ′ and EΛτ induced by c′τ + d′ sends ( τ
′

N ,
1
N ) to the

points a′τ
N + b′

N ,
c′τ
N + d′

N ∈ C/Λτ corresponding to the points (P,Q) ∈ E(C). We conclude
that

(E,P,Q) ∼= (EΛτ ′ ,
τ ′

N
,
1

N
).

Now assume that for τ1, τ2 ∈ H we have that τ1 = aτ2+b
cτ2+d

for some

(
a b
c d

)
∈ Γ(N), so

a, d ≡ 1 (mod N) and b, c ≡ 0 (mod N). Then for 1
N ∈ C/Λτ1 we have that

cτ2 + d(
1

N
) ≡ 1

N
(mod N)
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and for τ1
N ∈ C/Λτ1 that

cτ2 + d(
τ1
N

) ≡ τ2
N

(mod N).

So we get that

(EΛτ1
,
τ1
N
,
1

N
) ∼= (EΛτ2

,
τ2
N
,
1

N
).

If conversely we have that (EΛτ1
, τ1N ,

1
N ) ∼= (EΛτ2

, τ2N ,
1
N ) for some τ1, τ2 ∈ H, then we must

have that there exists some α ∈ C such that αΛτ1 = Λτ2 and that α
N ≡

1
N (mod Λτ2) and

ατ1
N ≡

τ2
N (mod Λτ2). We have that ατ1 = aτ2 + b and that α = cτ2 + d for some

(
a b
c d

)
∈

SL(2,Z). Also here we take its residue class in Γ(1). The facts that α
N ≡

1
N (mod Λτ2)

and ατ1
N ≡ τ2

N (mod Λτ2) imply that a, d ≡ 1 (mod N) and that b, c ≡ 0 (mod N) and so
we get that (

a b
c d

)
∈ Γ(N).

This concludes the proof.

Remark 4.11. Note that the set

{(E,G) | E/C an elliptic curve and G a cyclic subgroup of E(C) of order N}

is in bijection with the set of {(E, ϕ) | E/C an elliptic curve and ϕ an N -isogeny} as stated
in remark 3.1. So we get that Y0(N) also parametrizes elliptic curves with an N -isogeny.

4.4 The quotient curve XH

We have seen multiple different modular curvesX(N), X0(N), X1(N) parametrizing elliptic
curves over C with varying structure. As these modular curves are compact Riemann
surfaces of dimension 1 they are given by algebraic curves. We can even define X(N) over
Q(ζN ). To do this we need to know what the function field of X(N) is. We have for
X0(1) = X1(1) = X(1) ∼= P1(C) that C(X(1)) = C(j) where j is the so called modular
invariant which corresponds to the j-invariant of an elliptic curve given by a point P ∈ X(1)
[13, Section 3.2]. We also have the following proposition:

Theorem 4.12. [13, Proposition 7.5.2]
We have that the function field of the modular curve X(N) is given by

C(X(N)) = C(x(Ej0 [N ]), j)

where Ej0 is the universal elliptic curve given by

Ej0 : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728
.
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Furthermore the field extension C(x(Ej0 [N ]), j)/C(j) is Galois with Galois group given by

Gal(C(x(Ej0 [N ]), j)/C(j)) = SL(2,Z/NZ)/{−I}.

We can also take the field extension Q(x(Ej0 [N ]), j)/Q(j). This is Galois as well with
Galois group given by GL(2,Z/NZ) and we have that

Q(x(Ej0 [N ]), j) ∩ Q̄ = Q(ζN )

[13, Section 7.6]. We have from [35, II.2.5] that function fields K/Q for which K ∩ Q̄ = K
correspond to algebraic curves defined over K, so we get that the field Q(x(Ej0 [N ]), j)
corresponds to an algebraic curve, which we denote as X(N)alg/Q(ζN ) defined over Q(ζN ),
which has a function field given by Q(x(Ej0 [N ]), j). The points of X(N)alg with coordinates
in C form a curve which is isomorphic to X(N) [13, Theorem 7.7.1].

We have the map X(N)→ X(1) induced by sending a point [τ ] ∈ H/Γ(N) to [τ ] ∈ H/Γ(1).
This map gives rise to the map of function fields C(X(1)) → C(X(N)). We have that
C(X(N))/C(X(1) is Galois given by SL(2,Z/NZ)/{−I}. This is an example of a Galois
covering, for which we give the definition:

Definition 4.13. Let X,Y be curves and let ϕ : X → Y be a covering of topological
spaces. We call ϕ a Galois covering if K(X)/K(Y ) is a Galois extension.

We have by the fundamental theorem of Galois coverings [16, Theorem 2.1] that normal
subgroups G ⊆ SL(2,Z/NZ)/{−I} correspond to intermediate Galois coverings given by
X(N)/G := {[P ] | P ∈ X(N)} where [P ] is given by the orbit of P under the action
of G. Note that as SL(2,Z/NZ)/{−I} ∼= Γ(1)/Γ(N) we get for G = SL(2,Z/NZ)/{−I}
that

X(N)/G ∼=
H/Γ(N)

Γ(1)/Γ(N)
∼= H/Γ(1) = X(1),

while on the other hand we have for G = {[I]} ⊂ SL(2,Z/NZ)/{−I} that

X(N)/{[I]} ∼= X(N).

Definition 4.14. Now takeH ⊆ GL(2,Z/NZ)/{−I}, then forH0 := H∩SL(2,Z/NZ)/{−I}
we define the quotient curve XH := X(N)/H0.

Remark 4.15. Note that because non-cuspidal points ofX(N) correspond to isomorphism
classes of elliptic curves over C and canonical level N structures, we have that non-cuspidal
points of XH correspond to isomorphism classes of elliptic curves E/C and H0-orbits of
canonical level N structures of E. Note that H0-orbits of canonical level N structures
correspond to unique H-orbits of level N structures of E as every H-orbit of level N
structures contains a unique H0-orbit of canonical level N structures. So we also have that
non-cuspidal points of XH correspond to isomorphism classes of elliptic curves E/C and
H-orbits of level N structures of E.
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We have seen that X(N) admits a natural structure over Q(ζN ), meaning there exists
a algebraic curve X(N)alg/Q(ζN ) such that C-points of X(N)alg correspond to points of
X(N). Let

det(H) := Im(det(H)) ⊆ (Z/NZ)∗

with det : GL(2,Z/NZ)→ (Z/NZ)∗ the determinant map, then for XH we similarly have
that XH admits natural structure over Q(ζN )

det(H) which is the subfield of Q(ζN ) fixed
by det(H) seen as a subgroup of Gal(Q(ζN )/Q) [12, IV.3.20.4]. We have the following
theorem which states that for quotient curves XH we have that under certain conditions
XH admits a natural structure over Q.

Theorem 4.16. [13, Theorem 7.6.3]
Let H ⊆ GL(2,Z/NZ)/{−I} and let XH be its corresponding quotient curve. Then XH

admits a natural structure over Q if and only if det(H) = (Z/NZ)∗. Here natural structure
over Q means that there exists an algebraic curve (XH)alg/Q such that C-points of (XH)alg
bijectively correspond to points of XH .

Example 4.17. We have that the modular curves X0(N), X1(N) are isomorphic to quo-
tient curves XH for specific H. We can also show that these curves admit natural structure
over Q. If we first of all take

H =

{
±
(
a b
0 c

)
∈ GL(2,Z/NZ)/{−I}

}
then

H0 = H∩SL(2,Z/NZ)/{−I} =
{
±
(
a b
0 c

)
∈ H | ac ≡ 1 (mod N)

}
/{−I} ∼= Γ0(N)/Γ(N).

Therefore we have that

XH = X(N)/H0 =
H/Γ(N)

Γ0(N)/Γ(N)
∼= H/Γ0(N) = X0(N).

We also have for

H =

{
±
(
1 b
0 c

)
∈ GL(2,Z/NZ)/{−I}

}
that

H0 =

{
±
(
1 b
0 1

)
∈ H

}
/{−I} ∼= Γ1(N)/Γ(N).

We now get that

XH = X(N)/H0 =
H/Γ(N)

Γ1(N)/Γ(N)
∼= H/Γ1(N) = X1(N).

Note that in both cases we have that det(H) = (Z/NZ)∗ and therefore both X0(N) and
X1(N) admit a natural structure over Q.
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4.5 Rational points on modular curves

We finally return to our main topic of Galois representations of elliptic curves. How this
topic is related to modular curves we will now explain. From here on we assume that
H ⊆ GL(2,Z/NZ)/{−I} has the property that det(H) = (Z/NZ)∗. As the quotient curve
XH has a natural structure over Q, it makes sense to define XH(Q) := (XH)alg(Q).We will
show that non-cuspidal rational points of XH(Q) are represented by elliptic curves over Q
with Galois representations

ρE,N (GQ) = Gal(Q(E[N ])/Q) ⊆ gHg−1

for some g ∈ GL(2,Z/NZ).

Remark 4.18. Recall that for E/Q an elliptic curve and σ ∈ GQ we have that σ induces
an action on E[N ] ∼= Z/NZ/×Z/NZ. We can extend this to elliptic curves E/C as follows:
Let

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be the Weierstrass equation for E with a1, ..., a6 ∈ C. Then we define Eσ as the curve

Eσ : y2 + σ(a1)xy + σ(a3)y = x3 + σ(a2)x
2 + σ(a4)x+ σ(a6).

Now σ induces a group homomorphism σ : E(C)→ Eσ(C) defined by σ(P ) = (σ(x), σ(y))
for P = (x, y): If P = (x, y) is a point of E, then y2+a1xy+a3y−x3−a2x2−a4x−a6 = 0,
so then σ(P ) is a solution of Eσ as σ is a group homomorphism and so

σ(y)2 + σ(a1)σ(x)σ(y) + σ(a3)σ(y)− σ(x)3 − σ(a2)σ(x)2 − σ(a4)σ(x)− σ(a6) =
σ(y2 + a1xy + a3y − x3 − a2x2 − a4x− a6) = 0.

We also have, similar to elliptic curves over Q, that σ induces an group isomorphism
σ : E[N ]→ Eσ[N ]. If we take a levelN structure for E given by α : Z/NZ/×Z/NZ→ E[N ]
then σ ◦ α defines a level N -structure of Eσ. If we now take a point P ∈ XH then P
corresponds to a pair ([E], [α]) with [E] the isomorphism class of E/C an elliptic curve
and [α] an H-orbit of the level N -structure α of E. Note that ([E], [α]) and ([E′], [α′])
represent the same point of XH if there exists an isomorphism ϕ : E → E′ over C such
that α′ = ϕ ◦ α ◦ h for some h ∈ H. We have that σ(P ) is the point of XH represented
by [Eσ] and the H-orbit of σ ◦ α. Note that XH(Q) consists of precisely the points in XH

stable under the action of σ ∈ GQ. [38, Section 3.1].

Note that if E is defined over Q then Eσ = E and σ ∈ Aut(E[N ]) and ρE,N (σ) ∈
GL(2,Z/NZ) as we have established before.

We state the following theorem:
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Theorem 4.19. [38, Lemma 3,1 and Proposition 3.2]
Let H ⊆ GL(2,Z/NZ)/{−I} have the property that det(H) = (Z/NZ)∗ and let XH be its
corresponding quotient curve.
Let P ∈ XH(Q) with P non-cuspidal. Then P is represented by an elliptic curve E/Q.
We furthermore have for P ∈ XH represented by an elliptic curve E/Q with j(E) ̸= 0, 1728
that P ∈ XH(Q) if and only if

ρE,N (GQ) = Gal(Q(E[N ])/Q) ⊆ gHg−1

for some g ∈ GL(2,Z/NZ).

Proof: Let P ∈ XH(Q) be represented by the elliptic curve E/C and the H-orbit of the
level N structure α : Z/NZ/ × Z/NZ → E[N ]. We have for all σ ∈ GQ that σ(P ) is
represented by σ(E) and the H-orbit of σ ◦ α. As P ∈ XH(Q) we get that σ(P ) = P and
therefore E ∼= Eσ over C. In particular we get that

j(E) = j(Eσ) = σ(j(E))

and therefore j(E) ∈ Q as well. We get that

Ej(E) : y
2 + xy = x3 − 36

j(E)− 1728
x− 1

j(E)− 1728

is an elliptic curve over Q such that there exists an isomorphism ϕ : Ej(E) → E over C.
Then P is also represented by Ej(E)/Q and the H-orbit of ϕ ◦ α.

Now assume P ∈ XH is represented by an elliptic curve E/Q and the H-orbit of the level
N structure α. We get that Eσ = E and so σ(P ) is represented by E and the H-orbit of
the level N structure σ ◦ α. We have that P ∈ XH(Q) if and only if σ(P ) = P , which is
now equivalent to stating that

σ ◦ α = ϕ ◦ α ◦ h

for some isomorphism ϕ ∈ Aut(E) and h ∈ H. Assume that σ ◦ α = ϕ ◦ α ◦ h for some
h ∈ H, then

α−1 ◦ ϕ−1 ◦ σ ◦ α = h.

Because j(E) ̸= 0, 1728 we have that Aut(E) = {±1} [35, Theorem III.10.1]. So

α−1 ◦ σ ◦ α = ±I ◦ h

and as I = −I in GL(2,Z/NZ)/{−I} as well we get that σ = α ◦ h ◦ α−1 and so

ρE,N (GQ) ⊆ gHg−1
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for g =∈ GL(2,Z/NZ). Conversely assume ρE,N (GQ) ⊆ gHg−1 for g ∈ GL(2,Z/NZ), then
for all σ ∈ GQ we have that α−1 ◦ σ ◦ α ∈ H. If we take ϕ = 1 then

α−1 ◦ ϕ−1 ◦ σ ◦ α ∈ H

and so σ(P ) = P and P ∈ XH(Q).

Example 4.20. We can use this theorem to get a better understanding of the non-cuspidal
rational points of X0(N), X1(N).

First of all we get that points P ∈ X0(N)(Q) are represented by elliptic curves E/Q with
ρE,N (GQ) ⊆ gHg−1 for some g ∈ GL(2,Z/NZ) with

H =

{
±
(
a b
0 c

)
∈ GL(2,Z/NZ)/{−I}

}
=

{(
a b
0 c

)
∈ GL(2,Z/NZ)

}
.

Note that this corresponds by Proposition 3.3 to elliptic curves E/Q with a cyclic subgroup
of E(Q) over order N stable under GQ (or in other words a rational cyclic N -isogeny).

We furthermore get that points P ∈ X1(N)(Q) are represented by elliptic curves E/Q with
ρE,N (GQ) ⊆ gHg−1 for some g ∈ GL(2,Z/NZ) with

H =

{
±
(
1 b
0 c

)
∈ GL(2,Z/NZ)/{−I}

}
=

{(
1 b
0 c

)
∈ GL(2,Z/NZ)

}
.

Note that this corresponds by Proposition 3.3 to elliptic curves E/Q with a rational point
of order N .

Example 4.21. We have that X(N) admits a natural structure over Q(ζN ). Similarly to
the case of natural structure over Q, we get that a non-cuspidal point P ∈ X(N)(Q(ζN )) is
represented by an elliptic curve E over Q(ζN ). Note that X(N) can be seen as the quotient
curve XH with

H =

{
±
(
1 0
0 1

)
∈ GL(2,Z/NZ)/{−I}

}
=

{(
1 0
0 1

)
∈ GL(2,Z/NZ)

}
.

We can also extend our definition of Galois representations of elliptic curves to elliptic
curves over Q(ζN ) by only taking the image of elements in Gal(Q̄/Q(ζN )). We then fur-
thermore get that Im(ρE,N ) ⊆ gHg−1 for some g ∈ GL(2,Z/NZ). Note that this implies
that Q(E[N ]) = Q(ζN ) as the torsion points are left fixed by elements of Gal(Q̄/Q(ζN )).
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Example 4.22. As we briefly mentioned in Subsection 3.5, the authors of [5] have shown
that the elliptic curves over Q which have Q(E[2]) ⊆ Q(E[3]) are parametrized by the non-
cuspidal rational points of the modular quotient curve XH with H ⊆ GL(2,Z/6Z)/{−I}
given by

H =

{
±
(
x −y
y x

)
| x2 + y2 ≡ 1 (mod 3)

}
⊔
{
±
(
x y
y −x

)
| x2 + y2 ≡ −1 (mod 3)

}
.

The authors have furthermore shown that isomorphism classes of elliptic curves E/Q cor-
respond to points of the modular curve XH if and only if its j-invariant jE has the property
that

jE = 21033t3(1− 4t3)

for some t ∈ Q. This implies for E/Q that Q(E[2]) ⊆ Q(E[3]) if and only if jE = 21033t3(1−
4t3).
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5 Weil entanglement

This chapter we will focus more on Weil entanglement. We will mostly focus on cases
where we have Weil (2, n) and Weil (3, n)-entanglement. For Weil (3, n)-entanglement in
particular we will use our obtained knowledge of modular curves to find elliptic curves with
particular torsion structure, which we can modify further to find elliptic curves with specific
Weil entanglement. For both Weil (2, n)- and (3, n)-entanglement we will also, similarly to
how we handled Serre entanglement, study the conductor of certain quadratic and cubic
abelian field extensions in order to precisely pinpoint for which n ∈ N the Weil entanglement
occurs. We refer back to Definition 3.10 for the definition of Weil entanglement.

5.1 Weil (2, n)-entanglement of type Z/3Z

We begin by studying Weil (2, n)-entanglement in more detail. Because Q(ζ2) = Q we get
that this kind of entanglement can only be of the form

Q ⊊ (Q(E[2]) ∩Qab) ∩Q(ζn).

Note that if ρE,2 is surjective, then Lemma 2.32 implies that Gal(Q(E[2]/Q) ∼= S3 and that
(Q(E[2]) ∩Qab) = Q(

√
∆E). If furthermore Gal(Q(E[2]/Q) ∼= Z/2Z then also (Q(E[2]) ∩

Qab) = Q(
√
∆E). In these cases we get Weil (2, n)-entanglement of type Z/2Z which we

called Serre entanglement and already studied in more detail. We will now focus on the
remaining case, which occurs when Gal(Q(E[2]/Q) ∼= Z/3Z. By Lemma 2.32 this case
corresponds to elliptic curves E/Q which have no rational 2-torsion points and for which
∆E ∈ (Q∗)2.

Remark 5.1. Let

H :=

{
I,

(
1 1
1 0

)
,

(
0 1
1 1

)}
⊂ GL(2,Z/2Z)

be the unique subgroup of order 3. We have that I = −I in GL(2,Z/2Z) and that
det(H) = (Z/2Z)∗ ∼= {1}, so we get by Theorem 4.19 that the non-cuspidal rational points
of the modular quotient curve XH parametrize elliptic curves E/Q such that Im(ρE,2) is
conjugate to a subgroup of H. In this case Gal(Q(E[2]/Q) is either isomorphic to Z/3Z
or it is trivial. In [37, Theorem 1.1] the authors show that these elliptic curves E/Q
parametrized by non-cuspidal rational points of XH have the property that jE = t2+1728
for some t ∈ Q. Note that by Lemma 3.18 this is equivalent to saying that ∆E ∈ (Q∗)2,
which is in line with the statements given in Lemma 2.32.

Remark 5.2. Recall that in the proof of Lemma 2.32 we have shown for an elliptic curve
E/Q without rational 2-torsion points and for which ∆E ∈ (Q∗)2, that E is isomorphic
over Q to E′/Q with E′ : y2 = x3+Ax+B and A,B ∈ Q for which we also have that E′ has
no rational 2-torsion points and ∆′

E ∈ (Q∗)2. Furthermore we can clear the denominators
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of A,B by finding a u ∈ Q such that E′ is isomorphic over Q to E′′ : y2 = x3 +A′′x+B′′

with A′′ = u4A ∈ Z and B′′ = u6B ∈ Z. We have that Q(E[2]) = Q(E′[2]) and also that
Q(E′′[2]) = Q(E′[2]) as the isomorphisms between E,E′ and E′, E′′ were over Q. Therefore
we get that the Weil (2, n)-entanglement of E is the same as the Weil (2, n)-entanglement
of E′′. This implies that the Weil (2, n)-entanglement of general elliptic curves over Q
is dependent on the Weil (2, n)-entanglement of isomorphic elliptic curves of the form
E : y2 = x3 + Ax + B with A,B ∈ Z. We will therefore focus on elliptic curves of this
form.

If we now take such an elliptic curve E : y2 = x3 + Ax + B with A,B ∈ Z and with
Gal(Q(E[2]/Q) ∼= Z/3Z, then Lemma 2.32 gives us that ∆E ∈ (Q∗)2 and so ∆E =
16(−4A3 − 27B2) = 16C2 for some C ∈ Q. Also the fact that E has no rational 2-
torsion points implies that x3 + Ax + B is irreducible over Z[X]. In other words we have
that Q(E[2]) = Q(α) with α ∈ C a root of x3+Ax+B, where Q(α) is a cubic abelian field
extension of Q.

Definition 5.3. The conductor of an abelian field extension is defined by the smallest
N ∈ N such that Q(α) ⊆ Q(ζN ).

Studying the conductor N of Q(α) will be key in determining where the entanglement
occurs as E will then have Weil (2, N)-entanglement of type Z/3Z. We summarize this in
the following proposition:

Proposition 5.4. Let E/Q be an elliptic curve. Then Gal(Q(E[2]/Q) ∼= Z/3Z if and
only if ∆E ∈ (Q∗)2 and E has no rational points. Furthermore if this is the case then
Q(E[2]) = Q(α) for some α ∈ C with Q(α) an cubic abelian field extension of Q. Let N be
the conductor of Q(α). Then we have that E has Weil (2, N)-entanglement of type Z/3Z.

We now provide two methods for computing the conductor of a cubic abelian field extension
of Q. The first method uses the so called conductor-discriminant formula [31]. This formula
tells us that for the discriminant ∆K and the conductor NK of abelian cubic field extensions
K/Q we have that

∆K = (NK)2.

Let K := Q(α) be a field extension of Q with α ∈ C the root of the irreducible polynomial
f(x) := x3+Ax+B ∈ Z[X]. The discriminant of this polynomial we call ∆fα and is given
by ∆fα = −4A3 − 27B2. Let −4A3 − 27B2 = C2 for some C ∈ Q, then we have seen
that Q(α) is a cubic abelian field extension of Q. Note that by [36, Theorem 4.10] we have
that

∆fα = [OK : Z[α]]2 ·∆K

with OK the ring of integers of K. Let iα := [OK : Z[α]]. Then the conductor of K is
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given by √
∆fα

i2α
=

√
−4A3 − 27B2

iα
.

This implies for elliptic curves E : y2 = x3+Ax+B withA,B ∈ Q and with Gal(Q(E[2]/Q) ∼=
Z/3Z, that we get for the conductor of Q(α) = Q(E[2]) with α ∈ C a root of x3 +Ax+B
that

NQ(α) =

√
−4A3 − 27B2

iα
=

√
∆E

4iα
.

We summarize this in the following proposition:

Proposition 5.5. Let E/Q be an elliptic curve of the form E : y2 = x3 + Ax + B with
A.B ∈ Z and with Gal(Q(E[2]/Q) ∼= Z/3Z. Then Q(E[2]) = Q(α) with α ∈ C a root of

x3 +Ax+B and E has Weil (2,
√
∆E
4iα

)-entanglement.

Using this method we still have to determine the value of the index iα := [OK : Z[α]],
which we can compute by using Sage. We provide a few examples of elliptic curves with
Gal(Q(E[2]/Q) ∼= Z/3Z where we explicitly determine the index iα.

Example 5.6. Let E : y2 = x3 − 3x − 1 be an elliptic curve over Q. We have that the
discriminant of E equals ∆E = −16(4(−3)3 + 27(−1)2) = 1296 = 362. We also have that
x3 − 3x − 1 is irreducible over Z[X] and so Gal(Q(E[2])/Q) ∼= Z/3Z. By Lemma 2.32 we
get that Q(E[2]) = Q(α) with α ∈ C a root of x3− 3x− 1. Using Sage we find that iα = 1,
and therefore the conductor of Q(α) equals

NQ(α) =

√
1296

4
=

36

4
= 9.

So we get that Q(α) ⊂ Q(ζ9) is the unique cubic subfield of Q(ζ9). We conclude that E
has Weil (2, 9)-entanglement. Note that this is horizontal (2, 9)-entanglement.

Example 5.7. Take the elliptic curve E : y2 = x3 − 21x − 28. Its discriminant equals
∆E = −16(4(−21)3 + 27(−28)2) = 254016 = 5042 and x3 − 21x − 28 is irreducible over
Z[X]. So Gal(Q(E[2])/Q) ∼= Z/3Z. Let α ∈ C be a root of x3 − 21x − 28. Using Sage we
find that the index of Z[α] in OQ(α) equals iα = 2. So the conductor of Q(α) equals

NQ(α) =

√
254016

4 · 2
= 63.

Therefore we conclude that E has Weil (2, 63)-entanglement. Also here we get that this
induces horizontal (2, 63)-entanglement as well.

The second way of finding the conductor of a cubic abelian field extension involves the
paper [19]. Again we note that if we have α ∈ C a root of the polynomial x3 + Ax + B
with A,B ∈ Z and −4A3 − 27B2 = C2 for some C ∈ Q, then Q(α) is a cubic abelian field
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extension of Q. Hasse showed in [18] that if p1, ..., pn are the primes which ramify in Q(α),
then the conductor of this field is given by

NQ(α) =

{
p1 · ... · pn, if 3 ramifies in Q(α),

9 · p1 · ... · pn, if 3 does not ramify in Q(α).

The authors of [19] furthermore give the following explicit formula for the conductor of
Q(α):

Theorem 5.8. [19, Theorem 1]
Let α ∈ C be a root of the polynomial x3 +Ax+B with A,B ∈ Z and −4A3 − 27B2 = C2

for some C ∈ Q. Also let A,B be minimal in the sense that there does not exist an R ∈ Z
with R2 | A and R3 | B. Then Q(α) is a cubic abelian field extension of Q with conductor
given by

NQ(α) = 3k
∏

p (prime)≡1 (mod 3)
p|A,p|B

p.

Let a, b ∈ Z and e ≥ 1, then we write ae || b if ae | b but ae+1 ∤ b. Then k =

{
1 if 3 ∤ A or 3 || A, 3 ∤ B, 33 | C,
2 if 32 || A or 3 || A, 3 ∤ B, 32 || C.

.

We provide a few examples where we explicitly establish the conductor of a cubic abelian
field using this formula.

Example 5.9. We again take the elliptic curve E : y2 = x3−21x−28. We have already seen
that Gal(Q(E[2])/Q) ∼= Z/3Z and that Q(E[2]) = Q(α) with α ∈ C a root of x3− 21x− 28
with 4(−21)3 + 27(−28)2 = 1262. The only prime which divides both −21 and −28, and
is equivalent to 1 modulo 3, is the number 7. We also have that 3 || −21, 3 ∤ −28 and
32 || 126. Therefore Theorem 5.8 gives us that the conductor of Q(α) is equal to

NQ(α) = 32 · 7 = 63,

which is similar to what we found in Example 5.7.

Example 5.10. Take the elliptic curve E : y2 = x3 − 57x− 133. We have that 4(−57)3 +
27(−133)2 = 263169 = 5132 and x3− 57x− 133 is irreducible over Z[X]. This implies that
Gal(Q(E[2])/Q) ∼= Z/3Z. We have that the only prime which divides both −57 and −133,
and is equivalent to 1 modulo 3, is the number 19. We also have that 3 || −57, 3 ∤ −133
and 33 | 513. We therefore get by Theorem 5.8 that the conductor of Q(α) is equal to

NQ(α) = 19.

Using Sage we also find the index of α to be 27. So the first method would imply that

NQ(α) =
2052

4 · 27
= 19
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which indeed gives the same answer. This implies that E has Weil (2, 19)-entanglement,
which is horizontal (2, 19)-entanglement.

To conclude our subsection on Weil (2, n)-entanglement of type Z/3Z, we now give an
infinite family of non-isomorphic elliptic curves overQ which have Weil (2, pe)-entanglement
of type Z/3Z with p an odd prime and e ≥ 1. For this we follow [11, 4.1]. We first note
that if 3 | pe−1(p − 1), then Q(ζpe) contains a unique cubic abelian subfield L/Q. This
is because Gal(Q(ζpe)/Q) ∼= (Z/peZ)∗ and (Z/peZ)∗ is a cyclic group of order pe−1(p− 1)
which is divisible by 3, so it has a unique subgroup of order 3 corresponding to a cubic
abelian subfield of Q(ζep). If p ̸= 3 then 3 | p − 1 and we get that Q(ζp) also has a
unique cubic abelian subfield. Because Q(ζp) ⊆ Q(ζpe) we get that this unique subfield
must be L ⊆ Q(ζp) ⊆ (Q(ζpe). If on the other hand p = 3 then we must have that
3 | 3e−1 and so e ≥ 2. We also have that Q)ζ9) has the unique cubic abelian subfield
given by Q[X]/(x3 − 3x − 1). In this case we therefore get that L = Q[X]/(x3 − 3x − 1)
as Q(ζ9) ⊆ Q(ζ3e). This implies that when studying elliptic curves over Q with Weil
(2, pe)-entanglement of type Z/3Z, it suffices to focus on elliptic curves which have Weil
(2, p)-entanglement of type Z/3Z for p ̸= 3 and Weil (2, 9)-entanglement of type Z/3Z.
This leads us to the following two propositions:

Proposition 5.11. [25, Proposition 8.7]
Let p be a prime with p > 3 and 3 | p − 1. Then there exists an infinite family of non-
isomorphic elliptic curves over Q which have Weil (2, p)-entanglement of type Z/3Z.

Proof: We first of all note that if 3 | p−1, then p ≥ 7. In [25, Proposition 8.7] the authors
state that Gauss showed that Q(ζp) has the unique cubic abelian subfield L induced by the
irreducible polynomial

x3 + x2 +
(p− 1)

3
X − p− 1 + 3kp

27

where k is the integer uniquely determined by the integral representation 4p = (3k− 2)2+
27N2 for some N ∈ Z. If we now take

E : y2 = x3 + x2 +
(p− 1)

3
X − p− 1 + 3kp

27

then Q(E[2]) = L. The authors then use a construction from [30] which for an elliptic
curve E/Q provides an infinity family of elliptic curves E , which have Q(E′[2]) = Q(E[2])
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if E′ ∈ E . The authors obtain the following family of elliptic curves over Q:

Et : y
2 = x3 +

(1727pt2 + p+ 9/4k2t2 − 9/4k2 − 3kt2 + 3k + t2 − 1)

(p− 9/4k2 + 3k − 1)
x+

(−1727pt3 − 5181pt2 + 3pt+ p− 9/4k2t3 − 27/4k2t2)

(p− 9/4k2 + 3k − 1)
+

(−27/4k2t− 9/4k2 + 3kt3 + 9kt2 + 9kt+ 3k − t3 − 3t2 − 3t− 1)

(p− 9/4k2 + 3k − 1)
.

The j-invariant of this family of Et with t ∈ Q is a non-constant function dependent on t
and so this family contains infinitely many non-isomorphic elliptic curves Et/Q for which
Q(Et[2]) = Q(E[2]). As Q(E[2]) = L we get that Et has Weil (2, p)-entanglement for all
t ∈ Q, which concludes the proof.

Proposition 5.12. [11, Proposition 4.2]
There exists an infinite family of non-isomorphic elliptic curves over Q which have Weil
(2, 9)-entanglement of type Z/3Z.

Proof: The proof of this proposition follows very similarly to the previous proof. The
authors of [11] state that the unique cubic abelian subfield L ⊆ Q(ζ9) is induced by the
irreducible polynomial x3 − 6x2 + 9x − 3. The elliptic curve E : y2 = x3 = 6x2 + 9x − 3
therefore has the property that Q(E[2]) = L. With the same method from [30] as in the
previous proof, the authors in [11] find the family

Et : y
2 = x3 − 3888(2303t2 + 1)x− 46656(−2303t3 − 6909t2 + 3t+ 1).

The j-invariant of this family of Et with t ∈ Q is again a non-constant function dependent
on t and so we get infinitely many non-isomorphic elliptic curves Et/Q for which Q(Et[2]) =
Q(E[2]). We conclude that Et has Weil (2, 9)-entanglement for all t ∈ Q.

These two propositions together with our observations that Weil (2, pe)-entanglement is
induced by Weil (2, p)-entanglement for p ≥ 7 or Weil (2, 9)-entanglement if p = 3 now
imply the following corollary:

Corollary 5.13. Let p be a prime and e ≥ 1 with 3 | pe−1(p−1). Then there exists an infi-
nite family of non-isomorphic elliptic curves over Q which have Weil (2, pe)-entanglement
of type Z/3Z.
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5.2 Weil (3, n)-entanglement of type Z/2Z

Now we move on to elliptic curves which have Weil (3, n)-entanglement. Specifically we
will focus on entanglement of the form Q ⊊ Q(E[3]) ∩ Q(ζn) with n ≥ 1 such that 3 ∤ n
and Q(E[3]) ∩Q(ζn) is a quadratic extension of Q (so of type Z/2Z).

We first state the following theorem from [11]:

Theorem 5.14. [11, Theorem 3.18]
Let E/Q be an elliptic curve and let p be an odd prime. Let Kp(E) = Q(E[p])∩Qab. Then:

1. Gal(Kp(E)/Q) ∼= (Z/pZ)∗ × C, with C a cyclic group of order dividing p− 1.

2. If E/Q does not have a rational p-isogeny, then C is trivial or of order 2 and Kp(E) =
F (ζp) with F/Q a trivial or quadratic extension of Q.

3. If the image of ρE,p is surjective, then Kp(E) = Q(ζp).

Finally, if p = 2, then Kp(E) is a trivial, quadratic, or cubic extension of Q.

If for an elliptic curve E/Q we have that ρE,3 is surjective, then Theorem 5.14.3 shows
that Q(E[3]) ∩ Qab = Q(ζ3). If we take 3 ∤ n this implies that Q(E[3]) ∩ Q(ζn) = Q. In
order to get Weil (3, n)-entanglement we will therefore study elliptic curves E/Q such that
that ρE,3 is non-surjective. This is the case for instance when Im(ρE,3) is conjugate to a
subgroup of the Borel subgroup of GL(2,Z/3Z), given by

B(3) :=

{(
a b
0 c

)
| a, b, c ∈ Z/3Z, ac ≡ 1, 2 (mod 3)

}
⊂ GL(2,Z/3Z).

Remark 5.15. We have seen in Proposition 3.3 that elliptic curves E/Q for which Im(ρE,3)
is conjugate to a subgroup of B(3) are precisely the elliptic curves over Q having a rational
3-isogeny (or equivalently a GQ stable subgroup of order 3). In Example 4.20 we saw that
these elliptic curves are parametrized by the non-cuspidal rational points of the modular
curve X0(3). In [37, Theorem 1.2] the authors show that such an elliptic curve E/Q has
the property that

jE = 27
(t+ 1)(t+ 9)3

t3
.

For Q(E[3]) ∩ Q(ζn) to be non-trivial for 3 ∤ n we need that Q(E[3]) ∩ Qab ̸= Q(ζn). If
Im(ρE,3) is conjugate to a subgroup of B(3) then the possible size of Q(E[3])∩Qab depends
on the abelianization of B(3). We have the following lemma:

Lemma 5.16. The abelianization of the Borel subgroup B(3) ⊂ GL(2,Z/3Z) is given by

B(3)/[B(3), B(3)] ∼= Z/2Z× Z/2Z.
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Proof: The borel group B(3) has order 12 and consists of 4 conjugacy classes of the form

Gi,j :=

{(
i 0
0 j

)
,

(
i 1
0 j

)
,

(
i −1
0 j

)}
with i, j ∈ {1,−1}. The abelianization of B(3)

is defined as the quotient of B(3) by the smallest normal subgroup H ⊆ B(3) such that
the quotient B(3)/H is abelian. The subgroup G1,1 is a normal subgroup of B(3) with
B(3)/G1,1 consisting of the four conjugacy classes. The elements of this quotient are then
represented by the matrices(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)
which shows that B(3)/G1,1

∼= Z/2Z × Z/2Z. Also we have that conjugacy classes will
always become equivalent in the abelianization, and so we must have that G1,1 is contained
in H. As H was the smallest normal subgroup such that the quotient of B(3) with H is
abelian, we get that

B(3)/[B(3), B(3)] ∼= B(3)/G1,1
∼= Z/2Z× Z/2Z.

We see that as B(3) ∼= Z/2Z/ × Z/2Z it has three subgroups of order 2 and by Galois
theory Q(E[3]) contains up to 3 different quadratic subfields, depending on the image of
ρE,3. We know by properties of the Weil pairing that Q(

√
−3) = Q(ζ3) is a quadratic

subfield of Q(E[3]), and so

Q(E[3]) ∩Qab = Q(
√
−3,
√
d)

for some d ∈ Z. We have the following proposition which claims that Q(P ) ⊆ Q(E[3]) is
either equal to Q or a quadratic extension of Q with P ∈ E[3] the generator of the kernel
of the 3-isogeny of E:

Proposition 5.17. Let E/Q be an elliptic curve such that Im(ρE,3) is conjugate to a
subgroup of B(3). Then E has a rational 3-isogeny and we have for the generator of the
kernel of this isogeny, P ∈ E[3], that Q(P ) ⊆ Q(E[3]) is a trivial or quadratic extension.

Proof: We first assume E/Q is of the form E : y2 = x3 + Ax + B with A,B ∈ Q. We
have that Im(ρE,3) is conjugate to a subgroup of B(3) which means that E has a rational
3-isogeny. The kernel of this isogeny is then a subgroup of order 3 which is stable under
the action of GQ. The kernel is generated by a point P = (x, y) ∈ E[3] with x, y ∈ C.
Because P has order 3 we get that Q(P ) ⊆ Q(E[3]). We furthermore have that 2P = −P
and so the kernel is given by {O, P,−P}, and as E is in short Weierstrass form we have
that −P = (x,−y) [35, III.2.3]. The fact that the kernel is stable under the action of
GQ means that σ(P ) = ±P for σ ∈ GQ. Therefore σ(x) = x, which implies that x ∈ Q,
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and σ(y) = ±y. If P /∈ E(Q) then we must have that Gal(Q(y)/Q) ∼= Z/2Z and that
Q(P ) = Q(y) is a quadratic extension. If P ∈ E(Q) then Q(P ) is trivial.

In general let E/Q be an elliptic curve with Im(ρE,3) conjugate to a subgroup of B(3)
and let P ∈ E[3] be the generator of the kernel of the 3-isogeny belonging to E. We have
that E ∼= E′ over Q with E′ of the form E′ : y2 = x3 + Ax + B with A,B ∈ Q. As this
isomorphism is defined over Q, we have that it commutes with the action of GQ. This
implies that E′ has a rational 3-isogeny as well, generated by P ′ ∈ E′[3] with P ′ the image
of P under the given isomorphism. Again because the isomorphism was defined over Q we
get that Q(P ) = Q(P ′). Because E′ has a rational 3-isogeny we get that Q(P ′) is a trivial
or quadratic extension, and therefore Q(P ) is as well.

This proposition implies that Q(E[3]) ∩Qab = Q(
√
−3, P ) with P ∈ E[3] the generator of

the kernel of the 3-isogeny of E. If P is not rational then Q(P ) is a quadratic extension
with given conductor N ∈ N. In this case we get that E has Weil (3, N)-entanglement of
type Z/2Z. We will now focus on finding the conductor of Q(P ).

Remark 5.18. Every elliptic curve over Q is isomorphic to an elliptic curve in short
Weierstrass form using the explicit isomorphism over Q given in Definition 2.1. We also
have for E/Q that E has a rational 3-isogeny if an only if its corresponding curve E′/Q in
short Weierstrass form has a rational 3-isogeny. This is because the isomorphism is given
over Q and so it commutes with action of GQ, which then implies that subgroups stable
under GQ get sent to subgroups stable under GQ. It thus suffices to study the conductor
of Q(P ) for elliptic curves over Q in short Weierstrass form, as for general elliptic curves
over Q we can change to short Weierstrass form and get that Q(P ) = Q(P ′) with P ′ the
image of P under the isomorphism.

To compute the conductor we need the following theorem:

Theorem 5.19. [2, Theorem 5.2]
Let E : y2 = x3 + Ax+ B with A,B ∈ Q be an elliptic curve. Then Im(ρE,3) is conjugate
to a subgroup of B(3) if and only if E belongs to one of the following families of elliptic
curves over Q:

1.

y2 = x3 + bx+
16b2 − 216a20b− 243a40

288a0

with b, a0 ∈ Q∗.

2.
y2 = x3 + c

with c ∈ Q∗.
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3.
y2 = x3 + (−3m2 + 6βm)x+ 2α3 + 12αβ2 − 6αβm

with α, β,m ∈ Q, β ̸= 0 and m2 = α2 + 3β2.

We now have the following three propositions, which are my own contributions, showing
the Weil entanglement for each family of Theorem 5.19:

Proposition 5.20. Let E be of the form

E : y2 = x3 + bx+
16b2 − 216a20b− 243a40

288a0

with b, a0 ∈ Q∗ and let 2a0 be the squarefree part of 2a0 such that 2a0 ∈ Z. Then if 3 ∤ 2a0
we have that

E has

{
Weil (3, 2a0)-entanglement if 2a0 ≡ 1 (mod 4),

Weil (3, 4 · 2a0)-entanglement if 2a0 ≡ 2, 3 (mod 4).

Proof: If E/Q is of this form, then the authors show in the proof of [2, Lemma 4.5]

that E has a point of order three given by P =
(
3a0
2 ,

4b+27a20
12

√
2a0

)
∈ E[3]. We have that

−P =
(
3a0
2 ,−

4b+27a20
12

√
2a0

)
and so σ(P ) = ±P for σ ∈ GQ. This implies that the subgroup

of E[3] given by {O, P,−P} is stable under action of GQ and so P is the generator of the
kernel of the 3-isogeny of E. We have then that Q(E[3]) ∩Qab = Q(

√
−3, P ) with

Q(P ) = Q(
√
2a0).

Let 2a0 be the squarefree part of 2a0 such that 2a0 ∈ Z, then Q(
√
2a0) = Q(

√
2a0). We

get by Corollary 2.19 for the conductor N of Q(
√
2a0) that

N =

{
2a0 if 2a0 ≡ 1 (mod 4),

4 · 2a0 if 2a0 ≡ 2, 3 (mod 4).

In the first case we get that E has Weil (3, 2a0)-entanglement, in the second case E has
Weil (3, 4 · 2a0)-entanglement.

Proposition 5.21. Let E be of the form

E : y2 = x3 + c

with c ∈ Q∗ and let c be the squarefree part of c such that c ∈ Z. Then if 3 ∤ c we have that

E has

{
Weil (3, c)-entanglement if c ≡ 1 (mod 4),

Weil (3, 4c)-entanglement if c ≡ 2, 3 (mod 4).
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Proof: If E/Q is of this form, then the authors show in [2, Theorem 3.2] that P = (0,
√
c) ∈

E(C) is a point of order 3. We have that −P = (0,−
√
c) and so {O, P,−P} is a subgroup

of E[3] stable under action of GQ. P is therefore the generator of the kernel of the 3-isogeny
of E. We get that

Q(P ) = Q(
√
c)

and if we take c̄ to be the squarefree part of c such that c̄ ∈ Z we have that Q(
√
c) = Q(

√
c).

By Corollary 2.19 we get for the conductor of Q(
√
c̄) that

N =

{
c if c ≡ 1 (mod 4),

4c if c ≡ 2, 3 (mod 4).

In the first case E has Weil (3, c̄)-entanglement, in the second case E has Weil (3, 4c̄)-
entanglement.

Proposition 5.22. Let E be of the form

y2 = x3 + (−3m2 + 6βm)x+ 2α3 + 12αβ2 − 6αβm

with α, β,m ∈ Q, β ̸= 0 and m2 = α2 + 3β2 and let −2(α+m) be the squarefree part of
−2(α+m) such that −2(α+m) ∈ Z. Then if 3 ∤ 2(α+m) we have that

E has

{
Weil (3,−2(α+m))-entanglement if −2(α+m) ≡ 1 (mod 4),

Weil (3, 4 · −2(α+m))-entanglement if −2(α+m) ≡ 2, 3 (mod 4).

Proof: If E is of this form, then in [26, 2.3] the author shows that

P =
(
−α+ (2m− 3β), (2m− 3β)

√
−2(α−m)

)
∈ E(C)

is a point of order 3. We have that −P =
(
−α+ (2m− 3β),−(2m− 3β)

√
−2(α−m)

)
and so {O, P,−P} is a subgroup of E[3] stable under action of GQ with P being its
generator. We get that

Q(P ) = Q(
√
−2(α+m)) = Q(

√
−2(α+m))

with −2(α+m) the squarefree part of −2(α+m) such that −2(α+m) ∈ Z. By Corollary
2.19 we get for the conductor of Q(−2(α+m)) that

N =

{
−2(α+m) if −2(α+m) ≡ 1 (mod 4),

4 · −2(α+m) if −2(α+m) ≡ 2, 3 (mod 4).
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In the first case E has Weil (3,−2(α+m))-entanglement, in the second case Weil (3, 4 ·
−2(α+m))-entanglement.

In [11] the authors also provide for 3 ∤ n an infinite family of non-isomorphic elliptic curves
over Q which have Weil (3, n)-entanglement, using the modular curve X(3).

Proposition 5.23. [11, Proposition 4.6]
Let n ≥ 1 such that 3 ∤ n. Let K be a quadratic subfield of Q(ζn). Then there are infinitely
many non-isomorphic elliptic curves E/Q such that Q(E[3])∩Q(ζn) = K and E has Weil
(3, n)-entanglement of type Z/2Z.

Proof: We have that K = Q(
√
d) for some d ∈ Z with d squarefree. Recall that we have

shown in Example 4.21 that the modular curve X(3) has structure over Q(
√
3) and that

the non-cuspidal points in X(3)(Q(
√
3) parametrize elliptic curves E/Q over Q(

√
3) with

Q(E[3]) = Q(
√
3).

In [29] the authors provide for a variable t the Hesse cubic given by

X3 + Y 3 + Z3 = 3tXY Z

over Q(t). This is an elliptic curve over Q(t) with origin (0, 1,−1). It has a rational point of
order 3 given by (−1, 1, 0) and it has a subgroup of order 3 given by {(0, 1,−1), (0, ζ3,−1), (0, (ζ3)2,−1)}.
Note that this is stable under action of GQ. The Hesse cubic also has the following Weier-
strass form:

Et : y
2 = x3 − 27t(t3 + 8)x+ 54(t6 − 20t3 − 8).

The authors show in [29, 1.1] that the set of Et with t ∈ Q is in bijection with the non-
cuspidal rational points on X(3) and that for t ∈ Q we have that

jX(3)(t) = j(EX(3)(t)) = 27t3
(t3 + 8)3

(t3 − 1)3
.

We therefore get that the non-cuspidal rational points on X(3) are parametrized by Et :
y2 = x3 − 27t(t3 + 8)x+ 54(t6 − 20t3 − 8) for t ∈ Q and so for Et we have that Q(Et[3]) =
Q(
√
3). We also have that Et has a rational point Pt of order 3. This last part will be

crucial in the rest of the proof.

We now take the twist of Et by d. This is an elliptic curve given by

Edt : y2 = x3 − 27d2t(t3 + 8)x+ 54d3(t6 − 20t3 − 8).

The twist of Et is isomorphic to Et over Q(
√
d) by sending (x, y) ∈ Et(C) to (dx,

√
d3y) ∈

Edt (C). This implies that the rational point Pt of order 3 gets sent to a point P ′
t ∈ Edt [3]
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with Q(P ′
t) = Q(

√
d) and therefore

Q(Edt [3]) = Q(
√
3,
√
d).

Because 3 ∤ n we get that Q(Edt [3]) ∩ Q(ζn) = Q(
√
d) = K and so that Edt has Weil

(3, n)-entanglement of type Z/2Z. Also note that the family of Edt has infinitely many non-

isomorphic elliptic curves, as jEd
t
= jEt = 27t3 (t

3+8)3

(t3−1)3
is a non-constant function depending

on t ∈ Q.

5.3 Weil (p, n)-entanglement for primes p ≥ 5

We conclude this section by more generally looking at elliptic curves E/Q which have Weil
(p, n)-entanglement for n ≥ 1 and primes p ≥ 5. Again we focus on entanglement of the
form Q ⊊ Q(E[p]) ∩ Q(ζn). For this to occur we need that p ∤ n. By Theorem 5.14 we
also need ρE,P to be non-surjective. If in particular we have that Im(ρE,p) is conjugate to
a subgroup of the Borel subgroup B(p) ⊂ GL(2,Z/pZ), then E has a rational p-isogeny.
For the generator of the kernel of this isogeny, given by P ∈ E[p], we have the following
theorem:

Proposition 5.24. [22, Theorem 9.3]
Let E/Q be an elliptic curve with Im(ρE,p) conjugate to a subgroup of the Borel subgroup
B(p). Then E has a p-isogeny and we have for the generator P ∈ E[p] of its kernel, that
Q(P )/Q is a Galois cyclic extension of degree dividing p− 1.

Proof: We can assume that P,Q with Q ∈ E[p] is the fixed basis used for the definition of
the Galois representation ρE,p. In this case Gal(Q(E[p])/Q) ∼= Im(ρE,p) ⊆ B(p) and Q(P )
is the fixed field by the subgroup

H :=

{(
1 a
0 b

)
| a ∈ Z/pZ, b ∈ (Z/pZ)∗

}
∩ Im(ρE,p).

We have that H ′ :=

{(
1 a
0 b

)
| a ∈ Z/pZ, b ∈ (Z/pZ)∗

}
⊂ B(p) is a normal subgroup of

B(p) and therefore H is a normal subgroup of Im(ρE,p). By Theorem 2.12 Q(P )/Q is then
a Galois extension. We also get that

Gal(Q(P )/Q) ∼= Im(ρE,p)/H ↪→ B(p)/H ′ ∼= (Z/pZ)∗.

So Gal(Q(P )/Q) is isomorphic to a subgroup of (Z/pZ)∗ and as (Z/pZ)∗ is a cyclic group
with order p− 1 we get that Gal(Q(P )/Q) is cyclic with order dividing p− 1. We conclude
that Q(P )/Q is a Galois cyclic extension of degree dividing p− 1.
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This then implies the following corollary:

Corollary 5.25. Let E/Q be an elliptic curve with Im(ρE,p) conjugate to a subgroup of
the Borel subgroup B(p). Then for the generator P ∈ E[p] of the kernel of the p-isogeny
of E we have that Q(P ) is cyclic and therefore abelian. Let N be the conductor of Q(P ).
Then if p ∤ N we get that E has Weil (p,N)-entanglement with its Galois group being a
group of order dividing p− 1.

This, like in the cases where p = 3, suggests that in order to understand the level of this
entanglement we need to study the conductor of Q(P ). This would therefore seem a good
place for further research. We also focused mainly on the cases where Im(ρE,p) is conjugate
to a subgroup of the Borel subgroup B(p) and then in particular on the field of definition
of the generator of the kernel of the associated p-isogeny. This could also be expanded
upon in further research.

To conclude we note that the authors of [11] also provided for m ≥ 5 more infinite non-
isomorphic families of elliptic curves over Q with Weil (m,n)-entanglement, as listed in
Theorem 3.29. Note that for m = 5, 7 a similar strategy to the case where m = 3 was used,
where a family of elliptic curves was provided which had Q(E[p]) = Q(ζp) for p = 5, 7 and
rational points of respectively order 5 and 7. Then using twisting a new family was given
with the corresponding torsion points now having specific quadratic fields as their fields of
definition.
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6 Appendix

In this appendix we will list some known results on horizontal entanglement.

First of all using the method of describing horizontal entanglement, Daniels, Lozano-
Robledo and Morrow have shown in [11] that there are infinitely many non-isomorphic
elliptic curves with specific abelian entanglement which is not Weil or CM entanglement.
More specifically we have the following theorem:

Theorem 6.1. [11, Theorem A]
Let E/Q be an elliptic curve over Q, and let p < q be primes such that E has abelian
(p, q)-entanglement with Galois group S. Then there is a finite set J ⊆ Q, that does not
depend on p, q or S such that if j(E) ∈ J and the entanglement is not of Weil or CM type,
then either S = Z/3Z and (p, q) = (2, 7) or S = Z/2Z and (p, q) = (3, 5). If S = Z/3Z and
(p, q) = (2, 7), then we have for the j-invariant j(E) that it belongs to one of the following
three families of j-invariants with t ∈ Q:

j1(t) : =
(t2 + t+ 1)3(t6 + 5t5 + 12t4 + 9t3 + 2t2 + t+ 1)P1(t)

3

t14(t+ 1)14(t3 + 2t2 − t− 1)2
,

j2(t) : =
74(t2 + t+ 1)3(9t6 + 39t5 + 64t4 + 23t3 + 4t2 + 15t+ 9)P2(t)

3

(t3 + t2 − 2t− 1)14(t3 + 8t2 + 5t− 1)2
,

j3(t) : =
(t2 − t+ 1)3(t6 − 5t5 + 12t4 − 9t3 + 2t2 − t+ 1)P3(t)

3

(t− 1)2t2(t3 − 2t2 − t+ 1)14
.

where

P1(t) = t12 + 8t11 + 25t10 + 34t9 + 6t8 − 0t7 − 17t6 + 6t5 − 4t3 + 3t2 + 4t+ 1,

P2(t) = t12 + 18t11 + 131t10 + 480t9 + 1032t8 + 1242t7 + 805t6 + 306t5 + 132t4 + 60t3 − t26t+ 1,

P3(t) = t12 − 8t11 + 265t10 − 1474t9 + 5046t8 − 10050t7+

11263t6 − 7206t5 + 2880t4 − 956t3 + 243t2 − 4t+ 1.

In the case that S = Z/2Z and (p, q) = (3, 5), j(E) belongs to one of the following two
families of j-invariants:

j4(t) : =
212P4(t)

3

(t1)15(t+ 1)15(t2 − 4t− 1)3
,

j5(t) : =
212P5(t)

3

(t1)15(t+ 1)15(t2 − 4t− 1)3
.

where

P4(t) = t12 − 9t11 + 39t10 − 75t9 + 75t8 − 114t7 + 26t6 + 114t5 + 75t4 + 75t3 + 39t2 + 9t+ 1,

P5(t) = 211t12 − 189t11 − 501t10 − 135t9 + 345t8 + 966t7+

146t6 − 966t5 + 345t4 + 135t3 − 501t2 + 189t+ 211.
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Daniels and Morrow also provided more results on Weil entanglement for specific integers.
The first two families we have discussed in more detail in Chapter 5.

Theorem 6.2. [11, Theorem B]
There are infinitely many Q̄-isomorphism classes of elliptic curves E/Q with:

(1) a Weil (2, pe)-entanglement with Galois group Z/3Z where 3 | pe−1(p− 1),

(2) a Weil (3, n)-entanglement with Galois group Z/2Z where 3 ∤ n,
(3) a Weil (5, n)-entanglement with Galois group Z/4Z where 5 ∤ n,
(4) a Weil (7, n)-entanglement with Galois group Z/6Z where 6 ∤ n,
(5) a Weil (m,n)-entanglement with Galois group Z/2Z where n > 3 and m ∈ {3, 4, 5, 6, 7, 9}.

We remark that the first case was not included in Theorem B [11] but still proven in
Proposition 4.2 of [11].

6.1 Coincidence

Finally we list some results about a specific kind of entanglement, namely coincidence. This
is entanglement where Q(E[m]) = Q(E[n]) for m ̸= n. Daniels and Lozano-Robledo have
in [10] studied first of all for which elliptic curves and integers m,n we have an equality
of division fields Q(E[m]) = Q(E[n]). They also tried to answer for which primes p < q
we have that Q ⊊ Q(E[p]) ∩ Q(ζq) (note that this entanglement is similar to the Serre
entanglement we have discussed before).

These questions have been studied both in terms of towers (ranging over m,n with m
dividing n) and for coprime integers m,n. In terms of towers we have the following:

Theorem 6.3. [10, Theorem 1.4]
Let E/Q be an elliptic curve, let p be a prime, and let n ≥ 1.
(1) Suppose that Q(E[pn+1]) = Q(E[pn]). Then p = 2, n = 1, and there is a rational number
t ∈ Q such that E is isomorphic over Q to an elliptic curve of the form

Et : y
2 = x3 +A(t) · x+B(t),

where

A(t) =− 27t8 + 648t7 − 4212t6 − 2376t5 + 60102t4+

79704t3 − 105732t2 − 235224t− 107811,

B(t) =54t12 − 1944t11 + 24300t10 − 97848t9 − 251262t8 + 1722384t7 + 4821768t6

−8697456t5 − 64323558t4 − 140447736t3 − 157012020t2 − 90561240t− 21346578.

(2) If Q(E[pn]) ∩Q(ζpn+1) = Q(ζpn+1), then p = 2.
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For distinct primes we have the following:

Theorem 6.4. [10, Theorem 1.6]
Let E/Q be an elliptic curve, let p < q be primes, and let n,m ≥ 1 be integers.
(1) If Q(E[pn]) = Q(E[qm]), then pn = 2 and qm = 3. Further, there is some t ∈ Q such
that E is Q-isomorphic to

E′ : y2 = x3 − 3t9)(t3 − 2)(t3 + 2)3(t3 + 4)x

−2t12(t3 + 2)4(t4 − 2t3 + 4t− 2)(t8 + 2t7 + 4t6 + 8t5 + 10t4 + 8t3 + 16t2 + 8t+ 4)

or its twist by −3.
(2) Let Kp(E) = Q(E[p])∩Qab. Then, Gal(Kp(E)/Q) ∼= (Z/pZ)∗×C, where C is a cyclic
group of order dividing p− 1. Further, if E does not have a rational p-isogeny, then C is
trivial or Z/2Z and Kp(E) = F (ζp) with F/Q a trivial or quadratic extension.
(3) In particular, if Q(ζqn) ⊆ Q(E[p]), then either Q(ζqn) ∈ {Q,Q(i),Q(ζ3)}, or E has a
rational p-isogeny with p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}, and in this case ϕ(pn)
divides p− 1.

Finally we have the following theorem for abelian extensions:

Theorem 6.5. [10, Theorem 1.7]
Let E/Q be an elliptic curve and let n > m ≥ 2 be integers with Q(E[n])/Q an abelian
extension of Q.
(1) If Q(E[n]) = Q(E[m]), then m = 2, n = 4, and for some t ∈ Q, E is Q-isomorphic to

y2 = x3 + (−432t8 + 1512t4 − 27)x+ (3456t12 + 28512t8 − 7128t4 − 54).

In this case, Q(E[2]) = Q(E[4]) = Q(i).
(2) Let p be prime, such that Q(E[p])/Q is abelian, and let q ̸= p be another prime. Then
Q(E[p]) ∩Q(ζqk) can be trivial, quadratic, cubic (for p = 2), or cyclic quartic (for p = 5).

6.2 Non-abelian entanglement

Brau and Jones in [5] have found an infinite family of non-isomorphic elliptic curves with
non-abelian entanglement induced by the inclusion of Q(E[2]) in Q(E[3]). Jones and
McMurdy in [21] expanded on this and showed the following theorem for elliptic curves
over function fields K(t) with K a number field (We only list the case where K = Q):

Theorem 6.6. [21, Theorem 18]
Let E/Q be an elliptic curve. Then E has non-abelian entanglement if and only if the
j-invariant jE ∈ Q satisfies

jE ∈ {j6(t), j10(t), j18(t) : t ∈ Q},
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where

j6(t) : = 21033t3(1− 4t3),

j10(t) : = s310(s
2
10 + 5s10 + 40), s10 =

3t6 + 12t5 + 80t4 + 50t3 − 20t2 − 8t+ 8

(t− 1)2(t2 + 3t+ 1)2
,

j18(t) : =
−33t3(t3 − 2)(3t3 − 4)3(3t3 − 2)3

(t3 − 1)2
.

Finally, if jE = jm(t) for m ∈ {6, 10, 18} and some t ∈ Q, then E has non-abelian entan-
glement with Galois group S3 (note that the case m = 15 is excluded because this can only
happen if

√
−15 ∈ K).

We remark that the case of j6(t) corresponds to the family of elliptic curves that was given
in [5].
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