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Abstract 

Human visual attention is a mechanism that has been highly researched with many studies 

focusing on demographic differences in visual attention. This analysis aims to examine these 

differences in visual attention across age and gender by investigating the differences in eye 

movements across these demographics. The dataset used in this analysis represents a unique 

opportunity to investigate these differences due to the quantity of data collected across a 

much wider range of demographics than is usually present in eye tracking studies, with a total 

of 534 participants included in the analysis. Saliency maps, predicted fixation locations, from 

14 different saliency models were collected. The similarity between each participants fixation 

locations and these predicted fixation maps was calculated to create input features for 

classification. Logistic Regression, XGBoost and Neural Network algorithms were 

implemented to predict both age and gender. Classification results showed that none of these 

algorithms could predict either age or gender with an accuracy higher than a naïve baseline 

classifier. The saliency models and evaluation metrics implemented did not provide sufficient 

information to allow for the accurate classification of age or gender. This is a limitation of 

saliency models, they do not capture the demographic differences that are present in eye 

movements when viewing a visual scene, although this does not significantly impact the 

performance of these models. 
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1. Introduction 

1.1 Human Visual Attention 

The human brain cannot process all elements of a visual scene at once. Visual attention is the 

process of selecting which objects or locations in the scene should receive more processing 

than others. There are a variety of factors that influence this and in general these can be 

separated two elements: bottom-up factors and top-down factors. Bottom-up attention is a 

largely involuntary process driven by the properties of the surrounding environment such as 

colour, border, brightness, shapes, and sizes. This type of attention is saliency driven 

(Theeuwes, 2010). It is assumed that top-down attention is a voluntary process similar to 

making an overt decision to focus attention on a particular object or location (Theeuwes, 

2018). It is more complex and ambiguous than bottom-up attention and is influenced by 

factors including given task, emotions, and the observers’ goals. Eye movements have been 

shown to be closely linked to visual attention (Groner & Groner, 1989). (Shepherd et al., 

1986) have shown while attention can change without corresponding eye movements, it is not 

possible to make an eye movement without a corresponding shift in visual attention. As such 

eye tracking data is commonly used as a measurement of visual attention (Vehlen et al., 

2021).  

1.2 Saliency Maps as Models of Visual Attention 

Visual saliency maps, computationally produced frequency maps, aim to predict human 

visual attention. These models were first proposed by Itti & Koch (Itti & Koch, 2001) with 

the aim of predicting how attention is distributed across a given visual scene. A saliency 

model takes a static image as its input and outputs a saliency map which contains the 

probability of each pixel grabbing viewers’ attention. There are numerous methods that can 

be used to do this, and many models have been proposed over the last 20 years. Bottom-up 

models are features based, determining the salience of an area of an image by analysing the 

visual properties of the image. While each model is different, they do have some similarities. 

They extract mid and low-level image features such as orientation, texture, colour, faces, 

objects to feature maps. An image processing technique which attempts to model attention 

such as centre surround is then applied to each feature map and these feature maps are 

combined to create a saliency map (Riche & Mancas, 2016). While bottom-up maps focus on 

the features of an image to predict saliency, deep-learning saliency models are data-driven. 

These deep convolutional neural network models use existing networks that have been 

trained in object recognition to predict salient regions of an image which improves the quality 

of the predicted saliency maps (Kümmerer et al., 2015; Pan et al., 2016). Deep learning 

models have outperformed classic bottom-up saliency models however there is still a gap 

between the predicted saliency map and actual human gaze (Borji, 2021; Borji et al., 2019).  

Evaluating the performance of saliency models is a widely researched area and at present 

there is no gold standard in visual saliency evaluation metrics. Most of the commonly used 

metrics measure the prediction ability of the saliency model while considering a different 

aspect of visual attention, for example Shuffled AUC excludes the effect of centre bias, 

whereas AUC includes centre bias. (Bylinskii et al., 2019) found that many of these metrics 

produce highly correlated outputs due to similar computation methods. They highlighted a 

so-called similarity cluster between NSS, CC and AUC. Thus, using a wide variety of metrics 



 

to evaluate a saliency model provides more varied and detailed information on its 

performance. 

1.3 Changes in Visual Attention with Age 

Age related changes in visual attention are a well-researched area with different studies 

focusing on children, young adults, and the elderly (Takahashi et al., 2021; Walker et al., 

2017). Most of these studies focus on overt visual attention and have shown that there are 

significant differences in scene viewing behaviour of observers across different age groups. 

(Egami et al., 2009) have shown that children from 3-6 exhibit less exploratory eye 

movements than 6–14-year-olds. The degree of centre bias, the tendency of the human gaze 

to be biased towards the centre of natural stimuli, has been shown by (Krishna et al., 2018) to 

decrease with age, with 4-year-olds having the highest bias among all age groups. (Açik et 

al., 2010) investigated developmental changes in scene viewing, particularly when free 

viewing natural images, and highlighted several differences. Firstly, local image features 

impact gaze allocation for children aged 7-9 more than for adults, which demonstrates that in 

children bottom-up factors drive scene exploration but as we age top-down factors become 

more influential. Secondly, older adults attend to narrower areas of a scene. Lastly, older 

adults displayed the highest number of fixations meaning they explore images more 

efficiently than other age groups.  

1.4 Changes in Visual Attention across Sex 

Similarly, the relationship between sex, eye movements and visual attention has been studied, 

although research into this area is more limited. (Mercer Moss et al., 2012) showed that there 

are differences in eye movements between men and women, with women exhibiting more 

exploratory eye movements and men making more frequent, shorter fixations. It has been 

shown that there are sex related differences in visual attention related to bottom-up 

processing of scenes, with women showing attention bias towards colour and men’s attention 

being more biased towards spatial position (McGivern et al., 2019). Conversely, 

(Papavlasopoulou et al., 2020) found no significant difference in gaze between sexes and a 

second study found no sex related difference in the number of saccades produced when 

viewing an indoor scene, suggesting that the males and females attend to the same number of 

areas in a visual scene (Abdi Sargezeh et al., 2019). So, sex-based differences are a more 

disputed area in visual attention research. 

These demographic differences in eye movements and visual attention suggest that while we 

all live in the same world, individuals with different demographics might view the world 

differently. It is well established that variations in human visual attention exist across both 

age and sex, it follows that our computational models of visual saliency should reflect these 

differences. Many of these models do not consider the impact that demographics have on the 

human visual attention mechanism in their design. As such it is possible that these models 

may not capture the variation in visual attention that has been detected in other studies using 

different methodologies.  

The diagnostic value of eye movements and saliency maps has been demonstrated in 

research. (Rahman et al., 2020) proposed a framework in which the deviation between gaze 

behaviour and a predicted saliency map can successfully predict autism spectrum disorder 

and toddlers age. Developing on this premise, this study aims to assess whether there is a 



 

difference in the way we view the world across demographics and additionally whether the 

current proposed saliency models capture these differences sufficiently. Several saliency 

maps are collected by implementing a variety of the saliency models that have been proposed 

in research. Actual gaze behaviour is used to generate a map of fixation locations which is 

compared to each of the predicted saliency maps using range of evaluation metrics. Classic 

machine learning algorithms and a deep learning algorithm are implemented to predict age 

and sex using these deviations between actual and predicted gaze behaviour. The data used in 

this study provides a unique opportunity to investigate these differences due to the number of 

participants and the range of demographics it includes.  

 

2. Participants & Data Pre-Processing 

In total there were 5604 participants, 4061 of which provided demographics. Since the 

experiment was not conducted in a controlled environment several steps were taken to assure 

the validity of the of the data that was collected. Free viewing is considered valid if there is 

no period of stable gaze greater than 500ms. Demographics are considered valid if there is no 

period of exactly stable gaze greater than 5s when selecting sex and year of birth. These 

periods of stable gaze likely indicate that the participant being tracked left the apparatus and 

the tracking was resumed on a new participant, as such these are not valid data points. 

Filtering in this manner returns 624 valid participants with valid free viewing and valid 

demographics. Due to outliers in the fixation points of some participants as a result of 

imprecise eye tracking or participants looking outside of the screen during free viewing, 39 

data point were removed. The distribution of both age and sex can be seen in Fig. 1 (a-b). As 

is clear from Fig. 1 there is a significant outlier at year of birth 2000. A random sample 40 of 

the participants with year of birth 2000 was selected and these were the participants used for 

the analysis, with the remaining 36 data points being removed from the final dataset. Finally, 

25 data points from participants with year of birth later than 2011 and before 1972 were 

removed due to the very low number of participants in these years. This resulted in a final 

dataset with 534 participants, the distribution of both age and sex after cleaning the data in 

this way is shown in Fig. 1 (c-d). 

For classification, the age data was grouped into 4 separate categories of roughly equal size 

that were sufficiently large for analysis. Using equal width bins creates significantly 

imbalanced classes which would cause issues with prediction. Equal frequency binning 

offsets this issue and the resulting categories and their frequencies are shown in Table 1. 



 

 

 

 

 

 

 

 

 

 

3. Methods 

3.1 Apparatus, Stimulus, and Procedure 

The data in this study was collected in the NEMO Science Museum in Amsterdam. The 

experiment is set up as part of an exhibition in the museum. Participants are shown one 

image, Fig. 2, for 10 seconds of free viewing. The experiment is unsupervised, and 

participants are given no specific instructions before viewing the image. Following the free 

viewing the participant is asked to provide their demographics, namely year of birth and sex, 

and permission is provided to allow the use of said data in further research. The experiment 

was conducted using a Tobii 4C eye tracker with sampling rate 60 Hz. The experiment had 

the following technical specifications: screen resolution 1920 x 1080 pixels, screen size 698 x 

336 mm and viewing distance 800mm. 

Class Date Range Frequency 

1 1972 – 1983 134 

2 1984 – 1994 142 

3 1995 – 2000 154 

4 2001 - 2011 104 

Fig. 1 Frequency of age and sex pre data cleaning, (a) & (b) respectively. Frequency of age and sex post data 

cleaning, (c) & (d). 

Table 1. Grouped age ranges and their frequencies 

(a) 

(c) 

(b) 

(d) 



 

 

 

 

 

 

 

 

 

 

3.2 Saliency Maps & Evaluation Metrics 

The following saliency models were implemented: AIM (Bruce & Tsotsos, 2009), RARE 

(Riche et al., 2013), QSS (Schauerte & Stiefelhagen, 2012), LDS (Fang et al., 2017), IMSIG 

(Hou et al., 2012), GBVS (Harel et al., 2007), FES (Rezazadegan Tavakoli et al., 2011), 

DVA (Wang & Shen, 2018), CVS (Erdem & Erdem, 2013), CAS (Goferman et al., 2012), 

Deepgaze I (Kümmerer et al., 2015), Deepgaze II (Kümmerer et al., 2015), Deepgaze IIE 

(Linardos et al., 2022) and ICF (Kummerer et al., 2017). This includes a mixture of both 

bottom-up saliency models and deep learning models. The bottom-up models require no 

previous input, however deep learning models need to be pre-trained on an image dataset. 

The models used in this study were pretrained on the ImageNet dataset. This resulted in a 

total of 14 predicted saliency maps. 

In total 6 metrics were used to evaluate the performance of each of the predicted saliency 

maps: Normalised Scanpath Saliency (NSS), Area Under the ROC Curve (AUC), 

Information Gain (IG), Pearson’s Correlation Coefficient (CC), Shuffled AUC (SAUC) and 

Similarity (SIM) (Bylinskii et al., 2019).  

3.3 Feature Extraction 

The spatial distribution of fixation locations was compared with all obtained saliency maps. 

The similarity between a participant’s fixation map and each saliency map was measured 

using NSS, AUC, IG, SAUC, CC and SIM. Let F’ be the fixation map of a given participant. 

Let X be the set of N collected saliency maps. The fixation map F’ and the saliency maps X 

are compared using the T evaluation metrics discussed above to extract the necessary features 

for prediction. This process produces NxT p dimensional vectors, where p is the total number 

of participants in the study. This process is fully visualised in Fig. 3.  

Data was scaled before the implementation of each classification algorithm. Each feature was 

standardised by removing the mean and scaling to unit variance. 

 

Fig. 2 Image used in eye tracking data collection 



 

 

 

 

3.4 Machine Learning 

Since we are dealing with numerical predictors and labelled categorical response variables 

the ANOVA correlation coefficient was used to select the top k variables to predict both age 

and sex. Using this method, the features were ranked for both their relevance in predicting 

age and sex separately, and this ranking was used as a guide when inputting features into the 

classification algorithms used. 

The features extracted from the saliency maps were forwarded to a supervised machine 

learning algorithm. Both classical algorithms, Multinomial Logistic Regression, XG-Boost 

and a deep learning algorithm, Artificial Neural Network were tested for performance. 

3.4.1 Logistic Regression 

A logistic regression model was fitted to the data and used to predict category membership 

based on the features extracted. A simple binary logistic regression was applied to predict 

gender and a multinomial model, an extension of the binary model, (Kmenta et al., 1988; 

Scott et al., 1991), was used to predict age. This algorithm was selected for this data since its 

assumptions are less restrictive than other more powerful classification algorithms such as 

discriminant function analysis. Logistic regression does not assume normality, linearity, or 

homoscedasticity, which is well suited to this dataset (Stoltzfus, 2011).  

Further feature selection was performed using sequential forward selection. In this way the 

most informative features are selected at each stage and the number of features required to 

perform classification while maintaining classification results (Rückstieß et al., 2011). After 

feature selection the models’ parameters were optimised using the Grid Search (GS) 

algorithm (Bergstra et al., 2011). The following parameters were considered: solver, penalty 

and C value. 

3.4.2 XGBoost 

Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) is a gradient boosting 

technique used in both classification and regression modelling problems. This algorithm has 

Fig. 3 Feature extraction process 



 

been shown to be one of the most efficient machine learning classifiers which is why it was 

implemented in this research (Bentéjac et al., 2019). 

Additional feature selection was performed based on feature importance weights calculated 

by the XGBoost algorithm. Extensive hyperparameter tuning was performed using the GS 

algorithm since incorrect tuning can lead to poor model performance (Bentéjac et al., 2019). 

The hyperparameters considered were max depth, min child weight,  gamma, subsample, 

colsample by tree and regularisation. 

3.4.3 Artificial Neural Network 

Artificial neural networks (ANN) are a powerful prediction tool with strong performance at 

classification tasks, outperforming white box models such as logistic regression (Dreiseitl & 

Ohno-Machado, 2002). These models make no distributional assumptions about the data and 

can detect more complex, non-linear relationships in the data; thus it was selected as a 

suitable model for classification. 

Model architecture and hyperparameter selection can significantly impact the performance of 

ANN’s. There is no industry standard for the number of layers that a model should have or 

the number of neurons per layer. Some studies suggesting one hidden layer is sufficient while 

others state that 3 hidden layers is optimal (Uzair & Jamil, 2020) (Gaurang Panchal et al., 

2011). Ultimately, model architecture, number of hidden layers and number of neurons, was 

decided empirically using k-fold cross validation. The hyperparameters were tuned for the 

data using Bayesian optimisation (Eggensperger et al., 2013). Bayesian optimisation has a 

quicker performance speed than Grid Search, which is necessary given the increased training 

time for neural networks versus Logistic Regression and XGBoost. The hyperparameters 

considered were activation function, optimiser, learning rate, batch size and epochs. Deep 

learning doesn’t require advanced feature selection techniques since any redundancies in the 

data will be automatically disregarded by the algorithm.  

3.4 Evaluation Metrics 

Accuracy was used as evaluation metric for the performance of each model (relating 

predicted outcomes to possible outcomes). A 5x2cv paired t test was used as an additional 

test for model comparison (Dietterich, 1998).  

 

4. Results 

4.1 Saliency 

Fig. 4 shows a sample of the saliency maps collected. The brightness of the pixels 

corresponds to the level of saliency the model has predicted for that area of the input image.  



 

 

 

 

4.2 Data Exploration 

The feature extraction process resulted in a total of 84 features. Initial data exploration 

indicates minimal variation in the data for both age and sex. Fig. 5, a tSNE (van der Maaten 

& Hinton, 2008) plot of all features split by age and sex, shows that features of different 

classes are not well separated.  

 

After feature selection the following features were used in each of the machine learning 

models: 

 

 

Fig. 4 Predicted saliency maps from the following models IMSIG (top left), DGII (top right), LDS (bottom 

left), QSS (bottom right) 

Fig. 5 2D tSNE visualisation of extracted features for age (right) and sex (left) 



 

 Logistic Regression XGBoost 

Age IMSIG – SIM 

RARE – IG 

GBVS – SIM 

CVS – NSS 

CVS – CC 

QSS – AUC 

QSS – SAUC 

QSS – SIM 

ICF – CC 

ICF – NSS 

QSS – CC 

QSS – AUC 

QSS – SAUC 

QSS – IG 

QSS - NSS 

Sex IMSIG – SAUC 

DVA – CC 

DVA – NSS 

DGIIE – NSS 

LDS – CC 

LDS – NSS 

QSS – SAUC 

IMSIG – CC 

IMSIG – AUC 

DGI – IG 

DVA – SAUC 

 

 

 

 

4.3 Classification 

The results of each machine learning algorithm for age and sex are shown in Fig. 6, Fig. 7 

respectively. Each model was trained on the same data and the training/test data split was 

80% to 20% for each model.  

Fig. 6 shows that Logistic Regression is the most efficient algorithm at predicting age when 

compared to XGBoost and ANN, with a test accuracy of 39%. However, the baseline 

accuracy when predicting majority class only is 31%. A 5x2cv paired t test shows that the 

Logistic Regression model does not predict age significantly better than the naïve baseline 

model. Both Logistic Regression and Neural Networks predict sex with similar efficiency on 

both the training and test set (Fig. 7). A 5x2cv paired t test shows that this accuracy is not 

significantly different from the naïve baseline classifier which predict sex with an accuracy of 

50%.  

Table 2. Input features to MLR and XGBoost for age and sex prediction after feature selection 

Fig. 6. Train and test accuracy for age prediction 



 

 

  

5. Discussion 

The aim of this thesis was to analyse whether there is a difference in the way we view the 

world by investigating differences in gaze behaviour cross demographics. This analysis was 

performed by attempting to predict an individual’s demographics based on a match to a 

variety of saliency maps. The results of the machine learning classification algorithms show 

that there is no clear relationship between a individuals match to a saliency map and their age 

and sex. This suggests that there is no distinguishable difference in eye movements across 

demographics and as such we do not differ in the way we move our eye across a visual scene.  

Many of the features selected to train the classification models in this analysis were extracted 

from bottom-up features-based maps such as QSS and CVS. This aligns with previous 

research which has shown that bottom-up factors are more influential when a child is viewing 

a scene as compared to adults (Açik et al., 2010). Interestingly, the features extracted from 

deep learning maps were not as shown to be relevant when predicting age, but features 

extracted from deep learning maps, Deepgaze I and Deepgaze IIE in particular, were shown 

to relevant in prediction of sex. Deep learning maps have been claimed to bring a significant 

advancement in predicting gaze behaviour from saliency maps and have improved prediction 

over classic saliency models. According to the MIT/Tuebingen saliency benchmark (Borji et 

al., 2019) these deep learning models are the state-of-the-art saliency models. However, these 

models are generally tested on much smaller datasets than the data used in this analysis and in 

general the participants are adults only. It is therefore possible that their performance would 

vary on a dataset with a wider range of demographics. It is also worth noting that since this 

study only focuses on the saliency of one image, models pretrained on the ImageNet dataset 

were used to predict the saliency of the image (Deng et al., 2010). The images in this dataset 

are mostly from natural scenes whereas the image used in this study is more artificial with a 

variety of different objects and people merged into one scene. This may adversely impact the 

performance of the deep learning models as they have not been trained to classify images of 

this nature.  

Previous research into eye movements and human visual attention has shown that there are 

differences in how our eye move across a visual scene as we age (Egami et al., 2009; Helo et 

Fig. 7. Train and test accuracy for sex prediction 



 

al., 2014; Takahashi et al., 2021; Walker et al., 2017). There have been studies that show 

there are sex-based differences in visual attention (Abdi Sargezeh et al., 2019; Hwang & Lee, 

2018; Miyahira et al., 2000), but this is a less researched area of the human visual attention 

system (Mercer Moss et al., 2012). The conflicting evidence between the analysis in this 

research and prior research into demographic differences in attention could suggest that the 

saliency models used in this analysis do not capture demographic differences in saliency 

across gender age that have been shown to exist in other studies. This is a limitation in the 

current research into predicting visual saliency. Much of the current research into visual 

saliency focuses on the prediction of a universal saliency map but these maps are insufficient 

in detecting the variation in salient regions across demographics. Some studies have 

suggested the integration of demographics into saliency prediction. This has been addressed 

by (Krishna & Aizawa, 2017) who developed a saliency model that is age-adapted and 

outperformed other saliency models that did not consider age. Research into sex adapted 

saliency models is more limited but could also lead to improvements in saliency prediction. 

However, given the results of this research any expected gains in prediction performance 

from integration of age and sex into saliency models would be limited. To address this 

limitation, Zaib & Yamamura propose the idea of a personalised saliency map which 

considers gender, age and personal preference when predicting a saliency map for an 

individual (Zaib & Yamamura, 2022). Deep learning maps predict equally well across all age 

groups and are currently the best models at prediction. But saliency prediction will always be 

limited by the fact that it excludes the variation in salient regions across demographics. 

Personalised saliency maps provide an opportunity to address this limitation although 

research is currently limited, and they require much more data for prediction. 

 

5.1 Limitations 

The nature of the data collection process in this study is the most significant limitation. The 

setting of the eye tracking experiment in a busy environment like the NEMO Science 

Museum can lead to a lot of noise in the data. Additionally, since the experiment is entirely 

unsupervised there is no way to confirm that a participant’s eye movements and 

demographics were collected correctly, except for the necessity to continuously fixate a 

central circle to start the experiment, which ensured minimal data quality. The method of 

collecting demographics via the gaze interactive interface made it slightly difficult for 

participants to enter the exact correct age. Incorrect entries in the data will adversely impact 

any classification algorithm, preventing the detection of patterns in the data and limiting the 

accuracy of any predictions. Lastly the image used in the experiment is a cluttered image with 

many different objects and people. Saliency models tend to perform more poorly on these 

images, this poor performance may limit the predictive ability of the classification algorithms  

(Zaib & Yamamura, 2022). 

5.2 Further Research 

Improvements to the data collection process may improve prediction accuracy. Improving 

user input of demographics would reduce noisy entries in year of birth or gender. The 

inclusion of more than one image in the experimental set up would provide further 

information on an individual’s fixation patterns. The inclusion of more varied images in the 



 

dataset would provide more data to input into prediction algorithms which could lead to 

increased classification accuracy. 

Helo and colleagues have shown that bottom-up processing takes place only in the early 

stages of scene viewing (Helo et al., 2014). Further attempts to classify demographics based 

on match to saliency maps may be improved by considering only the first 3-5 seconds of free 

viewing when extracting features as any fixations after this time may be driven by top-down 

factors which the saliency maps do not consider.  

Prediction efforts, particularly for age which has been shown to be linked to top-down 

factors, may be improved by the inclusion of saliency models that include the impact of top-

down factors in the prediction of saliency maps. Saliency models such as those proposed by 

(Mahdi et al., 2020; Tanner & Itti, 2019; Zhang & Zakir, 2019) where top-down factors that 

influence visual attention such as goal relevance and prior knowledge are implemented in 

model definition may capture more of the variation in visual attention across demographics 

that have been recorded in other research. 

 

6. Conclusion 

The main goal of this analysis was to investigate demographic differences in human visual 

attention. This was implemented by attempting to predict these demographics using the 

match between participants fixations and saliency maps. These saliency maps were collected 

from a variety of saliency models both classical and deep learning.  

The results of the classification showed that neither age nor sex could be accurately predicted 

using this method. The classification models proposed failed to predict with an error rate that 

was statistically different from a naive classifier. The saliency maps implemented in this 

analysis did not provide sufficient information to allow for demographic prediction. These 

results suggest that these maps do not capture demographic differences in gaze behaviour 

although this does not significantly impact the performance of saliency models. 
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