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Abstract

Given a polygon P , we might be interested in finding a (1+ ϵ)-approximate shortest path between
two points in P . This thesis considers the problem of creating a datastructure that can quickly

answer such queries. Our resulting datastructure is of size O(n
2

ϵ2 4
√

logn log n) and can answer

queries in O( logn
ϵ2 ) time. Along with a theoretical proof of these complexities we also implement

our datastructure and conduct experiments in which we compare our datastructure to a naive one.
We find that our datastructure has poor scalability with respect to preprocessing, but that it does
give good approximations much faster than the naive approach, especially in the worst case.

1 Introduction

The shortest path problem is very well known: given a polygon and some starting location p
and ending location q in that polygon, what is the shortest path between p and q that does not
intersect any of the polygons edges? As an extension to this problem, we assume our polygon can
have holes, and that we will not get one query pair (p, q) but many of them. In this case it would
be inefficient to calculate every one of these paths from scratch. In this thesis, we focus on the
problem of how to preprocess a polygon such that shortest path queries can be answered quickly.
It turns out it is difficult to give an exact answer to this question [1]. Instead we can find an
approximate shortest path, a path with a length close to the length of the optimal shortest path,
more quickly. In particular we will adapt an existing technique from [2], used to calculate exact
Manhattan shortest paths, to get a datastructure that can answer (1 + ϵ)-approximate Euclidean
shortest paths queries.

This can be a useful datastructure in many scenarios, for example when doing a simulation
study with a large number of agents that can move around. They will all want to calculate the
path they need to take to their destination, so there will be a lot of shortest path queries which can
be answered quickly using the datastructure. The fact that it returns an approximate shortest path
and not an exact one might not a problem, if the increase in travel time of a few percent makes little
difference in the simulation as a whole. One could also think of more real-world applications, such
as sorting robots that move around in large warehouses. Depending on the size of the warehouse
and the chosen ϵ the time saved on computation could be larger than the time lost in actual travel
time.

First in Section 2 we will discuss some necessary background information. Then in Section 3
we will define the research questions to be answered by the thesis, and in Section 4 results from
other relevant papers will be discussed. Section 5 introduces our new datastructure, and Section 6
elaborates on how this was implemented. The setup for our experiments is described in Section 7,
and finally their results are shown and analysed in Section 8.

2 Preliminaries

2.1 Manhattan vs Euclidean distance

There are many methods of measuring distance between points, and the two methods relevant
to this study are Euclidean distance (L2) and Manhattan distance (L1). The Euclidean distance
between two points p and q is calculated as δ(p, q) =

√
(px − qx)2 + (py + qy)2, and the Manhattan

distance is simply δ(p, q) = |px − qx|+ |py − qy|.
Although the two are approximations of each other, it is possible that a Manhattan shortest

path between two points is not a Euclidean shortest path, nor the other way around. An example
of this is shown in Fig. 1, where the red line is a Manhattan shortest path and the blue line is a
Euclidean shortest path.

2.2 Approximation algorithms

Some algorithms will give an exact answer to the shortest path problem, meaning there is no valid
path shorter than the path such an algorithm returns. Other algorithms can give an approximation
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p

q

Figure 1: Manhattan shortest path vs Euclidean shortest path

of this shortest path. For some query (p, q) we say the length of an optimal shortest path between
them is l∗. An ϵ-approximate shortest path datastructure will return a path with a length l that
differs no more than a factor ϵ from the optimum l∗, so l∗ ≤ l ≤ ϵ ∗ l∗.

3 Research Question

In this research we will be creating a new datastructure to answer approximate Eurlicdean shortest
path queries, based on a datastructure to answer exact Manhattan shortest path queries. The main
research question we are trying to answer is:

How efficient of a datastructure can we build to answer (1+ ϵ)-approximate Euclidean shortest
path queries?

For this we will want to answer the following subquestions:

What space and time complexities can we achieve in theory?
What space and time usage can we achieve in practice?
What approximation factor does this datastructure have in practice?

4 Related work

In this section related work about shortest path queries will be discussed .

4.1 Algorithmic problem

In this study we are mostly concerned with how to preprocess a polygon to be able to quickly
query shortest paths. However the algorithmic version of the problem, where we can not do any
preprocessing and simply have to find the shortest path from scratch, is a good place to start.
According to the Handbook of Computational Geometry [3], there are two main approaches to
this problem.

The first is based on the visibility graph. This graph has the polygon vertices as nodes, and
edges for all pairs of vertices that can see each other. We can also add the query points p and q to
this graph by adding them as ‘point holes‘. We know that a shortest path in a polygon consists of
straight lines between query points and polygon vertices. We can therefore use Dijkstra’s algorithm
to find the shortest path between them in the visibility graph, which is also the shortest path in
the polygon.
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This visibility graph has O(n2) edges, since in the worst case all vertices can see all other
vertices. However there are output sensitive algorithms to construct it: if the graph has EV G

edges, it is possible to construct it in optimal O(EV G + n log n) time and O(n) space [4, 5]. The
shortest path can then be found in O(EV G + n log n) time.

The second approach is the continuous Dijkstra method, which simulates a wavefront propa-
gating from the query point such that all points on the wavefront have the same distance to the
query point. This technique is similar to a sweepline. We start with the wavefront at distance 0,
and at certain ’events’ it changes structure, for example when it hits a vertex. When we hit the
other query point we are done, since we know the distance of the wavefront at that point. With
this technique we can find the distance in O(n1.5+ϵ) time and O(n) space, or in O(n log n) time
with O(n log n) space.

Very recently this problem has been solved optimally by Wang in [6], in O(n+h log h) time and
O(n) space using the continuous Dijkstra method, where h is the number of holes in the polygon.

4.2 Euclidean shortest paths

In this section we look at datastructures that can answer Euclidean shortest path queries.

4.2.1 Simple polygons

For simple polygons (polygons without holes) this problem is, unsurprisingly, much simpler than
for polygon with holes. Guibas and Herschbringer [7] give a datastructure of size O(n) that can
answer shortest path queries in O(log n) time for simple polygons, which are optimal complexities.
They first make a triangulation of the polygon by repeatedly splitting it into halves that are roughly
the same size, creating a tree of subpolygons in the process. For each of these subpolygons they
store information about shortest paths inside it. This information can then be used to answer
queries by finding the subpolygons between the query points, and combining the subpaths from
those subpolygons.

4.2.2 Polygons with holes

So for simple polygons we only need linear space to get logarithmic query times. If we introduce
holes, the problem gets a lot more difficult. Chiang and Mitchell give several different datastruc-
tures with tradeoffs between space and query time in [1], and the one we look at here uses O(n11)
space and has O(log n) query time.

Their method uses shortest path maps, which is a way to store shortest paths from a single
point to the rest of the whole polygon. For some point z, the shortest path map SPM(z) of z
is the division of the polygon into maximal regions such that for any two points p and q in that
region, the combinatorial path from z to p is the same as from z to q. It makes sense that for
some point z′ that is close to z, SPM(z′) will be similar to SPM(z). This is indeed what the
authors try to exploit: they divide the polygon into regions, such that all points in the region have
a similar shortest path map. ’Similar’ here formally means that they are topologically equivalent,
so both shortest path maps have the same number of regions in about the same place, but the
actual geometry of those regions may differ depending on the exact location of its source point.

First the polygon is divided into those regions with similar shortest path maps. Chiang and
Mitchell prove that O(n10) is an upper bound to the number of such regions. The shortest path
map is then stored for every region, but in a parametrized way: we can not just store the exact
geometry of the map because it is different for every source point. They also created a parametrized
point location datastructure, to quickly find in which region of such a parametrized map a point
lies in O(log n) time. This leads to a total space complexity of O(n11).

It is unknown if this complexity can still be improved on, as pointed out by the authors, for
example by improving the upper bound O(n10) on the number of SPM -similar regions. However,
it is still unlikely to be usable in real world settings when the polygons are not extremely small.
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4.2.3 Sensitive to the number of holes

A way to make more practical datastructures is by making them sensitive to the number of holes
in the polygon. Let the number of holes be h. A polygon with very few holes (h = O(1)) can be
easier to handle than one with very many holes (h = O(n)).

In the same paper as above [1], Chiang and Mitchell also provide a datastructure with O(n+h5)
space, and O(h ∗ log n) query time. For polygons with O(1) holes this is optimal since it has linear
space and logarithmic time, just like the algorithm in [7] for simple polygons. However for polygons
with O(n) holes it degenerates to O(n log n) query time which is very slow. Another datastructure
with O(h log n) query time that uses O(n2) space is given by Guo et al. in [8].

4.2.4 Approximate shortest paths

The above algorithms give good results with few holes, but with a linear number of holes they
might still not be very practical. A possible way to handle this is by accepting approximate
answers instead of exact answers. This is indeed also what our new proposed algorithm will do.

In [9], Thorup proposes a (1 + ϵ)-approximate datastructure, which uses O(n log2 n
ϵ ) space and

can answer queries in O( 1
ϵ3 + logn

ϵ∗log logn ). The user can freely pick the parameter ϵ as any number
greater than 0. The smaller the ϵ, the more accurate the answer will be, but the larger the space
and time requirements will be.

Their datastructure is based on dividing the view of points into k cones where k is O( 1ϵ ),
meaning that the more accurate we want our answer the more cones we need. They want to know
for every vertex and for every one of its cones, what the closest visible vertex in that cone is.
They construct a cone graph, whose vertices are the obstacle vertices, and where vertices u and v
are connected iff v is the closest visible vertex to u in some cone direction. A path between two
vertices in this graph will then correspond to a path in the polygon, since only vertices that are
visible to each other are connected. It is proven in [10] that the shortest path in the graph is a
(1 +O( 1k ))-approximation of the shortest path in the polygon.

This can be used to create a query method: in the preprocessing they create a Voronoi-diagram
like structure, which can be used to find the closest vertex in each cone direction for some point
in O( logn

log logn ) time. For a query (p, q) we can then find the k closest points, one in each direction,
for both p and q. The shortest path through the cone graph goes through one of these points for
both p and q. We will store all pair (approximate) distances between obstacle vertices, so we can
look at all pairs of cone-points of p and q and find the pair that gives the shortest total distance
between p and p. Finding the k closest points will take O(k ∗ logn

log logn time, and looking at all pairs

takes O(k2) time. The easiest way to store these all pair shortest distances is using O(n2) space
by storing a shortest path tree for every vertex, but Thorup gives a data structure that can do so

in O(n logn
ϵ ) space, or O(n log2 n

ϵ ) if we also want to retrieve the actual path in addition to the its

length. This datastructure has O(k) query time, leading to the earlier mentioned O( 1
ϵ3 +

logn
ϵ∗log logn )

query time (since k = O( 1ϵ )).

4.3 Manhattan distance

Creating an oracle for finding Manhattan shortest paths seems to be a simpler problem than for
Euclidean shortest paths, as we will see in this section. Many of the techniques used in the following
papers will be adapted to be used in our new proposed algorithm, so they are covered somewhat
extensively.

4.3.1 Visibility graph

In [2], Clarkson et al. solve the offline version of the shortest path problem, meaning we are not
allowed to do any preprocessing and simply have to find the shortest path between two query points
in an unseen polygon. For this they first introduce their visibility graph V IS(V ,E). V is the set of
all polygon vertices and E contains pairs of mutually visible vertices, but not all mutually visible
vertices are in E. Note that this makes it different from a ‘standard‘ visibility graph where all
mutually visible vertices are connected. Shortest paths in this graph should correspond to shortest
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paths in the polygon, so their idea is to construct the visibility graph and use Dijkstra’s algorithm
to find a shortest path.

For a point p we look at its four quadrants separately. In this explanation we will only look at
the first quadrant, so at all points above and to the right of p, but the same holds for the other
three quadrants. Point p will be connected to all vertices of its staircase, shown in Fig. 2 as the
black dots. A vertex s is in p’s staircase if it is not dominated by any other vertex, meaning there
is no vertex in the rectangle between p and s. For each of the black dots this is true, while it is not
for the red dot r since point s1 is in the rectangle between it and p. This means we can get from p
to r through s1 without increasing the length of the path, in the Figure this means the blue line is
the same length as the red line (recall that we are using the Manhattan distance). Now a shortest
path in V IS(V ,E) is also a Manhattan shortest path in the polygon, since every part of the path
can pass through the staircase vertices without changing the length of the path.

p

s1

r

Figure 2: The staircase around a point p

With this definition a vertex can have O(n) staircase vertices, for example in Fig. 3 all the
black dots are staircase vertices of p. This also means that E can be size O(n2), and we would like
it to be smaller. A sparse version of V IS(V ,E), V IS(V,E), will be defined.

4.3.2 Sparse visibility graph

To make the visibility graph sparse, extra points called Steiner points are introduced. Type 1
Steiner points1 are the easiest: we project each vertex in the four directions up, down, left and right
onto the polygon, and these projections are type 1 Steiner points. Since every vertex introduces
exactly 4 type 1 Steiner points, there are O(n) of them.

For the type 2 Steiner points the cutline tree is introduced. The cutline tree is a binary tree,
where a set of vertices and a cutline are associated with every node. The cutline is a vertical line
through the median of the vertex set. This splits that set in a left and right half, which are the
vertex sets of the left and right child in the cutline tree, respectively. The vertex set of the root of
the tree is the set of all polygon vertices, meaning the tree will have height O(log n). Every node
of the tree introduces the following type 2 Steiner points: for every vertex in the vertex set, if it is
horizontally visible to the cutline, we project it horizontally onto the cutline and create a type 2
Steiner point there. Since every vertex is in exactly one vertex set on every level of the tree, and
the tree has height O(log n), there are O(n log n) type 2 Steiner points.

Now V IS(V,E) is created as follows. V is the set of all polygon vertices plus all Steiner points.
Then every polygon vertex is connected to its 4 type 1 Steiner points, and its O(log n) type 2
Steiner points. Lastly for every cutline and obstacle edge, if a and b are two adjacent points visible

1note that the words ’type 1’ and ’type 2’ are interchanged in some papers; I use a consistent notation here
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p

Figure 3: p has O(n) staircase vertices

to each other on that line, we connect a and b. Each Steiner point created by a point p is thus
connected to 2 other Steiner points. These are called the gateways of p.

Now for an arbitrary vertex p and one of its staircase vertices q, p and q are still indirectly
connected with a shortest path, either via a cutline or via an obstacle edge. There are two cases:

Case 1: if no line segment intersects the rectangle between p and q they are connected through
a cutline like on the left of Fig. 4. This is because there is a place in the cutline tree where p and
q were in the same set on level i, but in seperate sets on level i+ 1. That means that the cutline
associated with their node on level i separated them, so they will both have created type 2 Steiner
points on this cutline. Since all adjacent points on the cutline are connected, p and q are then also
connected with a shortest path.

Case 2: if a line segment does intersect the rectangle between p and q they are connected
through that edge, since they both created type 1 Steiner points on that edge and all adjacent
points on the edge are connected.

With that we know that shortest paths in V IS(V,E) are also Manhattan shortest paths in the
polygon.

Figure 4: Paths from p to q. Left: case 1 through a cutline, right: case 2 over an edge
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4.3.3 Preprocessing

In [2] the sparse visibility graph was only used to solve the offline problem, but in [11] Chen et
al. use it to create a datastructure of size O(n2 log2 n) that can answer Manhattan shortest path
queries in O(log2 n) time. The preprocessing consists of calculating the sparse visibility graph
of all obstacle vertices and storing it and the cutline tree used to create it. We also store the
shortest path between all pairs of Steiner points in O(n2 log2 n) space, since there are O(n log n)
total Steiner points. Then for a query (p, q) we ‘insert‘ p and q into the graph and find their
Steiner points, and with those their gateways (the points adjacent to their Steiner points). There
are four type 1 Steiner points which can be found in O(log n) time, and O(log n) type 2 Steiner
points which can be found in O(log n) time as well with a fractional cascading structure. We know
that if p and q and their Steiner points would have been in the visibility graph, the shortest path
in this graph would have corresponded with a shortest path between them in the polygon. That
shortest path in the graph would pass through one p’s Steiner points and then one of p’s gateways.
The same holds for q. This means we can find the shortest path between p and q by looking at
the O(log2 n) combinations of their gateways, and choosing the one combination that gives the
smallest total distance.

4.3.4 Improving the algorithm

In [12] Chen et al. build on their algorithm given in [11], first by improving the query time from
O(log2 n) to O(log n). They do so by slicing the cutline tree into

√
log n horizontal slices, called

super levels. Now instead of including one pair of gateway points per level of the cutline tree, they
include one pair of gateway points per superlevel. This reduces the number of gateways of p and
q to O(

√
log n), and reduces the number of combinations to O(log n).

They also improve the space complexity from O(n2 log2 n) to O(n + h2 ∗ log2 h ∗ 4
√

log h) =
O(n+ h2+δ) for some small δ > 0.

5 Theory

In this section we will introduce our datastructure for answering approximate shortest path queries.
For a query we can first check if the query points are mutually visible in O(log n) time by

shooting a single ray, in which case the shortest path is a straight line between them. Otherwise
there must be at least one polygon vertex on the shortest path, which we assume throughout the
proof.

5.1 Overview

Our datastructure is an adaptation of the datastructure used for the exact shortest Manhattan
distance [2, 11, 12], which used cutline trees and a sparse visibility graph.

We divide the view of a point p into k cones, and for each such cone define a set of sawtooth
vertices such that to any other point q there is an f(k)-approximate path that goes through a
sawtooth vertex of p. We then introduce two types of Steiner points, and use them to make a set
of gateway points for the query points. We will prove that we can get to all sawtooth vertices, and
therefore to any point in the polygon, with f(k)-approximate paths through these gateway points.

The preprocessing will take O(n2k24
√

logn log n) space and a similar amount of time to build.
A query will take O(k2 log n) time.

5.2 Cones

While in the Manhattan case we work with 4 quadrants, in the Euclidean case we will work with
k cones, similar to the cones of Thorup in [9]. Let θk = 360

k , and for any integer j ≤ k let
direction dj = j ∗ θk. Then for some point p, cone i will span between directions di = i ∗ θk and
di+1 = (i+ 1) ∗ θk from p. We can make these cones arbitrarily narrow by increasing the number
of cones k. The number of cones k has to be even.
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We say a point a i-dominates another point b if b is inside the i′th cone from a. For example
in Fig. 5 a i-dominates b (and c), while b i-dominates c. The i in ‘i-dominates‘ can be omitted if
the cone direction is clear from context.

a

b

c

di

di+1

Figure 5: Three points with their cones in direction i

5.3 Approximation factor

An x-monotone path is a path that is either always non-decreasing or always non-increasing in x,
a y-monotone path is defined similarly. In Fig. 6 we see from left to right an x-monotone path, a
y-monotone path, and an xy-monotone path. A monotone path is polygonal if it only consists of
straight segments; the first two paths in Fig. 6 are polygonal, the third is not.

Another way to define xy-monotone paths is as follows. Let a, b be any two points on the path,
such that b is further along the path than a. If for all such pairs b is in the same quadrant of a,
the path is xy-monotone. For example on the right of Fig. 6, the path from p to q is xy-monotone
because any point b is always in the first quadrant of any earlier point a.

Similarly we can define an i-monotone path. Intuitively, a path is i-monotone if it only goes in
directions between di and di+1. More formally, let a, b again be any two points on the path such
that b is further along the path than a. If for all such pairs a i-dominates b (b is in cone i of a),
the path is i-monotone. For example in Fig. 7 the blue path is i monotone, but the red path is not
since r2 is further along the path than r1 but r2 is not i-dominated by r1.

p

q

p p

q q

Figure 6: From left to right: an x-monotone path, a y-monotone path, and an xy-monotone path
from p to q
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di

di+1

r1
r2

q

p

Figure 7: A polygonal i-monotone path in blue, and a polygonal non-i-monotone path in red

The more cones we have, the narrower they get, the more i-monotone paths start to resemble
straight lines. This brings us to the key idea of the proposed datastructure:

Lemma 1. Let a, b be two points such that a i-dominates b. Then any polygonal i-monotone path
from a to b is an f(k)-approximation of the direct path ⟨a, b⟩, where f(k) = 1

cos(
θk
2 )

.

a

b

m

di
di+1

Figure 8: The worst case for points a,m, c when approximating the optimal path from a to c
through m

Proof. To prove a bound for our approximation factor we need to consider the worst possible
polygonal i-monotone path, such that all other polygonal i-monotone paths yield a better approx-
imation factor. This worst case path goes an equal distance in directions di and di+1, and in no
other direction, shown as a red path in Fig. 8. W.l.o.g. we assume this path consists of exactly one
segment in direction di and one in direction di+1, because any polygonal i-monotone path with
more segments in directions di and di+1 can be rearranged to have two segments without changing
the length of the path. This is the worst case because of two reasons:

• (1): for any two points a and b, the longest polygonal i-monotone path between them goes
only in directions di and di+1. We can prove this by contradiction. Assume there is a pair
of points a, b for which the longest polygonal i-monotone path contains at least one segment
in a direction that is not di or di+1. Let the endpoints of this segment be c and d, as shown
in blue in Fig. 9. We can replace this segment by a segment ce in direction di and a segment
ed in direction di+1. This results in a path that is still polygonal and i-monotone, but with
a larger length since |⟨c, e, d⟩| > |⟨c, d⟩| by triangle inequality. This leads to a contradiction,
since we assumed the path containing segment cd was the longest, proving that for any two
points a and b, the longest polygonal i-monotone path between them goes only in directions
di and di+1

• (2): we achieve the worst possible approximation factor if b is exactly in the middle of the
i-th cone of a. To prove this we will formulate the approximation factor as a function of
the angle α between di and ab. Let the other angles of triangle amc be β and γ, and let
the lengths of the sides be x, y and z, like in Fig. 10. Now our approximation factor as
a function of α is ϵ(α) = x+y

z , so we need to find the lengths of x, y and z. We can use
the law of sines here, which states that for any triangle the length of a side divided by the

12



di

di+1c

d

e

Figure 9: Any path between p and q that does not use angles di and di+1, like the blue path,
results in a better approximation factor than the red path.

sine of the angle of the opposite corner is a constant, meaning that ratio is the same for all

three corner/side pairs. In our case this means sin(α)
y = sin(β)

x = sin(γ)
z = S, where S is some

constant. Rewriting this and filling it in our formula for ϵ gives:

ϵ(α) =
x+ y

c
=

sin(β)
S + sin(α)

S
sin(γ)

S

=
sin(β) + sin(α)

sin(γ)

Recall that we want to maximize our approximation factor ϵ. Recall Θk is the angle between
di and di+1. Since γ = 180− θk is constant with respect to α, we can leave out the denom-
inator. Also, by z-angles we know that α + β = θk, so β = θk − α. This leaves us with the
following function that we want to maximize:

f(α) = sin(θk − α) + sin(α)

We want to know for what value of α this function has a maximum value. Note that 0 ≤
α ≤ θk, since otherwise the path is not i-monotone anymore. We find the first and second
order derivatives:

f ′(α) = cos(α)− cos(θk − α)

f ′′(α) = − sin(α)− sin(θk − α)

f(α) has a maximum whenever f ′(αmax) = 0 and f ′′(αmax) < 0. We can work this out as
follows:

f ′(αmax) = cos(αmax)− cos(θk − αmax) = 0

cos(θk − αmax) = cos(αmax)

θk − αmax = αmax

αmax =
θk
2

Filling this in in the second derivative gives f ′′( θk2 ) = − sin( θk2 ) − sin( θk2 ), which is indeed
negative for k ≥ 4.

All in all, we have shown that f(α) reaches a maximum value for α = θk
2 , and therefor b

should be exactly in the middle of cone i from a to achieve the worst possible approximation
factor.

13



a

di

di+1

m

b

α

β

β

x
z

y

γ

θk

Figure 10: Angle α = θk
2 leads to the worst case for an i-monotone path

So, in the worst case we have an isosceles triangle (a triangle with two sides of equal length),
shown on the left of Fig. 11. As mentioned before, γ = 180◦ − θk. W.l.o.g. we assume ab = 1. We
will only look at the left half adm of the triangle as shown on the right of Fig. 11, since the right
half dbm is symmetrical.

a

d

γ

θk

m

b
x

x

a d

x

1
2

m

γ
2

Figure 11: Left: worst case isosceles triangle. Right: zoom-in on triangle amb

Using the the law of sines again, we can say for the triangle in Fig. 11:

x

sin(90◦)
=

1
2

sin α
2

x

1
=

1

2 sin α
2

x =
1

2 sin(90◦ − θk
2 )

=
1

2 cos( θk2 )

Since x is only half of the red path in Fig. 11, the total length of the approximated path is
2x = 1

cos(
θk
2 )

. This is is also directly the approximation factor since we chose the optimal path to

have length 1, so we have proven that f(k) = 1

cos(
θk
2 )

So, when we use k cones we will get a 1

cos(
θk
2 )

-approximation of the optimal path. By rewriting

this we find that if we want to have a certain ϵ as approximation factor, we have to choose
k ≥ 180◦

cos−1( 1
ϵ )
. For example choosing k = 4 leads to ϵ =

√
2, and to get a maximum error of 1%, so

ϵ ≤ 1.01, we need to choose k ≥ 22.

5.4 Sawtooth structure

A point p has a sawtooth structure in every cone, similar to the staircase structure. The old
staircase and new sawtooth are put side by side in Fig. 12. A vertex s is a sawtooth vertex of p
if there is no vertex m such that p dominates m and m dominates s. This is the case when there
are no other points in the parallelogram between p and s. This parallelogram is formed by the
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directions di and di+1, and is shown in Fig. 12 for vertex r using the red dashed lines. All the
black vertices are sawtooth vertices, but r is not since it is dominated by s1.

In between the sawtooth vertices are the teeth of the sawtooth structure, shown as a black
dashed line in Fig. 12. A tooth connects two adjacent sawtooth vertices and consists of up to three
segments: a segment in direction di+1, a segment on a polygon edge, and a segment in direction di.
Each of these three segments can be null. The region outlined by these teeth is the sawtooth region.
There can not be any vertices inside the sawtooth region, since they would have been sawtooth
vertices too.

Now that sawtooth vertices have been defined, we can prove the following lemma:

Lemma 2. For a point p and any vertex q, there exists a path from p to q which is an ϵ-
approximation of the shortest path, where the first vertex on the path is a sawtooth vertex of p.

Proof. Take some optimal path. Let the first vertex on this path be r, as in Fig. 12 where the
optimal path is in blue. If r is a sawtooth vertex of p we are done, otherwise we find the segment of
the sawtooth structure that the path intersects. Let this intersection point be j. This can not be a
polygon edge segment since we can not intersect the polygon, so it has to be a segment in direction
di or di+1. We adjust the path to first go through the sawtooth vertex incident to that segment,
then to the intersection point j, then to r. By Lemma 1, ⟨p, s1, j, r⟩ is an ϵ-approximation of ⟨p, r⟩,
and thus the whole altered path is an ϵ-approximation of the shortest path from p to q.

p

s1

r

p

r

s1 j

Figure 12: Left: the first quadrant of the old structure with its staircase. Right: a cone in the new
structure with its sawtooth

5.5 Cutline trees

We will now introduce our cutline trees, as an adaptation to the ones used in [2, 12, 11]. A cutline
tree is built for a specific direction di (and simultaneously for the direction opposite to it di+k/2).
Each node u in the tree has a vertex set S(u) and a cutline l(u) associated with it. A polygon
with its cutline tree for d0 is drawn in Fig. 13.

As a base case, S(root) is the set of all vertices of the polygon.
For a node u line l(u) is a line in direction di. If we rotate the polygon such that di is parallel

to the y-axis, we can find the vertex vm with the median x coordinate. l(u) is shot through vm.
The vertex set associated with the left child S(left) is the set of all vertices on the left of vm plus
the median vertex vm itself, and S(right) is the set of all vertices on the right ofvm. This means
that S(u) is divided in two (almost) equally large halves at every node, so the tree will have height
O(log n).
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We have one such cutline tree for each direction, meaning we will have k/2 trees since two
opposite directions produce one cutline tree.

We also introduce the notion of levels and super levels of the tree. The level number level(u)
is ⌈log n⌉ if u is the root of the tree. Then if v is the child of u, level(v) = level(u)− 1. Note that
this is defined inversely to [12] such that a node with a higher level number is higher in the tree,
if we view the root as being the top node. Then we horizontally subdivide the cutline trees into√
log n strips called super levels of height

√
log n each, such that super level i contains all nodes

with level numbers from (i− 1) ∗
√
log n to i ∗

√
log n.

level 3

level 2

level 1

Figure 13: A cutline tree in direction d0 for a small polygon

5.6 Steiner points

Just like in [2], a vertex can have O(n) sawtooth vertices. Storing all these will take too up
too much space, so again we will use Steiner points to connect a vertex to its sawtooth vertices
indirectly. There are two types of Steiner points.

5.6.1 Type 1 Steiner points

Every polygon vertex is projected along all k directions onto the polygon edges to get up to k
type-1 Steiner points, as shown in Fig. 14. Since all n vertices define up to k type-1 Steiner points,
there are O(nk) of them.
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p

Figure 14: Type 1 Steiner points of a point p

5.6.2 Type 2 Steiner points

Type 2 Steiner points make use of the previously defined cutline trees. For some cutline tree in
direction di, let u be a node that is at the highest level of its super level, meaning the parent of
u is in a different super level or u is the root. Let T (u) be the subtree of u while only including
nodes at the same super level as u, as shown in Fig. 15. Then for each vertex v ∈ S(u), for each
node c ∈ T (u), v defines a type 2 Steiner point at its projection in direction di+1 on l(c), if that
projection point is visible to v. Fig. 16 shows some type-2 Steiner points.

u

superlevel j

superlevel j-1

superlevel j+1

Figure 15: The subtree T (u) in some cutline tree where
√

log(n) = 3. All vertices in S(u) are
projected onto the cutlines of all black nodes to create type-2 Steiner points.

By the definition of super levels T (u) has height
√
log n, and therefor 2

√
logn nodes. This

means that each vertex in S(u) defines O(2
√

logn) type 2 Steiner points. Since there are n vertices

on every level of the tree, one super level defines O(n ∗ 2
√

logn) type 2 Steiner points. There are

O(
√
log n) super levels, so one cutline tree defines O(

√
log n ∗ n ∗ 2

√
logn) type 2 Steiner points.

All cutline trees together then define O(k ∗
√
log n ∗ n ∗ 2

√
logn) points.

5.7 Preprocessing

Now that all Steiner points are defined, we can calculate them all in preprocessing. We will store
all the cutline trees, and for all cutlines we store all the type 2 Steiner points on them in sorted
order such that we can quickly binary search in them. We will use a fractional cascading structure
between the nodes of the tree to speed up search. We also store all type 1 Steiner points in sorted
order for each polygon edge.

We will also need to store shortest paths between all pairs of Steiner points. Note that this
table does not need to store exact shortest paths, it is sufficient to store ϵ-approximate paths.

Since we have O(k ∗
√
log n ∗ n ∗ 2

√
logn) total Steiner points, we can store all pair shortest paths
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di di+1

l(u)

Figure 16: Type 2 Steiner points for direction i

between them using O(k2 ∗ log n∗n2 ∗4
√

logn) space. Note that O(4
√

logn) = O(nδ) for any δ > 0.

5.8 Gateways

We will now define a set of gateway points G(p) for p, consisting of two parts G1(p) and G2(p).
The idea is that there is always an ϵ-approximate path from p to any polygon vertex that goes
through a gateway point.

For G1(p) we project p in all k directions onto the polygon edges. The type 1 Steiner points
adjacent to these projections are all in G1(p), so |G1(p)| = O(k). Since a single ray can be shot in
O(log n) time, it takes O(k log n) time to calculate G1(p).

To calculate G2(p) we use the cutline trees that we stored. For a tree in direction di we first
find the path in the tree to point p. That is, we start at the root and go to the left (respectively
right) child if p is on the left (respectively right) of the current cutline, and repeat this until we
are in a leaf. For all nodes u on the path, if the projection from p in direction di+1 onto l(u) is
visible to p it is a projection cutline of p. There are O(log n) projection cutlines. In Fig. 17 all the
black nodes are potential projection cutlines of p, if p’s projection onto their cutline is visible to p.

p

v1

v2

u

superlevel j

superlevel j-1

superlevel j+1

Figure 17: Possible projection cutlines and relevant projection cutlines of p

A projection cutline l(u) of p can also be a relevant projection cutline. For this we look at the
super level of u, and all other projection cutlines that are on the same side of the line in direction
di through p. If l(u) is the projection cutline with the lowest level number (the deepest in the tree)
among all projection cutlines in the same super level, then l(u) is a relevant projection cutline.
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This means there are at most 2 relevant projection cutlines per superlevel, one on each side, so
O(

√
log n) per cutline tree.

In Fig. 17 superlevel j is shown. Here v2 is the relevant cutline for superlevel j on the left of p,
if it is visible to p. v1 is the relevant cutline for superlevel j on the right of p if it is visible to p,
otherwise u is (once again, only if it is visible to p).

G2(p) then consists of the two type 2 Steiner points adjacent to the projection point of p on
its relevant projection cutlines. By this definition, |G2(p)| = O(

√
log n) per tree and therefor

G(p) = O(k
√
log n). It takes O(k log n) time to calculate G2(p).

With the gateways defined we can prove the following lemma:

Lemma 3. For a point p with gateway points G(p), for any of its sawtooth vertices s, there exists
an approximate shortest path from p to s which goes through a gateway point g ∈ G(p).

Proof. Vertex s is in some cone i of p. Consider the parallelogram between p and s with directions
di and di+1, shown with a red dashed outline in Figs. 18 and 19. There can not be any vertices
in this parallelogram since s is a staircase vertex of p. However, there can be a part of a polygon
edge inside the parallelogram. This gives us two cases, one with a part of an edge inside the
parallelogram and one without.

Case 1: there is a polygon edge inside the parallelogram between p and s, intersecting the ray
from p in direction di+1 (or symmetrically di) as in Fig. 18. This edge must also intersect the ray
from s in direction di+k/2, since otherwise there would be a vertex inside the paralellogram. This
means that s has created a type 1 Steiner point on this edge, shown as s1 in the figure. While
building G1(p), we projected p in direction di+1 to get point p1. We then added the two Steiner
points adjacent to p1, g1 and g2 in Fig. 18, to G1(p). One of these two gateways, g1 in the figure,
lies between p1 and s1. Note that g1 can be the same point as s1. Now the path ⟨p, p1, g1, s1, s⟩ is
an ϵ-approximation of the shortest path from p to s by Lemma 1.

p

s

p1

s1

g1

g2

Figure 18: Case 1 where an edge intersects the parallelogram

Case 2: there are no polygon edges inside the parallelogram between p and s as in Fig. 19.
Consider the cutline tree with cutlines in direction di, and consider the node u with the highest
level number such that p and s are on other sides of l(u), as illustrated in Fig. 20. We assume p is
on the left of s with respect to direction di, the case where p is on the right of s is symmetric. l(u)
is a projection cutline of p since it is on the path in the tree to p, and its projection point on l(u)
is visible since there are no other edges in the parallelogram. Let a be the highest ancestor of u
in the same super level, in Fig. 20 this is the same node as u. s will have projected type 2 Steiner
points on the cutlines of all nodes in T (a) (the subtree of a in the same superlevel). Exactly one
of these cutlines is also a relevant cutline on the right of p. We call this relevant cutline l(c), and
the type 2 Steiner point s created on it s2.
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It could be that l(c) = l(u). Otherwise, c must be somewhere in T (u). In particular, it must
be in the left subtree of T (u) since p is on the left of l(u). In either case l(c) is between p and
s. This means that while building G2(p), we projected p onto its relevant cutline l(c) as point p2.
We then added the two adjacent Steiner points to G2(p). This means s2, or another Steiner point
on l(c) between p2 and p2, is in G2(p). The path from p via this gateway point via s2 to s is an
ϵ-approximation of the shortest path from p to s by Lemma 1.

p

s

l(c)

s2

p2

l(u)

Figure 19: Case 2 where no edges intersect the parallelogram

superlevel j

superlevel j-1

superlevel j+1

p s

u

c

Figure 20: The cutline tree for case 2 where no edges intersect the parallelogram

5.9 Querying

Lemmas 2 and 3 together show that from a point p we can get to any vertex in the polygon with an
ϵ-approximate shortest path through a gateway point in G(p). Now we can prove our final lemma:

Lemma 4. Let p and q be two query points. There always exists an ϵ-approximate path between
them which goes through a gateway gp ∈ G(p) and a gateway gq ∈ G(q).

Proof. As mentioned before we assume there is at least one polygon vertex in the shortest path
between them, we call it v. We can get to v with an ϵ-approximate shortest path from both p and
q that goes through a gateway in G(p) and G(q) respectively by Lemmas 2 and 3, and putting
these paths together will result in a full ϵ-approximate path from p to q.
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This directly leads to the algorithm to find this path: simply go through all pairs (gp, gq)
with gp ∈ G(p), gq ∈ G(q). Since |G(p)| = O(k

√
log n) and |G(pq)| = O(k

√
log n) there are

O(k2 log n) such pairs. We can retrieve the length lgp,gq of the shortest path between gp and gq
from our preprocessed all-pair shortest path datastructure in O(1) time. The total length of the
path through this pair of points is then the distance from p to gp plus lgp,gq plus the distance from
gq to q. We choose the pair with the lowest total distance, which by Lemma 4 is then guaranteed
to be an ϵ-approximation of the shortest path between p and q. The actual path can be retrieved
in O(z) time with z being the number of turns in the path between gp and gq.

5.10 Final result

All in all this leads to the following theorem:

Theorem 1. Given a polygon P we can create a datastructure of size O(n2k24
√

logn log n), which
can find f(k)-approximate shortest paths between any two points in P in O(k2 log n) time.

6 Implementation

In this section we will elaborate on how the datastructure described in Section 5 was imple-
mented. Everything was implemented in C++using the Computational Geometry Algorithms Li-
brary (CGAL) [13], with the latest stable version 5.4. This library is widely used in the field of
computational geometry, and gives a lot of freedom in how we use the algorithms and datastruc-
tures it provides.

6.1 Exact numbers

There are two types of number representations that we had to choose between when implementing
this datastructure: rational numbers (exact) and floating point numbers (inexact). Rational num-
bers are stored as two integers of unbound size, the numerator and the denominator, resulting in
unlimited precision. This has the advantage that it does not suffer from rounding errors, but it can
make calculations slower and less space efficient. Floating point numbers have limited precision
and are rounded off after every operation, but it is faster to do calculations with them.

Algorithms are often theoretically designed with the assumption that all used numbers are
exact, so a loss in precision could lead to things not working as intended. For example if we shoot
a ray from a polygon vertex, we might hit one of the edges adjacent to that vertex due to rounding
errors, which is not what we want. This specific problem could be fixed with some extra checks
in the code, but such checks would be required in multiple edge cases throughout the program.
For this reason we decided to use an exact number representation, despite the fact that this slows
down computations.

6.1.1 Non-rational values

There are two cases where we have to use non-rational values: when we want to do a rotation or
shoot a ray at a certain angle we need to use the sin and cos functions, and when we want to
calculate the distance between two points we need to calculate a square root. All three of these
functions can give non-rational outputs. We have to decide on a way to deal with this.

For the sin and cos functions, we will use a rational approximation instead of the exact value.
If we want to shoot a ray at some angle δ we first calculate sin(δ) and cos(δ) as floating point
values, and then cast them to rational numbers. Because of the limited precision this means the
rays will not be shot at exactly δ degrees, but slightly off. In our case this is not a problem however,
as long as any calculations done with this ray are exact and the returned intersection point lies
precisely on the boundary of the polygon.

When we need to calculate the distance between two points we can also just use an approx-
imation. We can calculate the exact squared distance between them, and then approximate the
square root of that as a floating point number. This does not cause any issues because if two paths
are so similar in length that rounding errors can cause one or the other to be considered shorter,
we do not care which of the two paths is returned.

21



6.2 Ray shooting

Being able to shoot rays is very important for building and using our datastructure: we shoot rays
to create Steiner points, to check if points on a cutline are adjacent, to find gateways of a query
point and to check if two query points are mutually visible.

Formally, given a point p and a direction d we want to know what is the first edge we hit if we
travel from p in direction d. In our case d will almost always be one of the k directions defined
earlier, except when checking if the two query points are mutually visible. In the following sections
we will explore two approaches to solve this problem: the first can only answer ray-queries in the
k predefined directions, the second in any direction. We ended up using the second approach.

6.3 k-directional rayshooting

In this section we will create a simple datastructure of size O(k ∗ n), that can answer rayshooting
queries in k predefined directions in O(log n) time.

CGAL provides a datastructure to allow for O(log n) time vertical rayshooting queries [14],
so shooting a ray straight up or down from a given point. We can use this to make our own
k-directional rayshooting structure. In preprocessing we would rotate the original polygon by
increments of θk, and build and the vertical rayshooting datastructure for all k of these rotated
polygons. We store these datastructures in a simple list of length k.

A query consists of a point p and an integer dir, which means we want to shoot a ray from
point p in direction ddir. Direction ddir corresponds to a vertical ray in the dir’th datastructure
we stored, which we can access in O(1) time. We will rotate p by dir ∗ θk degrees to get p∗, as
shown in Fig. 21. We shoot a vertical ray from p∗ in O(log n) time to get intersection point i∗,
and then rotate i∗ back to find the original intersection point i.

p

d∗

i∗

p∗

Figure 21: Left: the original polygon. Right: the preprocessed rotated polygon

We used this datastructure at the start of the implementation process, because it was simple to
implement. It can not be used to find if two arbitrary query points are mutually visible however,
which is a required operation. For that reason we implemented the datastructure from the next
section, and ended up not using this datastructure altogether.

6.4 Arbitrary direction rayshooting

For this datastructure we followed a paper by Agarwal [15]. We will build a datastructure of size
O(n2 log n) that can answer rayshooting queries from any point in any direction in O(log n) time.
We will use point-line duality to create a dual arrangement of our polygon, which has some nice
properties to help us find what edges are intersected by a line. Using a persistent binary search
tree we will store this information in a space efficient manner.
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6.4.1 Point line duality

With point-line duality we can create a dual space from some primal space. If in our primal space
we have a point p = (px, py), then its dual in the dual space will be a line p∗ : y = px ∗x− py. The
inverse holds for lines: a primal line l : y = ax+ b is dualized into a dual point l∗ = (a,−b).

Since a primal line segment or edge e can be seen as infinitely many primal points next to each
other, its dual e∗ can be seen as infinitely many dual lines that are slightly rotated, also called a
dual wedge, as shown in Fig. 22 for two edges. Dual wedge e∗ consists of two dual lines e∗1 and e∗2,
which are the duals of the endpoints of the primal edge e1 and e2. All dual points between these
dual lines are inside the wedge, and these regions are shaded blue and red for wedges e∗ and d∗

in the figure. A dual point q∗ inside e∗ corresponds to a primal line q that intersects e, and any
dual point q∗ outside e∗ corresponds to a primal line q that does not intersect e. In Fig. 22 three
examples are shown: q1 intersects neither e or d and its dual point q∗1 is therefore outside both
wedges, q2 intersects only e so q∗2 is inside e∗ but outside d∗, and q3 intersects both e and d so q∗3
is inside both dual wedges.

If we take dual point q∗3 and start moving it towards q∗2 , primal line q3 will start rotating to
the right. At some point q∗3 will hit e∗2, the outer boundary of dual wedge e∗. This corresponds to
q3 intersecting e2 in the primal plane. If we move q∗3 slightly further we will go into the next dual
face, and q3 will stop intersecting e.

q1

q2

q3

ee1 e2

dd1 d2

q∗1

q∗2

q∗3

e∗

e∗1 e∗2

d∗

d∗1 d∗2

Figure 22: Left: a primal arrangement with line segments and lines. Right: the dual arrangement

6.4.2 Dual arrangement of polygon

We will dualize our polygon, which will result in a dual arrangement with n dual wedges, one
for each primal edge of the polygon. Some dual face f∗ lies inside some set of dual wedges
Winside(f

∗) and outside all others. This means that any dual point l∗ inside f∗ also lies inside all
wedges in Winside(f

∗). l∗ corresponds to a primal line l that intersects some set of primal edges
Eintersect(f

∗). For example for face f∗
q∗3
, the dual face containing q∗3 , Eintersect(f

∗
q∗3
) = {d, e}. Now

clearly |Winside(f
∗)| = |Eintersect(f

∗)|, and each dual wedge w ∈ Winside(f
∗) corresponds to a

primal edge e ∈ Eintersect(f
∗). Winside and Eintersect(f

∗) will be the same for any dual point
l∗ inside f∗, and the order that the edges in Eintersect(f

∗) are intersected will also be the same,
because our primal edges are non-intersecting.

Knowing this, for each dual face f∗ we would like to store the set of intersected primal edges
Eintersect(f

∗), sorted by order of intersection. We also build a trapezoidal point-location datas-
tructure [14] on the dual arrangement of size O(n2) , such that we can find in what dual face a
dual point lies in O(log n) time. We can then answer arbitrary direction rayshooting queries in
O(log n) time as such: for a query from point p in direction d, first find the line l that d is on. We
find its dual point l∗, and find what dual face f∗ contains this dual point using our trapezoidal
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decomposition. In the sorted set Eintersect(f
∗) that is stored with f∗ we can binary search for our

query point in O(log n) time, and find its successor- or predecessor-edge depending on the direction
of the query ray. This edge is the first edge hit by the ray, so we can return its intersection with l.

6.4.3 Storing Eintersect

We still need to figure out how exactly we store Eintersect(f
∗). Simply storing the full sorted set

for every face will use too much space: since our polygon has n vertices the dual arrangement will
have O(n2) faces, and since each line can intersect O(n) edges this leads to a total space usage
of O(n3). In this section we will bring this space usage down to O(n2 log n), while keeping the
O(log n) query time.

We first note that for two adjacent faces f∗
1 and f∗

2 , Winside(f
∗
1 ) and Winside(f

∗
2 ) are very

similar. f∗
1 and f∗

2 are separated by a dual edge, which lies on a dual line v∗ corresponding to some
primal vertex v. The only difference between Winside(f

∗
1 ) and Winside(f

∗
2 ) are all dual wedges

that use this dual line v∗: if f∗
1 is inside such a wedge then f∗

2 is outside, and the other way
around. Recall the earlier example of moving dual point q∗3 around in Fig. 22, which was the same
principle. Similarly, the only difference between Eintersect(f

∗
1 ) and Eintersect(f

∗
2 ) are all primal

edges that are incident to v. Since we are working with polygons we know that every vertex has
exactly two incident edges, so there are two edges that are only present in one of Eintersect(f

∗
1 )

and Eintersect(f
∗
2 ), and the rest of the sets are the same. We can store for each dual edge which

two primal edges are associated with it.
Now we will step from dual face to dual face through the dual arrangement, while maintaining

Eintersect as a fully persistent binary search tree. This behaves just like a normal binary search
tree, meaning you can insert, delete and query items in logarithmic time, but it keeps track of
its history such that you can perform these operations on any previous version of the tree as
well. In our case each insertion or deletion will use O(log n) more space. We have to start our
path in a dual face fstart of which know Eintersect(fstart). We can easily find a dual face where
Eintersect(fstart) is empty by taking the dual point l∗ of a primal line l that lies fully below the
whole polygon, and finding the face that contains l∗. From this starting face we will step through
the dual arrangement in a depth-first-search fashion. At every step we move from the current dual
face to a neighbouring dual face through some dual edge. With this dual edge we have stored the
two primal edges associated with it, so we can delete those from the current binary search tree if
they are already present, or add them if they are not. Finally, we have to store a pointer in the
current face to the current version of the tree which we can use while querying. Since there are
O(n2) faces we will perform O(n2) updates to the tree, resulting in a space usage of O(n2 log n).

6.4.4 Custom fully persistent binary search tree

Our fully persistent binary search tree is based on [16] by Sarnak et al. and uses O(log n) extra
space per update performed on the tree, while maintaining O(log n) time for all operations on all
versions of the tree. Note that this space usage is not optimal, in [16] a solution is shown that uses
only O(1) space per update is shown. Due to time constraints we opted not to use this improved
version, because the version that uses O(log n) space per update was easier to implement.

Our implementation builds on code from [17]. We implemented a standard red-black tree, which
balances itself after every update (insertion or deletion). We made it persistent by modifying the
updates such that they never actually change the values or structure of the current version of
the tree, but instead create new nodes with pointers to older parts. This way a new root node
containing the correct tree is created every update, but each version only takes O(log n) space since
that is how many nodes are changed (or in the persistent case, created) during the operation. The
time required for any operation is not changed by making the tree persistent.

As a second modification, our tree does not just store numbers with a predefined order. We
need to sort edges in order of their intersection with some line. We can use any primal line l
associated with a dual point l∗ inside the dual face we are currently processing, since all these lines
intersect the same edges in the same order. We call l the reference line. Every time we step to a
new dual face f∗

new we need to update this reference line. For this we have to find a point inside
f∗
new. This is easy if f∗

new is finite, we can just take three arbitrary dual vertices on its boundary
and their midpoint will be inside f∗

new because all our dual faces are convex. When f∗
new is not
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finite we find the two directions d1 and d2 in which it stretches to infinity, take their average davg
and go some distance in davg from any vertex on the boundary of f∗

new. This point will be inside
f∗
new because it stretches infinitely in any direction between d1 and d2, including davg. Both these
cases are illustrated in Fig. 23, which uses the same dual space as Fig. 22. In the figure m1 is a
point inside a finite face and m2 in a non-finite face.

α

α

m1 m2

d1

d2

davg

Figure 23: Two examples of finding a point inside a dual face

6.5 Suboptimal query implementation

As proven in Section 5 the optimal query time for the sawtooth datastructure is O(k2 log n).
Indeed the whole reason we introduced relevant cutlines was to reduce the number of gateways
from O(log n) to O(

√
log n), which reduces query time from O(k2 log2 n) to O(k2 log n).

However our implementation is sadly not optimal, and has O(k2 log n + k log2 n) query time.
The k2 log n part is still caused by going through all pairs of gateway points. The k log2 n part
is from finding these gateway points, because this was not implemented optimally. Firstly the
fractional cascading datastructure was not implemented resulting in slower binary searches in the
Steiner points. Secondly for some direction di we shoot a new ray at every level of the cutline
tree, even though one ray in direction di+1 and one ray in direction di+k/2+1 in total would suffice.
Both these issues should be relatively easy to fix, but due to time constraints this was not done.

6.6 All pair shortest paths

During querying we need an all pair shortest path datastructure that can find the path between
any two vertices or Steiner points in O(1) time. This path does not have to be the exact shortest
path, it can be an ϵ-approximate shortest path. For each pair p, q we store the distance between

them, and the successor of p in this path. As mentioned before we have O(k ∗
√
log n ∗n ∗ 2

√
logn)

total Steiner points, so we can store all pair shortest paths between them in a simple table using

O(k2 ∗ log n ∗ n2 ∗ 4
√

logn) space.

While creating the Steiner points we simultaneously build a graph. This graph has as nodes
all polygon vertices and Steiner points. A polygon vertex is connected to all the Steiner points it
created, and to the closest type-1 Steiner points on its incident edges. Also, all adjacent Steiner
points on the same edge or cutline are connected pairwise. In this graph all vertices are connected
to all their sawtooth vertices with ϵ-approximate paths by Lemma 4, which means it contains
ϵ-approximate shortest paths between all pairs of nodes that are not mutually visible.

After building the graph we simply run Dijkstra’s algorithm [18], which calculates the shortest
path from a single source node to all other nodes, on every node of the graph to create the all pair
approximate-shortest path table we need.
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6.7 Optimization

In Section 5 we have proven several worst-case space and time complexities for our datastructure.
We can make small optimizations to make it work faster and use less space in practice.

The purpose of Steiner points is to connect vertices with their sawtooth vertices with ϵ-
approximate paths. So the idea is that if a Steiner point can never be used for this, we do
not need to store it. Fig. 24 illustrates this. In the figure k = 8 is used, and two type-1 and one
type-2 Steiner points of p are shown.

For type-1 Steiner points (s1 and s2 in the figure), we know they can only be used to connect
sawtooth vertices as in Fig. 18 when the angle α between the projection ray and the edge is small,
specifically if α ≤ 360◦

k , or in the case of Fig. 24 with k = 4 if α ≤ 45◦. Angle α1 = 90◦ > 45◦ so
s1 does not need to be stored, but since α2 = 45◦ ≤ 45◦ Steiner point s2 does need to be stored.

For type-2 Steiner points we only project in direction di from direction di+1 or di+1+k/2, so
the angle will always be small enough. This does not mean however that all type-2 Steiner points
need to be stored. For example in the figure point s3 can never be used to connect p to one of its
sawtooth vertices: this would require a Steiner point on l(u) below s3 coming from the left of l(u),
as illustrated by the red arrow. Since such a Steiner point is not present, s3 will never be used so
we don’t need to store it.

Both of these optimizations can also be used when finding the gateways for a query point.
The type-1 optimization has been implemented, while the type-2 optimization has not.

s1

s2

p

l(u)

s3

α1

α2

Figure 24: Examples of Steiner points that need not be stored

6.8 Naive datastructure

We also implemented a naive shortest path datastructure that finds the exact shortest path. This
datastructure uses O(n2 log n) space, and a query takes O(n2) time.

In preprocessing, we build the arbitrary direction rayshooting datastructure from Section 6.4
which uses O(n2 log n) space. We use this to create a simple visibility graph, where the nodes are
polygon vertices and two nodes are connected by an edge if they are mutually visible. The length
of such an edge is the distance between the two nodes it connects. Again by running Dijkstra’s
single source shortest paths algorithm from every vertex we can build an all pair shortest path
table, which can give us the shortest path between any two polygon vertices in O(1).

Now for a query p, q the process is very simple. First check if p and q are mutually visible by
shooting a ray between them, if so return the trivial path. Otherwise we know that there is at
least one vertex on the shortest path. Let V isible(p) be the set of vertices that p can see, which we
can find by going through all vertices and shooting a ray towards them from p in O(n log n) time.
The set V isible(q) is defined similarly. Then for all pairs vp ∈ V isible(p) and vq ∈ V isible(q) we
calculate the length of the shortest path from p to vp to vq to q. We can look up the shortest path
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between vp and vq in our all pair shortest path table, and simply add the length of the segments
⟨p, vp >⟩ and ⟨vq, q⟩. We find the vp, vq pair that gives the shortest total distance, giving us the
exact shortest path.

7 Methods

With the datastructure designed and implemented we can test it in practice. This section will
describe what data we used, and what experiments we ran exactly.

7.1 Dataset

An instance of our problem consists of two parts: a polygon, and a set of queries. We mostly used
polygons from the Salzburg database [19], which contains both polygons with and without holes
generated by different algorithms. Most of these polygons were far too large for our algorithms to
handle, so we used only the ones with 500 or fewer vertices. There were 873 such polygons. We
will give a short description of the different types of polygons below.

7.1.1 Fast Polygon Generator (FPG)

This method uses triangulation pertubation. We start of with a convex n-gon, and iteratively
move its vertices in random directions while maintaining simplicity. This same technique works
for polygons with holes as well. An example is shown on the left of Fig. 25.

Figure 25: Left: an FPG polygon. Right: an SPG polygon

7.1.2 Simple Polygon Generator (SPG)

SPG takes a set of points as input, and produces a simple polygon whose vertices are the input
points. In our case the points are created uniformly at random in a bounding box. Initially all
points are put in a random order, which likely results in a polygon with self intersections. Using
a line sweep we go through the polygon, detect these intersections, and fix them locally, repeating
or reversing the line sweep if necessary.

SPG does not produce polygons with holes.
An example is shown on the right in Fig. 25.

7.1.3 Super Random Polygon Generator (SRPG)

Lastly we have SRPG, which most of our database consists of. This produces polygons using a
regular grid of square cells, and has multiple variations:
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• SRPG iso: orthogonal polygons.

• SRPG iso aligned: orthogonal polygons on an integer grid.

• SRPG octa: octagonal polygons.

• SRPG perturbed: random polygons.

• SRPG perturbed smo: random polygons with smoothed corners.

• SRPG perturbed smr: random polygons with even smoother corners.

See Fig. 26 for examples of each of these variations.

7.1.4 Pacman polygon

In addition to the above polygons, which were all taken from the Salzburg database, we also
generated some of our own pacman polygons to artificially create a situation where any query
point has a lot of visible vertices. These polygons are regular polygons except for one vertex which
almost cuts the polygon in half, as shown in Fig. 27. The reason for this split is such that two
random query points have about a 50% chance to not be mutually visible, meaning the resulting
query is not trivial.

7.1.5 Query points

To create random queries we simply choose two points independently and uniformly at random
inside the polygon. This leaves the possibility that the two query points are mutually visible,
which is a trivial but still valid query. Allowing trivial queries has advantages and disadvantages.
An advantage is that we do not filter out any queries and allow all possible pairs of query points,
keeping the query distribution uniform. A disadvantage is that polygons with large amounts of
trivial queries will have very small query times and approximation factors, skewing the results.

To test the effect of these trivial queries we also did a small experiment without trivial queries,
by discarding the chosen query points and trying again if they are mutually visible. This experiment
was only done on the pacman polygons.

We find a point inside the polygon by generating a point inside the bounding box of the polygon
first, and then checking if it is inside the polygon. If it is we return the point, otherwise we try
again.

Due to a bug in the code the random seed was the same for every single polygon. This resulted
in the exact same sequence of generated points for every polygon, relative to the bounding box of
the polygon. For example the first point generated would always be in the lower left corner of the
bounding box, and the second would always be in the middle. However this does not mean that the
same queries were done for every polygon, since when a point in the generated sequence lies outside
the polygon we would move on to its successor. Because of this, and because two equivalent queries
can still lead to completely different paths in different polygons, this should not have affected the
results. This bug was fixed before running the experiments on the pacman polygons.

7.2 Experiments

In this section we will elaborate on what experiments we ran exactly. We will refer to our new
proposed datastructure from Section 5 as the sawtooth oracle, and to the naive datastructure from
Section 6.8 as the naive oracle.

7.2.1 Main experiments on Salzburg database and ARPs

The main experiments were conducted on all 873 polygons in the Salzburg database with at most
500 vertices. For every polygon we built both the sawtooth oracle and the naive oracle. We then
generated 1000 pairs of query points p, q, which could be trivial queries, which we queried in both
oracles to obtain our ϵ-approximate shortest path from the sawtooth oracle and an optimal shortest
path from the naive oracle.
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Figure 26: The different SRPG polygons. From top left to bottom right: SRPG iso,
SRPG iso aligned, SRPG octa, SRPG perturbed, SRPG perturbed smo, SRPG perturbed smr
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Figure 27: Two pacman polygons, with n=10 and n=50

We did the same for 50 pacman polygons with the number of vertices n ∈ {10, 20..490, 500},
once with queries that can be trivial and once with only nontrivial queries.

The following measurements were taken for each polygon:

• Preprocessing speed of both oracles, in microseconds.

• Preprocessing space of both oracles, in bytes.

• Average query speed of both oracles, in microseconds.

• Average approximation factor of sawtooth queries, by comparing the length of the path given
by the sawtooth oracle to the length of the path given by the naive oracle.

All of this was done three times with three different values of k ∈ {4, 8, 16}. Lemma 1 tells
us that we can calculate the worst-case approximation factor as f(k) = 1

cos( 180◦
k )

, so we know our

average approximation factors will be below f(4) =
√
2 = 1.414, f(8) = 1.082 and f(16) = 1.020

respectively.

7.2.2 Breakdown of time usage

For the main experiments we only measured the total time used to creating the oracle or perform
a query, but a more in-depth breakdown of time usage is also interesting. This was only done for
a few polygons with close to 500 vertices, and only for the sawtooth oracle.
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8 Results and analysis

In this section we show the results of the experiments described in the previous section, and analyse
them.

The experiments were ran on a machine with Windows 10, an AMD Ryzen 7 5800 8-core proces-
sor, and 16 GB memory. Note that the whole program is single-threaded. The main experiments
were ran over the course of about 10 days, 15 hours per day. During part of this time the machine
was also running other programs, resulting in slight variations between some measurements.

All graphs are scatterplots, where each dot is a polygon colored by its class. The x-axis shows
the number of vertices of the polygon, the y-axis shows one of the described measures.

8.1 Query times

First we will look at the query times, shown in Figs. 28 and 29. The naive query time is shown
twice for each value of k, once with the pacman polygons and once without. This was done because
the pacman polygons had significantly higher query time with the naive oracle, making the other
points hard to distinguish.

8.1.1 Non-trivial queries

In every figure depicting query time we can see that the non-trivial pacman queries have a re-
markably long query time. This is because trivial queries are significantly faster to answer than
non-trivial ones, namely in O(log n) time for both oracles: after shooting a single ray and finding
the two query points are mutually visible, the query algorithms terminate. By removing the trivial
queries we essentially forced the oracles to go through their whole query algorithm every time,
increasing the average run-time.

In particular the nontrivial pacman queries are almost exactly twice as slow as the regular
pacman queries, because roughly half the regular queries were mutually visible. The same trend
can be seen in the approximation factor in Fig. 33, where the approximation factor of the nontrivial
queries is about twice as high as that of the regular queries.

8.1.2 Naive oracle

The query times for the naive oracle are shown in Fig. 28. As shown in Section 6.8, the query time
is O(n2) in the worst case. However many polygons seem to display a fairly linear relation between
number of vertices and query time, with some outliers that take more time. This near-linear lower
bound is caused by polygons that have relatively few visible vertices for query points, leading to
much fewer gp, gq pairs that need to be considered than the worst-case O(n2). The reason that
there are no outliers with a smaller query time is the fact that both query points first have to go
through all vertices to calculate if it is visible, which takes O(n log n) time in any case.

The outliers take more than linear time are mostly of the classes SRPG perturbed smo and
SRPG perturbed smr, and of course the pacman polygons. All these polygons generally consist
of smooth curves with a lot of vertices very close to each other, as can be seen in Fig. 26. This
results in a large number of visible vertices from any query point, and thus a large number of
potential gp, gq pairs to consider. On the left of Fig. 28 we see that the pacman polygons, which
were designed to have O(n) visible vertices for any query point, indeed seems to follows a quadratic
curve.

8.1.3 Sawtooth oracle

In Fig. 29 we can see the logarithmic nature of the sawtooth query time. Most polygons with
a similar number of vertices have a very similar query time with fairly few outliers, barring the
non trivial queries. In Section 6.5 we proved that our implementation has an O(k2 log n+k log2 n)
upper bound on the query time, but there is also an Ω(k log2 n) lower bound of finding the gateway
sets G(p) and G(q). Because this upper and lower bound are quite close together, especially for
small values of k like we used. This causes there to be few outliers.

31



Figure 28: Query times for the naive oracle

A remarkable measurement is the polygon of class SPF perturbed smr with around 380 vertices
that has an extremely small query time, with all values of k. This is actually the polygon shown
on the bottom right in Fig. 26. Note that the same polygon also has an approximation ration very
close to 1. In this polygon, two random points have a very high chance to be mutually visible.
This means almost all generated queries will be trivial, making the average query time very small.

The pacman polygons also have a large chance for trivial queries. However the regular pacman
polygon queries are not particularly fast, and for k = 16 they are even slower than average. This
might be caused by the fact that these have a large number of gateway points per query point,
because the projection from the query point to a cutline is unlikely to be obstructed.

Lastly, for k = 8 or k = 16 we see that both types of SPG polygons have a shorter query time
than average. This was unexpected as these polygons do not appear to have a large chance for
trivial queries, nor a very small amount of gateways per query point. If more time was available to
investigate this, we would calculate these two statistics and compare them to other classes. If SPG
polygons are not outliers in both statistics, we would know to look elsewhere for an explanation.

8.1.4 Comparison

Just from their worst-case time complexities we would expect the sawtooth oracle to easily out-
perform the naive oracle in query time. However in the figures we can see that they actually
have relatively similar query times in practice, for the polygons we used. For k = 4 the sawtooth
oracle starts to have lower query times for some polygons around 200 vertices, and for k = 16 this
only starts around 500 vertices. Clearly for every value of k there will be a value of n where the
sawtooth oracle outperforms the naive oracle, since that is what our worst-case time complexities
tell us, but this value of n can quickly get quite large.

Importantly, the sawtooth oracle does perform much better in the worst case: the pacman
polygons are only slightly slower than most other classes, while for the naive oracle the query time
quickly rises to unreasonable levels.
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Figure 29: Query times for the sawtooth oracle
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8.2 Preprocessing

Next we look at the time and space usage of the preprocessing, where we create the oracles.

8.2.1 Build time

Table 1 shows a breakdown of the time usage when building the sawtooth oracle. These values are
the average over 6 polygons from the FPG class with between 400 and 500 vertices, using k = 4. In
the table we can see that over 95% of the preprocessing time is spent on creating the rayshooting
datastructure. This seems excessively long, considering that the worst-case complexities of creating
the rayshooting datastructure and calculating the all pair shortest paths table 1 very similar. This
might indicate there is something wrong in the implementation of the persistent binary trees. If
more time was available we would investigate this by comparing the current implementation to a
more naive one that uses O(n3) space, in which we replace the persistent binary trees by regular
sorted lists

Process Time used (microsec) Time used (%)
Rayshooting: creating dual arrangement 339185 0.2%
Rayshooting: creating dual point location 8754713 5.1%
Rayshooting: creating binary search trees 156304887 91.2%
Calculating type-1 Steiner points 115040 <0.1%
Calculating type-2 Steiner points 1120573 0.6%
Calculating all pair shortest paths 4680115 2.7%

Table 1: A breakdown of the time used in creating the sawtooth oracle

Additionally, in Fig. 30 we can see that the naive oracle and the sawtooth oracle have almost
identical build times. This is because both oracles require the rayshooting datastructure, which
turns out to be relatively costly to build. As k grows the sawtooth oracle will eventually take longer
to build, because the larger value of k leads to more Steiner points which makes calculating the
all pair shortest paths slower. For the values we used in our experiment this was hardly noticeable
however.

In the figure we can clearly see that the SRPG iso aligned and SRPG octa polygons have a
significantly smaller build time than the other classes. The reason for this is that these polygons
contain many edges that are on the same supporting line, because all edges are aligned on a regular
grid. This causes the dual space to have a lower complexity: when multiple primal edges are on
the same supporting line, their dual wedges will intersect only in their middle point, creating fewer
dual faces. Having fewer dual faces makes all steps in the creation of the rayshooting datastructure
faster, and since that is the most time consuming step this has a relatively large impact on the
build time as a whole.

8.2.2 Build space

In Fig. 31 we can see there is actually a large difference in space usage between the naive oracle
and the sawtooth oracle. This difference gets larger as k grows. This is caused by the all pair

shortest path table which takes O(n2k24
√

logn log n) space.

We can also see that the sawtooth oracles for SRPG perturbed smo and SRPG perturbed smr
polygons and most notably the pacman polygons require more space than the other classes. These
classes have a larger amount of Steiner points, similar to why their query time was larger for both
oracles, which causes the table to grow.

For the naive oracle the RPG iso aligned and SRPG octa polygons use less space, just like
they used less preprocessing time. Since most of the space usage of the naive oracle is in the
rayshooting datastructure, the reduced complexity of the dual space also reduces the total space
usage significantly.
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Figure 30: Build times for the naive oracle (topleft), and the sawtooth oracles with k = 4 (topright),
k = 8 (bottom left) and k = 16 (bottom right)

8.3 Approximation factor

Fig. 33 shows the approximation factors for our polygons. For polygons with a low vertex count
the approximation factor tends to be closer to 1, since there will be more trivial paths due to there
being less edges to obstruct a direct path between query points. From about 200 vertices and on,
the vertex count has little impact on the approximation factor.

Recall that our worst-case approximation factors for k ∈ {4, 8, 16} are f(4) =
√
2 = 1.414,

f(8) = 1.082 and f(16) = 1.020 respectively. We see that the average approximation factor is
about half as bad as it would be worst-case, for example for k = 4 most measurements lie between
1.1 and 1.2.

One major influence on the average approximation factor of a polygon is illustrated in Fig. 32
for k = 4. In the figure we see two paths from p to q, one over a cutline and one over a polygon
edge. We know that a path over a cutline always uses worst-case angles: it travels to the cutline in
direction di+1, then over the cutline in direction di, then away from the cutline in direction di+1

again. A path over an edge also travels in some direction between di and di+1 over that edge,
which is a shortcut by triangle inequality. This generally means that the more a path uses type-1
Steiner points, the better its approximation factor is. This creates differences between classes. For
example the RPG iso aligned polygons consist of only vertical or horizontal edges, meaning type-1
paths over edges are actually never shorter in these polygons; for all our values of k they have the
exact same length as type-2 paths via cutlines. For this reason the RPG iso aligned polygons have
a higher approximation factor than average for all values of k we used. The SRPG octa polygons
also have diagonal edges. These can act as shortcuts for k = 4 so their approximation factor for
this value of k is quite average, but for k = 8 and larger they no longer provide shortcuts and
therefore have a worse than average approximation factor. The larger the value of k used the less
noticeable this shortcut-effect becomes.

The other major influence is the percentage of trivial queries, as mentioned before. A trivial
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Figure 31: Space usage for the naive oracle (topleft), and the sawtooth oracles with k = 4 (topright),
k = 8 (bottom left) and k = 16 (bottom right)

query will always be answered with an approximation factor of 1, since the straight line between
the two query points is clearly the shortest possible path.

The SRPG perturbed smo and SRPG perturbed smr are examples of polygons with a below
average approximation factor for all values of k. These polygons have smooth edges allowing for
easy type-1 shortcuts, and are also made from a lot of open space which leads to a larger number
of trivial queries.
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Figure 32: A path through a type-1 Steiner point over a polygon edge (right) often has a better
approximation factor than a path through a type-2 Steiner point over a cutline (left)

Figure 33: Approximation factors for the sawtooth oracle with k = 4 (topleft), k = 8 (topright),
k = 16 (bottom left) and all three together (bottom right)
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9 Conclusion

In this thesis we have proposed a datastructure to answer approximate shortest path queries,
resulting in Theorem 1. We implemented our datastructure along with a naive one, and compared
their performance on a set of random polygons.

As proven in Lemma 1 we need to choose k ≥ 180◦

cos−1( 1
ϵ )

to get get a certain ϵ-approximation, and

our experiments showed the average approximation factor was around half as bad the theoretical
worst-case. In general, we do not need to use a very large value of k to get an approximation factor
that is satisfactory for many use-cases. This is good news because both the query time and the
preprocessing time and space grow quadratically with increasing k, due to the increased number
of Steiner points and gateways.

We also saw that the sawtooth oracle has lower query times than the naive oracle for larger
polygons. However, the space and time usage of the preprocessing also increases rapidly with the
number of vertices. Even for relatively small polygons of up to 500 vertices like the ones used in our
experiments, the preprocessing can already take up to 5 minutes. This gives the sawtooth oracle
as a whole somewhat poor scalability: even though it would be able to quickly answer queries on
very large polygons, the space and time required to build it can often make the oracle impractical
to use.

9.1 Future work

It would be interesting to compare our datastructure to Thorups datastructure from [9]. These
both provide ϵ-approximate shortest paths in logarithmic time, but Thorups datastructure uses

only O(n log2 n
ϵ ) space while ours uses O(n

2

ϵ2 4
√

logn log n) space. Comparing how they perform
in experiments might give more meaningful insight in how relevant our datastructure can be in
practice.

The preprocessing time and space of our datastructure might also still be improved. Firstly the
rayshooting datastructure could be investigated, to see if the implementation is correct. Secondly
the techniques used in [12] to improve the space usage of the exact Manhattan oracle to O(n+h2+δ)
might be applicable to our oracle as well; this would first have to be proven in theory, and then
implemented.

Lastly there might be a different way to store all pair shortest paths in less than O(n2) or even
less than O(h2) space. We have tried to come up with such a datastructure, but this has so far
been unsuccessful. Currently a simple quadratic table is used to store the (approximate) shortest
distance between all pairs of Steiner points. However the cutline trees and Steiner points also
contain some information about shortest paths. We hoped to be able to use this information to
find the distance between two points, without storing it explicitly. This turned out to be difficult,
because two paths might cross the same cutlines while still being completely different. For example
in Fig. 34 we see four paths from p to q1..q4. Although these paths all cross the same cutlines l1..l3
in the same order, they are topologically very different. Another complicating factor is that we
have k different cutline trees, so a path through multiple Steiner points can traverse many different
cutline trees. Despite these difficulties it would be interesting to investigate this more thoroughly.
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Figure 34: Four very different paths through the same cutlines
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