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Abstract

Adding mass constraints to existing ADCP-data results in improved velocity estimates in various
transducer configurations. The problem of estimating vertical velocity with a conventional set-up
in horizontally dominant flow is that inhomogenities in the horizontal velocities can cause relatively
large errors in the vertical velocity estimate. A possible solution to obtain more accurate vertical
velocity estimates using mass constraints is introduced. The corrected data is compared to the orig-
inal uncorrected data. Then a novel configuration of transducers that is a combination of multiple
transducer-receivers in a buckyball set up is discussed. Mass constraints are applied to synthetic data
of this set up, and this leads in various circumstances to improved estimates. Also discussed is a proof
of concept showing the ability of this set up to measure the shearing motion of internal waves.
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Chapter 1

Introduction

Within the oceanographic community rapid and accurate measurements of current profiles are vital.
The introduction of the acoustic Doppler current profiler (ADCP) in the late 1980s was a major step
forward in obtaining these measurements. This device emits sound waves into the water and measures
their reflection in order to obtain a reading of the local water currents. It offers multiple advantages over
the conventional rotary-type current meters. The spatial resolution of the measurements increased, all
three components of the velocities could be measured, and -most importantly- the ADCP allowed for
remote sensing of the water column. Using sound waves a typical ADCP can have a range of up to
two kilometers penetrating the water[27].

The applications of the ADCP are numerous. It can be mounted underneath a ship and map the
current profile of a river, it can be placed looking upward at the bottom of the sea bed measuring wave
activity, or it can be hung underneath a buoy in the middle of the ocean. Next to resolving water
velocities, it can also be used in combined studies of biomass productivity by for example measuring
zooplankton abundance[16].

Since its introduction the ADCP has been developed even further. Several improvements in the way
an ADCP obtains measurements have been made, by for example fine tuning the time interval between
sound pulses[2]. Other developments have been made regarding post-processing: using the same exact
measurements but computing more accurate estimates. Examples of this are corrections in case the
apparatus has a slight pitch [24][33], or when one of the returning sound signals is inaccurate [13].
In this thesis an attempt is made to improve the ADCP in both ways: an improved post-processing
method is introduced as well as a hardware addition to a conventional ADCP.

In the second chapter the working principles of the ADCP are discussed. Only the relevant aspects
are included in order to understand the succeeding chapters. Additionally, some disadvantages of
the ADCP are mentioned. Solving these specific problems is tried in the rest of the thesis. In the
third chapter a new post-processing method using mass constraints is introduced for conventional
four-beam ADCP-measurements. This method is then applied to ADCP-data from a shallow sea
resulting in more accurate velocity estimates. Thereafter in the fourth chapter a hardware addition
to the ADCP is presented: the ADCP-buckyball. Hereby multiple directions for the sound pulses are
added with the goal of observing more complicated water flows that current devices cannot accurately
measure. Then the aforementioned post-processing method is applied to this buckyball, and using
synthetic data in a simulated environment the ability of the buckyball to capture these complicated
flows is analyzed. Thus the aim of this thesis is twofold. Firstly, to show a new processing technique
of raw ADCP-data using mass constraints in order to generate more accurate velocity estimates. And
secondly, to perform a feasibility analysis of the ADCP-buckyball in a synthetic environment where
this processing technique is applied.
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Chapter 2

The ADCP and its Problems

As mentioned in the introduction the ADCP has multiple applications and is a widely used device
to measure oceanic currents. In this chapter the working principles of an ADCP are discussed: how
the current velocities are measured, and how these can be recombined to produce estimates for the
velocities. Moreover, a couple of disadvantages of the ADCP are highlighted.

2.1 The Transducer

Every ADCP has multiple transducer-receivers. A transducer is a flat device that transmits a sound
pulse at a fixed frequency in one direction, and the receiver listens to echoes returning from sound
scatterers in the water, see figure 2.1. These sound scatterers can be for example plankton or sediment
floating in the water. Most of the sound energy emitted goes forward, while a part is scattered and a
fraction of that returns to the transducer. The frequency of the returning signal is Doppler-shifted due
to relative movement of the scatterers with respect to the transducer. So using the effects of Doppler-
shifts in figure 2.1 the horizontal velocity of the scatterers can be deduced. Note that only the relative
velocity with respect to the sound beam causes a Doppler shift, so any movement perpendicular to the
beam is not measured.

Now the critical assumption is made that on average these scattering particles move with the same
velocity as the water they are suspended in. Hence averaging the measurements of a couple of returning
pings yields the water velocity in the beam direction. A second important condition is that the speed
of sound in the water is constant and known. Knowing the speed of sound one can compute how far
the returning ping has travelled, and therefore at what distance along the beam the reflection took
place. Furthermore, the speed of sound needs to be constant in order for the beam to travel through
the water in a straight line. If the speed were not constant refraction of the beam takes place, and the
measurements would lie along a curved line. With both conditions holding, the transducer-receiver
reports the along-beam velocity of the water along the entire beam.

In practice the beam is regularly spaced into cells, where the cell size (i.e. the length along the
beam) is the length of the emitted pulse. For each cell one along-beam velocity is reported. This value
is a weighted average of the results of different reflections. The weight functions are triangular and
take into account all measurements from reflections that occurred within a pulse length of the centre
of the cell. Note that the transducer receives reflections with the end of the pulse from the centre of
cell at the same time as reflections with the start of the pulse from the end of the cell. This way these
are all combined into one reported value. Moreover, the spacing into cells makes it easier to process
and interpret the data. The weight functions and cells are illustrated in figure 2.2. So the length of
the cell is determined by the pulse length, which in turn is determined by operational circumstances.
A short pulse length leads to smaller cells and hence a better resolution. However, with a longer pulse
length the results of more reflections are combined into one along-beam velocity value. So it would be
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Figure 2.1: Transducer in operation, with (A) a transmitted pulse and in (B) a small amount of the
pulse is reflected and returns Doppler-shifted while most goes forward, figure from [17].

the result of more echoes and hence the reported value is less noisy. All in all, the cell size is set by
the goal of the measurement campaign.

In figure 2.2 one can also see the blanking distance. This is the distance from the transducer to the
start of the first cell. A transducer emits its sound pulse by vibrating or ’ringing’. These vibrations fade
away with time. The distance the pulse travels during the attenuation of the ringing is the minimum
blanking distance. The echo of any reflection occurring within the blanking distance would arrive at
the transducer-receiver while it is still ringing, and in this state the receiver cannot properly measure
the returning echo. Therefore no measurements are made within the blanking distance. The size of
the blanking distance is determined by the pulse length and the strength of the returning echo. A
longer pulse or a very weak echo leads to a larger blanking distance.

Conventional ADCPs use a broad-band Doppler signal. Originally ADCPs were narrow-band,
meaning that several pings would be emitted by the transducer all at the same frequency and averaged
into a measurement. Now with these original ADCPs one could pick a high-frequency signal, leading
to a better resolution since with less short-term variability short spatial and temporal scales could be
resolved. This is ideal for use in shallow-water situations where depth resolution is important. However,
with a higher frequency the sound absorption increases, and hence the distance the signal can travel
decreases. So in open-ocean applications where a long profiling range is required, a low frequency is
chosen at the expense of resolution. Nowadays with the broadband ADCP the signal contains a range
of frequencies, and so one can overcome both these limitations. The range of a transducer is now only
determined by the signal-to-noise ratio (SNR). This is the ratio of the amplitude of the returning signal
to the amplitude of the background noise. As the distance to the instrument increases, the SNR drops
due to the geometric spreading of the beam and sound absorption. At a certain distance from the
instrument the SNR is too low to get reliable velocity estimates: this is the range of the transducer.
Beyond this point the transducer can still compute along-beam velocities, but these are not reliable.
Usually the threshold is roughly SNR ≈ 1.5 [27]. The SNR of the returning signal is determined by
the power of the emitted signal and the scattering properties of the water. Low power usage by the
transducer or very clear water -so with relatively few scattering particles- lead to a low SNR and hence
a reduced range. A nice overview of the properties of a broadband transducer and its comparison to
previous versions is Brumley et al.(1991).

To summarize, a conventional transducer-receiver emits sound beams into the water. Using the
Doppler effect the along-beam velocities can be measured. These results are produced along evenly
spaced cells along the beam. Necessary conditions are that the sound-scattering particles move with
the current, and that the constant speed of sound is known. The range of the transducer-receiver is
determined by the strength of the emitted pulse and the scattering properties of the water.
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Figure 2.2: Transducer (or transmitter) with a series of cells, where the separation between cells is
equal to length of a emitted pulse. At each cell centre there is a triangular weighting function, figure
from [28].

2.2 The Set Up

An ADCP consists of multiple transducer-receivers combined in a geometrical configuration. Some
consist of only three transducers, but four- or five-beam set ups are more common. Here a simple
example is produced of a two-beam ADCP in two-dimensional environment. This illustrates how an
ADCP proceeds from a set of along-beam velocities produced by the transducers to a set of current
estimations.

Suppose a two-dimensional flow environment with horizontal coordinate x and vertical coordinate
z. Since water is incompressible the flow will be divergence-free, and hence the flow can be described
by a stream function ψ, where horizontal and vertical water velocities u and w follow via:{

u(x, z) = ψz(x, z)

w(x, z) = −ψx(x, z),

where the subscripts denote a partial derivative.
Now at the bottom of this basin two transducers are placed symmetrically, each inclined with an

angle α with the vertical. The set up is illustrated in a dimensionless environment with figure 2.3.
Each transducer i produces a set of measurements bi,n with i ∈ {1, 2} and n ∈ {1, 2, . . . , N} where
n indicates which transducer cell and N is the total numbers of cells. So b1,1 is the along-beam
velocity measured by the right transducer in the centre of the first cell from the bottom. This set of
measurements bi,n is the raw ADCP-data. The distance to the centre of the nth cell to the transducer
is denoted by rn. Then b1,n and b2,n are both along-beam velocities at height zn = rn cosα above the
bottom. Next, the volume in between the beams is also regularly divided into voxels where each has
height d, and so d/ cosα is the previously discussed cell size in the along-beam direction, i.e. d/ cosα
is the pulse length. The spacing of the measurement area into these voxels is also illustrated in figure
2.3.

Next, the homogeneity assumption is made: it is assumed that the flow within each of these voxels
is homogeneous. In practice this typically implies that it is assumed that the flow is horizontally
homogeneous, which is usually a valid assumption[23]. So for each voxel one has two measurements,
each in a different beam direction, of one constant two-dimensional flow. This constant two-dimensional
flow in the nth voxel from the bottom is indicated by (ûn, ŵn). Then the along-beam measurements
at the edges of this voxel would yield:{

b1,n = cos(α)ŵn + sin(α)ûn

b2,n = cos(α)ŵn − sin(α)ûn.

and recombining these begets that:{
ûn = (b1,n − b2,n) / (2 sin(α))

ŵn = (b1,n + b2,n) / (2 cos(α)) .
(2.1)

Hence the water velocity (ûn, ŵn) in each voxel is computed. These results are used as estimators
for the flow at the centre of the voxel, i.e. (u,w) at height zn above the transducers. These estimators
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Figure 2.3: A two-beam ADCP in a two-dimensional flow (red arrows) determined by ψ(x, z) = z
2 −

x
10

in basin (x, z) ∈ [−80, 80] × [0, 80]. Two transducers at the origin, inclined with angle α = 30◦, with
beams b1 and b2 from right to left. The along-beam measurements (pink), and computed estimators
(white) are not to scale. The estimators lie along a vertical line above the ADCP (dashed white). The
voxel size d is indicated.

Figure 2.4: A three-beam ADCP, with measurements (orange) in order to compute the three-
dimensional flow estimator in the nth voxel, figure from [27].

are indicated by white arrows in figure 2.3, where they coincide exactly with the actual flow at the
centre of the voxel, since the simulated flow here is indeed homogeneous within each voxel. So to recap,
using this two-beam ADCP a depth profile of the two-dimensional water flow is created. At each voxel
height zn right above the ADCP a two-dimensional estimator of the flow is computed.

In this case a two-beam ADCP is illustrated. A simple extension with a third beam, illustrated
in figure 2.4, provides a depth profile for a three dimensional flow. More common is the four-beam
ADCP, illustrated in figure 3.1. This is essentially two two-beam ADCPs producing a horizontal and
vertical velocity estimator in either the (x, z)− or the (y, z)−plane. Note that this provides not only
an estimator for the horizontal flow in the x− and in the y−direction, but also two estimators for the
vertical velocity. Each set of two opposing beams yields a vertical velocity estimate. A relatively large
difference between these two estimates -the so-called error velocity- indicates that the homogeneity
assumption does not hold well, in which case the horizontal estimators might also be invalid. In
general the difference between the two estimates for the same vertical velocity is an indicator of the
flow inhomogeneity[24].
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2.3 Error Analysis

The errors occurring with the use of an ADCP can be split into two groups. Firstly one has intra-
beam errors, which are errors in measuring the along-beam velocities within a beam. Secondly there
are inter-beam errors, which are errors occurring due to combining the data from different beams.

2.3.1 Intra-Beam Errors

Now a critical assumption is that these scatterers move at the same velocity as the water that they
are suspended in. Of course these scattering particles do not follow the flow perfectly which causes an
error in the water velocity estimate[14]. Another source of error with this single-beam measurement is
that the beam is of finite width: the produced value consists of reflections off all particles within the
beam and within the cell. The resulting value is a spatially averaged computation of all these returning
echos. So, although in the previous example it seemed as if the measurements were the along-beam
component of the water velocity exactly at the centre of the beam and cell, this is certainly not the
case. Lastly, the produced measurement is not instantaneous: it is usually the result of the average
of several pings. Although modern broadband transducer have excellent single-ping accuracy[14], a
demanding turbulent environment requires averaging over several pings in order to filter out any noise
to obtain presentable measurements.

So the sources of the intra-beam errors are the spatial and temporal averaging and the inability of
the scatterers to always follow the local flow promptly. All these errors depend on the flow properties:
what kind of scatterers are suspended, and how steady the flow is in time and space. There are several
thorough analyses of these inaccuracies, see for example Guion & Young (2014), or Theriault (1986I
& 1986II).

Later in this thesis raw ADCP-data will be synthesised, and therefore a justified model for the intra-
beam error is required. It was decided that instead of incorporating the more complicated models of
the aforementioned papers, a simpler model should be adopted. It was firstly assumed that the noise
in a measurement is Gaussian white noise, similar to the modelling assumptions in Stacey et al. (1999)
and Mirshak & Kelley (2008). The magnitude of this error is difficult to quantify since it very much
depends on the operational circumstances. Based on ADCP manuals [17][28], and the results in Lu
& Lueck(1999I) a standard deviation of 2% of the actual along-beam velocity component is thought
to be appropriate. Of course this is a rough estimate, and in turbulent environment this proportional
error can actually be as high as 10%[17]. The estimate chosen here is better suited for a shallow-sea
environment or a tidally dominated channel. The increase of the error with distance to the transducer
due to geometrical spreading of the beam is not included, since it is usually not significant[22].

2.3.2 Inter-Beam Errors

The inter-beam errors are due to an invalid homogeneity assumption. The estimates for the velocities
at the centres of the voxels are computed based on the assumption of a homogeneous flow. If this
is not the case, this inhomogeneity error occurs, which is again an error very much dependent on
environmental circumstances. Throughout this thesis this error will be regularly mentioned. For now
it will be illustrated with the previous example of the two-beam ADCP.

Suppose the same two-beam ADCP is placed at the bottom of the basin, i.e. at the origin in the
(x, z)−plane. The actual flow velocities are (u(x, z), w(x, z)) again. Using (2.1) the estimates (ûn, ŵn)
for the velocities (u(0, zn), w(0, zn)) are computed. Now, the actual measured beam velocities -when
intra-beam error is omitted- are the along-beam velocity components of the flow at the measurement
points (±zn tanα, zn). So{

b1,n = cos(α)w(zn tanα, zn) + sin(α)u(zn tanα, zn)

b2,n = cos(α)w(−zn tanα, zn)− sin(α)u(−zn tanα, zn).
(2.2)
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Substituting equations (2.2) into (2.1) and then Taylor-expanding around the voxel centre (0, zn) yields
for the computed estimates:ûn = u(0, zn) +

∑∞
k=1

(z2k tanα)2k

(2k)!
∂2ku
∂x2k (0, z2k) +

1
tanα

∑∞
k=1

(z2k−1 tanα)2k−1

(2k−1)!
∂2k−1w
∂x2k−1 (0, z2k−1)

ŵn = w(0, zn) +
∑∞

k=1
(z2k tanα)2k

(2k)!
∂2kw
∂x2k (0, z2k) + tanα

∑∞
k=1

(z2k−1 tanα)2k−1

(2k−1)!
∂2k−1u
∂x2k−1 (0, z2k−1).

So the inter-beam error is extremely sensitive to the type of turbulence present in the flow[14],
since significant higher-order derivatives cause a larger deviation of the estimators from the true water
velocities. A thorough analysis of the inter-beam error can be found in Theriault (1986II).

2.4 Goal of the Thesis

As mentioned in the Introduction the goal of this thesis is twofold: it is to investigate the usefulness of
incorporating mass constraints in ADCP-measurements, and to analyze the feasibility of the ADCP-
buckyball.

In section 2.3.2 the inhomogeneity error was introduced. This error is in a planar context the
consequence of having two one-dimensional measurements of the flow at the edges of a voxel, and
then having to produce a two-dimensional estimate at the centre of the voxel. In order to do so an
assumption has to be made about the structure of the flow inside the voxel. Normally the homogeneity
assumption is made: the flow is supposedly constant within the voxel. Now, water is incompressible
and hence the flow is divergence-free, i.e. mass of the water is conserved[4, Ch 3]. By adding this mass
constraint perhaps the homogeneity assumption about the flow structure can be relaxed, and hence
the inhomogeneity error might be reduced. This will be examined in the next chapter.

Also, in this thesis the concept of an ADCP-buckyball is introduced. Here multiple transducer-
receivers are combined into a buckyball configuration, see figure 4.1. Since this device would measure in
a multitude of different directions it might overcome the disadvantage of a conventional ADCP namely
that it only produces velocity estimates along one vertical line. This disadvantage is illustrated in figure
2.5: in order to measure the cross-sectional velocity profile of a river an ADCP has to be mounted
underneath a crossing boat. Whereas with a buckyball that can measure and produce estimates in
multiple directions one only needs to mount it to a buoy in the middle of the river, which is cheaper
and easier.

But this is not the main motivation for the buckyball. An example of a complicated underwater flow
is the shearing motion associated with an internal wave, which will be further discussed later. Currently
it is difficult to reliably measure internal waves with conventional ADCP set ups[3]. Perhaps with the
buckyball design this becomes easier. The second goal of this thesis is therefore to examine whether
the buckyball set up -using mass constraints- can measure spatial flow inhomogeneities, specifically
the wave properties of these internal waves. This is done using synthetic internal wave data in chapter
5.
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Figure 2.5: A conventional four-beam ADCP mounted at the underside of a boat to measure current
profile of a river, figure from [32]
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Chapter 3

Mass Constraints in a Conventional
Set Up

This chapter discusses the usefulness of applying mass constraints to existing ADCP-data obtained
using a regular ADCP set up. Firstly, the problem of estimating vertical velocity with a regular set
up in horizontally dominant flow is illustrated. Then a possible solution to obtain more accurate ver-
tical velocity estimates using mass constraints is introduced. This post-processing method is applied
to actual ADCP-data from the Irish Sea, and the corrected data is compared to the original uncor-
rected data. The added bonus of estimates for horizontal velocity gradients, especially as method for
estimating turbulence parameters, is also discussed.

3.1 Posing the Problem

Consider a regular four-beam ADCP set up in Janus configuration anchored to the sea bed. It is
assumed the apparatus stands completely horizontal, and the horizontal x- and y-axis are aligned with
the beams. The set up is also illustrated in figure 3.1. Beams 1 and 2 lie along the x-axis, while beams
3 and 4 lie along the y-axis. The beams have an angle α with the vertical. Furthermore, the beams are
divided into N bins with bi,n the measurement of beam i in bin n for 1 ≤ n ≤ N and i ∈ {1, 2, 3, 4}.
The centre height of each voxel is given by zn = Z0 + (n − 1

2 )d, where Z0 is the vertical blanking
distance, and d is the vertical separation between subsequent bins.

So for each bin or voxel n the following measurements are made:
b1,n = cos(α)w(x1,n) + sin(α)u(x1,n)

b2,n = cos(α)w(x2,n)− sin(α)u(x2,n)

b3,n = cos(α)w(x3,n) + sin(α)v(x3,n)

b4,n = cos(α)w(x4,n)− sin(α)v(x4,n)

(3.1)

where u = (u, v, w) is the true velocity field, and xi,n the centre of beam i at height zn. Then, usually,
the estimates for the velocity field at the centre line (0, 0, zn) are calculated as follows, based on the
assumption that the velocities are homogeneous within each bin over the four beams[24]:

ûn = (b1,n − b2,n)/(2 sin(α))

v̂n = (b3,n − b4,n)/(2 sin(α))

ŵn = (b1,n + b2,n + b3,n + b4,n)/(4 cos(α)).

(3.2)

Now, let the true velocity vector at the centre of bin n be denoted by Un = (Un, Vn,Wn), and define
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(a) Top view (b) Transverse view

Figure 3.1: Four-beam ADCP in the Janus configuration, figures from [14]

the actual velocities in beam i and bin n as

u(xi,n) = Un + ũi,n

so the usual estimates can be written as:
ûn = Un +

ũ1,n+ũ2,n

2 +
w̃1,n−w̃2,n

2 tan(α)

v̂n = Vn +
ṽ3,n+ṽ4,n

2 +
w̃3,n−w̃4,n

2 tan(α)

ŵn =Wn +
w̃1,n+w̃2,n+w̃3,n+w̃4,n

4 + tan(α)
4 (ũ1,n − ũ2,n + ṽ3,n − ṽ4,n).

(3.3)

Next, it is assumed that the inhomogeneities are relatively small compared to the main flow in each
bin, hence |ũi,n| ≪ |Un|, |ṽi,n| ≪ |Vn| and |w̃i,n| ≪ |Wn|. Furthermore, in a horizontally dominant
flow the horizontal main flow and inhomogeneities are much larger than those of the vertical flow,
so |Wn| ≪ |Un|, |Vn| and |w̃i,n| ≪ |ũi,n|, |ṽi,n|. So the estimates for the horizontal velocities can be
approximated as:

ûn ≈
since |w̃i,n|≪|ũi,n|

Un +
ũ1,n + ũ2,n

2
≈

since |ũi,n|≪|Un|
Un

v̂n ≈
since |w̃i,n|≪|ṽi,n|

Vn +
ṽ3,n + ṽ4,n

2
≈

since |ṽi,n|≪|Vn|
Vn

while for the vertical velocity estimate the following approximation holds:

ŵn ≈
since |w̃i,n|≪|ũi,n|,|ṽi,n|

Wn +
tan(α)

4
(ũ1,n − ũ2,n + ṽ3,n − ṽ4,n). (3.4)

Here lies the problem. The velocity inhomogeneities are small compared to the horizontal flow, so
the horizontal flow estimates have usually a negligible error. However, the horizontal velocity inhomo-
geneities do not necessarily have to be small compared to the vertical flow. It is indeed not always the
case that |ũi,n| ≪ |Wn| and |ṽi,n| ≪ |Wn|. Hence the relative error in the vertical velocity estimate ŵn

can be large. Gargett(1994) already mentioned this problem, and illustrated it by comparing ŵ with
directly measured vertical velocities.
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3.2 Mass Constraints Applied

The continuity equation is applied to correct the original vertical velocity estimate. Let s = 2zn tan(α)
be the separation distance between two opposing beams in bin n. The following approximations are
made:

∂Un

∂x
≈ (ũ1,n − ũ2,n)/s

∂Vn
∂y

≈ (ṽ3,n − ṽ4,n)/s.

Hence (3.4) becomes

ŵn ≈Wn +
s tanα

4

(
∂Un

∂x
+
∂Vn
∂y

)
=Wn +

zn tan
2 α

2

(
∂Un

∂x
+
∂Vn
∂y

)
=Wn − zn tan

2 α

2

∂Wn

∂z

where mass conservation was applied by demanding

∂Un

∂x
+
∂Vn
∂y

+
∂Wn

∂z
= 0

for every bin n. A new vertical velocity estimator w̄n is introduced, inspired by the approximation
just found for ŵn:

ŵn = w̄n − zn
tan2 α

2

∂w̄n

∂z
. (3.5)

The benefit of this new vertical velocity estimate w̄ is that the error caused by the horizontal velocity
inhomogeneities is corrected.

Note that with the implemented mass constraint the homogeneity assumption can be relaxed.
Whereas previously with the computation of the conventional ŵn one needed the flow within the voxel
to be constant -the homogeneity assumption- in order for ŵn to be accurate, now with the computation
of w̄n one only needs the second and higher order derivatives of the flow to be negligible within the
voxel in order for w̄n to be accurate.

3.2.1 Analytical Solution to Correction Equation

A continuous version of the correction equation (3.5) would be

ŵ(z) = w̄(z)− γz
dw̄

dz
(3.6)

where γ = tan2(α)/2. This is a simple ODE with exact solution:

w̄(z) = w̄(z∗)

(
z

z∗

) 1
γ

− z
1
γ

γ

∫ z

z∗

ŵ(z̃)

z̃1+
1
γ

dz̃, (3.7)

with as boundary condition that w̄ = w̄(z∗) at z = z∗. Note that equation (3.6) is sensitive to the
boundary condition: suppose there is an error δ in the boundary condition, so we use w̄ = w̄(z∗) + δ
at z = z∗ as condition, then:

w̄new(z) = w̄(z) + δ

(
z

z∗

) 1
γ

.

Now, since it holds that γ = tan2(α)/2 < 1/2 for all angles α < π/4 and therefore 1/γ > 2, then this
error can grow quite fast at heights z > z∗. In the next section it will be discussed how this error is
handled.
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Next, a theoretical comparison between the corrected and uncorrected vertical velocity estimate
can be made. The original uncorrected vertical velocity estimate (3.2) is Taylor expanded:

ŵn =(b1,n + b2,n + b3,n + b4,n)/(4 cos(α))

=
1

4

(
w(s/2, 0, zn) + w(−s/2, 0, zn) + w(0, s/2, zn) + w(0,−s/2, zn)

)
+

tan(α)

4

(
u(s/2, 0, zn)− u(−s/2, 0, zn) + v(0, s/2, zn)− v(0,−s/2, zn)

)
=w(0, 0, zn) +

zn tan
2(α)

2

(
ux(0, 0, zn) + vy(0, 0, zn)

)
+
z2n tan

2(α)

4

(
wxx(0, 0, zn) + wyy(0, 0, zn)

)
+O

(
z4nwxxxx(ζ1, 0, zn)

)
+O

(
z4nwyyyy(0, ξ1, zn)

)
+O

(
z3nuxxx(ζ2, 0, zn)

)
+O

(
z3nvyyy(0, ξ2, zn)

)
with − s/2 < ζ1, ζ2, ξ1, ξ2 < s/2 and ux indicating

∂u

∂x

≈w(0, 0, zn) +
zn tan

2(α)

2

(
ux(0, 0, zn) + vy(0, 0, zn)

)
since the flow is horizontally dominant.

Hence the leading error term is linear in height and contains the first spatial derivatives of the horizontal
velocities, which -as stated before- can be large compared to w(0, 0, zn) itself. The new estimate will
correct this, as is shown heuristically in the derivation of (3.5). Assuming that the other errors present
in ŵ are negligible, then the only error introduced in w̄ is due to the sensitivity of the differential
equation, which was just discussed. Therefore an analytical approximation for the error term in w̄ is

w̄n ≈ w(0, 0, zn) + ϵ(z)

with error ϵ(z) = ϵ(z∗)

(
zn
z∗

) 1
γ

.

Since 1/γ > 2 the error in w̄n will grow faster with height zn than the leading error in ŵn. Nevertheless,
as long as the initial error ϵ(z∗) in w̄ at height z∗ is small enough compared to the gradients ux and
vy then the new estimate will be more accurate than the original estimate for the vertical velocity.

3.2.2 Numerical Solution to Correction Equation

In practice the correction equation is solved using finite differences, since the set up is already in N
discrete bins with height z ∈ {z1, z2, . . . , zN} with step size d. The derivative is discretized using the
midpoint rule

ŵn = w̄n − γzn
w̄n+1 − w̄n−1

2d
for 2 ≤ n ≤ N − 1

and at the top of the water column

ŵN = w̄N − γzN
w̄N − w̄N−1

d

with near-bottom boundary condition

ŵ1 = w̄1.

This is motivated by assuming that the estimate ŵn is most accurate when made close to the apparatus,
since errors in the estimate grow with distance zn. Hence as new estimate in the bottom bin the old
estimate is taken. This system of equations is rewritten as

ŵ = Aw̄

14



where one has solution w̄ = (w̄1, w̄2, . . . , w̄N )
T
, measurements ŵ = (ŵ1, ŵ2, . . . , ŵN )

T
and discretiza-

tion matrix

A = IN − γ

2d



0 0 ∅
−z2 0 z2

−z3 0 z3
. . .

. . .
. . .

−zN−1 0 zN−1

∅ −2zN 2zN


with IN the N ×N identity matrix.

Regularization

As stated before the correction equation (3.6) is sensitive to the boundary condition, and small errors
in calculating w̄n can grow quickly with increasing height in the water column. Therefore some kind
of regularization needs to be implemented such that the solution w̄n does not explode near the top of
the water column.

Initially the problem was tackled using Tikhonov regularization [8, Ch 5], where solution w̄ is taken
such that

w̄ = argmin
(
||ŵ−Aw̄||2 + τ ||D4w̄||2

)
with D4 the discretization matrix for the fourth order derivative and τ the Tikhonov parameter.
Essentially one selects here for solutions w̄ that have no fourth or higher order derivative. This
method does prevent the solution from blowing up, but the resulting solution is so smooth that small
physical phenomena are no longer visible. Hence this approach was abandoned.

Another approach was to ’tie down’ the solution at the top. This means that an estimate ω is
found for the top estimate w̄N . So the numerical scheme becomes:

ŵ1 = w̄1

ŵn = w̄n − γzn
w̄n+1 − w̄n−1

2d
for 2 ≤ n ≤ N − 1

ω = w̄N

Still the task remains to find a suitable estimate ω. One way was to define ω as

ω = argmin||w̄− ŵ||2

where it was assumed that w̄ should not differ much from ŵ. However, in practice in some cases the
solution still became nonphysical near the top. Ideally, a great estimate for the vertical velocity near
the surface would be

ω =
Dζ

Dt

with ζ the sea surface height. However, this data is not always available, and moreover the top bin
does not necessarily need to be close to the surface. Therefore, it is decided that the best available
estimate ω for solution w̄N is the original measurement:

ω = ŵN . (3.8)
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Of course using this as estimate introduces some error into the solution. As derived previously the
error in the original measurements is

ŵN − w(0, 0, zN ) = γzN (ux(0, 0, zN ) + vy(0, 0, zN ))

= −γzNwz(0, 0, zN ) ∼ γzN
W

H

whereW is the typical magnitude of the vertical velocity and H the average depth of the water column.

Now, since the error ϵ(z) in the solution w̄ goes like z
1
γ , the error introduced by stating w̄N = ŵN

decreases when descending in the water column. The error δn in w̄n due to (3.8) is

δn = δN
( zn
zN

) 1
γ

= −γzNwz(0, 0, zN )
( zn
zN

) 1
γ

∼ γzN
W

H

( zn
zN

) 1
γ .

So the error introduced by stating w̄N = ŵN will be insignificant, say |δn| < 0.05W , beneath a certain
depth:

zn < zN
( H

20γzN

)γ
(3.9)

which in practice means that a few top bins will not have the first order correction that w̄n has
compared to the original estimates ŵn.

Lastly, it was noted that since there is a stated boundary condition at the top, the boundary
condition near the bottom is no longer necessary. Therefore near the bottom an Euler Backward
scheme was implemented. Leading to

ŵ1 = w̄1 − γz1
w̄2 − w̄1

d

ŵn = w̄n − γzn
w̄n+1 − w̄n−1

2d
for 2 ≤ n ≤ N − 1

ŵN = w̄N

In conclusion, to compute w̄ the linear system:

ŵ = Bw̄ (3.10)

is solved with discretization matrix B

B = IN − γ

2d



−2z1 2z1 ∅
−z2 0 z2

−z3 0 z3
. . .

. . .
. . .

−zN−1 0 zN−1

∅ 0 0


.

3.2.3 Estimating Horizontal Gradients

Using the corrected vertical velocity estimate w̄n one can get estimates for the spatial gradients of the
horizontal velocities ux and vy as an added bonus. These estimates are formulated as{

∂ūn

∂x =
b1,n+b2,n−2 cos(α)w̄n

s sin(α)
∂v̄n
∂y =

b3,n+b4,n−2 cos(α)w̄n

s sin(α) .
(3.11)
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Note that if the true vertical velocity w(x) were known, these estimates can be rewritten using Taylor
expansions around the centre of the bin to formulate the best-case-scenario for these estimates:

∂ūn
∂x

=
b1,n + b2,n − 2 cos(α)w(0, 0, zn)

s sin(α)

=
1

s sin(α)

(
sin(α)u(s/2, 0, zn) + cos(α)w(s/2, 0, zn)− sin(α)u(−s/2, 0, zn)

+ cos(α)w(−s/2, 0, zn)− 2 cos(α)w(0, 0, zn)

)
=ux(0, 0, zn) +O

(
znuxx(ζ1, 0, zn)

)
+O

(
znwxx(ζ2, 0, zn)

)
for − s/2 < ζ1, ζ2 < s/2

and similarly

∂v̄n
∂y

= vy(0, 0, zn) +O
(
znvyy(0, ξ1, zn)

)
+O

(
znwyy(0, ξ2, zn)

)
for − s/2 < ξ1, ξ2 < s/2.

Hence these estimates have -at best- a leading error term linear in height and second derivatives of the
velocities.

Also, note that these gradient estimations just produce the straining rate when ŵ is used as vertical
velocity estimate. Plugging ŵ into the estimate for ux yields:

b1,n + b2,n − 2 cos(α)ŵn

s sin(α)
=

1

s sin(α)

(
b1,n + b2,n − 1

2
(b1,n + b2,n + b3,n + b4,n)

)
=

1

2s sin(α)

(
b1,n + b2,n − b3,n − b4,n

)
=
1

2

(
ux(0, 0, zn)− vy(0, 0, zn)

)
+O(znuxx(ζ1, 0, zn) +O(znvyy(0, ξ1, zn)

+O(znwxx(ζ2, 0, zn) +O(znwyy(0, ξ2, zn))

for − s/2 < ζ1, ζ2, ξ1, ξ2 < s/2

and similarly as estimate for vy:

b3,n + b4,n − 2 cos(α)ŵn

s sin(α)
=
1

2

(
vy(0, 0, zn)− ux(0, 0, zn)

)
+O(znuxx(ζ1, 0, zn) +O(znvyy(0, ξ1, zn)

+O(znwxx(ζ2, 0, zn) +O(znwyy(0, ξ2, zn))

for − s/2 < ζ1, ζ2, ξ1, ξ2 < s/2.

So these expressions are quite useless as estimates for the velocity gradients ux and vy when ŵ is
applied as vertical velocity estimate.

Lastly, it needs to be noted that the estimates ∂ūn

∂x and ∂v̄n
∂y in combination with w̄n guarantee

mass conservation in each bin n:

∂ūn
∂x

+
∂v̄n
∂y

=
1

s sin(α)

(
b1,n + b2,n + b3,n + b4,n − 4 cos(α)w̄n

)
=

4

s tan(α)

(
ŵn − w̄n

)
=− ∂w̄n

∂z
.
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Figure 3.2: Location of the ADCP off the coast of Anglesey, and the extent of the West Anglesey
Demonstration Zone shown by dashed black lines. Figure from [42].

3.3 Results: Processed ADCP-data

The ADCP-data presented here was kindly provided by M.Togneri [42], and can also be obtained
online through the IMARDIS -portal. The data is obtained with a deployment of an RDI Sentinel
V five-beam ADCP near the West Anglesey Demonstration Zone off the Welsh Coast; a map of the
deployment zone is shown in figure 3.2. This apparatus has a standard Janus configuration with an
additional fifth vertical beam in the middle. Here the analyzed data was recorded between 19/9/2014
and 22/9/2014 for a total of nearly three full days. The water depth at the site was measured using
the fifth central beam and with the ongoing tidal motion varied in this time between 43.7m and 47.3m.
The vertical velocity measurements done by the fifth beam are ignored, since their average deviation
from ŵ and w̄ are relatively large at roughly 0.01m/s. Average velocity magnitudes were U ∼ 0.4m/s,
V ∼ 0.8m/s and W ∼ 0.02m/s. So the flow was horizontally dominant, which makes this data-set
suitable for the previously described post-processing. There was a blanking distance Z0 = 1.89m
between the instrument and the first bin, and subsequent bins had a vertical separation of d = 0.6m.
In the analysis the first N = 60 bins from the bottom are taken into account. The beam angle with
respect to the vertical was α = 25◦. The ADCP collected at a sampling rate of 2Hz for fifteen minutes
every hour, and at a sampling rate of 1

15Hz for the remaining time. The ping frequency was 491kHz,
and the tilt of the apparatus remained constant at 2◦. Note that the previous analysis still holds if
the apparatus has a slight tilt, as long as the tilt is roughly constant and the velocity along this ’tilted
vertical’ is small compared to the other velocity directions. The average water depth is H ∼ 45m, and
γ = tan(25◦)2/2 = 0.11, so using (3.9), the effect of estimating the vertical velocity in top bin with
the original measurement can be neglected beneath a depth of 35.2m, in other words only the top 3
bins are affected by using ŵN as top estimate.

Given from the data are four series of beam measurements. Firstly, the data is re-sampled by
averaging all measurements that occurred within one minute such that for each minute for each beam
one value is recorded. Hence one has b1,t,n, b2,t,n, b3,t,n and b4,t,n for the four beams, each at minute t
with 1 ≤ t ≤ T where T = 4144 minutes and at bin n with 1 ≤ n ≤ N where N = 60. Then the beam
data is smoothed with a 15-minute moving average in order to reduce the impact of any inaccurate
single measurement [42].

From the smoothed beam data the regular estimates ût,n, v̂t,n and ŵt,n are determined using the
equations (3.2). The new vertical velocity estimates w̄t,n are computed from ŵt,n using the numerical
method from (3.10).
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Figure 3.3: Histograms of the noise-signals (period less than 15 minutes) in estimators ŵ, ws and w̄,
with on the left vertical axis the absolute frequency of the noise in w̄, and on the right vertical axis
the frequency difference with the noise in ŵ and in ws.

3.3.1 Noise Comparison

A straightforward comparison is by analyzing how noisy each series is [13]. Firstly, for each series
ŵt,n and w̄t,n signals with a period of less than 15 minutes are removed using a spectral filter. Each
distribution of these noise signals are symmetric around zero and moreover, for both extracted signals
their respective auto-correlation stays within 0.4, so it is justified to classify this as white noise. A
comparison of the noise in each estimator can be seen in the histogram in figure 3.3. From the frequency
differences, it is observed that the w̄-estimator has more cases (negative difference) in the lower noise-
classes (less than 0.02m/s) than ŵ, and vice versa in the higher noise-classes, resulting in a higher peak
with a smaller base. Both distributions are roughly symmetric around zero, with negligible averages
−4.8 · 10−20m/s and −4.6 · 10−20m/s, and standard deviations 0.17cm/s and 0.21cm/s for the noise
w̄ and ŵ respectively. Hence, it can be concluded that the new estimator is clearly less noisy than
the old one. For the sake of comparison another estimator ws is introduced, where ws at bin n is the
average of the estimators ŵ from the nearest 5 bins to bin n i.e. ws is a vertically smoothed version of
ŵ. This produces roughly the same noise-levels as w̄. Estimator w̄ has the same smoothing effect as
averaging over the nearest 5 bins, but is not the same, as will be shown in the next paragraphs.

3.3.2 Comparison with Smoothing

In figure 3.4 an overview of some vertical profiles of ŵ, w̄ and ws during half aM2-period are presented.
It shows that the corrected estimator w̄ contains fewer and lower spikes than the uncorrected original
estimator ŵ, especially for higher bins. For lower bins near the apparatus it was assumed that the
errors introduced by inhomogeneities are less relevant since the beams are less separated than at the
top. Therefore for lower bins the two estimators coincide more, although also here spikes are still
damped. Meanwhile, the smoothed version ws also contains less spikes, but the difference with ŵ is
equally large at every depth. Moreover, ws and w̄ still differ significantly although they have the same
noise levels. As will be discussed later, there are some nice examples where the difference between ws

and w̄ can be justified. In any case figure 3.4 already indicates that w̄ is not just a smoothed version
of ŵ. Lastly, it needs to be noted that a temporal spectral analysis of w̄, ŵ and ws does not show any
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Figure 3.4: Vertical profiles of w̄ and ŵ from various times on 20/09/14 going from high tide to low
tide, showing that w̄ is a smoother version of ŵ. All computed with 15-minutes smoothed beam data
from an ADCP-deployment[42].

significant differences. For instance, the magnitude of the tidal constituents of both estimators does
not differ. By contrast the vertical spectra of the estimators do differ.

Now, in some ways ws and w̄ do not differ significantly as they have roughly the same spectrum and
noise levels. However, small features show the difference between them. One such feature is shown in
figure 3.5. In this figure ŵ, w̄ and ws for the same heights and times are shown, and all three indicate
that between 26m and 35m above the sea-bed upwelling occurs. The original estimator ŵ and its
smoothed version ws suggest that this upwelling starts at roughly 31m and then moves upward in a
period of 20 minutes, while w̄ suggests that this upwelling starts almost instantaneously over all heights
31m to 35m. Now, physically this last case makes more sense. As the ADCP is located on a shelf sea
where depth never exceeds 48m, the water is vertically well-mixed and the local fluid dynamics are
barotropic. This is confirmed by the fact that at this time and depth the horizontal velocity estimates
û and v̂ show no clear vertical structure, and by the fact that heights 30m-35m fall outside the Ekman
layers. The latter fact follows from typical Ekman boundary thickness of roughly 10m [4, Ch 8] and
at that time the total water height was 47m. So the bins 30m-35m are well away from surface and
bed. Now, since circumstances are barotropic the vertical velocity changes only linearly with height
[4, Ch 7]. This is the case for w̄ in figure 3.5, but not with ws and ŵ where the vertical velocity
initially increases and then decreases again with height. So not only does figure 3.5 show that the new
estimator w̄ is not the same as a simple vertical smoothing of ŵ, but it also shows that w̄ is a more
physically sound estimate of vertical velocity.

This last claim, that w̄ is more physically realistic than ŵ and ws since it is more barotropic, can be
made more concrete. At each time t the absolute differences between the local and the mean vertical
gradients of the depth profiles of the estimates w̄, ws and ŵ are calculated. These differences should
be zero in a perfect barotropic setting. Here the estimates which are within 7.5m of the sea bed are
omitted in order to neglect effects from bottom friction. The residual differences between the mean
velocity gradient and the local gradients are pooled together. For the original measurements ŵ there
is a standard deviation of 0.0054/s, while for ws it is 0.0023/s and for w̄ 0.0019/s. This again shows
that w̄ is more than just a smoothed ŵ.

3.3.3 Horizontal Gradients

Lastly, the added bonus of this new estimator is presented: the estimates of the horizontal gradients.
It was found that these estimates are quite noisy. These estimates have magnitudes ∂ūn

∂x ∼ 0.002/s and
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Figure 3.5: Three estimators for the vertical velocity at heights 29m to 37m on 19/09/14 between
17:40 and 19:00: original estimator ŵ, new estimator w̄ based on mass conservation, and vertically
smoothed ws. The estimates shown in this figure are de-noised i.e. all signal with a period of less than
15 minutes is removed.

∂v̄n
∂y ∼ 0.002/s, while the associated noise -as before all signal with a period of less than 15 minutes- is

not much smaller. For both estimates the noise has a magnitude of roughly 0.0006/s, which is quite a
large proportion of the estimators themselves.

In order to see some coherence a spectral filter is applied for periods of at least 5.3 hours. The
tidal components in the signal might indicate that the gradients are sensible. The estimates do show
the tidal signal that is also present in the (û, v̂)-estimates. However, it is hard to prove the reliability
of these spatial gradient estimates. It is tried to indicate reliability by assuming the tidal wave was
either a simple propagating or standing wave or behaved like a Kelvin wave in a channel[38], and then
to compare the fits to (û, v̂) and

(
∂ūn

∂x ,
∂v̄n
∂y

)
, but this does not yield any hard conclusive results. It

could be that the separation between the beams is just too small for any passing tidal wave to cause
any significant difference between the two beams compared to the effects caused by -for example- local
eddies. That notion is supported by the spectra of ∂ūn

∂x and ∂v̄n
∂y : for both it holds that signals with

relatively high frequencies (periods less than an hour) are as prominent as signals in the tidal range.

3.3.4 Turbulence Estimation

However, these horizontal gradient estimates might be useful in the estimation of turbulence parameters
in a horizontally dominant flow. As per Lu&Lueck(1999II) in order to estimate turbulence quantities
using a four beam ADCP in a Janus set up one has to postulate the anisotropy ratio αiso, since it
cannot be determined with only four beams. Here, a method is presented to obtain this ratio using
four beams and the constraint of mass conservation.

Firstly, again following Lu&Lueck(1999II), the velocities are decomposed into a mean part and a
turbulent fluctuating part:

Un = ⟨Un⟩τ + u′
n

where < · >τ indicates a time average over a period τ . For a typical tidal channel, as here is the case,
τ should be roughly 10 to 20 minutes [24][35]. Here, τ = 20 minutes is used, since this is also the time
period applied in Togneri et al.(2017) in which the same data set is analyzed.

The anisotropy is defined [25] as

αiso =
< w′2 >τ

< u′2 >τ + < v′2 >τ

which is a measure of turbulence anisotropy. It is the ratio of the contribution of the vertical velocity
to the turbulent energy in the flow compared to the contribution of the horizontal velocities. The
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ratio αiso ranges from zero for an extremely anisotropic turbulent flow where all turbulence is in the
horizontal flow direction, to 0.5 for isotropic turbulence where turbulent flow contributes equally in
each dimension. As mentioned this value cannot be determined from an ADCP with only four beams,
and the addition of a fifth beam is needed to measure the variance of w. The problem with the four-
beam set up is that the variance of the vertical estimate cannot be separated from the variance in the
horizontal flow, and hence an independent estimate of the vertical velocity is needed.

However, with the addition of mass constraints it might be possible to compute αiso after all. At
each time t the following estimates are made:

< w′2 >τ

∣∣
zn

=< w̄2
t,n >τ − < w̄t,n >

2
τ

which is the variance of the vertical velocity estimates {w̄t′,n}t−τ/2≤t′≤t+τ/2. For the turbulence due
to the horizontal velocities the gradient estimates are used. The fluctuation at time t and height zn is
estimated as:

u′t,n = zn tan(α)
∂ūt,n
∂x

v′t,n = zn tan(α)
∂v̄t,n
∂y

and so for the estimation of horizontal turbulence

< u′2 >τ

∣∣
zn

=<
(
zn tan(α)

∂ūt,n
∂x

)2
>τ

< v′2 >τ

∣∣
zn

=<
(
zn tan(α)

∂v̄t,n
∂y

)2
>τ

which are the averages of the squares of the sets {u′t,n}t−τ/2≤t′≤t+τ/2 and {v′t,n}t−τ/2≤t′≤t+τ/2 respec-
tively. Note that in the estimation of u′t,n it is assumed that the fluctuation of u in the x-direction
is a good representation of the actual turbulent part u′t,n, i.e. it is assumed that the fluctuation is
isotropic. The same assumption is made for the estimation of v′t,n.

Combining these would yield an estimate for the anisotropy ratio at time t and height zn. This is
combined into the depth-averaged ratio at time t:

αiso

∣∣
t
=

1

n1 − n0

n1∑
n=n0

< w′2 >τ

∣∣
zn

< u′2 >τ

∣∣
zn
+ < v′2 >τ

∣∣
zn

where the averaging is done over bins n0 to n1. To correct for the disturbing effect of surface waves
only the deepest 20 m of the water column is taken into account, as is done in Togneri et al.(2017).
Hence n0 = 1 and n1 = 35 are taken.

The results can be seen in figure 3.6. Figure 3.6(a) shows the depth-averaged ratio in time as just
discussed. The bottom figure (b) depicts the time-averaged ratio per bin. Three depth profiles are
shown: one of the ratio averaged over all three days, one averaged over all intervals with high tide
and one averaged over all intervals with low tide. It can be seen that the ratio varies quite strongly
in time, and therefore its moving average is added in (a). Averaging all values over all bins and the
whole 3 days yields αiso = 0.10± 0.04.

A couple trends can be seen in figure 3.6. Firstly, looking at the depth profile it seems that the
turbulence is more isotropic near the bottom than in the rest of the water column. For heights 10m
to 35m it seems that αiso ∼ 0.08, while in the lowest 10m the ratio increases with depth to roughly
0.25. Secondly, the ratio is slightly out of phase with the surface height. This can be observed when
comparing the surface height and the moving time average. Another indication for this would be
the depth profile: at most heights the ratio during high tide is greater than during low tide. This
observation can be made more substantial by computing the correlation between the moving time
average and the surface height. The correlation between the surface height and the 2-hour delayed
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ratio is as high as 0.78. Both have roughly a period of 12.3h (the M2-tide), so the ratio is π
3 out of

phase with the tide. In the same figure the depth-averaged horizontal velocity magnitude is added in
the lower panel, which shows that the horizontal velocity is smallest a couple hours after high and low
tide.

The reduction of anisotropy near the bottom is expected and has been measured for different beds
[5, Ch 3]. Furthermore, the delayed increase in isotropy after high tide can be explained intuitively:
the combination of high surface water, which allows for larger vertical motions [29], and the small
horizontal velocities just after high tide, brings on an increase in isotropy. Now, in literature for a
typical tidally dominated, non-rotating and completely unstratified channel often αiso ≈ 0.2 is used
[24][35], which is also used in the Irish Sea [42]. The average value found with this method is about two
standard deviations below this standard value. Of course it could be that the method presented here is
biased. The estimates for the horizontal fluctuations may not be that reliable. Moreover, the vertical
velocity turbulence could be underestimated when using w̄ which is an already smoothed version of
the original ŵ. However, the conditions for the standard αiso ≈ 0.2 do not completely hold here. For
instance, adding stratification would reduce vertical motion, and hence decrease isotropy [35]. So a
value lower than the theoretical 0.2 can be expected. Moreover, the computed values are closer to 0.2
during high surface levels, which can also be explained by the reduced effect of surface waves on the
lower water depths. So the ratio might be closer to the standard values if one were to select for data
with hardly any surface waves [42].

3.4 Conclusion on Mass Constraints with four-beam Set Up

The standard beam-to-current velocity components solution, described in (3.2), has been and will
continue to work well for many years. However, it relies on the homogeneous velocity field assumption,
which is a drawback when measuring 3D currents or when the flow is horizontally dominant but the
vertical velocity is of relevance [9]. Here, a processing method for the data, based on the principle
of mass conservation, was introduced. It was shown that this process will increase the quality of the
vertical velocity data for a horizontally dominant flow. Not only did this method have a smoothing
effect and reduced the noise in the data, but it did also produce on small scales physically more realistic
signals. Equally important is the fact that the background reasoning behind this method is quite clear
and simple. Of course, as seen in the mathematical analysis, the accuracy of these new estimators
can decrease quickly with distance to the apparatus, and so the resulting new estimators need to
be compared with the original old estimates to make sure they don’t deviate extremely far from the
device. Furthermore, it needs to be suggested that this processing method can further increase data
quality with other correction techniques, such as a method to correct for the tilt [33], or a weighted-
least-squares approach where beams are weighted according to their own reliability[13].

The presented method also allows for estimates of the horizontal velocity gradients. The accuracy
of these estimates can be questioned. For tidal time scales the results do not produce expected results.
However, for the estimation of turbulence parameters these velocity gradients can be useful. Moreover,
an additional benefit of these estimates -besides having an estimate for the velocity gradients- is that
the homogeneity assumption in each horizontal direction for the ADCP can be directly quantified.
Other methods [24] of testing the homogeneity assumption rely on the magnitude of the error velocity.
A disadvantage with this error velocity is that it makes no distinction between the two horizontal
directions. With the new gradient estimates this would be possible. If inhomogeneity is large in one
direction, but not in the other, then the beams along this ’homogeneous direction’ can still be reliably
used to produce velocity estimates.

Lastly, the main goal of this chapter was to illustrate the benefit of mass constraints for already-
existing ADCP-data. It has been show that indeed mass constraints can be of use. Theoretically
with mass constraints the homogeneity assumption can be relaxed and the computed estimates should
be more accurate. As long as higher order derivatives of the flow can be neglected. Furthermore,
in practice improved estimates are obtained. So applying mass constraints partially removes the
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inhomogeneity error. With these results it can be justified that this processing method is also applied
to the buckyball in upcoming simulations.

(a)

(b)

Figure 3.6: Top figure (a) depicts the depth-averaged anisotropy ratio as described in text, and its
rolling average over 2 hours. Underneath it the surface height ζ and horizontal velocity magnitude is
shown. Bottom figure (b) is the depth profile of the time-averaged anisotropy ratio, for ratio during
all three days, during high tide (ζ > 46.5m) and during low tide (ζ < 44.5m).
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Chapter 4

Mass Constraints in a Buckyball
Set Up

This chapter introduces the simulation environment for the feasibility study of the buckyball. Moreover,
the post-processing method of using mass constraints is applied to this set up. Similar to the previous
chapter also here one can conclude that mass constraints can lead to more accurate velocity estimates
by relaxing the homogeneity assumption.

4.1 The Buckyball

As stated before the buckyball is a set up of multiple transducer-receivers in a buckyball configuration,
illustrated in figure 4.1. The idea is originally by L.R.M. Maas. The obvious advantage of this device
is that it can produce velocity estimates in many directions, and not only in one.

In this thesis this device will be analyzed in a two-dimensional setting in order to simplify com-
putations. The two-dimensional version of the buckyball is illustrated in figure 4.2. It was decided to
use six transducer-receivers in a hexagonal set up. This way there is still a symmetrical setting with
the minimal number of transducers, where this minimal number of six transducers is determined by
the common ADCP devices. Conventionally the maximum angle between two opposing beams of an
ADCP-apparatus is 60◦ [28], which is also the case here.

In figure 4.2(a) the general idea behind the feasibility study is illustrated: a synthetic streamfunction
with the associated flow field is generated. Note that this guarantees a divergence-free flow in which
mass is conserved. At equispaced distances along the radial transducer beams measurements are done.
These measurements are the local radial component of the velocity field, with a 2% proportional
Gaussian error, as discussed in section 2.3.1. So the goal is to approximate the flow field knowing
only these measurements and the measurement locations. In this chapter it is examined whether this
approximation can be improved by not only using the measurements but also adding mass conservation
constraints. In the next chapter as synthetic flow the shearing motion associated with an internal wave
is used, and it is examined how well this flow field can be approximated.

The following notations are introduced, as can be seen in figure 4.2(b). The apparatus lies with its
centre at the origin in a (x, z)−plane. There are 6 transducer-receivers each directed with polar angle
θi for i ∈ {1, 2, . . . , 6} where θi =

π
3

(
i − 1

2

)
. Each transducer has blanking distance R0, and cell size

d with in total N cells. Hence there are in each beam N measurements, where the nth measurement
is placed at a distance rn = R0 +

(
n− 1

2

)
d from its corresponding transducer. The range is then

rN + d
2 = R0 +Nd. The measurement done by transducer i at the centre of cell n is denoted by Mi,n,

and is placed at point si,n = rn(cos θi, sin θi).
Like a conventional set up the measurement area here is also divided into voxels. With Ωi,n is the

nth voxel denoted between beams i and i−1 (one beam further clockwise). The voxels lie in 6 different
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Figure 4.1: The ADCP-Buckyball, with 20 transducers in a buckyball configuration at the edges of a
dodecahedron, figure provided by L.R.M. Maas.

angular sections. So all voxels Ωi,n lie in section i. Moreover, for voxel Ωi,n one has measurementsMi,n

and Mi−1,n. The centre of this voxel lies a distance rn
2

√
3 from the origin at polar angle Θi = θi +

π
6 .

This centre is denoted by xi,n = rn
2

√
3
(
cosΘi, sinΘi

)
. Note that Ωi,n is a trapezium with width d

2

√
3

and the parallel sides have lengths rn − d
2 and rn + d

2 . Therefore its area is |Ωi,n| = drn
2

√
3.

4.2 Best Estimates

In order to quantify any improvement by applying mass constraints in the computation of velocity
estimates one first has to define the best possible single two-dimensional representation of the flow
within a voxel. Suppose the two-dimensional estimate Ui,n =

(
Ui,n,Wi,n

)
for the true water velocity

u = (u,w) in voxel Ωi,n. Now it is stated that the best possible estimate Ui,n minimizes the following
error term E:

E =

∫
Ωi,n

(
u(x, z)−Ui,n

)2
dxdz.

Its derivative with respect to the estimate Ui,n should be zero, and hence:

0 =

∫
Ωi,n

u(x, z) dxdz −
∫
Ωi,n

Ui,n dxdz

=

∫
Ωi,n

u(x, z) dxdz −Ui,n|Ωi,n|.

Therefore the best possible estimate for the velocity in each voxel is its average velocity:

Ui,n =
1

|Ωi,n|

∫
Ωi,n

u(x, z) dxdz. (4.1)

Now expression (4.1) is not in a workable form for the upcoming computations. Thus a stream-
function ψ for the underlying flow is again assumed, and so for the best possible estimates one has:{

Ui,n = 1
|Ωi,n|

∫
Ωi,n

ψz(x, z) dxdz

Wi,n = − 1
|Ωi,n|

∫
Ωi,n

ψx(x, z) dxdz.
(4.2)
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(a) Simulation set up of the buckyball, with radial
measurements of the flow (pink), beam angles, cell
and voxel sizes indicated. The angular sections are
indicated by numbers. Underneath a streamfunc-
tion is plotted as a contour, with the associated
vectors indicating (u,w) (red, not to scale).

(b) Schematic set up of an angular section, with
cell sizes, blanking distance and radial distance
indicated, as well as beam angles θi and θi−1 and
polar angles Θi−1 and Θi+1 through voxel centres
xi−1,n and xi+1,n respectively.

Figure 4.2: Two-dimensional simulation set up of the buckyball.

Then applying Simpson’s rule[1] to approximate these integrals yields

Ui,n ≈ ψz(xi,n) +
d2

√
3

24rn(
− cos2(Θi) cos(θi+1)ψxx(xi,n)

+ 1
2 (2 cos(Θi) + sin(θi+1)− sin(3θi))ψxz(xi,n)

+ 1
4 (3 sin(Θi)− 4 cos(θi+1) + cos(3θi))ψzz(xi,n)

)
Wi,n ≈ −ψx(xi,n) +

d2
√
3

24rn(
− sin2(Θi) sin(θi+1)ψzz(xi,n)

+ 1
2 (−2 sin(Θi) + cos(θi+1) + cos(3θi))ψxz(xi,n)

+ 1
4 (−3 cos(Θi)− 4 sin(θi+1)− sin(3θi))ψxx(xi,n)

)
.

The complete derivation can be found in Appendix A.1. In this approximation, similar to the analysis
done in the previous chapter, it is assumed that third and higher order derivatives of ψ(x, z) -so second
and higher order derivatives of the velocities- are negligible compared to the first and second derivatives
of ψ(x, z). This assumption is made throughout this chapter. It is also assumed that the width of a
voxel is much smaller than its length, which is often the case with ADCPs, so d

rn
≪ 1. Thus for the

best possible estimates the following approximations are used:{
Ui,n ≈ ψz(xi,n)

Wi,n ≈ −ψx(xi,n),
(4.3)

in other words the best possible estimates for the flow velocities within a voxel are the flow velocities
at the voxel’s centre.
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4.3 Conventional Estimates

Here the estimates (ûi,n, ŵi,n) for each voxel are computed in the conventional way, which means it is
assumed that the flow within each voxel is completely constant. From now on ·̂ indicates an estimator
that is calculated in the conventional way. In this way the two-dimensional buckyball becomes six
two-beam ADCPs as in section 2.2. So taking constant velocities (ûi,n, ŵi,n) for voxel Ωi,n would
result in the along-beam measurements, i.e. the radial velocities:{

Mi,n = cos(θi)ûi,n + sin(θi)ŵi,n

Mi−1,n = cos(θi−1)ûi,n + sin(θi−1)ŵi,n

and rearranging produces the conventional estimates:ûi,n = 2√
3

(
sin(θi)Mi−1,n − sin(θi−1)Mi,n

)
ŵi,n = 2√

3

(
cos(θi−1)Mi,n − cos(θi)Mi−1,n

)
,

(4.4)

where pre-factor 2√
3
arises from sin(θi − θi−1) =

√
3/2. Note that here, and also in the rest of the

section, measurements Mi,n are equalized to their expectation value i.e. the radial velocities.

4.3.1 Error Analysis of Conventional Estimates

The quality of these conventional estimates can be quantified by comparing them to the best possible
estimates (4.2). The error EC in these estimates is defined as follows:

EC, i,n =
√

(ûi,n − Ui,n)2 + (ŵi,n −Wi,n)2.

Firstly to compute this error the estimates (4.4) are expressed into the true streamfunction ψ, where
it is used that the measurements Mi,n are the radial velocities at the measurement points si,n =
rn(cos θi, sin θi). So

Mi,n = cos(θi)ψz(si,n)− sin(θi)ψx(si,n)

and inserting this into (4.4) yields

ûi,n ≈ ψz(xi,n) +
2√
3
rn[

sin(θi−1) sin(θi)(cos(θi)− cos(θi−1))ψxx(xi,n)

−(sin(θi−1) sin(θi)(cos(θi)− cos(θi−1)) +
3
4 sin(Θi))ψzz(xi,n)

+(sin(θi) cos(2θi−1)− sin(θi−1) cos(2θi)− 3
4 cos(Θi))ψxz(xi,n)

]
ŵi,n ≈ −ψz(xi,n) +

2√
3
rn[

cos(θi−1) cos(θi)(sin(θi)− sin(θi−1))ψzz(xi,n)

−(cos(θi−1) cos(θi)(sin(θi)− sin(θi−1))− 3
4 cos(Θi))ψxx(xi,n)

−(cos(θi) cos(2θi−1)− cos(θi−1) cos(2θi)− 3
4 sin(Θi))ψxz(xi,n)

]
,

where again third and higher order derivatives of the streamfunction are neglected. This derivation
is done in Appendix A.2. Combining these with the approximate expressions for the best estimators
produces an approximation for the error in this conventional method. For simplicity only the error in
the first angular section, between the first and sixth beam, is calculated, since one would get similar
expressions in the other sections due to the rotational symmetry of the buckyball. Additionally, in
this angular section some coefficients multiplying second derivative terms vanish.

EC, 1,n ≈

√(
ψz(x1,n)−

rn

2
√
3
ψxz(x1,n)− ψz(x1,n)

)2
+

(
− ψx(x1,n)−

rn
√
3

2
ψzz(x1,n) + ψx(x1,n)

)2
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=
rn

2
√
3

√
(ψxz(x1,n))2 + 9(ψzz(x1,n))2

=
rn

2
√
3

√
(wz(x1,n))2 + 9(uz(x1,n))2.

So in each angular section the error in the conventional method is caused by a velocity difference in
the long direction of each voxel, where the difference in the radial outward velocity causes nine times
the error as the difference in azimuthal velocity.

4.4 Mass Constraints Applied

4.4.1 Mass Conservation Equation

Firstly for each voxel Ωi,n the mass conservation equation is formulated. Suppose one has velocities
(ui,n, wi,n) located at the centre xi,n of voxel Ωi,n. Define Σi,n and Φi,n by

Σi,n =
1

2

(
cosΘi

(
ui,n + ui,n+1

)
+ sinΘi

(
wi,n + wi,n+1

))
Φi,n =

1

2

(
cos θi

(
wi,n + wi+1,n

)
− sin θi

(
ui,n + ui+1,n

))
.

By linear interpolation Σi,n would be the radial velocity from Ωi,n to Ωi,n+1 and Φi,n the azimuthal
velocity from Ωi,n to Ωi+1,n, see also figure 4.3(a). Demanding mass conservation for voxel Ωi,n would
equate to: (

rn − d

2

)
Σi,n−1 −

(
rn +

d

2

)
Σi,n + dΦi−1,n − dΦi,n = 0.

This equation can be rewritten as:(
rn − d

2

)(
cosΘiui,n−1 + sinΘiwi,n−1

)
+d

(
cos θi−1wi−1,n − sin θi−1ui−1,n

)
+d

(
sin θiui+1,n − cos θiwi+1,n

)
(4.5)

−
(
rn +

d

2

)(
cosΘiui,n+1 + sinΘiwi,n+1

)
+d

(
cos θi−1 − cos θi − sinΘi︸ ︷︷ ︸

0

)
wi,n + d

(
sin θi − sin θi−1 − cosΘi︸ ︷︷ ︸

0

)
ui,n

=0.

In the next subsections an algorithm that implements this mass conservation law will be discussed.

4.4.2 Corrective Algorithm

Initial Idea

Looking at the formulated mass conservation law (4.5) one notices that the contribution of the radial
flow Σi,n is roughly a factor rn/d as large as the contribution of the sideways flow Φi,n. So if in (4.5) the
radial estimates were to be used to correct the azimuthal contributions then the error in these radial
estimates would be enlarged by a factor rn/d. For most to all voxels it holds that d≪ rn, so this error
would be enlarged in the correction of the azimuthal contributions. Therefore it was decided to first
correct the radial estimates using mass constraints with uncorrected azimuthal estimates, and then use
these improved radial estimates to correct the angular estimates. This avoids using any uncorrected
radial estimates in calculations.
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(a) The mass conservation law for voxel Ωi,n

with in blue radial flows Σi,n and Σi,n−1 and
azimuthal flows Φi,n and Φi−1,n.

(b) The polar velocities (ρi,n, πi,n) at the centre
xi,n of Ωi,n, and similarly for Ωi+1,n. Angles θi
and Θi through the centre are also indicated.

Figure 4.3: Schematic overviews of Ωi,n.

So the estimates need to be presented in a radial and angular direction. Therefore the coordinate
system is changed to a polar system. Suppose again velocities (ui,n, wi,n) at the centre of Ωi,n. Define{

ρi,n = sin θi+1ui,n − cos θi+1wi,n

πi,n = cosΘiwi,n − sinΘiui,n,
(4.6)

so ρi,n and πi,n are the radial and azimuthal velocity in the centre xi,n, see also figure 4.3(b). Then
the mass constraint (4.5) becomes

(
rn − d

2

)
ρi,n−1 −

(
rn +

d

2

)
ρi,n+1 −

d

2
(ρi−1,n + ρi+1,n) +

d

2

√
3(πi−1,n − πi+1,n) = 0. (4.7)

Radial Correction

Suppose initially for every voxel the estimates ρ̂i,n and π̂i,n. These are the radial and azimuthal
velocity estimates computed with the conventional method. So rewriting (4.4) with (4.6) yields:{

ρ̂i,n = 1√
3

(
Mi,n +Mi−1,n

)
π̂i,n =Mi,n −Mi−1,n,

(4.8)

where again and also in the rest of this section, measurements Mi,n are equalized to their expectation
value i.e. the radial velocities.

Then mass constraints (4.7) are applied to these voxel-based estimators by finding new corrected
radial estimator ρ̄i,n+1 based on the previously corrected estimators ρ̄i,n−1, ρ̄i−1,n and ρ̄i+1,n and
uncorrected estimates π̂i−1,n and π̂i+1,n. From now on ·̄ indicates an estimator that is calculated with
mass constraints corrections. Inserting these estimators in the mass conservation law (4.7) yields:

(
rn − d

2

)
ρ̄i,n−1 −

(
rn +

d

2

)
ρ̄i,n+1 −

d

2
(ρ̄i−1,n + ρ̄i+1,n) +

d

2

√
3(π̂i−1,n − π̂i+1,n) = 0,
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and so for the new radial estimator:

ρ̄i,n+1 =
rn − d/2

rn + d/2
ρ̄i,n−1 −

d

2rn + d

(
ρ̄i−1,n + ρ̄i+1,n

)
+

d

2rn + d

√
3
(
π̂i−1,n − π̂i+1,n

)
. (4.9)

This equation does not work for the radial estimates of the two inner rings of voxels, so for these the
conventional estimates are taken:

ρ̄i,1 = ρ̂i,1

ρ̄i,2 = ρ̂i,2,

which is justified since the inner conventional estimates are the most accurate. So using the already
corrected radial estimates from inner rings the radial estimates of outer rings are corrected. This
mechanism in equation (4.9) has two advantages. Firstly, errors in ρ̄i±1,n and π̂i±,n are multiplied
by d/(2rn + d) ≪ 1, so ρ̄i,n+1 is as accurate as ρ̄i,n−1 since (rn − d/2)/(rn + d/2) ≈ 1. Hence the
correction in ρ̄i,n+1 mainly depends on measurements along beams i and i−1, instead of far off beams
i+ 1 and i− 2. Secondly, estimates in ring n+ 1 are only based on estimates in closer rings. So any
inaccurate estimates in the outer rings -where the voxels are larger and so the inter-beam errors too-
are ignored. Moreover, the outer measurements are then also ignored, and these measurements would
be more inaccurate if geometric beam spreading were included in the simulations.

Azimuthal Correction

Next, the corrected azimuthal velocity estimates π̄i,n are determined. Again new notation needs to be
introduced. With πi2,n and πi1,n the velocities in the same direction of πi,n are denoted but now at
the measurement sites si,n and si−1,n respectively, see figure 4.4(a). To be more precise:

πi2,n = cosΘiw(si,n)− sinΘiu(si,n)

πi1,n = cosΘiw(si−1,n)− sinΘiu(si−1,n).

Now, the flow is divergence free since mass is conserved and so the following should hold approxi-
mately with the corrected estimators:

πi2,n − πi1,n
rn

+
(ρ̄i,n+1 + ρ̄i,n)/2− (ρ̄i,n + ρ̄i,n−1)/2

d
√
3/2

= 0 (4.10)

which means that the gradient of the flow along the long side of Ωi,n should add with the gradient of
the flow along the short side to zero. Also, the flow along the long side is assumed to be linear, leading
to:

π̄i,n =
πi2,n + πi1,n

2
. (4.11)

Combining equations (4.10) and (4.11) produces

π̄i,n = πi1,n +
rn
2

( ρ̄i,n+1 − ρ̄i,n−1

d
√
3

)
πi2,n = π̄i,n +

rn
2

( ρ̄i,n+1 − ρ̄i,n−1

d
√
3

)
. (4.12)

Now note that at each measurement point si,n there are now three different velocities defined, see
also figure 4.4(b): 

Mi,n = cos θiu(si,n) + sin θiw(si,n)

πi2,n = cosΘiw(si,n)− sinΘiu(si,n)

π(i+1)1,n = cosΘi+1w(si,n)− sinΘi+1u(si,n).
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(a) Velocities πi,n, πi−1,n and πi+1,n at the
centre of their respective voxels with the
newly introduced πi1,n and πi2,n indicated
at the measurement points at the edges of
voxel Ωi,n.

(b) The three different estimators at measuring
point si,n: radial measurement Mi,n (blue), and
newly defined πi2,n (red) and π(i+1)1,n (green).
Voxel centre xi,n, beam angles θi and angle Θi

through the centre are also indicated.

Figure 4.4: Schematic overview of Ωi,n with relevant estimates for the azimuthal correction.

This is used to derive the following:

πi2,n −Mi,n = [cosΘi − sin θi]w(si,n)− [sinΘi + cos θi]u(si,n)

= [cos
(
Θi+1 −

π

3

)
− sin

(
Θi+1 −

π

6

)
]w(si,n)− [sin

(
Θi+1 −

π

3

)
+ cos

(
Θi+1 −

π

6

)
]u(si,n)

= cosΘi+1w(si,n)− sinΘi+1u(si,n)

= π(i+1)1,n.

Combining this with equations (4.12) yields the iterative equations

π̄i,n = πi1,n +
rn
2

( ρ̄i,n+1 − ρ̄i,n−1

d
√
3

)
= π(i−1)2,n −Mi−1,n +

rn
2

( ρ̄i,n+1 − ρ̄i,n−1

d
√
3

)
= π̄i−1,n +

rn

2d
√
3

(
ρ̄i,n−1 − ρ̄i,n+1 + ρ̄i−1,n−1 − ρ̄i−1,n+1

)
−Mi−1,n. (4.13)

It is assumed that π̄1,n is some value ωn, then via reiterating (4.13) one can express all other
azimuthal estimators:

π̄1,n = ωn

π̄2,n = ωn +
rn

2d
√
3

(
ρ̄2,n−1 − ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n

π̄3,n = π̄2,n +
rn

2d
√
3

(
ρ̄3,n−1 − ρ̄3,n+1 + ρ̄2,n−1 − ρ̄2,n+1

)
−M2,n

= ωn +
rn

2d
√
3

(
ρ̄3,n−1 − ρ̄3,n+1 + 2ρ̄2,n−1 − 2ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n −M2,n

... (4.14)
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Note that reiterating six times would again yield π̄1,n, which is indeed the case:

π̄1,n = ωn +
rn

d
√
3

6∑
i=1

(
ρ̄i,n−1 − ρ̄i,n+1

)
−

6∑
i=1

Mi,n

= ωn

where the last step follows since
∑

i ρ̄i,n = 0 and
∑

iMi,n = 0. This is due to mass conservation: both
sums describe the total flow going into an enclosed hexagon, so both should be zero, see also Appendix
A.3. Finally ωn is determined by fitting the expressions (4.14) to the conventional estimates:

ωn = arg min

√√√√ 6∑
i=1

(π̄i,n − π̂i,n)2. (4.15)

This results in:

ωn =
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
(4.16)

+
1

6

rn

d
√
3

(
2ρ̄6,n−1 − 2ρ̄6,n+1 + ρ̄5,n−1 − ρ̄5,n+1 − ρ̄3,n−1 + ρ̄3,n+1 − 2ρ̄2,n−1 + 2ρ̄2,n+1

)
which is derived in Appendix A.4. With ωn determined all other azimuthal estimates π̄i,n for 1 ≤ i ≤ 6
can be determined via the iterative equation (4.13).

Note that this method only works for interior rings n, so for the outer (n = N) and inner ring
(n = 1) the original estimates are used: π̄i,1 = π̂i,1 and π̄i,N = π̂i,N .

The advantages of this method to compute π̄i,n are that mainly the already corrected estimates
ρ̄i,n±1 are used and that the original estimates π̂i,n are not needed. Moreover, in this approach to
formulate the iterative equation (4.13) for π̄i,n only measurements from the closest beams i and i± 1
are needed.

Summary

Here a brief recap of the corrective algorithm to compute the conventional estimates is presented.
Initially for each voxel one has the conventional estimates (ûi,n, ŵi,n), and rewrites them in polar form
(ρ̂i,n, π̂i,n). Then as a first step the radial estimates are corrected via (4.9), see also figure 4.5(a).
With these corrected estimates in the radial direction the gradient in the angular direction can be
determined via the continuity equation (divergence-free flow), see (4.10). Using these gradients the
iterative equation (4.13) can be formulated that connects all azimuthal estimates within a ring. Using
this the corrected estimates are then determined by fitting the expressions from the iterative equation
to the conventional azimuthal estimates, see figure 4.5(b). Then the corrected estimates (ρ̄i,n, π̄i,n)
can be rewritten as the Cartesian corrections (ūi,n, w̄i,n) via{

ūi,n = cosΘiρ̄i,n + cos θi+1π̄i,n

w̄i,n = sinΘiρ̄i,n + sin θi+1π̄i,n.

4.4.3 Error Analysis of Corrected Estimates

The formulation of an error term for the corrected estimates is rather difficult, since a corrected
estimate -especially those at the outer edges- (in)directly depends on a multitude of measurements.
Therefore only a crude approximation of the error will be constructed here. The error of the corrected
estimates is defined in a similar manner as before:

EN i,n =
√
(ūi,n − Ui,n)2 + (ŵi,n −Wi,n)2
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(a) Step 1: correcting the radial estimates from
the inner to the outer ring.

(b) Step 2: correcting the azimuthal estimates
with a linear fit.

Figure 4.5: Steps of the corrective algorithm, where mass conservation of the green voxel is demanded.

≈
√
(ūi,n − ψz(xi,n))2 + (ŵi,n + ψx(xi,n)2

Again only angular section 1 is considered for simplicity. The errors in (ρ̄i,n, π̄i,n) are denoted by
(ϵi,n, ηi,n). In appendices A.5 and A.6 the following expressions are derived:

ϵ1,n = ρ̄1,n − ψz(x1,n)

= −rn/2ψxz(x1,n)

η1,n = π̄1,n + ψx(x1,n)

=
rn√
3
ψxx(x1,n) +

rn

2
√
3
ψzz(x1,n).

Combining the expressions for ϵ1,n and η1,n to formulate the error EN, 1,n in the new estimates
(ū1,n, w̄1,n):

EN, 1,n ≈
√
ϵ21,n + η21,n

=
rn

2
√
3

√
3ψxz(x1,n)2 + (2ψxx(x1,n) + ψzz(x1,n))2

=
rn

2
√
3

√
3wz(x1,n)2 + (uz(x1,n)− 2wx(x1,n))2,

and again by using the rotational symmetry of the buckyball a similar expressions can be obtained for
the other angular sections.

4.5 Results: Processed Buckyball-data

Comparing the application of mass constraints with the conventional method can be done analytically
by comparing EC, 1,n and EN, 1,n. Those are:(EC, 1,n

rn

)2

=
wz(x1,n)

2

12
+

3uz(x1,n)
2

4(EN, 1,n

rn

)2

=
wz(x1,n)

2

4
+
uz(x1,n)

2

12
− 2uz(x1,n)wx(x1,n)

3
+
wx(x1,n)

2

3

34



which indicate that there are some instances in which applying mass constraints worsen the estimators,
depending on the local flow. This is also observed in the simulations. In both cases the error grows
linearly with distance rn, which is inevitable since the distance between the measurement points and
the voxel centres grows linearly with rn. Note that for both methods the errors vanish when the
homogeneity assumption holds.

Next, three simulation results are presented. These three results are representative for the other
simulated results. The following parameters are used during the simulations: a plane (x, z) ∈ [−L,L]2
where L = 100, and cell properties R0 = 10, d = 4 and N = 20. The number of cells is chosen such
that the computation time of the algorithm is not too long. The cell size d is picked such that the
illustrations are clear, and then blanking distance R0 is taken to be 2 − 3 times larger than d, as is
common with actual transducers. Furthermore, as discussed before, each measurement Mi,n has a 2%
error. All simulation parameters are dimensionless, since the goal is to show that the mass constraints
increase accuracy of the estimates compared to the conventional method: the exact scale of the flows
considered are not relevant The results are shown in figures 4.6, 4.7 and 4.8. In all simulations a
streamfunction ψ is used that has no third or higher order derivatives, as used in the approximations.
In an actual experimental set up this would mean that the measurement area needs to be small enough
such that the flow is approximately quadratic. In each figure the streamfunction and velocities are
illustrated in the top left figure, while in the top right figure the relative change in the error is visualized.
The change in relative error in voxel Ωi,n is computed as (EC, i,n − EN, i,n)/||Ui,n||2. In the bottom
left figure the relative error EC, i,n/||Ui,n||2 in the conventional estimates is shown, and in the bottom
right figure the same for the corrected estimates by computing EN, i,n/||Ui,n||2.

The results in figures 4.6 represent cases in which the corrective algorithm improves the estimates
in almost all voxels. Characteristic for cases like figure 4.6 is that the algorithm barely improves the
estimates for voxels lying in two opposing angular sections, in this case sections 2 and 5. This is because
the conventional method already performs quite good in these sections, as can be seen in figure(c), with
a relative error of roughly 10% − 20%. So the algorithm hardly improves the estimates in these two
sections. In the other sections where the conventional method does not perform that well, the algorithm
reduces the proportional error by up to 64 percentage points in this specific case. Also noteworthy
is the difference in relative errors across voxels between the methods: the corrected estimates have in
each voxel roughly the same error. The conventional estimates have a voxel-averaged relative error
of 0.218, and corresponding variance 0.019, which is lowered to 0.035 and 0.0006 respectively by the
corrected method. So not only do the mass constraints lower the overall error, but they also decrease
the difference in accuracy between voxels.

In figure 4.7 a case is depicted where the conventional method already performs near-perfect in
two angular sections. For velocity field (u(x, z), w(x, z)) = (0,−5x − x+100

50 ), which is dominant in
the vertical direction, the conventional errors EC 1,n and EC 4,n almost disappear, were it not for the
measurement errors. In these angular sections the dominant vertical flow is in the along-voxel direction.
Here the conventional method performs well, and the mass constraints actually worsen the estimates
in these sections, by up to 16 points. However, in the other four angular sections the conventional
method has errors up to 20%, and here the corrected method causes improvements. All in all, the
voxel-averaged error of the standard method is 6.9%, and mass constraints slightly reduce that to
6.5%. But also here the difference across voxels reduces: the variance in relative error between voxels
drops from 0.0031 to 0.0011.

Lastly, figure 4.8 represents a set of cases, where the algorithm only improves the estimates in two
opposing angular sections. Here the conventional method fails in the angular sections 1 and 4 lying on
the x−axis, and produces quite accurate estimates in the other sections. Again the algorithm improves
the worst conventional estimates, but also worsens the best estimates. In some voxels the accuracy
increases by 30 percentage points, but in others it decreases by up to 20 percentage points. By using
mass constraints nearby estimates are used to correct other estimates, and by doing this the error
seems to disperse among the voxels. In this specific case the voxel-averaged error barely decreased
from 16.4% to 15.6%, but the voxel-based variance of the relative error went from 0.018 to 0.0058. So
by applying the algorithm the errors in the estimates became more uniform among the voxels. One can
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see in figure 4.8(d): with mass constraints every voxel produces roughly equally accurate estimates.

4.6 Conclusion on Mass Constraints with Buckyball

In many simulations it was shown that applying mass constraints improve the estimates in almost all
voxels, but there were also cases were mass constraints worsened the estimates in some voxels. Overall
the average accuracy increased by demanding mass conservation in each voxel. Hence mass constraints
seem also in this case a promising addition to the standard beam-to-current method.

In these specific cases, in which this method actually worsens the original estimates, the original
estimation technique already produces accurate estimates in some areas of the buckyball measurement
area, while in others the homogeneity assumption fails and the result is inaccurate estimates. The
corrective algorithm uses nearby estimates to correct other estimates, and so inaccurate estimates are
used to correct accurate estimates and vice versa. Therefore the best original estimates lose accuracy,
while the worst estimates see an increase in accuracy. As a consequence the difference in quality
between the corrected estimates had decreased: in each voxel the estimates are equally accurate. In
order to distinguish in which areas of the buckyball measurement area the algorithm might worsen the
estimates it needs to be assessed where the conventional method might perform well by for example
knowing a dominant flow direction. So an analysis based on the local conditions needs to be made to
determine the areas where the homogeneity conditions for each voxel hold quite well. This way for
some voxels the conventional method is used, while for the remaining the corrections can be applied.

The error analysis of the conventional method gave insight in when this method is accurate, and
could be of use here. The error analysis of the corrected method is not as useful, since in this method an
estimate depends on multiple other estimates and measurements, and so a clear analytical expression
is hard to obtain. The analysis did however show that just like in the original method the errors grow
linearly with distance, and a decrease in errors for the radial estimates.

As a point of discussion the simulation environment needs to be mentioned. As discussed before,
the choice of the measurement error model was made based on simplicity and not necessarily realism.
So to conclude more convincingly whether mass constraints also have benefit a more realistic simulation
for synthetic buckyball data is needed. An easy extension would be to simulate a three-dimensional
buckyball. In this case a three-dimensional variant of the streamfunction is needed, where a Helmholtz
decomposition can be of use. Even more helpful would be actual raw buckyball data, in which case a
similar and more convincing approach as in chapter 3 can be done.

Lastly, the goal of this chapter was to illustrate that also in the buckyball set up mass constraints
have a place. It was shown that in most simulations this is the case. For both the buckyball and the
common configurations higher order derivatives of the flow need to be neglected. With these results
in mind it is attempted in the next chapter to use the buckyball with mass constraints for measuring
internal waves.
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(a) Streamfunction ψ(x, z), where vectors in-
dicate (u(x, z), w(x, z)).

(b) Change in relative error per voxel by applying
mass constraints - mass constraints improve the
estimates almost everywhere.

(c) Relative error in the conventional estimates
per voxel.

(d) Relative error in the corrected estimates per
voxel.

Figure 4.6: Streamfunction ψ(x, z) = 2(x + 100)(z + 100) + 2((x + 100)2 − (z + 100)2) + 2x, where
conventional estimates have a voxel-averaged error of 21.8%, and with mass constraints 3.5%.
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(a) Streamfunction ψ(x, z), where vectors in-
dicate (u(x, z), w(x, z)).

(b) Change in relative error per voxel by apply-
ing mass constraints - mass constraints improve
the estimates in angular sections 2,3,5 and 6, but
worsen them in 1 and 4.

(c) Relative error in the conventional estimates
per voxel.

(d) Relative error in the corrected estimates per
voxel.

Figure 4.7: Streamfunction ψ(x, z) = 5(x + 100) + 1
100 (x + 100)2, where conventional estimates have

a voxel-averaged error of 6.9%, and with mass constraints 6.5%.
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(a) Streamfunction ψ(x, z), where vectors in-
dicate (u(x, z), w(x, z)).

(b) Change in relative error per voxel by applying
mass constraints - mass constraints improve the
estimates only in sections 1 and 4.

(c) Relative error in the conventional estimates
per voxel.

(d) Relative error in the corrected estimates per
voxel.

Figure 4.8: Streamfunction ψ(x, z) = −5((x+100)2 − (z+100)2) + 5x+5z+5x2, where conventional
estimates have a voxel-averaged error of 16.4%, and with mass constraints 15.6%.
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Chapter 5

The Buckyball and Internal Waves

Here the feasibility of the buckyball is examined by testing its capability to measure the shearing
motion of internal waves. First, internal waves are introduced, and then the current methods and
their disadvantages to measure internal waves using conventional ADCPs are discussed. Next, several
methods to capture internal waves using the buckyball are introduced, and their results are discussed.

5.1 Internal Waves

Internal waves are gravity waves occurring in the interior of a fluid. They exist in a stably stratified
fluid where lighter layers are above the heavier ones. The physics of these waves is similar to the
one of surface waves: an oscillating displacement of a pycnocline around the equilibrium. An internal
wave in a lab setting is illustrated in figure 5.1: an internal wave generated by an oscillating plate is
travelling through the fluid. This figure illustrates the characteristic aspects of an internal wave: it is
a bundle shooting obliquely through the fluid. Depending on the stratification of the fluid the bundle
travels at an angle with the vertical: in a non-stratified fluid the bundle travels horizontally, while
in a uniformly stratified fluid the bundle travels at an angle. Within the bundle itself the velocity is
described by a wave, as indicated by the arrows in figure 5.1. The particle velocity and energy of the
wave travel along the bundle, while the phase travels in the cross-bundle direction. An internal wave
needs a source: in the experimental set up it was an oscillating plate, while in the ocean it can be
storms or tides. In the ocean itself the internal waves can bounce off the surface or sea bed, and so
bathymetric features like shelf edges or underwater hills can amplify and direct internal waves[12]. As
nice overviews of the physics of internal waves several lecture notes are available [11][26].

Internal waves take place throughout the world’s oceans[18], and are therefore relevant for a number
of scientific and engineering fields. Internal waves transport energy, heat and nutrients to the deeper
parts of the oceans to help sustain life there[31]. There are suggestions that the pycnocline disturbance
caused by large internal waves have sunk multiple submarines[37], and that these waves can damage off-
shore drilling equipment[19]. It is therefore important to accurately measure internal waves. Relevant
wave parameters are the velocity and propagation direction of the wave, as well as its width and the
wave length in the cross-beam direction.

5.1.1 Observing Internal Waves

There are several ways to measure internal waves in the ocean. One way is using several moored
sensitive temperature sensors[15], or using a ship-mounted ADCP[12]. However, here the main focus is
on measuring internal wave properties using a single moored ADCP. This would also be the cheapest
option.

As touched upon earlier the standard algorithm (3.2) to transform beam measurements to current
estimates for a standard ADCP relies on the homogeneity assumption. This condition may be violated
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Figure 5.1: Schlieren photograph from [41] of an internal wave, where the arrows indicate flow direction.
The source of the wave is an oscillating beam, from which four wave beams in total originate.

when an internal wave passes through the measurement area, and in this case high error velocities
can occur. Scotti et al.(2005) introduced a modification to the standard algorithm in order to still
measure a passing internal wave using a single ADCP. It was assumed that when an internal wave
passed the beams of a moored ADCP, it will cause a significant increase in the intensity of the returning
echos. The time delay between the spikes in backscatter intensity for the different beams provides the
propagation speed of the passing wave, where it is assumed that the internal wave travels horizontally.
This last assumption holds in case of a surface or inter-facial wave. Using this speed a model of a
passing internal wave -with the propagation direction as unknown parameter- was taken and fitted to
the beam data such that the error velocity, mentioned in section 2.2, was minimized. This was applied
to raw ADCP-data in the Massachusetts Bay, a shelf sea. The results were verified by measuring the
same waves with an array of different instruments. It showed that this technique could produce the
propagation speed and direction of the passing internal waves reliably.

This method was improved upon by Chang et al.(2011) by including background flow and vertical
displacement into the fit to the internal wave model. This method was applied to measurements from
a single moored ADCP in the South-China Sea and yielded useful estimates of vertical displacement,
propagation direction and speed of internal waves. Using this very same method Endoh et al.(2022)
were able to again measure these wave properties, but now also the second-order structure within the
bundle of internal waves was determined. It needs to be noted that here two moored ADCPs in the
South-China Sea were used.

The method introduced by Scotti et al.(2005) and improved by Chang et al.(2011) has its disad-
vantages. Firstly, the fit of the internal wave model to the beams can only be done when the horizontal
length scale is small and the signal remains coherent for the time it takes the wave to pass through the
ADCP beam array, in other words there needs to be significant difference between beam measurements
within a measuring interval in order to detect a passing wave. Secondly, the signals in the backscatter
intensity need to be large enough to estimate the passage of time of the wave front between beams, so
mainly large-amplitude internal waves are suitable. Also, the modulation in backscatter intensity could
also be due to for example turbulence or zooplankton moving about[9]. And thirdly, in all mentioned
research the internal waves considered were all travelling horizontally. It was not discussed why only
internal waves moving along interfaces were considered, although these are the most relevant to the
off-shore industry. Moreover, if a wave travelling at an angle with the vertical hits the beam array of a
moored ADCP, then it is likely that one of the ADCP beams is hit nearly perpendicular by the wave
bundle, which would not produce a significant measurement by that beam.

The buckyball configuration might be able to solve these problems partially. Since the buckyball has
multiple beams directed in all directions it will observe a larger area (or volume) than a conventional

41



ADCP, and hence the first problem is partially helped. The second problem of needing a clear signal
in backscatter intensity arises because the propagation speed of the wave is needed before the fit to
the conventional ADCP-data is made. Now, with the buckyball the wave front will likely strike more
beams than in case of a regular set up, and so the propagation speed can be included in the fit to the
raw data. And the third problem may also be partially solved, since by hitting more beams it is also
likelier to hit more beams at a non-perpendicular angle.

5.2 Simulation Set Up

The following model is used to generate a standard two-dimensional internal wave[11, Ch 6]:{
u(x, z) = V exp

(
ξ/l

)2
cos(kξ)

w(x, z) = µV exp
(
ξ/l

)2
cos(kξ)

(5.1)

where ξ = µx− z + z0

and µ = tan(φ)

where V the velocity amplitude, ξ the across-bundle coordinate, µ follows from φ which is the angle
of the bundle with the horizontal, z0 is where the centre of the bundle hits the vertical axis, l is the
typical width of the bundle and k the wave number. The resulting wave is visualized in figure 5.2(a),
and next to it the simulation set up from the previous chapter with the 2% measurement error. So in
figure 5.2(a) a bundle whose shape is Gaussian, shoots through the basin and inside the bundle the
flow oscillates with wave number k. The phase moves in the direction of increasing ξ.

Now, this simulation environment has some weaker points, especially compared to the non-linear
internal wave models used to create synthetic ADCP-data in literature[3][30][34]. However, all those
models create horizontally travelling waves, and an extra demand here is a wave travelling at an angle,
so the cited models were not copied. These models did though include a temporal component, whereas
the model here has not. This is done for simplicity reasons, and the synthetic data presented here
to the buckyball would be realistic if the passing internal wave is wide enough to stretch across the
whole measurement area, or if the beam transformation step from Scotti et al.(2005) has already
been performed. The model can however be easily extended to include this temporal component by
including a frequency term and time in the cosine.

In figure 5.2(b) the simulation set up is visualized: a typical internal wave beam striking several
beams of the two-dimensional buckyball. Note that in the model no background flow is generated,
although it can have a large impact on the measurement of the wave parameters[3][30][36]. The
reasoning behind this is that the background flow can simultaneously be determined by the non-
stricken beams of the buckyball via the conventional method, i.e. the bottom right beams in figure
5.2(b). So the raw data from the stricken beams can be corrected with this background flow, and so
it is as if a wave without background flow is measured.

5.3 Methods

5.3.1 Abandoned Approaches

Initially it was attempted to reconstruct the internal wave from the measurements by using the original
discrete approach: the measurement area is divided into voxels and for each voxel a two-dimensional
velocity estimate is made. The two methods from chapter 4 were applied: both could yield accurate
estimates if the flow had no significant derivatives, and the corrected method can partially compensate
the error introduced by a first order derivative. However both failed: the conventional method as well
as adding mass constraints cannot produce accurate estimates for the internal wave since the wave
contains significant second or higher order derivatives of the velocities.
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(a) u(x, z) of generated internal wave, with
parameters denoted, and vectors indicating
(u(x, z), w(x, z)).

(b) Simulation set up with the generated internal
wave, with buckyball parameters N = 20, d = 4
and R0 = 10.

Figure 5.2: Generated internal wave with parameters V = 5, ϕ = 50◦, z0 = 50, l = 20 and k = 0.0025
in basin (x, z) ∈ [−100, 100]2.

Next a continuous approach was attempted. The standard procedure of dividing the measurement
area into voxels was abandoned, and it was attempted to estimate the flow field in a continuous way
instead of using a discrete set of voxel-based estimates. It is assumed that the unknown streamfunction
can be written as linear combination of some basis functions. So in other words it is assumed that one
can write:

ψ(x, z) =
∑
j

cjfj(x, z)

with basis functions fj and coefficient cj . These coefficients can be determined with the measurements:

Mi,n = cos θiψz(si,n)− sin θiψx(si,n)

=
∑
j

cj
(
cos θi

∂fj
∂z

(si,n)− sin θi
∂fj
∂x

(si,n)
)

which yields 6N equations for the coefficients cj . Note that mass conservation is implicitly enforced
by assuming that the measurements all follow from an underlying streamfunction.

The first set of basis functions are Bessel functions, and the following is in essence a Fourier-Bessel
transform[6][10][20]. This approach was chosen since it is the two-dimensional Fourier transform in
polar coordinates, and the measurements are regularly spaced in this coordinate system. Note that
in this polar coordinate system (r, θ) are radius and polar angle, (vr, vθ) are the radial and azimuthal
velocity which follow from a streamfunction ψ(r, θ), where (vr, vθ) = ( 1rψθ,−ψr). It is assumed that:

ψ(r, θ) =

Q∑
q=1

P∑
p=0

(
Apq cos(pθ) +Bpq sin(pθ)

)
Jp

(αpq

L
r
)

where

Apq, Bpq are real coefficients

Jp is the pth Bessel function of the first kind with p ≥ 0

αpq is the qth positive root of Jpwithq ≥ 1
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and L is the radius of the disk domain that is considered. Note that the radial velocity vr(r, θ) =
1
rψθ(r, θ) is always zero at the edge of the domain r = L, so with these basis functions there are some
restrictions. Here L = rN + d/2 is taken such that the farthest echoes are just included in the domain
considered. Also Bpq are zero for p = 0, since their values do not matter in the computation of ψ.

Along Bessel functions for the radial basis functions also Zernike polynomials are tried. Zernike
polynomials are often used in optics, and might therefore also be useful here. They were chosen as
alternative to the Bessel functions, since these do not need to be zero at the edge of the disk domain.
So with this so-called Fourier-Zernike Transform[10] a non-zero radial velocity at the edge can be
reproduced. The streamfunction is now written as:

ψ(r, θ) =

Q∑
q=1

P∑
p=0

(
Apq cos(pθ) +Bpq sin(pθ)

)
Rp

q

( r
L

)
where

Apq, Bpq are real coefficients

Rp
q is the radial part of the Zernike polynomial

of radial degree q and azimuthal degree p with q ≥ p ≥ 0

cos(pθ)Rp
q is the even Zernike polynomial Zp

q (r, θ)

sin(pθ)Rp
q is the uneven Zernike polynomial Z−p

q (r, θ)

and again L = rN + d/2 is the radius of the disk domain that is considered, but -as mentioned- unlike
before the radial velocity need not be zero at the edge, and again Bpq are zero for p = 0. The Zernike
polynomial Z0

0 is omitted, since this is a constant function, and hence not relevant for a streamfunction.
The derivation of the coefficients in both these transforms is given in Appendix B.1. Both sets

of basis functions are orthogonal which simplifies the determination of the coefficients. Also in figure
5.3 a scope of the different basis functions is given. Although with the Fourier-Bessel as with the
Fourier-Zernike Transform the underlying streamfunction may now contain higher order derivatives,
the results still yielded an inaccurate figure of the internal wave input. The number of coefficients in
the transformation were not enough to reproduce the wave, and hence extract the relevant parameters.

5.3.2 Fit to the Wave Model

Instead of trying to reproduce an accurate image of the measurement area now a fit of an internal
wave is done to the measurements in order to compute the parameters directly [30][34]. If an internal
wave were to pass through the area of the buckyball then one beam would report a burst of water
moving towards the buckyball, and another would report a burst moving away, see figure 5.2(b). In
such a case one could presume that an internal wave passed through, although similar signals can also
be produced by turbulence[34]. So assuming an internal wave passed through, the model (5.1) is fitted
to the measurement data.

Based on an internal wave, (5.1), a measurement, i.e. the radial velocity at distance rn and angle
θi, should be:

cos θiu(si,n) + sin θiw(si,n) =
(
cos θi + µ sin θi

)
V exp

(
− (ξi,n/l)

2
)
cos(kξi,n)

where ξi,n = µrn cos θi − rn sin θi + z0

and so a cost function J can be defined as:

J : (V, µ, l, z0, k) 7→
6∑

i=1

N∑
n=1

((
cos θi + µ sin θi

)
V exp

(
− (ξi,n/l)

2
)
cos(kξi,n)−Mi,n

)2

.

An estimate ũ for the wave parameters u = (V, µ, l, z0, k), see figure 5.2(a), minimizes this cost
function. Initially it was tried to approximate ũ using Newton’s Algorithm[1], but here the algorithm
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(a) Fourier-Bessel function
J0(α05r).

(b) Fourier-Bessel function
J2(α24r) sin(2θ).

(c) Fourier-Bessel function
J5(α54r) cos(5θ).

(d) Zernike polynomial
Z0

4 (r, θ) = R0
4(r).

(e) Zernike polynomial
Z−1

5 (r, θ) = sin(θ)R1
5(r).

(f) Zernike polynomial
Z3

5 (r, θ) = cos(3θ)R3
5(r).

Figure 5.3: A couple examples of the used basis functions on the Cartesian plane [0, 1]× [0, 1].

would sometimes divert and produce an estimate corresponding to a local maximum of J . Therefore
the Gradient Descent Method was used[21, Ch 6]. Suppose a guess ũ0 for the wave parameters, then
the next improved estimate can be found via:

ũn+1 = ũn − λJ ′(ũn

)
for n ∈ N0 (5.2)

where λ is the step size and

J ′(V, µ, l, z0, k) =
( ∂J
∂V

,
∂J

∂µ
,
∂J

∂l
,
∂J

∂z0
,
∂J

∂k

)
(V, µ, l, z0, k)

= 2
∑
i,n

(
ρIW (rn, θi)−Mi,n

)(∂ρIW
∂V

,
∂ρIW
∂µ

,
∂ρIW
∂l

,
∂ρIW
∂z0

,
∂ρIW
∂k

)
(rn, θi)

where ρIW (r, θ) indicates the radial velocity of the internal wave (5.1) at radius r and polar angle θ
and so

ρIW (r, θ) =
(
cos θi + µ sin θi

)
V exp

(
− (ξi,n/l)

2
)
cos(kξi,n)

∂ρIW
∂V

(rn, θi) = (cos θi + µ sin θi) exp
(
− (ξi,n/l)

2
)
cos(kξi,n)

∂ρIW
∂µ

(rn, θi) = (cos θi + µ sin θi)V exp
(
− (ξi,n/l)

2
)(−2rnξi,n

l2
cos θi cos(kξi,n)

− krn cos θi sin(kξi,n) + sin θi cos(kξi,n)
)

∂ρIW
∂l

(rn, θi) =
2ξ2i,n
l3

(cos θi + µ sin θi)V exp
(
− (ξi,n/l)

2
)
cos(kξi,n)

∂ρIW
∂z0

(rn, θi) = (cos θi + µ sin θi)V exp
(
− (ξi,n/l)

2
)
cos(kξi,n)

(
− 2ξi,n

l2
cos(kξi,n)− k sin(kξi,n)

)
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(a) Several different φ-values as
input, and their reproduced re-
sults for two different k-values.

(b) Several different V -values as
input, and their reproduced re-
sults for two different k-values.

(c) Several different l-values as
input, and their reproduced re-
sults for two different k-values.

Figure 5.4: Reproduced internal wave parameters, where input parameters are V = 1m/s, φ = 50◦,
l = 5m and z0 = 25m, unless otherwise indicated.

∂ρIW
∂k

(rn, θi) = ξi,n(cos θi + µ sin θi)V exp
(
− (ξi,n/l)

2
)
sin(kξi,n).

This method provided useful results which will be discussed in the next section.

5.4 Results: Internal Wave Fit

For the transducer parameters in the simulation realistic values are chosen: N = 50 cells, R0 = 2m
and d = 1m, while for the internal wave parameters values were based on Stepanyants(2021). It is
tested how well the velocity amplitude V , the propagation angle φ and characteristic width l can
be reproduced from the measurements. As explained before any background flow is omitted in the
simulation, but the background flow can still induce an extra measurement error. Suppose a zonal
background flow of U ∼ 1m/s, which is equivalent to a radial velocity of U cos θi in beam i. So next
to the original 2% measurement error in measuring the internal wave, an additional Gaussian error is
added with standard deviation |0.02 × U cos θi|. The results are in figures 5.4 for two values of the
wave number k.

For each simulation the iteration started with an initial guess ũ0 that is the true u with a 10%
proportional Gaussian error. The iteration was either terminated after 1500 steps, or if the cost function
J is smaller than 0.2. These choices were made to limit CPU-time. The step size was λ ∼ 0.0001.

The results show that the wave parameters V , φ and beam width l can be reproduced accurately
with an error of roughly 0.2m/s for V , 3◦ for φ and 5% for l. For all parameters the proportional
error seems to be within 10%. There seems to be no effect of the wave number on the accuracy of
the produced estimates. Furthermore, there is for each parameter a noteworthy anomaly. Firstly
for V it seems that the estimates for V ∼ 1.5m/s are significantly more inaccurate than for the other
values. There is no clear argument why this should be the case, and moreover there are only two points
deviating from the diagonal, so it could be a coincidence. Then for φ it shows that near φ ∼ 20◦ the
estimates are more inaccurate, this is because at this input angle the position of the internal wave
is a bit unfortunate: if the internal wave were more horizontal it would hit three beams, while if it
were more vertical it would hit only two beams but it hits the second beam at a more acute angle.
Lastly, it is notable that the error in the width-estimates seems to be proportional, whereas that is not
the case for the velocity V . This is because the model is linear in V , whereas the model results are
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ρ|IW ∼ exp(−l−2), so only a proportional increase in l has impact. Note that for φ no proportional
error is expected, since its magnitude is not physical.

5.5 Conclusion on Internal Wave Measurements

It was shown that fitting the internal wave model to the measurements yields estimates of the velocity
V , angle ϕ and width l with a proportional error of no more than 10%. This should be mainly seen as a
proof of concept: the buckyball is able to extract the relevant wave parameters from a passing internal
wave. Comparing this ability with a conventional ADCP’s ability can be done qualitatively but not
quantitatively. Due to the additional beams a buckyball should be able to measure an internal wave
travelling at an angle, without relying on backscatter intensity to extract the velocity and using its
other beams to determine the background velocity, unlike a standard ADCP. So one could expect -also
because a buckyball makes more measurements- that the buckyball provides more accurate estimates
for a wider range of internal waves.

It cannot be said in a quantitative way whether the buckyball delivers more accurate estimates
based on the results presented here. Firstly because the simulation set up has its weak points: it
does not contain a temporal component, the measurement errors are simplified, and it is only two-
dimensional. Secondly, the exact same model to generate the flow is also fitted to the synthetic
measurements. So one could expect a good fit. Thirdly, the algorithm to minimize the cost function
can be greatly improved upon. Here the Gradient Descent Method was chosen, since it was easy to
implement, but more advanced and computationally efficient algorithms, like the Conjugate Gradient
Method for example[21, Ch 6], should be used. This was not done due to time constraints. So in both
the synthetic data as in the post-processing significant improvements can be made, and therefore the
results are not quantifiable. In order to obtain those an experimental set up of the buckyball should
be done.

The purpose of this chapter was to illustrate the buckyball’s capabilities in measuring internal
waves, which is lacking in the current ADCPs. This has been shown qualitatively, and can be included
in the feasibility analysis of the buckyball.
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Chapter 6

Conclusion and Outlook

6.1 Application of Mass Constraints

In both chapters 3 and 4 the estimates in each voxel were corrected by demanding that the mass of
the water is conserved between voxels. This is a novel post-processing procedure for raw ADCP-data
that seems very promising. In chapter 3 mass constraints are applied to a standard ADCP set up in
a horizontally dominated flow. Here it was shown that correcting the estimates by demanding mass
conservation leads to theoretically more accurate vertical velocity estimates. This was also confirmed
by post-processing the actual raw ADCP-data: the new vertical velocity estimate was less noisy and
physically more sound. Moreover, with this novel vertical velocity estimate the turbulence anisotropy
ratio could now be estimated, whereas typically it has to be postulated. In chapter 4 mass constraints
are used to correct the estimates in each voxel of a two-dimensional ADCP-buckyball. The theoretical
analysis showed that depending on the local flow conditions in the voxel the corrections could improve
or worsen the estimate. Similar results were provided by simulations. Over all voxels averaged the
corrections did improve the estimates. Also, because with this post-processing method estimates are
used to correct other nearby estimates, the (in)accuracy of the estimate in each voxel was roughly
equally large as in other voxels. So as a bonus with mass constraints the buckyball could determine
the flow in each direction with the same accuracy.

When comparing the findings of chapter 3 with those of chapter 4 it seems that mass constraints
have more use in the conventional set up instead of the two-dimensional buckyball. However, this
assessment is not completely fair. Firstly, in chapter 3 experimental data could be used to evaluate
the post-processing method, whereas for the buckyball synthetic data had to be used. The simulation
environment to generate this data has its weak points, such as the simplified model for the intra-beam
errors. To get a fairer evaluation of the use of mass constraints with the buckyball actual experimental
data is needed. Secondly, in chapter 3 an extra particular was used: the horizontally dominant flow.
Using this it was assessed that the conventional horizontal flow estimates were reliable, and only the
vertical estimate needed correction. A dominant flow direction would have also aided in the case of
the buckyball. As was concluded in chapter 4 the angular sections where the conventional method
performed well, were the sections where the mass constraint corrections did not work. So knowing a
dominant flow direction would indicate the sections where the conventional method would perform well,
and hence to which sections the mass constraints should be applied. For both ADCP configurations
can be concluded that mass constraints are an improvement in combination with a dominant flow
direction.

Also in the conventional set up and some angular sections of the buckyball it was seen that the
usual homogeneity assumption can be relaxed, and that with mass constraints a linear change in the
flow velocities can be handled. This indicates that mass constraints can also be of use in other ADCP-
configurations, and a next step is to apply mass constrains to other configurations. It is also interesting
to investigate the use of mass constraints with conventional raw ADCP-data from measurement sites
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other than a shallow sea. For specifically the use of mass constraints with the buckyball a logical
follow up is to extend the simulation to the three dimensions. For this setting it is expected that
the corrections are also here beneficial. Moreover, mass constraints offer opportunities in determining
turbulence parameters. All in all, it can be concluded that applying mass constraints can increase
accuracy of ADCP-estimates, and should be investigated further.

6.2 Feasibility of the Buckyball

Results regarding the feasibility of the buckyball design were given in chapters 4 and 5. In chapter 2
as advantage of the buckyball was already mentioned that it is able to provide estimates of the flow in
a multitude of directions. In chapter 4 it was shown that with mass constraints the estimates in each
direction can be equally accurate. Moreover, in chapter 4 it was shown that flows that do not fulfill the
homogeneity condition can still be accurately determined by a buckyball with mass constraints, see
figure 4.6. So a buckyball can cover as a single moored device a larger measurement volume without
introducing large inaccuracies in any particular direction.

Later in chapter 5 the main motivation for the buckyball was investigated: can a buckyball measure
a more complicated flow like the shearing motion of an internal wave? With its multiple beams a
buckyball should be able to reliably measure internal wave parameters. In chapter 5 a proof of concept
is shown that a buckyball can measure the relevant wave parameters without the restrictions that a
conventional set up has.

So based on these results a buckyball can fulfill its designated purpose. However concrete state-
ments regarding its feasibility are difficult to make. This is mainly due to the simulated environment.
In order to compare the synthetic buckyball measurements of internal waves with those of a real con-
ventional set up the simulation has to be improved. A next step is to generalize the simulation to
three dimensions, and furthermore include more realistic effects like the instrument being off-pitch and
rotating. Furthermore, improvements in the internal wave model to also include solitons for example
can be useful. Also upgrades in the numerical algorithm to extract the wave properties can be made.
With these effects the simulation results are more realistic, and a comparison with data from other
configurations can be made.

There is also an abundance of further research opportunities left. It was attempted in section
5.3.1 to reconstruct the internal wave using basis functions that allow for second-order derivatives
of the streamfunction. They failed in reconstructing the internal wave, but could still be of use in
reconstructing other complicated flow fields, like vortices. If this succeeds the velocity field in the
whole sphere can be visualized in a continuous manner instead of being approximated by a discrete
set of estimates. Furthermore, the buckyball might also be used in estimating turbulence parameters.
As an example the anisotropy parameter can be estimated, since each velocity direction is measured
by multiple beams. To conclude, the ADCP-buckyball offers multiple possible improvements to the
standard design, as has been qualitatively shown in case of internal wave measurements.
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Appendix A

Derivations in Chapter 4

In all the derivations an underlying true streamfunction ψ(x, z) is used, with velocities (u(x, z), w(x, z)).
It is assumed that its third and higher-order derivatives are negligible.

A.1 Approximation of Best Estimates

Consider a voxel Ω1,n lying in the first angular section. As a first step to simplify calculations the
voxel is translated a distance rn

2

√
3 to the left along the x-axis. So the centre of the voxel lies now at

the origin. Also with h = d
2

√
3 its width is denoted, and with H = rn

2 the intersect of the top of the
voxel with the vertical axis is denoted. The area Ω1,n can then be described by:

Ω1,n :

{
−h/2 ≤ x ≤ h/2

−H − x√
3
≤ y ≤ H + x√

3
.

In the two following approximations Simpson’s rule will be used[1]. Simpson’s rule is as follows:

Suppose f ∈ C4
(
[a, b]

)
then∫ b

a

f(x) dx =
b− a

6

(
f(a) + 4f(

a+ b

2

)
+ f(b)

)
− 1

90

(b− a

2

)5
f (4)(ξ) for a ≤ ξ ≤ b. (A.1)

Horizontal Velocity Estimate

For the best possible horizontal velocity estimate in the translated voxel Ω1,n:

U1,n =
1

|Ω1,n|

∫
Ω1,n

ψz(x, z) dxdz

=
1

|Ω1,n|

∫ h/2

−h/2

∫ H+x/
√
3

−H−x/
√
3

ψz(x, z) dzdx

=
1

|Ω1,n|

∫ h/2

−h/2

ψ(x,H +
x√
3
)− ψ(x,−H − x√

3
) dx.

Then Simpson’s rule is applied to the first part of the integral, where the notation H± = H ± d
4 is

used: ∫ h/2

−h/2

ψ(x,H +
x√
3
) dx ≈ h

6

[
ψ(−h

2
, H−) + 4ψ(0, H) + ψ(

h

2
, H+)

]
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≈ hψ(0, 0) + hHψz(0, 0)

+
h3

24
ψxx(0, 0) + h

(H2

2
+
d2

96

)
ψzz(0, 0) +

dh2

24
ψxz(0, 0)

where in the last step a Taylor-expansion around voxel centre (0, 0) is performed. A similar computation
can be done to the second part of the integral:∫ h/2

−h/2

ψ(x,−H − x√
3
) dx ≈ hψ(0, 0)− hHψz(0, 0) +

h3

24
ψxx(0, 0)

+ h
(H2

2
+
d2

96

)
ψzz(0, 0)−

dh2

24
ψxz(0, 0).

Combining these last two equations yields:∫
Ω1,n

ψz(x, z) dxdz ≈ 2hHψz(0, 0) +
dh2

12
ψxz(0, 0).

Then, together with |Ω1,n| = rn
d
2

√
3 = 2hH the approximation is finalized:

U1,n ≈ 1

2hH

(
2hHψz(0, 0) +

dh2

12
ψxz(0, 0)

)
= ψz(0, 0) +

d2

24rn

√
3ψxz(0, 0). (A.2)

Vertical Velocity Estimate

To approximate the best possible vertical velocity estimate the translated voxel Ω1,n is divided into
three disjoint areas:

Ωa =

{
−H+ ≤ y ≤ −H−√
3(y +H) ≤ x ≤ h/2

(A.3)

Ωb =

{
−H− ≤ y ≤ H−

h/2 ≤ x ≤ h/2
(A.4)

Ωc =

{
H− ≤ y ≤ H+√
3(y −H) ≤ x ≤ h/2

(A.5)

so Ω1,n = Ωa ∪ Ωb ∪ Ωc. Now the best possible vertical velocity estimate is:

W1,n = − 1

|Ω1,n|

∫
Ω1,n

ψx(x, z) dxdz

= − 1

|Ω1,n|

(∫
Ωa

ψx(x, z) dxdz +

∫
Ωb

ψx(x, z) dxdz +

∫
Ωc

ψx(x, z) dxdz
)

Each integral is computed separately with Simpson’s rule:∫
Ωc

ψx(x, z) dxdz =

∫ H+

H−

ψ(
h

2
, z)− ψ(

√
3(z −H), z) dz

≈ d

12

[
ψ(
h

2
, H−)− ψ(−h

2
, H−) + 4ψ(

h

2
, H)− 4ψ(0, H)

]
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∫
Ωa

ψx(x, z) dxdz =

∫ −H+

−H−

ψ(
h

2
, z)− ψ(

√
3(z +H), z) dz

≈ d

12

[
ψ(
h

2
,−H−)− ψ(−h

2
,−H−) + 4ψ(

h

2
,−H)− 4ψ(0,−H)

]
∫
Ωb

ψx(x, z) dxdz =

∫ H−

−H−

ψ(
h

2
, z)− ψ(−h

2
, z) dz

≈ H−

3

[
ψ(
h

2
,−H−)− ψ(−h

2
, H−) + 4ψ(

h

2
, 0)

− 4ψ(−h
2
, 0) + ψ(

h

2
, H−)− ψ(−h

2
, H−)

]
.

Adding these three integrals together, and Taylor-expanding the terms around voxel centre (0, 0) yields:∫
Ω1,n

ψz(x, z) ≈ 2hHψx(0, 0) +
dh2

12
ψxx(0, 0)

and dividing by −|Ω1,n| produces the desired estimate:

W1,n ≈ −ψx(0, 0)−
d2

24rn

√
3ψxx(0, 0). (A.6)

Generalization

Next the voxel is translated back to its original position, so the voxel centre (0, 0) returns to x1,n =
rn
2

√
3(1, 0). Hence: 

U1,n ≈ ψz(x1,n) +
d2

24rn

√
3ψxz(x1,n)

= u(x1,n)− d2

24rn

√
3wz(x1,n)

W1,n ≈ −ψx(x1,n)− d2

24rn

√
3ψxx(x1,n)

= w(x1,n) +
d2

24rn

√
3wx(x1,n).

(A.7)

Using the symmetric set up of the buckyball this can be generalized to every voxel Ωi,n. This is
done by using a polar coordinate system. Suppose radius and polar angle (r, θ) with radial and az-
imuthal velocities (ρ(r, θ), π(r, θ)). Note that u(x1,n) = ρ( rn2

√
3, 0), w(x1,n) = π( rn2

√
3, 0), wz(x1,n) =

1
rn
πθ(rn, 0) and wx(x1,n) = πr(

rn
2

√
3, 0). So (A.1) are rewritten as:

U1,n ≈ ρ(
rn
2

√
3, 0)− d2

24r2n

√
3πθ(

rn
2

√
3, 0)

W1,n ≈ π(
rn
2

√
3, 0) +

d2

24rn

√
3πr(

rn
2

√
3, 0).

The buckyball is rotational symmetric over angle π
6 , and so these approximations should hold for every

angular section, in other words:{
Ui,n ≈ ρ( rn2

√
3,Θi)− d2

24r2n

√
3πθ(

rn
2

√
3,Θi)

Wi,n ≈ π( rn2
√
3,Θi) +

d2

24rn

√
3πr(

rn
2

√
3,Θi).

(A.8)

Now the standard transformation to Cartesian velocities:

ρ(r, θ) = cos(θ)u(r cos θ, r sin θ) + sin(θ)w(r cos θ, r sin θ)

π(r, θ) = cos(θ)w(r cos θ, r sin θ)− sin(θ)u(r cos θ, r sin θ).
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and for the gradients:

1

r
πθ(r, θ) = cos θ

(
cos(θ)wz(r cos θ, r sin θ)− sin(θ)uz(r cos θ, r sin θ)

)
− sin θ

(
cos(θ)wx(r cos θ, r sin θ)− sin(θ)ux(r cos θ, r sin θ)

)
πr(r, θ) = cos θ

(
cos(θ)wx(r cos θ, r sin θ)− sin(θ)ux(r cos θ, r sin θ)

)
+ sin θ

(
cos(θ)wz(r cos θ, r sin θ)− sin(θ)uz(r cos θ, r sin θ)

)
.

Inserting these transformations into (A.8) produces the desired results:

Ui,n ≈ψz(xi,n) +
d2
√
3

24rn(
− cos2(Θi) cos(θi+1)ψxx(xi,n)

+
1

2
(2 cos(Θi) + sin(θi+1)− sin(3θi))ψxz(xi,n)

+
1

4
(3 sin(Θi)− 4 cos(θi+1) + cos(3θi))ψzz(xi,n)

)
Wi,n ≈− ψx(xi,n) +

d2
√
3

24rn(
− sin2(Θi) sin(θi+1)ψzz(xi,n)

+
1

2
(−2 sin(Θi) + cos(θi+1) + cos(3θi))ψxz(xi,n)

+
1

4
(−3 cos(Θi)− 4 sin(θi+1)− sin(3θi))ψxx(xi,n)

)
.

A.2 Approximation of Conventional Estimates

As mentioned in section 4.3 the conventional estimates (4.4) are:ûi,n = 2√
3

(
sin(θi)Mi−1,n − sin(θi−1)Mi,n

)
ŵi,n = 2√

3

(
cos(θi−1)Mi,n − cos(θi)Mi−1,n

)
.

and the measurements can be expressed in the streamfunction as:

Mi,n = cos(θi)ψz(si,n)− sin(θi)ψx(si,n)

where si,n = rn(cos θi, sin θi) is the measurement point. First a Taylor expansion of Mi,n and Mi−1,n

around voxel centre xi,n is done, where hn = rn
2

√
3 denotes the distance of the voxel centre to origin:

Mi,n =cos(θi)ψz(si,n)− sin(θi)ψx(si,n)

= cos(θi)
[
ψz(xi,n) + (rn cos θi − hn cosΘi)ψxz(xi,n) + (rn sin θi − hn sinΘi)ψzz(xi,n)

]
− sin(θi)

[
ψxxi,n) + (rn cos θi − hn cosΘi)ψxx(xi,n) + (rn sin θi − hn sinΘi)ψxz(xi,n)

]
=cos θiψz(xi,n)− sin θiψx(xi,n)

− rn sin θi(cos θi −
√
3

2
cosΘi)ψxx(xi,n) + rn cos θi(sin θi −

√
3

2
sinΘi)ψzz(xi,n)

+ (rn cos θi(cos θi −
√
3

2
cosΘi)− rn sin θi(sin θi −

√
3

2
sinΘi)ψxz(xi,n)
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and similarly:

Mi−1,n =cos θi−1ψz(xi,n)− sin θi−1ψx(xi,n)

− rn sin θi−1(cos θi−1 −
√
3

2
cosΘi)ψxx(xi,n) + rn cos θi−1(sin θi−1 −

√
3

2
sinΘi)ψzz(xi,n)

+ (rn cos θi−1(cos θi−1 −
√
3

2
cosΘi)− rn sin θi−1(sin θi−1 −

√
3

2
sinΘi)ψxz(xi,n).

Inserting both these expressions for Mi,n and Mi−1,n into (4.4) produces the desired results:

ûi,n ≈ψz(xi,n) +
2√
3
rn[

sin(θi−1) sin(θi)(cos(θi)− cos(θi−1))ψxx(xi,n)

− (sin(θi−1) sin(θi)(cos(θi)− cos(θi−1)) +
3

4
sin(Θi))ψzz(xi,n)

+ (sin(θi) cos(2θi−1)− sin(θi−1) cos(2θi)−
3

4
cos(Θi))ψxz(xi,n)

]
ŵi,n ≈− ψz(xi,n) +

2√
3
rn[

cos(θi−1) cos(θi)(sin(θi)− sin(θi−1))ψzz(xi,n)

− (cos(θi−1) cos(θi)(sin(θi)− sin(θi−1))−
3

4
cos(Θi))ψxx(xi,n)

− (cos(θi) cos(2θi−1)− cos(θi−1) cos(2θi)−
3

4
sin(Θi))ψxz(xi,n)

]
.

A.3 Mass Conservation of Enclosed Hexagons

The sum over all measurements within the same ring can be approximated as follows:

6∑
i=1

Mi,n =

6∑
i=1

[
cos θiψz(si,n)− sin θiψx(si,n)

]
≈

6∑
i=1

[
cos θi[ψz(0, 0) + rn cos θiψxz(0, 0) + rn sin θiψzz(0, 0)]

− sin θi[ψx(0, 0) + rn cos θiψxx(0, 0) + rn sin θiψxz(0, 0)]
]

where a first order Taylor expansion around the origin is done

= ψz(0, 0)

6∑
i=1

cos θi − ψz(0, 0)

6∑
i=1

sin θi

+ rn
[
(ψzz(0, 0)− ψxx(0, 0))/2

6∑
i=1

sin 2θi + ψxz(0, 0)

6∑
i=1

cos 2θi
]

= 0.

Summing over (4.9) yields:

6∑
i=1

ρ̄i,n =
rn − d/2

rn + d/2

6∑
i=1

ρ̄i,n−2 −
2d

2rn + d

6∑
i=1

ρ̄i,n−1 + 0

54



and this equation can be reiterated with (4.9) till
∑6

i=1 ρ̄i,1 and
∑6

i=1 ρ̄i,2 are the only remaining sums.
Now note that ρ̄i,1 = ρ̂i,1 and ρ̄i,2 = ρ̂i,2 and that:

6∑
i=1

ρ̂i,n =
1√
3

6∑
i=1

Mi,n +Mi−1,n

= 0 with the previous results,

and so
∑6

i=1 ρ̄i,n must be zero too. Hence
∑6

i=1Mi,n and
∑6

i=1 ρ̄i,n are zero up to second-order
Taylor-expansion of the streamfunction.

A.4 Fit of Azimuthal Estimators

So derived is the iterative equation (4.13):

π̄i,n = π̄i−1,n +
rn

2d
√
3

(
ρ̄i,n−1 − ρ̄i,n+1 + ρ̄i−1,n−1 − ρ̄i−1,n+1

)
−Mi−1,n,

and together with π̄1,n = ωn all the new azimuthal estimators can be derived, as is partly done in
(4.14):

π̄1,n = ωn

π̄2,n = ωn +
rn

2d
√
3

(
ρ̄2,n−1 − ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n

π̄3,n = ωn +
rn

2d
√
3

(
ρ̄3,n−1 − ρ̄3,n+1 + 2ρ̄2,n−1 − 2ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n −M2,n

π̄4,n = ωn +
rn

2d
√
3

(
ρ̄4,n−1 − ρ̄4,n+1 + 2ρ̄3,n−1 − 2ρ̄3,n+1 + 2ρ̄2,n−1 − 2ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n −M2,n −M3,n

π̄5,n = ωn +
rn

2d
√
3

(
ρ̄5,n−1 − ρ̄5,n+1 + 2ρ̄4,n−1 − 2ρ̄4,n+1 + 2ρ̄3,n−1 − 2ρ̄3,n+1 + 2ρ̄2,n−1 − 2ρ̄2,n+1

+ ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n −M2,n −M3,n −M4,n

π̄6,n = ωn +
rn

2d
√
3

(
ρ̄6,n−1 − ρ̄6,n+1 + 2ρ̄5,n−1 − 2ρ̄5,n+1 + 2ρ̄4,n−1 − 2ρ̄4,n+1 + 2ρ̄3,n−1 − 2ρ̄3,n+1

+ 2ρ̄2,n−1 − 2ρ̄2,n+1 + ρ̄1,n−1 − ρ̄1,n+1

)
−M1,n −M2,n −M3,n −M4,n −M5,n

Now ωn is determined by fitting the expressions (4.14) to the conventional estimates:

ωn = arg min

√√√√ 6∑
i=1

(π̄i,n − π̂i,n)2.

This is done by equalizing its derivative with respect to ωn to zero:

0 =
∂

∂ωn

√√√√ 6∑
i=1

(π̄i,n − π̂i,n)2

=

∑6
i=1 π̄i,n − π̂i,n√∑6
i=1(π̄i,n − π̂i,n)2
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and so

0 =

6∑
i=1

π̄i,n − π̂i,n

= 6ωn +
rn

2d
√
3

(
ρ̄6,n−1 − ρ̄6,n+1 + 3ρ̄5,n−1 − 3ρ̄5,n+1 + 5ρ̄4,n−1 − 5ρ̄4,n+1 + 7ρ̄3,n−1 − 7ρ̄3,n+1

+ 9ρ̄2,n−1 − 9ρ̄2,n+1 + 5ρ̄1,n−1 − 5ρ̄1,n+1

)
− 5M1,n − 4M2,n − 3M3,n − 2M4,n −M5,n −

6∑
i=1

π̂i,n.

Hence it can be concluded:

ωn =
1

6

6∑
i=1

π̂i,n − 1

6

rn

2d
√
3

(
ρ̄6,n−1 − ρ̄6,n+1 + 3ρ̄5,n−1 − 3ρ̄5,n+1 + 5ρ̄4,n−1 − 5ρ̄4,n+1

+ 7ρ̄3,n−1 − 7ρ̄3,n+1 + 9ρ̄2,n−1 − 9ρ̄2,n+1 + 5ρ̄1,n−1 − 5ρ̄1,n+1

)
+

1

6

(
5M1,n + 4M2,n + 3M3,n + 2M4,n +M5,n

)
=

1

6

6∑
i=1

π̂i,n +
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
+

1

6

rn

d
√
3

(
2ρ̄6,n−1 − 2ρ̄6,n+1 + ρ̄5,n−1 − ρ̄5,n+1 − ρ̄3,n−1 + ρ̄3,n+1 − 2ρ̄2,n−1 + 2ρ̄2,n+1

)
where in the last step it is used that

∑6
i=1Mi,n = 0 and

∑6
i=1 ρ̄i,n±1 = 0. Now note that since

π̂i,n =Mi,n −Mi−1,n that
∑6

i=1 π̂i,n = 0. Therefore the final expression:

ωn =
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
+

1

6

rn

d
√
3

(
2ρ̄6,n−1 − 2ρ̄6,n+1 + ρ̄5,n−1 − ρ̄5,n+1 − ρ̄3,n−1 + ρ̄3,n+1 − 2ρ̄2,n−1 + 2ρ̄2,n+1

)
A.5 Error in Radial Estimates

Consider only angular section 1 for simplicity and let ϵ1,n denote the error in the radial estimates ū1,n.
So,

ρ̄1,n = ψz(x1,n) + ϵ1,n,

and inserting this into (4.9):

ρ̄1,n+1 =
Rn

Rn−1
ρ̄1,n−1 −

d

2Rn
(ρ̄6,n−1 + ρ̄2,n−1) +

d
√
3

Rn
(π̂6,n − π̂2,n)

=
Rn

Rn−1
(ψz(x1,n−1) + ϵ1,n−1)−

d

2Rn
(

√
3

2
(ψx(x6,n)− ψx(x2,n)

+
1

2
(ψz(x6,n) + ψz(x2,n) + ϵ6,n−1 + ϵ2,n−1) +

d
√
3

Rn
(M6,n −M5,n −M2,n +M1,n)

where Rn = rn + d/2. Then Taylor-expanding this expression around the relevant voxel centre x1,n+1

yields:

ρ̄1,n+1 = ψz(x1,n+1) +
d

Rn

(
rn(

√
3− 3

4
) +

3

4
(
√
3− 1)d

)
ψxz(x1,n+1)
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+
Rn−1

Rn
ϵ1,n−1 −

d

2Rn
(ϵ6,n−1 + ϵ2,n−1)

which implies

ϵ1,n+1 =
d

Rn

(
rn(

√
3− 3

4
) +

3

4
(
√
3− 1)d

)
ψxz(x1,n+1)

+
Rn−1

Rn
ϵ1,n−1 −

d

2Rn
(ϵ6,n−1 + ϵ2,n−1)

≈ d

Rn
rnψxz(x1,n+1) +

Rn−1

Rn
ϵ1,n−1 −

d

2Rn
(ϵ6,n−1 + ϵ2,n−1)

since
√
3− 3

4
≈ 1 and d≪ Rn

≈ d

Rn
rnψxz(x1,n+1) +

Rn−1

Rn
ϵ1,n−1

since d≪ Rn−1 and it is assumed that ϵ1,n1 is as large as ϵ2,n−1 and ϵ6,n−1

≈ dψxz(x1,n+1) +
Rn−1

Rn
ϵ1,n−1

since rn ≈ Rn for large n.

Reiterating this expression a couple of times yields:

ϵ1,n ≈ dψxz(x1,n) +
Rn−2

Rn−1
ϵ1,n−2

≈ dψxz(x1,n) + d
Rn−2

Rn−1
ψxz(x1,n) +

Rn−2

Rn−1

Rn−4

Rn−3
ϵ1,n−4

≈ dψxz(x1,n) + d
Rn−2

Rn−1
ψxz(x1,n) +

Rn−2

Rn−1

Rn−4

Rn−3
ψxz(x1,n) +

Rn−2

Rn−1

Rn−4

Rn−3

Rn−6

Rn−5
ϵ1,n−6

where it is used that ψxz(x1,n) = ψxz(x1,n−2) since third and higher-order derivatives are negligible.

Now, denote κn = Rn−2

Rn−1
, and note that

Rn−j

Rn−j+1
< κn for all j > 2. Then

ϵ1,n <
(
1 + κn + κ2n + · · ·+ κ

⌊n−1
2 ⌋

n

)
dψxz(x1,n) + κ

⌊n+1
2 ⌋

n ϵ1,t

where t = 1 if n odd and t = 2 if n even

≈ 1− κ
⌊n+1

2 ⌋
n

1− κn
dψxz(x1,n)

where the error in the inner two rings is neglected: ϵ1,t ≈ 0

≈
1− (1− ⌊n+1

2 ⌋ d
Rn−1

)

d/Rn−1
dψxz(x1,n)

where a first-order Taylor expansion around κn = 1 is done

≈ ⌊n+ 1

2
⌋dψxz(x1,n)

≈ rn
2
ψxz(x1,n).
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A.6 Error in Azimuthal Estimates

Consider only angular section 1 for simplicity. The corrected azimuthal estimate is given by (4.16):

π̄1,n =
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
+

1

6

rn

d
√
3

(
2ρ̄6,n−1 − 2ρ̄6,n+1 + ρ̄5,n−1 − ρ̄5,n+1 − ρ̄3,n−1 + ρ̄3,n+1 − 2ρ̄2,n−1 + 2ρ̄2,n+1

)
Now note, building on the derivation in section A.5, that:

ρ̄1,n+1 − ρ̄1,n−1 = ψz(x1,n+1) + ϵ1,n+1 − ψz(x1,n−1)− ϵ1,n−1

≈ d√
3
ψxz(x1,n+1) + ϵ1,n+1 − ϵ1,n−1

≈ d√
3
ψxz(x1,n+1) + dψxz(x1,n+1) +

(Rn−1

Rn
− 1

)
ϵ1,n−1

= d
(
1 +

1√
3

)
ψxz(x1,n+1)−

d

Rn
ϵ1,n−1

since d≪ Rn

≈ d
(
1 +

1√
3

)
ψxz(x1,n+1).

This is generalized to any angular section using the transforms to polar coordinates:

ρ̄i,n+1 − ρ̄i,n−1 ≈ d
(
1 +

1√
3

)[
cosΘi cos θi+1ψxx(xi,n)

+ sin(θi+1 +Θi)ψxz(xi,n)

+ sinΘi sin θi+1ψzz(xi,n)
]

So the expression for π̄1,n becomes:

π̄1,n =
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
+

1

6

rn√
3

(
1 +

1√
3

)√3

2
[ψxx(x1,n)− ψzz(x1,n)]

where it is noted that the second-order derivatives are assumed to be constant

=
1

6

(
3M1,n + 2M2,n +M3,n −M5,n − 2M6,n

)
+
rn
12

(
1 +

1√
3

)
[ψxx(x1,n)− ψzz(x1,n)]

which is Taylor-expanded around x1,n

≈ −ψx(x1,n) +
rn√
3
ψxx(x1,n) +

rn

2
√
3
ψzz(x1,n)

where the second term is neglected.

Let η1,n denote the error in π̄1,n, then

η1,n = π̄1,n + ψx(x1,n)

=
rn√
3
ψxx(x1,n) +

rn

2
√
3
ψzz(x1,n).
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Appendix B

Derivations in Chapter 5

B.1 Coefficients of Fourier Transforms

B.1.1 Fourier-Bessel Transform

So the unknown streamfunction is written as linear combination of (co)sines and Bessel functions:

ψ(r, θ) =

Q∑
q=1

P∑
p=0

(
Apq cos(pθ) +Bpq sin(pθ)

)
Jp

(αpq

L
r
)

where

Apq, Bpq are real coefficients

Jp is the pth Bessel function of the first kind

αpq is the qth positive root of Jp

and L is the radius of the disk domain that is considered, where L = rN + d/2, and Bpq are zero for
p = 0.

So the measurements can be expressed as:

Mi,n =
1

rn
ψθ(rn, θi)

=
1

rn

Q∑
q=1

P∑
p=1

p
(
−Apq sin(pθi) +Bpq cos(pθi)

)
Jp

(αpq

L
rn
)
,

and the following orthogonality conditions hold:∫ 2π

0

cos(p1θ) cos(p2θ dθ = πδp1 p2∫ 2π

0

sin(p1θ) sin(p2θ) dθ = πδp1 p2∫ 2π

0

cos(p1θ) sin(p2θ dθ = 0∫ 1

0

Jp(αp q1r)Jp(αp q2r)r dr =
1

2
Jp+1(αp q1)

2δq1 q2 (B.1)

for positive integers p1, p2, q1 and q2. Then via these conditions it follows that:

Apq = −1

p

2

πL2Jp+1(αpq)2

∫ L

0

∫ 2π

0

(1
r
ψθ(r, θ)

)
r2 sin(pθ)Jp(

αpq

L
r) dr dθ

59



Bpq =
1

p

2

πL2Jp+1(αpq)2

∫ L

0

∫ 2π

0

(1
r
ψθ(r, θ)

)
r2 cos(pθ)Jp(

αpq

L
r) dr dθ

where p ̸= 0.

Note that coefficients Apq for p = 0 cannot be determined, which means that the part of ψ(r, θ) that
is solely dependent on the radius cannot be determined, and hence any part of the azimuthal velocity
vθ that is independent of the angle θ will be unknown. So if the buckyball is exactly at the centre of
a vortex, then this would be unknown. This is unsurprising, since any velocity perpendicular to the
radial beams is not measured. So Apq is zero for p = 0. Of course since the position of the buckyball
is arbitrary when measuring, it is highly unlikely that it will be at exactly the centre of a vortex.

These integral relations can be discretized as Riemann sum, and hence the coefficients are deter-
mined with:

Apq = −1

p

2

πL2Jp+1(αpq)2

6∑
i=1

N∑
n=1

Mi,nr
2
n sin(pθi)Jp(

αpq

L
rn)∆rn ∆θ

Bpq =
1

p

2

πL2Jp+1(αpq)2

6∑
i=1

N∑
n=1

Mi,nr
2
n cos(pθi)Jp(

αpq

L
rn)∆rn ∆θ

where

∆θ =
π

3

∆rn =

{
R0 + d for n = 0

d for 1 ≤ n ≤ N.

With these all coefficients can be computed. To prevent aliasing the number of coefficients used is
limited with P < 6 and Q < N .

B.1.2 Fourier-Zernike Transform

So the unknown streamfunction is written as linear combination of Zernike polynomials:

ψ(r, θ) =

Q∑
q=1

P∑
p=0

(
Apq cos(pθ) +Bpq sin(pθ)

)
Rp

q

( r
L

)
where

Apq, Bpq are real coefficients

Rp
q is the radial part of the Zernike polynomial

of radial degree q and azimuthal degree p

with L = rN + d/2 is the radius of the disk domain and again Bpq are zero for p = 0.
Then for the measurements:

Mi,n =
1

rn
ψθ(rn, θi)

=
1

rn

Q∑
q=1

P∑
p=1

p
(
−Apq sin(pθi) +Bpq cos(pθi)

)
Rp

q

(rn
L

)
,

and added to the previous orthogonality relations (B.1) is:∫ 1

0

Rp
q1(r)R

p
q2(r)r dr =

δq1 q2

2q1 + 2
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for positive integers p, q1 and q2. Then via the orthogonality of these basis functions follows that:

Apq = −1

p

2q + 2

L2

∫ L

0

∫ 2π

0

(1
r
ψθ(r, θ)

)
r2 sin(pθ)Rp

q

( r
L

)
dr dθ

Bpq =
1

p

2q + 2

L2

∫ L

0

∫ 2π

0

(1
r
ψθ(r, θ)

)
r2 cos(pθ)Rp

q

( r
L

)
dr dθ

where p ̸= 0,

where for the same reason as in section B.1.1 coefficients Apq for p = 0 cannot be determined.
Similarly as in section B.1.1, these integral relations are discretized with Riemann sums yielding:

Apq = −1

p

2q + 2

L2

6∑
i=1

N∑
n=1

Mi,nr
2
n sin(pθi)R

p
q

(rn
L

)
∆rn ∆θ

Bpq =
1

p

2q + 2

L2

6∑
i=1

N∑
n=1

Mi,nr
2
n cos(pθi)R

p
q

(rn
L

)
∆rn ∆θ

where

∆θ =
π

3

∆rn =

{
R0 + d for n = 0

d for 1 ≤ n ≤ N.

These produce the coefficients for the Zernike Transform, where the number of coefficients used is
limited with P < 6 and Q < N as aliasing prevention.
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