
Iterative Imputation in Python

A study on the performance of the package
IterativeImputer

Tinke Klomp
6252923

Supervisors:
Hanne Oberman
Gerko Vink

Valentijn de Jong

Department of Methodology & Statistics

University Utrecht

Applied Data Science MSc

1 July 2022



Iterative Imputation in Python

A study on the performance of the package IterativeImputer

Tinke Klomp

Abstract

This study evaluates whether the Python package IterativeImputer can yield
valid estimates through iterative imputation of missing data. The perfor-
mance was analyzed by means of a simulation study and compared to the
benchmark methods of iterative imputation withmice in R and complete case
analysis. With each simulation repetition data was generated, amputed with
varying conditions (e.g. missing data mechanisms and missing data propor-
tions), handled by the three missingness techniques and multiple regression
models were estimated. Estimates were evaluated on bias, coverage rate and
confidence interval width were pooled and obtained. IterativeImputer gener-
ated results that were relatively low in bias. However, the produced coverage
rates were found to be below nominal coverage. This may be explained by
the confidence interval widths, as they were generally too small to contain
the true value of the data. The Python package doesn’t operate as ade-
quately as mice and doesn’t outperform complete case analysis. Therefore,
IterativeImputer isn’t suitable as a imputation tool for drawing inferences.

1



Introduction

Missingness is an inevitable problem that occurs with data collection. There
are various methods available for attempting to mitigate this issue. One of
these mechanisms is iterative imputation. This method, also called condi-
tional modelling imputation, specifies the conditional distribution of each
variable (Nijman et al., 2021). As a result, iterative imputation adopts a
separate imputation model for each variable showing missingness (Hughes et
al. 2014). As an example, for binary variables a logistic regression model
can estimated, while a linear regression model can be used for a continuous
variable. In R, the iterative imputation method can be applied with the
mice (Multivariate Imputation by Chained Equations) package. Although
Python offers packages for handling missing data, there isn’t such a package
that serves as the de facto standard with which the iterative technique can
be performed. The purpose of this study is to analyse whether one of the
available iterative imputation packages in Python is able to provide valid
estimates.

The Python package that will be analyzed in thesis is IterativeImputer.
This package is available in the popular package scikit-learn. If this package
produces valid estimates, it would give a great amount of data scientists op-
erating with Python an opportunity to accurately handle missing data.

The research question that will be studied in this thesis is: To what extent
can IterativeImputer in Python generate valid inferences? The findings of
this project have the potential to gain insight into whether there are valid
options for iterative imputation in Python. Although mice is an influential
standard, not all data scientists work with R. Many data scientists who
don’t use R operate in Python, which would make it beneficial to identify an
imputation package in the latter programming language that is capable of
generating valid inferences. Additionally, R offers a service where packages

2



are centralized in a repository (CRAN), which facilitates the maintenance and
improvement of packages. Python doesn’t provide such a repository, which
may complicate preservation and advancements of the quality of functions.
Discerning whether a Python package is efficient in producing valid estimates
may therefore also be necessary.

A potential consequence of adopting missing data handling methods that
produce invalid estimates is that such outcomes can lead to inaccurate con-
clusions. Not only are such inferences scientifically inadequate, faulty con-
clusions can have societal repercussions that are difficult to obtain a com-
prehensive view of. Therefore, the performance of IterativeImputer will be
examined in a simulation study.

Missing Data Mechanisms

A factor that further should be taken into account for the quality of imputa-
tion models is the manner in which missing data is distributed. Missingness
can occur in several arrangements. An approach to categorize these patterns
is through the concepts of MCAR, MAR and MCAR, classified by Rubin
(1976).

Missing completely at random (MCAR) implies that all observations have
the same probability of being missing. In contrast, the missing at random
concept (MAR) involves data that is missing with a probability that depends
on observed data. Finally, missing not at random (MNAR) indicates that
the probability of values being missing are by causes that are not captured
by the observed data.

Van Buuren (2018) describes that these patterns have different repercus-
sions for the handling of missingness. For instance, because the probability of
missing data is induced randomly with a MCAR pattern, it can be relatively
convenient to impute data. However this sequence is often an unrealistic
scenario (Oberman and Vink, n.d.). MAR is more realistic to occur and
is assumed most often in modern missing data methods. MNAR patterns
require the most effort to manage, as strategies to handle MNAR involve
obtaining more data for the causes of missingness and executing analyses on
the sensitivity to various conditions. The missing data patterns can occur
simultaneously and are not exclusive to one another. mice is able to handle
both MCAR and MAR data (Van Buuren and Groothuis-Oudshoorn, 2010).
In this study, it is assessed whether IterativeImputer is capable of doing so
as well.

3



Methods

The aim of this study is to assess whether IterativeImputer generates valid
inferences. The validity of these estimates are evaluated through a simulation
study, where bias, coverage rate (CR) and confidence interval width (CIW) of
inferences produced by IterativeImputer are compared to the complete data.
The performance of the Python imputer is compared to mice and complete
case analysis (CCA) as benchmark methods.

Each simulation round will consist of several stages (see figure 1). First,
a multivariate normal distribution dataset is simulated with sample size n =
200. Five continuous variables are created, one of which is a dependent
variable and the other four are used as the independent variables in the
simulation study. The next step is to ampute the dataset with different
conditions. The data is alternately amputed with MCAR and right-tailed
MAR mechanisms per round. This type of MAR mechanism is implemented,
as it generally is the most challenging kind to impute for a method (Oberman
and Vink, n.d.). If an imputation technique is able to perform acceptably
with right-tailed MAR, it is insightful for the competence of that approach.
Additionally, the variables should be correlated sufficiently in case of a MAR
mechanism, as the relationship between the variables would otherwise be
spurious. In case correlations between variables are too low, spuriousness
would result in a MAR mechanism that matches MCAR. The variables are
all generated withmean = 0 and the independent variables share correlations
of 0.3. The regression coefficients of the independent variables are simulated
as X1 = −0.5, X2 = −0.1, X3 = 0.1 and X4 = 0.5.

Varying proportions of missingness (10%, 25% and 50%) is another con-
dition that is interspersed in this stage. Subsequently, the amputed data
is separately imputed by IterativeImputer and mice each simulation cycle.
CCA deletes all rows that contain any missing data during the same stage.
IterativeImputer maintains a default maximum amount of iterations of 10,

4



whereas mice adopts a maximum of 5 on this aspect. Per round the outcome
variable is estimated with the four dependent variables through a multiple
linear regression model. The results for bias, CR and CIW are collected
afterwards.

The simulation cycle is repeated 1000 times, of which all outcomes re-
lating to the performance measures will be aggregated. This results in a
distribution of the three performance measures. At the end of the simula-
tions IterativeImputer is compared to the other two techniques based on the
bias, coverage rate and confidence interval width distributions.

Figure 1: Stages in simulation cycle

The performance measures are assessed according to the suggestions of
Van Buuren (2018). Bias is measured through raw bias (RB) in this study.
It is defined as the difference between the expected value of the estimate and
the true value: RB = E(Q̂) − Q). An imputation technique should display
bias as close to zero as possible to be considered a method that performs
sufficiently.

Coverage rate is the proportion of confidence intervals that contain the
true value. The CR should be equal or surpass the nominal rate for a method
to be deemed acceptable (Van Buuren, 2018). In case that the coverage of a
method falls below 90 percent with a nominal rate of 95 percent, it can be

5



determined to not be confidence valid. If a CR is lower than that benchmark,
the method is “too optimistic”. This can indicate that confidence intervals
are too small, there is too much bias or there is a combination of both these
issues (Demirtas et al., 2008). Confidence intervals that are too small imply
that p-values are too low, increasing the risk that spurious conclusions can be
made from statistical inferences. Too much bias would imply that estimates
are made too far from the true value. A coverage rate can be too large as
well, for which a cut-off of 99 percent is maintained in this study. When a
CR exceeds this value, the approach is regarded as “too conservative”, which
increases the chance that false negatives are generated. According to Van
Buuren (2018) a CR that is too high is less harmful than a rate that is too
low. The higher the coverage rate the more uncertainty is displayed due to
missingness. Because larger confidence intervals show more uncertainty, there
is a higher possibility that the true value falls into the confidence interval.

Finally, confidence interval width is determined to judge the efficiency
IterativeImputer. This performance measure is closely related to coverage
rate. CIW should be as small as possible. However, it shouldn’t be too short,
as this could make the CR fall below the nominal level, in turn increasing
the chance for false positives (Van Buuren, 2018). A width that is too large
could result in a coverage rate that is too high, which indicates inefficiency
in the missing data method.

As previously mentioned, IterativeImputer is compared to mice and com-
plete case analysis. mice is included into the study, because it continues to
operate as a ’gold standard’ on the level of missing data imputation. CCA is
used for comparison, as out-performing complete case analysis is a minimum
requirement for any imputation method to reach. CCA therefore provides a
lower limit for reasonable imputation performance. The code to the simula-
tion setup for this study is provided in the Appendix. There are no ethical
considerations involved with this study, as the data is simulated.

6



Results

The simulation results display the performance of IterativeImputer in terms
of bias, coverage rate and confidence interval width. Results are split up
by simulation condition (e.g. missingness mechanism and missingness pro-
portion) and compared to the benchmark methods mice and CCA. Graphs
presented in this thesis only display values that pertain to a 50% missing
data percentage and right-tailed MAR, unless otherwise specified, as they
show the largest difference in performance. Results achieved with smaller
missingness percentages (10% and 25%) are included in the appendix.

Although IterativeImputer doesn’t display a lot of bias on average across
simulation repetitions, there seems to be more variability with this method
for both the MCAR and the MAR mechanisms than the other approaches
(see figure 2). mice demonstrates a small amount of bias with both miss-
ingness mechanisms. Complete case analysis exhibits barely any bias with
MCAR structures. However, as CCA doesn’t accommodate relationships be-
tween missingness in one variable and observations of other variables, the
method shows the highest average bias under MAR. On average IterativeIm-
puter displays comparable performance to mice, but the Python imputation
function appears to have more variability in bias than mice and complete
case analysis.

Bias was separately calculated for each independent variable that was
imputed by IterativeImputer and mice, or handled by CCA (see appendix,
figure 5) for the regression analyses. IterativeImputer produces quite varying
values in bias between the predictors. Even though X2 and X3 are estimated
with small amounts of bias, X1 and X4 deviate quite far from the ideal bias
value of 0. mice, just as with the average raw bias, presents hardly any bias,
when the predictors and intercept are analyzed. CCA demonstrates variabil-
ity across simulation repetitions for each predictor that is larger compared to
the other approaches. IterativeImputer therefore seems to accomplish a sim-

7



Figure 2: Raw Bias based on Imputation Method

Note: Error bars represent variability in RB across simulation repetitions
Line on y-axis indicates ideal RB

ilar level of performance as complete case analysis, although mice produces
better results than the other two methods.

Performance in terms of coverage rates is presented in Figure 3. Itera-
tiveImputer exhibits a coverage rate that is too low, as it doesn’t reach the
required minimum 90 percent CR. This could be explained by the fact that
the method shows the smallest confidence interval width (CIW) compared
to the other approaches (see graph 4). The confidence intervals that are pro-
duced don’t cover the population estimand adequately. mice displays a CR
that is large enough. Complete case analysis shows a CR that is also located
above the benchmark of 90 percent. This can be explained by a larger CIW,
especially compared to the confidence interval widths of the two imputation
methods. Normally, coverage rate doesn’t show variability, as the measure
is a proportion value. However, because the coverage is calculated across 5
estimates for each method and missingness mechanism, the differing values
of these variables cause the coverage rate to show variability.

8



Figure 3: Coverage Rate based on Imputation Method

Note: Error bars represent variability in CR across simulation repetitions

Figure 4: Confidence Interval Width based on Imputation Method

Note: Error bars represent variability in CIW across simulation repetitions

9



Discussion

This simulation study showed that the Python package IterativeImputer may
yield unbiased estimates of regression coefficients, but with too narrow confi-
dence intervals to obtain nominal coverage rates. The answer to the research
question “To what extent can IterativeImputer in Python generate valid in-
ferences?” is that IterativeImputer generates coverage rates that lie below
the required criterion of 90 percent, which indicates that the package per-
forms poorly. This result is corroborated by the observed confidence interval
widths, which suggests that IterativeImputer produces confidence intervals
that are too narrow. A CIW that is too low increases the chance that the true
value of the regression estimates will fall outside of the confidence interval,
which indicates that the imputation method doesn’t capture the uncertainty
due to missingness.

IterativeImputer was compared to mice, which is regarded as a ‘gold stan-
dard’ for imputation in R, and complete case analysis, functioning as a mini-
mal benchmark the Python package should outperform. The Python method
was not able to perform as well as mice and couldn’t provide more sufficient
estimates than CCA. Because IterativeImputer displays a poor performance
on both coverage rate and confidence interval width compared to the other
two methods, it can’t be concluded that the method produces valid statisti-
cal inferences. This package should not be considered as an imputation tool
if the goal is inference.

The generalizability of this study is restricted due to the source and the
type of data that was used. The data was simulated to control the conditions
of the analysis (e.g. missingness mechanisms and proportions of missing
data). IterativeImputer weren’t tested on empirical data.

The simulated dataset that was used exclusively contained continuous,
normally distributed variables. However, iterative imputation is a technique
that separately estimates an imputation model for each variable based on

10



the distribution of that attribute (Hughes et al. 2014; Nijman et al., 2021).
The performance of IterativeImputer wasn’t examined on data with other
and varying types of distributions, such as binary variables.

Future studies should apply IterativeImputer in observed data to exam-
ine the performance of the package in other circumstances than a simulated
dataset. Further research could consider the competence of IterativeImputer
to produce valid inferences with data where varying distributions are incor-
porated in the analysis.

The applicability of IterativeImputer in prediction modeling is an aspect
that could be studied as well. Low levels of bias are required to make valid
predictions. The Python package produces imputations that are relatively
unbiased, meaning that the difference between true values and estimates is
quite low. It would be valuable to assess whether IterativeImputer would be
more competent in providing imputations for data that is used to predict.

Lastly, IterativeImputer isn’t the only imputation package that Python
has to offer. Other packages and functions in the programming language
could be studied to possibly find a method that does generate proper esti-
mates through missing data imputation in Python.

11



References

Demirtas, H., Freels, S.A. Yucel, R.M. (2008). Plausibility of Multivariate
Normality Assumption When Multiply Imputing Non-Gaussian Continuous
Outcomes: A Simulation Assessment. ournal of Statistical Computation and
Simulation 78 (1), 69-84.

Hughes, R.A., White, I.R., Seaman, S.R., Carpenter, J.R., Tilling, K. Sterne,
J.A.C. (2014). Joint modelling rationale for chained equations. BMC Medi-
cal Research Methodology, 14 (28).

Nijman, S.W.J., Groenhof, T.K.J., Hoogland, J., Bots, M.L., Brandjes, M.,
Jacobs, J.J.L., Asselbergs, F.W., Moons, K.G.M. Debray, T.P.A. (2021).
Real-time imputation of missing predictor values improved the application
of prediction models in daily practice. Journal of Clinical Epidemiology 134,
22-34.

Oberman, H.I. Vink, G. (n.d.). Towards a Standardized Evaluation of Im-
putation Routines. Retrieved from https://doi.org/https://www.gerkovink
.com/evaluation.

Rubin, D. (1976). Inference and Missing Data. Biometrika, 63 (3), 581-590.

Van Buuren, S. (2018). Flexible Imputation of Missing Data (2nd ed). Lon-
don: Chapman and Hall/CRC.

Van Buuren, S., Groothuis-Oudshoorn, K. (2010). mice: Multivariate Im-
putation by Chained Equations in R. Journal of Statistical Software, 45 (3),
1-67.

12



Appendix

Simulation Setup

The code to the simulation setup for this study is provided with the following
link: https://github.com/tinkeklomp/Iterative-Imputation-in-Python

Graphs

An analysis of coverage rate and confidence interval width was separately
applied to the predictors of which the missing data was handled. The results
of this comparison are largely similar to the evaluation of the missing data
related to missingness mechanisms. Again, IterativeImputer can’t be deemed
confidence valid based on coverage rate that is far too low. This again could
be explained by the CIWs that are quite small. The Python method is overly
confident. CCA is the least efficient method, as the method’s confidence
intervals are wide. mice performs more efficiently, while simultaneously being
confidence valid.

13



Figure 5: Raw Bias of Regression Estimates

Note: Error bars represent variability in RB across simulation repetitions
Line on y-axis indicates ideal RB; Missingness proportion is 50%

14



Figure 6: Coverage Rate of Regression Estimates

Note: Error bars represent variability in CR across simulation repetitions
Missingness proportion is 50%

15



Figure 7: Confidence Interval Width of Regression Estimates

Note: Error bars represent variability in CIW across simulation repetitions
Missingness proportion is 50%

16



Figure 8: Raw Bias based on Imputation Method

Note: Error bars represent variability in RB across simulation repetitions
Line on y-axis indicates ideal RB; Missingness proportions are 10% and 25%

17



Figure 9: Coverage Rate based on Imputation Method

Note: Error bars represent variability in CR across simulation repetitions
Missingness proportions are 10% and 25%

18



Figure 10: Confidence Interval Width based on Imputation Method

Note: Error bars represent variability in CIW across simulation repetitions
Missingness proportions are 10% and 25%

19



Figure 11: Raw Bias of Regression Estimates

Note: Error bars represent variability in RB across simulation repetitions
Line on y-axis indicates ideal RB; Missingness proportion is 10%

20



Figure 12: Raw Bias of Regression Estimates

Note: Error bars represent variability in RB across simulation repetitions
Line on y-axis indicates ideal RB; Missingness proportion is 25%

21



Figure 13: Coverage Rate of Regression Estimates

Note: Error bars represent variability in CR across simulation repetitions
Missingness proportion is 10%

22



Figure 14: Coverage Rate of Regression Estimates

Note: Error bars represent variability in CR across simulation repetitions
Missingness proportion is 25%

23



Figure 15: Confidence Interval Width of Regression Estimates

Note: Error bars represent variability in CIW across simulation repetitions
Missingness proportion is 10%

24



Figure 16: Confidence Interval Width of Regression Estimates

Note: Error bars represent variability in CIW across simulation repetitions
Missingness proportion is 25%

25


