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Abstract

High Mountain Asia’s glaciers are an important source of water for the major river systems in Asia and

provide water to hundreds of millions of people. Understanding and predicting mass balance change

in High Mountain Asia is essential to anticipate and mitigate the environmental and socioeconomic

impacts of the melting glaciers. Nevertheless, large uncertainties exist in the contributions of climatic

and morphological variables to the specific mass balance. In this study, the response of 10 morphological

and 6 climatic variables to the specific mass balance of 8099 individual glaciers in High Mountain Asia

is investigated with statistical models. These models are multiple linear regression, Random Forest,

XGBoost and artificial neural network. The results show that the average precipitation between 2000

and 2020, and the slope of the glacier are the two most important variables. Other strong predictors

are the average temperature between 2000 and 2020, the average glacier elevation, the precipitation

change between 1980 and 2000, and the temperature difference between 2000 and 2000. The debris area

under the ELA, accumulation area ratio and the mean velocity influence the specific mass balance but

to a lesser degree. The presence of glacial lakes, aspect, average ice thickness and whether a glacier is

surging are not important in explaining the total specific mass balance. The nonlinear models performed

significantly better than the linear models, as the XGBoost model had 113.7% more explained variance

(R2 = 0.685) than the multiple linear regression model (R2 = 0.307). Of the nonlinear models, the

XGBoost had the highest performance. Substantial nonlinearities are captured in the nonlinear models,

that indicate that temperature change, precipitation change between 1980 and 2000, debris under the

ELA, and the median glacier elevation have nonlinear responses to the specific mass balance. This

study has reiterated the importance of accounting for nonlinear responses when modelling the specific

mass balance of High Mountain Asia glaciers. For further research, it would be interesting to perform

the statistical analysis with the nonlinear models and the permutation and SHAP feature importance

techniques for more climatically homogeneous regions.
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1 Introduction

By the end of the century, it is expected that 200 million people that live on land will reside below the high

tide lines of rising sea levels. Over the next three decades, more than one billion people could encounter water

scarcity and food insecurity. Glaciers have a prominent impact on this, as they are after thermal expansion

the largest predicted source of sea-level rise in the twenty-first century (Hugonnet et al., 2021). Besides,

they are one of the most climate-sensitive components of the world’s natural water towers (Immerzeel et al.,

2020).

Nevertheless, glacier systems are one of the least understood elements of the global water cycle, identified

as a critical research gap by the IPCC (Abram, Carolina, Bindoff, & Cheng, 2019). Recent studies showed the

contrasted glacier mass changes within large glacier regions (e.g. Brun et al., 2019; Wang, Liu, Shangguan,

Radić, & Zhang, 2019; Sakai & Fujita, 2017; (Hugonnet et al., 2021)). The causes for these spatiotemporal

differences are still not fully understood, because there is uncertainty regarding the mass balance response to

different climatic and morphological conditions (Brun et al., 2019). Previous studies showed that important

predictors for the specific mass balance (glacier mass change rate per unit area in meters water-equivalent

per year, SMB) are the slope of the tongue and the mean elevation of the glaciers (Brun et al., 2019). Gentler

slopes are associated with more negative SMB values and the higher the glacier elevation, the more positive

the SMB (Brun et al., 2019). Uncertainties exist about the degree of influence of the debris coverage, the

glacier’s flow velocity, temperature rise, presence of glacial lakes and surging behaviour among other variables

(Brun et al., 2019; Dehecq et al., 2019; Huo, Bishop, & Bush, 2021).

Modelling the SMB at a large scale can be done in several ways (Bolibar et al., 2020). Firstly, the SMB

can be modelled with empirical models that are based on empirical relationships between temperature and

melt and accumulation, such as the temperature-index model from Hock (2003). Secondly, statistical or

machine learning models can be used. They predict the SMB with statistical relationships of topographical

and climate predictors (e.g. Brun et al., 2019; Bolibar et al., 2020). Lastly, the SMB can be modelled with

physical and surface energy balance models (e.g. Gerbaux, Genthon, Etchevers, Vincent, & Dedieu, 2005),

that take all energy changes between the glacier and the atmosphere into account (Bolibar et al., 2020).

Statistical models have been used in glaciology for more than 50 years, beginning with linear regressions

on a few climatic variables (e.g Hoinkes, 1968). In the last decades, statistical modelling has made enormous

progress, mainly due to advances in machine learning. Steiner, Walter, and Zumbühl (2005) were the first

to use artificial neural networks (ANNs) in glaciology to model glacier mass balances. They showed that

a nonlinear model is better capable of modelling glacier mass balances of the Great Aletsch Glacier in

Switzerland than a multiple linear regression model. Bolibar et al. (2020) used a deep learning model to

simulate the mass balances of 32 French Alpine glaciers and showed that it explained 64% more of the
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variance in space than a linear method. As glacier and climate systems are nonlinear, nonlinear models

allow for exploration of the nonlinear structures of the systems (Bolibar et al., 2020; Steiner et al., 2005).

In this study, statistical models are used to model the SMB between 2000 and 2020 of glaciers in High

Mountain Asia (HMA). HMA contains the largest concentration of glacier ice outside of the polar regions

and is therefore referred to as ”The Third Pole”. The water demands of hundreds of millions of people are

supplied by the glaciers of HMA (Biemans et al., 2019). The current glacier retreat in this region temporarily

relieves water stress, but this short-lived effect will eventually decline. To model the SMB in this region, 8

climatic and 16 glacier morphological variables are considered. Modelling the SMB with different climatic

and topographic variables as input can help to understand how glaciers respond to different processes, which

is vital for mass balance models to improve. As a consequence, better predictions of glacier melt in HMA

will be possible. This is essential to avoid water scarcity and geopolitical instability in this region, and to

anticipate and mitigate the environmental impacts that are associated with glacier melt (Immerzeel et al.,

2020; Hugonnet et al., 2021). The research question that is posed in this study is:

• How does the specific mass balance of High Mountain Asia glaciers respond to different climatic and

morphological variables?

To answer the main research question, the focus lies on the subquestions:

• Which machine learning algorithm performs best in predicting the mass balance change?

• To which variables does the specific mass balance respond nonlinearly?

To assess how the SMB responds to every variable, a multiple linear regression model, Random Forest model,

XGBoost model and an ANN model are made. Also, the model performances are compared to evaluate which

statistical model predicts the SMB best. Finally, there is examined which variables have a nonlinear response

on the SMB.
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2 Study area

High Mountain Asia is divided into three main regions in terms of glaciers (RGI Consortium, 2017): Central

Asia, South Asia West and South Asia East. It consists of the Himalayas, other mountain ranges such as

Pamir, Hundu Kush, Karakoram and the Tien Shan, and the vast Tibetan Plateau (Shean et al., 2020).

Each of these regions hosts a range of topographic and climatic regimes (Treichler, Kääb, Salzmann, & Xu,

2018). A map of HMA with its second-order regions is shown in Figure 1.

Figure 1: Map of High Mountain Asia showing the three primary RGI regions and its subregions. Replicated

from Rounce et al. (2020).

The precipitation in HMA is characterized by different climate systems, that are shown in Figure 2. The

precipitation of the central and eastern part of the Himalayas is brought for circa 80% by the Indian and

South-East Asian monsoons, which occur in the summer months (Shean et al., 2020). The influence of

the monsoon systems decreases from southeast to northwest. The Pamir, Hindu Kush and the Karakoram

receive 60 - 70% of the precipitation from the westerlies, of which most of its precipitation occurs in the

winter months (Shean et al., 2020). The influence of the westerlies decreases from southeast to northwest

(Lutz, 2018). A dry and cold continental climate is present in the Tibetan Plateau (Lalande, Ménégoz,

Krinner, Naegeli, & Wunderle, 2021). The climate in HMA has been warming during recent decades, with
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steeper trends than in non-mountainous regions (Kraaijenbrink, Bierkens, Lutz, & Immerzeel, 2017). The

warming rate of HMA is circa 11% higher than other continental areas south of 60°north latitude. This is

likely caused by changes in albedo and other processes specific to mountainous areas (Lalande et al., 2021;

Kraaijenbrink et al., 2017).

Figure 2: Map of most important climate systems in High Mountain Asia (grey outlined) and its river basins.

Replicated from Lutz (2018).

HMA consists of 95,536 glaciers that cover an area of 97,606 km2. Between 2000 and 2018, the total mass

balance of HMA glaciers was -19.0 ± 2.5 Gt/a, equivalent to 0.19 ± 0.03 m.w.e./a. This contributed to circa

0.7 mm sea-level rise (Shean et al., 2020). By the end of 2100, it is estimated that the glaciers in HMA

could lose 45 ± 8% for the RCP 2.6 scenario and up to 69 ± 14% for the RCP 8.5 scenario (Hock et al.,

2019). Thus, the general tendency is that HMA glaciers are retreating and losing mass. However, due to

the complex topography and large-scale climate systems that affect the glaciers, the evolution of glaciers in

HMA is not homogeneous. For example, Hissar Alay and the Qilian Shan are regions that show the most

negative mass balances (-0.36 ± 0.31 and -0.49 ± m.w.e/a) (Kraaijenbrink et al., 2017). In the Karakoram

and Kunlun Shan regions, glacier mass budgets are neutral or even positive (Rounce et al., 2020).
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3 Data

In this study, the influence of 16 glacier morphological and 8 climatic variables on the SMB were explored.

The variables were selected based on findings of previous studies (e.g. Brun et al., 2019; Bolibar et al., 2020;

Hock, 2010. An overview of all variables used in this study is shown in Table A.1.

3.1 Mass balance

The mass balance of a glacier is the difference between accumulation and ablation. For this study, the mass

balance dataset of Hugonnet et al. (2021) is used. This dataset provides mass balance change estimates

between 2000 and 2019 at 100 meters resolution for 99.8% of the glaciers in HMA (Hugonnet et al., 2021).

These changes were acquired from surface elevation changes that were determined by using stereo images from

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite sensor (NASA,

2022). From the dataset of Hugonnet et al. (2021), the following variable is used as the dependent variable

in this study:

dmdtda

The mass change rate per unit area (specific mass balance) in meters water-equivalent per year between 2000

and 2020.

3.2 Glacier geometry

Randolph Glacier Inventory

The glacier outlines from the Randolph Glacier Inventory version 6.0 (RGI 6.0) are used, which is a global

inventory of glacier outlines (RGI Consortium, 2017). In this study, the glacier regions of High-Mountain

Asia are used, respectively primary regions Central Asia (Region 13), South Asia West (Region 14), and

South Asia East (Region 15). For the HMA glaciers, the RGI outlines are based on remote sensing data that

are gathered between 1998 and 2013. The RGI is provided as shapefiles per primary region, containing the

outlines of glaciers in geographic coordinates (longitude and latitude, in degrees) (Arendt et al., 2017).

In this study, the following variables from the RGI are used:

RGIId

A 14-character unique identifier of the form RGIvv-rr.nnnnn, where vv is the version number, rr is the

primary region and nnnnn is an arbitrary identifying code that is unique within the primary region (Arendt

et al., 2017). The RGIId is used as the primary key to link multiple datasets.
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Area

The area of the glacier in km2, calculated in cartesian coordinates on a cylindrical equal-area projection of

the authalic sphere of the WGS84 ellipsoid (Arendt et al., 2017). Small glaciers (<0.1 km2) have a small

contribution to the total HMA mass balance (Shean et al., 2020). 46 glaciers with an area larger than 100

km2 lost more mass than > 55,000 glaciers with an area smaller than 0.3 km2. The error of mass balance

estimations is higher for small glaciers, due to low-resolution issues and static RGI polygon outlines for the

2000 - 2018 period (Shean et al., 2020; Brun et al., 2019). Therefore, in this study, only the glaciers larger

than 2 km2 are considered, comprising 8099 glaciers.

Zmin, Zmax

Minimum and maximum elevation of the glacier in meters above sea level. For most glaciers, it was obtained

directly from a DEM (Arendt et al., 2017).

Zmed

Median elevation (m) of the glacier. It is acquired by sorting the elevation of the DEM cells of the glacier

and selecting the 50th percentile of the cumulative frequency distribution (Arendt et al., 2017).

Slope

Mean slope of the glacier surface in degrees. It is acquired by averaging the slopes of every cell from the

DEM (Arendt et al., 2017).

Aspect

Mean aspect (orientation) of the glacier, expressed as an integer azimuth relative to 0° at due north. For each

grid cell of the glacier’s DEM, the aspect sines and cosines are calculated. The mean aspect is calculated as

the arctangent of the quotient of the sum of the aspect sines and cosines (Arendt et al., 2017).

Lmax

Length of the longest surface flowline of the glacier in meters. The length is measured with the algorithm

of Machguth and Huss (2014). This algorithm selects points on the glacier outline above Zmed as candidate

starting points. The flowline is computed by choosing successive DEM cells according to a weighted blend of

steepest descent and greatest distance from the glacier outline. The longest of the resulting lines is chosen

as the glacier’s centreline (Arendt et al., 2017).
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Open Global Glacier Model (OGGM)

For the climate data, the data from the OGGM is used. The OGGM is an open-source modelling frame-

work for glaciers. It is a ’glacier-centric model’, which means that it runs for each glacier independently

of the others. The main advantage of using the OGGM framework is its pre-processing capabilities. It is

designed for large-scale applications, where a large number of datasets are ready to use from within the

OGGM framework. There are different available levels of pre-processing. Level 0 is the lowest level, with

directories containing the glacier outlines only. At level 3, CRU and ERA5 climate time series are added to

the directories. The level 3 directories contain the most data and are thus the largest. With levels 4 and 5,

intermediate output files are removed (Maussion, Butenko, et al., 2018). From the OGGM level 3 directories

(Maussion, Rothenpieler, et al., 2018), the following glacier variables are included in this study:

tstar ela h

The t* ELA in meters. The ELA stands for the equilibrium-line altitude, which is the altitude where the

ablation is equal to accumulation. tstar stands for t*, which is the year that the glaciers on average are

in equilibrium with the climate, if the glaciers had the geometry during the measurement of mass balances

(Marzeion, Jarosch, & Hofer, 2012).

tstar aar

The Accumulation Area Ratio (AAR) is the ratio of the area of the accumulation zone to the area of the

glacier, ranging between 0 and 1 (Cogley et al., 2010). The ‘Balanced Budget AAR’ is the AAR where the

mass balance of a glacier is equal to 0. The balanced budget AAR of non-calving glaciers is on average

between 0.5 and 0.6, but the variance is substantial and depends on climatic and topographic factors.

Ice thickness

For the ice thickness for every glacier, the consensus estimate by Farinotti et al. (2019) is used. This dataset

consists of ice thickness estimates of all glaciers of the RGI. The estimate is based on an ensemble of models

that use characteristics of the glacier surface, for example, the slope and surface velocities. Also, principles

of ice-flow dynamics were used for ice thickness inversion (Farinotti et al., 2019). The ice thickness estimates

are provided in .TIF files per glacier, with a resolution of 25 m for the HMA glaciers. The following variables

regarding ice thickness are included in this study:

avg ice thickness

Average ice thickness of the glacier in meters. Acquired by computing the average of every grid.
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ice volume

Ice volume of the glacier in km3. Computed by multiplying the avg ice thickness with the glacier area from

the RGI.

3.3 Climate data

Climate data between 1980 and 2000, and 2000 and 2020 is used from the OGGM framework. The OGGM

offers monthly precipitation and temperature time-series for every RGI glacier stored in a netCDF file per

glacier, named climate historical.nc. The climate data comes from the ERA5 dataset, which is a reanalysis

of high quantities of historical measurements into global estimates using advanced modelling systems. ERA5

contains hourly weather data ranging from 1979 until the present in 31 km spatial resolution (Hersbach

et al., 2020). In the OGGM framework, the temperature data are scaled to the glacier height (Maussion,

Rothenpieler, et al., 2018). From the climate historical.nc files, eight variables are constructed in this study:

mean prcp 1980 2000 & mean prcp 1980 2000

The average annual precipitation of the glacier in mm over 1980 to 2000 and 2000 to 2020.

mean temp 1980 2000 & mean temp 2000 2020

The average annual temperature of the glacier in degrees Celcius over 1980 to 2000 and 2000 to 2020.

prcp diff 1980 2000 & prcp diff 2000 2020

The difference in the average annual precipitation of the glacier in mm between 1980 and 2000, and between

2000 and 2020.

temp diff 1980 2000 & temp diff 2000 2020

The difference in the average annual temperature of the glacier in degrees Celcius between 1980 and 2000,

and between 2000 and 2020.

3.4 Debris cover

In this study, the debris cover estimates of Kraaijenbrink et al. (2017) are used. They determined the spatial

distribution of debris by using remote sensing data. Furthermore, they estimated the debris thickness and

its relation to ice melt with debris surface-temperature data. The debris-cover extent and thickness were

considered to be static over time (Compagno et al., 2022). The following variables from the dataset from

Kraaijenbrink et al. (2017) are used in this study:
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debris area ela p

The percentage of the glacier area below the ELA that is covered with debris.

debris vol ela p

The percentage of debris volume below the ELA of the total glacier volume below the ELA.

3.5 Glacial lakes

Glaciers and lakes are intrinsically linked. Supraglacial lakes form when meltwater flows in depressions on

the ice surface of a glacier (Stokes, Sanderson, Miles, Jamieson, & Leeson, 2019). When a lake is formed in

front of the ice, it is called a proglacial lake. Lakes can also manifest underneath the ice (subglacial lakes).

In this study, the glacial lake dataset of Zheng et al. (2021) is used. They mapped all glacial lakes of HMA

larger than 0.01 km2 with a spatial resolution of 15 m, based on Landsat imagery between 1990 and 2015.

They used an automated waterbody classification algorithm, accompanied by a slope threshold of <20° and

a shaded relief threshold of >0.25, to account for disturbances of mountain shadows (Zheng et al., 2021). In

this study, lakes that intersect with the RGI polygons were selected, which amounted to 2608 lakes. From

this data, the following variable is made:

glacial lake

Binary variable of the presence of a glacial lake intersecting the glacier. 0 stands for no glacial lake present

at the glacier and 1 stands for the presence of a glacial lake.

3.6 Glacier velocity

The glacier flow is expected to change in response to mass changes. However, the link between these com-

ponents is poorly understood (Dehecq et al., 2019). Therefore, the glacier’s flow velocity is an interesting

variable to consider when modelling mass balance. In this study, the mean annual velocity measurements

of Dehecq et al. (2019) are used. They used optical satellite imagery to measure the flow velocity between

2000 and 2017 for each HMA glacier. Furthermore, they used inventories from previous studies to analyze

which glaciers are surging. The surging of glaciers is related to the glacier velocity, as a surging glacier moves

rapidly in short semi-periodical periods with little forward movement in between the surging events. The

mean annual velocity fields are downloaded from the NASA MEaSUREs - ITS LIVE project in GeoTIFF

format. The flow velocity is measured in 5 km grids, with a spatial resolution of 120 meters (Gardner, Fahne-

stock, & Scambos, 2021). In this study, the average annual glacier velocity of each glacier was extracted by

overlaying the GeoTIFF file with the RGI polygons in QGIS and computing the zonal statistics. 311 HMA

glaciers larger than 2 km2 are outside a grid and thus missing. The following variables from this dataset are
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used:

velocity mean

The average annual glacier’s flow velocity in meters per year.

surging

Binary variable of whether a glacier is a surging glacier or not. 0 stands for no surging glacier and 1 stands

for surging glacier.
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4 Methods

4.1 Preprocessing

In total, the dataset consists of 8099 glaciers with a minimum area of 2 km2. The first preprocessing step

was to impute missing data. 18 tstar aar, tstar ela h and 311 velocity mean values are missing. To impute

the missing data, the IterativeImputer class from the machine learning library scikit-learn was used. The

IterativeImputer is a multivariate feature imputer and models each variable with missing values as a function

of other variables. The IterativeImputer designates a variable as the input feature and the other features

columns are used as inputs. Next, a regressor is fit on the inputs and output for known output, for which the

RandomForestRegressor was used in this study. Then, the regressor predicts the missing values of the input

feature and this estimate is then used for imputation. These steps are conducted for each feature iteratively

(scikit learn, 2022b).

Next, data normalization for the independent variables was conducted. Data normalization is the tech-

nique to transform features to be on a similar scale, which can improve the performance and training stability

of the model (Nawi, Atomi, & Rehman, 2013). In this study, the Z-Score normalization technique is used.

With Z-Score normalization, the input attribute values are normalized by using the mean and standard

deviation. The transformation is given by:

z =
v − µ

σ
(1)

Where µ is the mean value and σ represents the standard deviation of the data.

In this study, only the independent variables were normalized and not the dependent variable, due to easier

interpretation. The Z-score transformation did not impact the results, as the Z-scores can be transformed

back to the original values by dividing them by the variable’s standard deviation.

4.2 Machine learning models

Four types of machine learning models were constructed and compared in their performance in modelling

the SMB: multiple linear regression, Random Forest, XGBoost and an artificial neural network.

4.2.1 Multiple linear regression

First, feature selection was conducted, which is the process of reducing the dataset by choosing the relevant

features from the entire dataset. One of the measures for feature selection is dependency measures (Blessie &

Karthikeyan, 2012). In this study, Pearson’s correlation coefficients are computed to find multicollinearity in
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the data. With the Pearson’s correlation, linear correlations between features are calculated and expressed

as r, ranging between -1 and 1. A perfect negative correlation between features is expressed by an r of -1. An

r of 0 indicates no relationship between the features, and 1 stands for a perfect positive linear relationship.

Highly correlated features have got a similar effect on the dependent variable and therefore one of the features

can be dropped out. The formula of the Pearson’s correlation coefficient is:

r =
cov(X,Y )

σXσY
(2)

Where cov is the covariance, σX is the standard deviation of X and σY is the standard deviation of Y .

After removing one feature for each highly correlated feature pair, a multiple linear regression model was

constructed. The multiple linear regression model is a linear regression model with more than one explana-

tory variable. The model shows how a set of explanatory variables is associated with a response variable of

interest but does not allow to make causal inferences (Constantine, 2012). The equation for multiple linear

regression is:

yi = β0 + βix1i + β2x2i + ...+ βpxpi + ei (3)

Where β0 is the intercept, βi are the partial regression coefficients of the explanatory variables and ei is the

error term, which is the amount by which the predicted value is different to the actual value, also referred

to as the residual (Tranmer & Elliot, 2008).

Estimation of a multiple linear regression model is done with the least squares criterion. With this cri-

terion, the βi coefficients are chosen that minimize the sum of squared vertical distances between observed

yi and the fitted model, by:

β̂ = min

n∑
i=1

(yi − (β0 + βix1i + β2x2i + ...+ βpxpi))
2 (4)

Where β̂ are the regression coefficients that minimize the sum of the squares.

Next, the optimal combination of variables was found that minimize the Aikaike Information Criterion

(AIC) and maximize the explained variance (R2). The AIC is a metric that rewards models with a lower

number of parameters (Bozdogan, 1987). The model’s performance was tested by running the model ten

times with different train test split seeds that were chosen at random and not cherry-picked. The multiple

linear regression model is evaluated on the (R2), the Root Mean Squared Error (RMSE), and the Mean Ab-

solute Error (MAE). These scores were calculated by averaging the values from the ten model runs. There
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was chosen not to conduct k-fold cross-validation due to the issue of data leakage, as with this method parts

of test data are also used to train the model. This results in overfitting (Cawley & Talbot, 2010).

4.2.2 Random Forest regression

The Random Forest algorithm has been regarded as one of the most precise methods for classification and

regression, as it can model complex interactions among input variables and is robust against outliers (X. Zhou,

Zhu, Dong, Guo, et al., 2016). The Random Forest algorithm has got certain advantages compared to other

machine learning methods. Firstly, it runs efficiently on large datasets. Secondly, it is not sensitive to noise

or overfitting. Furthermore, it can handle thousands of variables without variable deletion and lastly, it has

fewer parameters compared to other machine learning algorithms, like the ANN and XGBoost algorithms.

The Random Forest regression algorithm is an ensemble-learning algorithm that combines the perfor-

mance of a large number of decision trees to predict the value of a variable. The decision trees are created

by drawing a subset of training samples with replacement, called bagging. A decision tree represents a set

of binary conditions that are hierarchically organized and used from the root to a leaf of a tree. A decision

tree is comprised of three main parts: root, internal and leaf nodes. The root node is the training dataset

and is followed by the internal node, which acts as a decision-making node. The leaf node, or termination

node, is the final node and holds the decision. At each node, a subset of features will be drawn at random.

For each of these features, different splitting thresholds are tested to find the best split to subset the data

according to the mean absolute error at the node. The MSE of a node gives a measure of goodness of fit,

with low values representing good fit (Breiman, 2001).

Once a split has been selected, the node is partitioned into two descendant nodes. These split nodes are

treated the same until a stopping criterion is met. For example, the training may stop when all unsplit nodes

contain less than a certain amount of samples, or when a maximum depth for the decision tree is reached.

Once a tree has been built, simple regression is executed for each of the termination nodes to predict the

dependent variable based on the observed values. A downside of decision trees is that they can create over-

complex trees that predict well for a specific combination of input variables and thus have low bias but do

not generalize well on the data. This is a phenomenon called overfitting. The Random Forest algorithm

uses a bagging approach, based on the bias-variance tradeoff principle. It predicts the dependent variable

by averaging the estimations of every decision tree, resulting in estimations with the low-bias property of

the decision trees (Qi, 2012). Furthermore, the variance of the predictions is low, according to the Central

Limit Theorem:

Standarderror = σx̄ =
σ√
n

(5)

Where σx̄ is the standard deviation of the sample, σ the standard deviation of the population, and n is the
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number of data points.

In this study, scikit-learn’s adaptation of the Random Forest regression algorithm was used to explain

the SMB between 2000 and 2020. The hyperparameters were tuned with GridSearchCV of scikit-learn.

GridSearchCV calculates the model performance of all combinations of the specified hyperparameters and

their values (scikit learn, 2022a). The hyperparameters and its values of the Random Forest model are shown

in Table 1. After tuning the parameters, predictions were made. The model’s performance was tested by

running the model ten times with the same train test split seeds as used for evaluating the multiple linear

regression model. From these runs, the average R2, RMSE and MAE are calculated.

Table 1: Hyperparameters of the Random Forest model that is used in this study.

Parameter Description Value used

max depth The maximum depth of the tree. 30

max features
The number of features to consider when searching for

the best split.
11

min samples leaf
The minimum number of samples required that a node

consists of.
2

min samples split
The minimum number of samples required for a node to

split.
4

n estimators The number of decision trees in the forest. 200

At last, the feature importance of the Random Forest model was calculated, for which the permutation and

SHAP feature importances techniques were used. The permutation feature importance is defined to be the

decrease in the model score when the value of a feature is randomly shuffled. This random shuffling removes

the relationship between the feature and the dependent variable. The permutation score is interpreted as

the decrease of the R2 after the removal of that variable and is thus an indicator of how much the model is

depending on it. This feature importance technique benefits from being model agnostic and is useful when

non-linear features are present. Another advantage of this feature importance measure is that it takes all

interactions with other features into account. By permutating the feature, the interaction effects with other

features are destroyed, which is not the case when removing variables (scikit learn, 2022c). A downside

of this technique is that it tends to decrease the importance of correlated predictors (Molnar, 2020). The

SHAP (SHapley Additive exPlanations) feature importance technique is based on the Shapley values from

cooperative game theory. In game theory, Shapley values are used to determine the contribution of each

player in a coalition or a cooperative game. The SHAP method was introduced by Lundberg and Lee (2017)

to explain the feature importance of tree-based models. For every variable, the SHAP value is computed
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by calculating the marginal contribution of the variable to individual glacier SMB predictions. The feature

importance is then calculated by averaging all SHAP values (Lundberg et al., 2020). A high SHAP value

is interpreted as a high contribution of the feature to the prediction. A benefit of using the SHAP method

is that it suffers less from underestimating the importance of correlated features. A disadvantage is that

calculating the Shapley values requires a lot of computing time (Molnar, 2020).

4.2.3 XGBoost

XGBoost stands for eXtreme Gradient Boosting and is a gradient boosted machine learning library. It

provides parallel tree boosting and is one of the leading machine learning libraries for regression and classi-

fication. The XGBoost algorithm is similar to the Random Forest algorithm, as they both are decision tree

algorithms. The difference lies in the training methods, where the XGBoost algorithm learns by boosting

and the Random Forest algorithm by bagging. Boosting is an ensemble learning method to build a strong

model from several weak models:

F (x) =

M∑
i=1

fi(x) (6)

Where fi(x) is the weak learner.

A weak learner is an underpowered linear regression. The goal of the weak learner is not to capture all

the dynamics in the data in one of the weak learners, but to capture a small part of the dynamics. The

idea of boosting is that the next weak learner learns from the previous weak learners. At the end of the

training process, although each of the weak learners predicts poorly by itself, when the weak learners are

combined the model is powerful. With gradient boosting, extra steps are taken. Firstly, the loss function is

defined. The role of the loss function is to estimate how good the model makes predictions with the given

data. The loss function needs to be differentiable in an efficient way, as gradients of the loss function need

to be calculated. In this study, the MSE was used. Next, the learning process is started by initiating a weak

learner as the base learner whose mistakes all subsequent trees learn from, as is shown in Equation 7. The

base learner in the XGBoost ensemble is the first decision tree.

F1(x) = f1(x) (7)

Where F1(x) is the model in iteration 1 and f1(x) is the first decision tree.

Next, the derivative of the loss function is calculated for each data point with respect to the prediction

of the first weak learner, using:
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r̂1i = −δL(yi, ŷi)

δŷi

∣∣∣∣∣∣ ŷ1 = F1(xi) (8)

Where r̂1i is the gradient of the loss function for data point i and model number 1.

The gradient informs the model in which way the model has to learn in the next iteration to minimize

the loss. The following step is to fit the next weak learner, where it learns from the mistakes of the previous

weak learner. The target variable of the weak learner are residuals of the previous model and the input are

the input variables:

f2(x) = [r̂1 ∼ X] (9)

Where f2(x) is the weak learner decision tree in iteration 2.

Then, there will be determined how much of f2(x) is to be added to the current model F1(x). This is

done by summing the loss for every data point of the true value and the new model, that is composed of the

old weak learner and certain quantity of the new weak learner:

γ̂2 =
argmin

γ

[
N∑
i=1

L(yi1f1(xi) + γf2(xi))

]
(10)

Where γ̂2 is the relative amount of the new weak learner to add to the model where the sum of the loss

functions is minimized for all N observations.

Next, the new model is the old weak learner added with the optimal amount of the new weak learner:

F2(x) = f1(x) + γ̂2f2(x) (11)

These steps are iterated until the loss on the validation set starts to increase. The final prediction is a

weighted sum of all of the weak learners. The predictive quality of the XGBoost algorithm is generally high.

Each decision tree contains low variance, but high bias. Due to the boosting of each decision tree, bias and

underfitting are minimalized, resulting in a model with low variance and low bias (Chen et al., 2015).

The parameters were tuned with GridSearchCV, to find the combination that predicts the SMB with the

lowest mean squared error. The parameters of the XGBoost model used in this study are shown in Table 2.
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Table 2: Hyperparameters of the XGBoost model that is used in this study.

Parameter Description Value used

max depth The maximum depth of the tree. 9

min child weight

The minimum weight required to create a new node in the

decision tree. A smaller value allows the algorithm to create

nodes that correspond to fewer samples.

1

gamma
Specifies the minimum loss reduction required for a node to

make a split.
0

subsample The fraction of observations to subsample at each iteration. 0.6

colsample bytree The fraction of features to be used. 0.7

reg alpha
L1 regularization term on weights, used in case of high

dimensionality to reduce features.
0.00005

reg lambda L2 regularization term on weights. 1

learning rate
Determines the step size at each iteration while moving

towards a minimum of the loss function.
0.01

n estimators The number of decision trees in the forest. 1000

4.3 Deep learning

Artificial neural networks are nonlinear statistical models. The name and structure are inspired by the

human brain, as they mimic the way that biological neurons signal to each other. ANNs are comprised of

node layers, that contain an input layer, one or more hidden layers and an output layer. The input layer is

fed with a multidimensional vector, which will distribute it to the hidden layers. Every node in one layer

is connected to every other node in the next layer. A node takes the weighted sum of its inputs and passes

it through a nonlinear activation function. If the input value is higher than a certain threshold value, the

nonlinear activation function activates. The function transforms the features in a nonlinear manner and

may extract complex features from simpler features. This results in the output of the node, which becomes

the input of another node in the following layer. The model learns by a certain optimizer algorithm, which

determines the weights of the connections between the nodes (O’Shea & Nash, 2015). During the training

process, the weights and thresholds are continuously modified to minimize a particular loss function and

generate output that is increasingly similar to the target output. After a number of iterations, the training

can be stopped based on certain criteria. Recently, ANNs have gained interest due to improved optimization

algorithms, which made the training of deep learning networks possible, leading to improved modelling of

complex data patterns. The ability of ANNs to make complex representations of input parameters makes

them suitable to model nonlinear systems such as glacier systems (Bolibar et al., 2020).
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In this study, a six-layered ANN was constructed to model the SMB for the 8099 glaciers in HMA. To

construct an ANN with high performance, the number of layers and hyperparameters need to be tuned.

At the current stage, the neural network architecture selection is driven more by empirical results rather

than mathematical theory (Crone, 2005). Various combinations of different amounts of dense layers [1..10]

and neurons per layer [10, 30, 50, 100, 250, 500, 1000] were evaluated. An ANN with six dense layers

performed best and was therefore chosen, consisting of respectively 150, 100, 50 and 50 neurons from top to

bottom. The final layer of the model consists of a dense layer of size 1 that predicts one output. The ANN

architecture is shown in Figure 3.

Figure 3: Architecture diagram of the Artificial Neural Network used in this study.

Also, the use of batch normalization was investigated. Batch normalization applies a transformation that

maintains an intermediate output with a mean of 0 and a standard deviation of 1. Not using batch nor-

malization in the network showed the highest model performances. Also, the use of different dropout values

[0..0.9] was assessed. Dropout is a regularization method that randomly disconnects a certain number of

connections between nodes. Large connection weights in a neural network are indicative of a more complex

network that has overfitted the training data. Dropout is effective to reduce overfitting and improving gen-

eralization, as the model cannot rely on connections with very high weights and has to continue learning

by finding other patterns in the data (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).

Dropout values of 0.3 in the first layer, and 0.1 in the consecutive layers resulted in the lowest test error.

With higher dropout values the model had more bias and with lower values the model overfitted quickly.

As activation function, the LeakyReLu function was used. ReLU stands for Rectified Linear Unit and is
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a piecewise linear activation function that outputs the input if the value is higher than 0, which introduces

nonlinearity in the data. LeakyReLU is similar to the ReLu, but it allows a small gradient when the unit is

negative (Agarap, 2018). For this dataset, it performed better than the ReLU, tanh and sigmoid activation

functions. The ReLu activation function does not have the vanishing gradient problem that tanh and sigmoid

activations suffer with, as no derivative is involved in the ReLu algorithm. However, it can suffer from another

problem, where a neuron dies if all inputs are below 0. With ReLU the neuron has no chance to be activated

again, which is called the dying ReLU problem. With the LeakyReLU activation function, nodes that receive

negative weights still have a small positive gradient, which gives the node a possibility to recover from being

inactive (Xu, Wang, Chen, & Li, 2015).

The Adam (Adaptive Moment Estimation) optimizer technique for gradient descent was used as the

optimization algorithm. It performed better than the stochastic gradient descent, which is considered to

generalize better (P. Zhou et al., 2020). Optimizers are algorithms that change the weights of the network to

reduce the loss function. The Adam optimizer accelerates the gradient descent by taking the exponentially

weighted average and moving average of the gradients into account. This results in minimum oscillation in

reaching the global minimum while taking big enough steps to not get stuck in local minima (Kingma & Ba,

2014).

The learning rate was also tuned, which is a hyperparameter that determines how much the weights are

changed in each epoch. When the learning rate is too small, the training process will be long and could

get stuck in a local minimum, while a value too large may lead to an unstable training process and cause

the model not to achieve convergence. Values of 0.0001, 0.0005, 0.001, 0.01 and 0.1 were tested. A value of

0.0005 lead to the lowest test error.

Lastly, different combinations of features were selected as input, based on the permutation and SHAP

feature importances from the XGBoost and Random Forest models. The model performed best when fea-

tures with very low importance were not used as input. This resulted in the following input of the model:

prcp mean 2000 2020, Slope, Zmed, temp mean 2000 2020, temp diff 1980 2000, prcp diff 1980 2000, de-

bris area ela p, tstar aar, velocity mean, glacial lake and surging. The model’s performance was tested by

running the model ten times with the same train test split seeds as used before. The R2, RMSE and MAE

were calculated by averaging the values from the model runs. In Table A.2, the exact parameters of the

constructed ANN are presented.
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5 Results

5.1 Pearson’s correlations

The correlations between the variables were calculated to remove a variable for each correlated variable pair.

In Figure 4, the Pearson correlation coefficients between the selected variables is shown. Certain variables

correlate strongly with each other. The area of the glacier correlates strongly with the ice volume and

Lmax. Lmax also correlates with the average ice thickness and velocity mean. debris area ela p correlates

very strong with debris vol ela p. Zmax, Zmin and Zmed correlate very strongly with each other and also

with tstar ela h. The slope correlates moderately high with the average ice thickness. Lastly, many climatic

features correlate strongly but are not shown in the graph for visibility reasons. The temp mean 2000 2020

has a 1.0 correlation with the temp mean 1980 2000, while the temp diff 2000 2020 and temp diff 1980 2000

have weak inverse correlation (-0.32). The prcp mean 2000 2020 and prcp mean 1980 2000 also have nearly

perfect correlation (0.99). The prcp diff 2000 2020 and prcp diff 1980 2000 have 0 correlation, however.

The prcp mean 2000 2020 and prcp mean 1980 2000 have moderately strong correlation with the average

temperature in the respective time periods, with values of 0.66 and 0.64. All correlations mentioned above

are significant (P ≤ 0.05).
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Figure 4: Correlation matrix showing the Pearson’s correlation between each combination of variables used

in this study (Table A.1).

5.2 Features importances

5.2.1 Multiple linear regression coefficients

The multiple linear regression was conducted to investigate linear responses of the variables on the SMB.

The multiple linear regression coefficients are shown in Figure 5. The regression table is shown in Table

A.3. The coefficients represent coefficients of the Z-scored features. This makes it possible to interpret which

features explain most of the variance. The regression model without Z-scored features is presented in Table

A.4, which is useful to interpret the inference of the features on the SMB in terms of the predictors’ units.
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The model has an R2 of 0.309, meaning that the model explains 30.9% of the variability of the specific mass

balance. The glacial lake variable has the highest β-coefficient, with a value of -0.1401 (P = 0.00001). This

means the specific mass balance is on average 0.14 m.w.e/a. lower if a glacial lake is present. The second

most important variable is the slope, with a β-coefficient of 0.0738 (P = 0.00001), meaning that if the slope

increases by 1 standard deviation, the SMB increases by 0.0738 m.w.e./a on average. In more interpretable

terms, the SMB increases by 0.012 m.w.e/a for every degree increase of the slope. The third most important

variable is the average temperature increase between 2000 and 2020, signifying a 0.017 m.w.e/a SMB decrease

for every degree Celcius increase (P = 0.00001). The average precipitation between 2000 and 2020 has got

the next highest coefficient, suggesting a 0.01 m.w.e/a. SMB decrease for every 100 mm increase in average

precipitation (P = 0.00001). The variable with the fourth-highest coefficient is the temperature difference

between 2000 and 2020, with a value of 0.0512 (P = 0.00001) which implies a 0.199 m.w.e/a. increase for

every degree Celcius increase in temperature. The tstar aar is the last coefficient with a high coefficient,

with a value of 0.05 (P = 0.00001). The model suggests that for every 0.01 increase in the Accumulation

Area Ratio, the SMB increases by 0.006 m.w.e/a. Variables that are significant (P ≤ 0.05), but not highly

explanatory are the temperature difference between 1980 and 2000 (β = 0.024 and 0.10 m.w.e./a increase

per degree Celcius, P = 0.0001), precipitation difference between 2000 and 2020, and 1980 and 2000 (β =

0.0184 and -0.0168, P = 0.0001), the median elevation (β = -0.011, P = 0.002), the aspect (β = 0.010, P

= 0.0001) and the percentage of the glacier area under the ELA that is covered by debris (β = 0.007, P

= 0.027). The area, average ice thickness, the average flow velocity of the glacier and whether a glacier is

surging are variables that are not significant (P ≥ 0.05) in predicting SMB in the multiple linear regression

model. As homoscedasticity of the residuals was not met, according to the Breusch–Pagan test and White

test, the p-values are to be interpreted carefully. For instance, the residuals of the debris area ela p have

a higher spread in low debris area than in high debris area. The residual plots are shown in Figure A.1.

Heteroscedasticity tends to result in smaller p-values than it should be because it increases the variance of

the coefficient estimates that the OLS procedure does not detect. Heteroscedasticity does not cause bias in

the β-coefficients (White, 1980). Furthermore, the distribution of the residuals is heavy-tailed at each end

of the Q-Q Plot, indicating that the residuals are not normally distributed.
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Figure 5: β-coefficients of the multiple linear regression model to explain the specific mass balance. The

coefficients represent the SMB change per 1 standard deviation increase of the independent variable.

5.2.2 Feature importance of Random Forest and XGBoost models

The feature importances from the Random Forest and XGBoost models, calculated with the permutation

and SHAP feature importance techniques, are shown in Figure 7. For both techniques and models, the

feature importances are very similar. The most important feature for both models and feature importance

techniques is the mean precipitation between 2000 and 2020. According to the permutation technique for

the Random Forest model, the R2 will drop by 45.8% when the mean precipitation between 2000 and 2020 is

not included in the model. For the XGBoost model, this value is lower at 25.1%. Figure 8 shows beeswarm

plots of the SHAP values, coloured by feature values. It shows that high mean precipitation 2000 - 2020

values correspond with negative SHAP values. Glaciers with lower average precipitation between 2000 and

2020 mostly have got positive SHAP values, between circa 0 and 0.25. In other words, it shows that the

mean precipitation is the strongest positive predictor in modelling the SMB, where it contributes up to 0.25

m.w.e./a of the SMB prediction.

The next most important variable in the nonlinear models is the slope. The SHAP measure indicates

that glaciers with higher slopes are related to higher SMB values. A high slope contributes on average 0.05

m.w.e./a towards a more positive SMB prediction. The mean temperature between 2000 and 2020, and

the median glacier elevation have the third and fourth highest permutation scores for the nonlinear models.

According to the SHAP values, higher mean temperatures and glacier elevation contribute to lower SMB

values. In the linear model, the median glacier elevation was one of the least explanatory variables as it

explained only 1.4% of the variance. Another difference between the nonlinear models and the multiple linear
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regression model is regarding the precipitation difference between 1980 and 2000. For the XGBoost model,

it is the fifth most important feature where the model performs 10.3% worse without this variable, while it

only explained 2.4% of the variance in the linear model. A noteworthy pattern is visible in the SHAP values

for this variable. In general, increases in precipitation between 1980 and 2000 contribute slightly negative

to the SMB and a decrease in precipitation is associated with higher SMB values. However, the strongest

negative contributions of this variable to the SMB is caused by decreases in precipitation.

The temperature difference between 2000 and 2020 is an important feature in the nonlinear models.

The SHAP values indicate that more positive temperature changes contribute to higher SMB values. The

temperature difference between 1980 and 2000 is an important feature with the permutation measure, but

less important than the temperature change between 2000 and 2020. For the SHAP measure, this variable

is the ninth most contributing variable to the SMB and thus scores moderately low. The debris area ela p

is moderately important for the nonlinear models, as it has the seventh-highest mean SHAP value and the

nonlinear models perform circa 5% worse without this variable. A dependence plot of the SHAP values of the

debris area ela p is shown in Figure 6. The figure shows that clean ice under the ELA contributes positively

to the SMB. When the debris area increases, the SHAP values initially decrease to negative values of circa

-0.05 m.w.e./a. However, when the ELA is mostly covered with debris, the SHAP measure indicates that

the debris contributes positively to the SMB, up to 0.05 m.w.e./a. For the linear model, the debris area is

one of the least explanatory variables as it explains less than 1% of the variance.

Figure 6: Dependence plot of the percentage of area under the ELA that is covered with debris, versus its

contribution on the specific mass balance.
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The mean flow velocity, aspect, average ice thickness, area, whether a glacier is surging, and presence of glacial

lakes are the least important variables for the nonlinear models. Non the less, the SHAP measure shows that

higher average ice thickness, area values and surging behaviour contribute slightly to more negative SMB

values. Also, it shows that when a glacier lake is present, it could contribute up to -0.18 m.w.e/a to the

SMB, which corresponds to the high absolute β-coefficient of the linear model.

Figure 7: Feature importances using permutation and SHAP methods on Random Forest and XGBoost

models.
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Figure 8: SHAP feature importances for every SMB prediction with Random Forest and XGBoost models.

5.3 Model performances

The nonlinear models perform better than the multiple linear regression model, regarding the R2, RMSE

and MAE. The exact model results for each of the ten runs are shown in Table A.5 and Table A.6. The

multiple linear regression model has got on average an R2 of 0.307, RMSE of 0.251 and MAE of 0.189. The

Random Forest model has a mean R2 of 0.656, RMSE of 0.177 and MAE of 0.119. For the XGBoost model,

the average R2 is 0.685, the RMSE is 0.172 and the MAE is 0.117. The ANN model has got a mean R2 of

0.659, RMSE of 0.176 and MAE of 0.119. Therefore, the XGBoost model performs the best regarding all

these scoring metrics. The explained variance of the XGBoost is 113.7% higher than of the multiple linear

regression model and 4.4% and 3.9% higher than the Random Forest and Artificial Neural Network model.

The ANN and Random Forest models have got very similar values for the scoring metrics. However, the

ANN had the highest maximum R2 in the ten runs of all models, with 0.705, compared to 0.701 from the

XGBoost and 0.688 from the Random Forest model. The ANN had a worse minimum R2 than the XGBoost

model though, with 0.636 compared to 0.650. The R2 of the XGBoost was more stable between the different

runs than the other nonlinear methods. The multiple linear regression model performs worst of all models

but is the most stable model.

Figure 9 shows the Predicted vs Actual plots of the different models for a seed where the models per-

formed average. The multiple linear regression model shows a bad fit to the y = x line. The spread in the

predicted values is large, ranging from circa -1 to 0.5 m.w.e./a, whereas measured values range from circa
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-0.75 to 0.2 m.w.e./a. A slight trend is visible nonetheless, as the cluster of predictions tilts slightly to the

right. The Predicted vs Actual plots of the XGBoost, Random Forest and ANN models look similar, in that

they follow the x = y line well. However, the models appear to underpredict the extreme negative SMB

values and overpredict the extreme positive SMB values. Also, certain glaciers are predicted with a high

error. No heteroscedasticity was observed in the residuals of the nonlinear models.

Figure 9: Plots of measured vs predicted specific mass balance for A) multiple linear regression, B) XGBoost,

C) Random Forest and D) Artificial Neural Network model.
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6 Discussion

6.1 Influence of the variables on the specific mass balance

6.1.1 Influence of the mean precipitation between 2000 and 2020

The results indicate that the average precipitation between 2000 and 2020 is the most important predictor

in explaining mass balance. This finding corresponds with the results from Bolibar et al. (2020). They found

that accumulation-related predictors (winter snowfall, summer snowfall and March snowfall) are the most

important mass balance predictors for the French Alps, although this region has got different topographical

and climate conditions than HMA. For glaciers in the French Alps, the SMB decreases when there is less

snowfall in winter and summer (Bolibar et al., 2020). However, the SHAP values of the nonlinear models

and the coefficients of the multiple linear regression model used in this study suggest that the SMB increases

with decreased precipitation. The linear model suggests that for every 100 mm increase in precipitation, the

SMB decreases by 0.01 m.w.e./a.

Exploratory data analysis of the mass balance and climate data showed that in 9 out of 14 second-order

regions in HMA, melting glaciers have got lower mean precipitation than growing glaciers. In 5 regions, the

mean precipitation for melting glaciers is higher than for glaciers with positive SMB values. Furthermore, in

the regions where the glaciers are growing such as the Karakoram, the glaciers grow mainly due to an increase

in snowfall (De Kok, Kraaijenbrink, Tuinenburg, Bonekamp, & Immerzeel, 2020). Therefore, these findings

do not correspond with the negative β-coefficient and the negative SHAP values of the mean precipitation

between 2000 and 2020 variable.

An explanation for this inverse relationship is that there is strong spatial heterogeneity present regarding

relationship between the precipitation and the SMB. Exploratory data analysis showed that higher mean

precipitation is an important predictor for higher SMB in the West Kunlun and Central Himalayas regions.

On the other hand, for the East Kunlun, Qilian Shan and Inner Tibet regions, strong negative relationships

exist between the mean precipitation and SMB. A cause for the negative relationship between the mean

precipitation and SMB for the entire HMA region is that glaciers with high precipitation are usually more

maritime than continental. Maritime glaciers have been shown to have a higher sensitivity to the climate.

In other words, maritime glaciers have a shorter response time than continental glaciers, because they have

a large ice turnover (Wang et al., 2019). Therefore, higher precipitation values are associated with more

glacier melt for maritime glaciers. Thus it appears that the negative association of the mean precipitation

with the SMB for the entire HMA is caused by heterogeneous climate conditions, rather than the effect of

the underlying process of precipitation.

What may also play a role in a more negative relationship between higher precipitation and more negative
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SMB, is that since 1975 relatively more precipitation fell in the form of rain instead of snow in most of HMA

Kapnick (2014). Therefore, the fraction of precipitation falling as rain has increased. Precipitation in the

form of rainfall is considered to be lost to the system and thus explains less accumulation of the glacier

(Cogley et al., 2010). However, rainfall has negligible influence on ablation, as even in high-precipitation

environments only a few per cent of the energy available for melt is supplied by rainfall (Anderson et al.,

2010).

6.1.2 Influence of the glacier tongue slope

The models in this study show that the tongue slope is the second most important variable in explaining

the SMB, with steeper slopes contributing positively to the SMB. This is in line with other research (e.g.

Brun et al., 2019; Huss, 2012; Mannerfelt et al., 2022; Huss & Fischer, 2016). An explanation of the positive

relationship between steeper slopes and higher SMB values is that a glacier with a steep terminus has a

shorter response time. This results in that after climatic forcing the glacier with a steep terminus retreats

quicker to a higher elevation. Here it will experience lower temperatures and reach a new equilibrium with

the climate. On the other hand, a glacier with a more flat terminus will lose most of its tongue before it can

reach a new equilibrium (Zekollari, Huss, & Farinotti, 2020).

6.1.3 Influence of the median glacier elevation

According to the nonlinear XGBoost and Random Forest models from this study, the median glacier elevation

is an important variable in explaining SMB. This is in line with previous studies (e.g. Rabatel, Letréguilly,

Dedieu, & Eckert, 2013; Brun et al., 2019; Huss, 2012). The nonlinear models showed that lower median

elevation values contribute to more positive SMB values, which is not in line with the research of Brun et

al. (2019) and Rabatel et al. (2013), who found more positive SMB values for glaciers with higher altitudes.

However, when running the nonlinear models separately for each second-order region, positive relationships

between the median altitude and SMB was observed for every region apart fromWest Kunlun, the Karakoram

and Hengduan Shan regions. Huss and Fischer (2016) explain that glaciers with a low slope and elevation

are more sensitive to temperature change and that thus a positive relationship exists between the median

glacier elevation and the SMB.

Exploratory data analysis showed that glaciers in Central Asia lie on average more than 200 m lower

than glaciers in South Asia West and South Asia East. Glaciers of South Asia East on average have almost

3 times more negative SMB values than the glaciers of Central Asia. However, within the South Asia East

region, there is still a positive relationship present between the median elevation and the SMB. Thus an

explanation for the negative relationship between the median glacier elevation and SMB for the HMA in its

entirety, is that the regional and process effects of the median elevation on the SMB differ.
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6.1.4 Influence of temperature and precipitation

The mean temperature between 2000 and 2020 was in both the linear and nonlinear models found to be one

of the most explanatory variables, which complies with the findings of Bolibar et al. (2020). For glaciers in

the French Alps, they found that the October temperature is the most important temperature variable. The

reason is that temperatures higher than 0 degrees Celsius favour lengthening of the ablation season, while

negative temperatures allow snowfall to protect the ice and contribute to accumulation. Furthermore, the

cumulative positive degree days (CPDD) and summer- and shoulder season months are important ablation

predictors (Bolibar et al., 2020).

The difference in temperature between 2000 and 2020 and 1980 and 2000 are important variables for

the nonlinear models. In the multiple linear regression model, these variables have got low coefficients and

thus do not explain a high amount of the variance. These results imply that the temperature change is a

nonlinear variable for mass balance change, which is in line with the research of Hock (2010). The SHAP

measure showed that an increase in temperature between 2000 and 2020 contributes to more positive SMB

values. The coefficients of the linear model showed a similar pattern. The same trend is present for the

second-order regions separately. These findings are inexplicable, as glaciers in the southern and western

HMA mostly melt due to temperature rise (De Kok et al., 2020). Also, other research has shown that

the altitude of the equilibrium line can shift dramatically if the temperature rises even a little, resulting in

a high negative mass balance change (Salinger, Chinn, Willsman, & Fitzharris, 2008). It is possible that

the temperature estimations from the climate historical.nc dataset have large discrepancies with the actual

temperature values of the glaciers.

The high importance of the precipitation between 1980 and 2000 implicates that a time lag effect appears

to be present for the climatic variables. The presence of a time lag effect for glaciers is confirmed by Raper

and Braithwaite (2009). The glacier mass balance has a certain response time to a climate forcing, which

can be approximated by the ratio of the glacier thickness to ablation at the glacier terminus (Raper &

Braithwaite, 2009). Under the same climate conditions, larger glaciers have got longer response times than

smaller, thinner glaciers. The individual glaciers’ response times to climatic changes vary from 5 to more

than 100 years, partly determined by the size of the glacier and whether it is a continental or maritime

glacier (Salinger et al., 2008; Wang et al., 2019).

6.1.5 Influence of debris area under the ELA

The results showed that the area under the ELA that is covered with the debris is a moderately important

variable for the nonlinear models. In the multiple linear regression model, the variable was barely significant.

This is in line with findings of (Brun et al., 2019) who observed no significant differences between glaciers

with and without debris cover for the entire HMA region. This indicates that the SMB responds nonlinearly
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to the presence of debris cover on the glacier. The SHAP values have shown that a low debris area contributes

to higher SMB values, but that a high debris area is related to higher SMB. Compagno et al. (2022) have

shown that if the debris is thinner than a few centimetres, ice melting is enhanced due to lowering the

albedo of the glacier surface. For thicker, continuous debris layers, ice melt is reduced due to the insulating

properties of the debris. As the same pattern is present for the debris area under the ELA, I hypothesize

that this variable is correlated to the debris thickness.

6.1.6 Influence of glacier lakes

The multiple linear regression model suggests that the SMB decreases with an average of 0.14 m.w.e./a

when a glacial lake is present. The nonlinear models showed that the variable is not an important variable

in explaining the mass balance change for the HMA in its entirety, presumably because only 814 out of 8099

glaciers intersect with a lake. Likely, the variable scored low in the nonlinear models due to this skewness.

Also, glacier lakes were expressed in binary terms in this study, which induces bias in the tree algorithms

as they prioritize variables with higher amounts of values (Strobl, Boulesteix, Zeileis, & Hothorn, 2007).

For glaciers that do intersect with a lake, it was shown that the presence of a glacial lake can contribute

negatively to the SMB with values ranging from -0.025 to -0.18 m.w.e/a. These values are comparable with

findings from Maurer, Schaefer, Rupper, and Corley (2019), who found that for the 650 largest Himalayan

glaciers, lake-terminating glaciers have got on average -0.18 ± 0.08 m.w.e./a lower SMB values than glaciers

that do not terminate into a lake. There are several reasons for higher mass loss rates when a glacial lake is

present. Glacier lakes can affect the ice flow by reducing friction at the ice-bed interface, which encourages

basal sliding (Pronk, Bolch, King, Wouters, & Benn, 2021). Also, they can have an impact on the albedo

of the ice surface, resulting in more surface melt. Proglacial lakes cause ice calving, which can decouple

glaciers from the climate due to heat absorption by the lake, resulting in reduced mass balance (Davies,

2021; Watson et al., 2020). The variability of mass loss rates within glaciers with glacial lakes is caused by

the glacier’s size and development stage (Brun et al., 2019; Sakai, Nishimura, Kadota, & Takeuchi, 2009;

Benn et al., 2012).

6.1.7 Variables with low influence

The results showed that the mean glacier flow velocity, surging behaviour, the glacier area, aspect, and the

average ice thickness are not strong predictors for the SMB.

The mean velocity was a variable with low or no explanation for the SMB in the models from this study.

This is indicative of the mean velocity being not a good proxy for the change in flow velocity. The change

in flow velocity appears to be a strong predictor for the SMB (Dehecq et al., 2019). A decrease in the flow

velocity was found to be accompanied by mass balance loss. In contrast, the stable or growing glaciers of

34



the Karakoram and West Kunlun regions undergo accelerated glacier flow (Dehecq et al., 2019).

Regarding the interpretation of the influence of surging on the SMB, caution ought to be taken as only

382 glaciers out of 8099 glaciers were classified as surging. Also, not all glaciers that were labelled as non-

surging are likely classified correctly (Dehecq et al., 2019). In the nonlinear models, whether a glacier is

surging is of the lowest permutation importance and the variable is not significant in the multiple linear

regression model. The SHAP values suggest a very small contribution of surging behaviour to negative

SMB, although the significance of this is debatable. This is in line with findings from Bhattacharya et al.

(2021), who found that surging glaciers have got slightly but insignificantly lower mass balance loss than

non-surge type glaciers. However, they observed that after surge termination the mass loss rates of surge-

type glaciers in HMA increased substantially by -0.62 ± 0.10 m.w.e./a bwteen 1980 and 2019. A hypothesis

is that glaciers are more vulnerable to melting after the ice is transferred from high to low during a surge

event (Bhattacharya et al., 2021). This effect is not considered in this study, as ongoing surging and not

historical surging were examined.

The results show that there is a negative relationship between the glacier area and the SMB, but that it

is of low importance or no significance which is in line with research of Brun et al. (2019). In past research,

only a negative correlation between the area and SMB for glaciers smaller than 0.1 km2 was found in the

Alps (Fischer, Huss, & Hoelzle, 2015). The aspect is a significant but very low explanatory variable in the

multiple linear regression model. It is also not an important variable in the nonlinear models. These results

are in line with Brun et al. (2019), who found that the aspect is not a significant variable in explaining the

SMB for most HMA regions. Furthermore, the aspect was the least important variable for glaciers in the

French Alps (Bolibar et al., 2020). The average ice thickness was not an important variable in the models

of this study, but a relationship between higher ice thickness and lower SMB values appears to be present.

No comparative research was found that included this variable.

6.2 Model comparison

The results suggest that the nonlinear XGBoost, Random Forest, and ANN models perform better than the

multiple linear regression model, as more than twice the variance is explained in the nonlinear models. This

is in line with previous studies (Steiner et al., 2005; Bolibar et al. 2020, 2022). As discussed before, certain

variables appear to have nonlinear responses to the SMB, which are the climatic variables, median glacier

elevation and the presence of debris cover under the ELA. A shortcoming of linear models for modelling

mass balance is that they do not capture these nonlinearities. For instance, linear models appear to be

oversensitive to extreme positive and negative snowfall anomalies (Bolibar, Rabatel, Gouttevin, Zekollari, &

Galiez, 2022). The multiple linear model thus does not meet its assumptions, as one of the assumptions is

that the relationship between the dependent and independent variables is linear. Furthermore, the multiple
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linear regression model violates the assumption of homoscedasticity. Lastly, the assumption of normality is

not met as the Q-Q Plot shows a heavy-tailed distribution, indicating that the residuals are not distributed

normally. Therefore, the use of the multiple linear regression model in this study to model the SMB is

debatable, as the confidence intervals of the coefficients are unreliable (Duke University, 2022). However,

they have low computation costs and show the response of predictors in their unit which allows for easier

interpretation. Consequently, when used in parallel with nonlinear models, linear models still have a place

in SMB modelling (Bolibar et al., 2020).

From the nonlinear models in this study, the XGBoost model performed optimally. The model scores

highest regarding the R2, RMSE and MAE metrics and is computationally less expensive than the ANN

model. No studies were found that model the SMB with the Random Forest or XGBoost models. For most

regression tasks, XGBoost tends to perform slightly better than Random Forest (MLJAR, 2022). Compared

to Random Forest, XGBoost has a more complex relationship between the hyperparameters and accuracy.

This results in more time-consuming hyperparameter tuning and higher computational power, but possibly

also higher scoring metrics than Random Forest models (Pafka, 2022). It is possible that the ANN performs

better in modelling the SMB after further tuning the hyperparameters. A downside of the ANN models is

that they require very intensive model tuning based on trial and error. Using GridSearchCV, which was used

to tune the hyperparameters of the Random Forest and XGBoost models, was not feasible for the ANN in

this study due to too high computational costs.

According to the ’no free lunch theorem’, any two algorithms are equivalent when their performance is

averaged across all possible problem. Therefore, it is recommended to test as many machine learning models

as possible for modelling the SMB, because the best performing model depends on the regression task and

data characteristics (Wolpert & Macready, 1997).

6.3 Limitations and recommendations

First of all, the statistical analysis in this study is sensitive to outliers, biases and uncertainties in the data.

The mass balance data of Hugonnet et al. (2021) suffer from relatively high uncertainties, with a median

uncertainty of 0.22 m.w.e./a (Brun et al., 2019). Other data sources are also affected by high levels of

uncertainty, such as the climate data due to a sparse network of weather stations that are typically placed at

lower elevations. Additionally, the ERA5 reanalysis dataset tends to greatly underestimate the precipitation

in mountainous areas (De Kok et al., 2020). Lastly, there are large uncertainties present regarding the

estimations of the debris area under the ELA (Rounce et al., 2021).

The second limitation of this study is that the statistical analysis is conducted for the entire HMA region,

instead of analyzing second-order HMA regions separately. The factors that drive glacier melt are highly

variable between different HMA regions (Bonekamp, De Kok, Collier, & Immerzeel, 2019). The results of
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Brun et al. (2019) also showed that many variables were only statistically significant for certain regions and

not for the entire HMA region. Therefore, a recommendation for future research is to execute the nonlinear

models and use the feature importance techniques for separate regions that are more homogeneous climate

and topography-wise.

Thirdly, it is interesting to analyze the SMB response of certain variables that were not included in this

study. The mean flow velocity was used in this study to investigate the effect of flow velocity on the SMB. The

change in flow velocity would have been a more interesting variable to include in the model as this appears

to be an important predictive variable for the SMB (Dehecq et al., 2019). Regarding the climatic variables,

it would have been interesting to split the annual temperature up into months, because the summer- and

shoulder season months are the most significant predictors for SMB in the French Alps (Bolibar et al., 2020).

Furthermore, the interannual variability in precipitation would be an interesting variable to investigate, as

this potentially has got a large effect on the SMB (Bonekamp et al., 2019). It would also be of interest to

discriminate the precipitation into rainfall and snowfall to get a better insight into the SMB response to

rainfall. This could be executed with a temperature threshold (De Woul, 2008).

Furthermore, spatial autocorrelation was not considered, while it is shown that it is present for the SMB

of glaciers in HMA (De Kok et al., 2020; Wang et al., 2019). Glaciers close to each other undergo more

similar climate conditions and have on average more related morphological characteristics, such as elevation,

than glaciers very far apart (Wang et al., 2019). Accounting for spatial autocorrelation could improve the

predictive power of the nonlinear models and allow for easier separation of spatial effects and process effects

of the variables on the SMB (Li, 2022). For further research, it would be interesting to add spatial lag and

eigenvector spatial filtering features to the XGBoost and Random Forest models, as research has indicated

that this can improve the nonlinear models’ predictions for geospatial inference tasks (Liu, 2020). Also,

combining the predictions of a Geospatial Weighted Regression model and Random Forest model has shown

promising results for geospatial inference (Shahneh, Oymak, & Magdy, 2021). For the imputation of the

velocity mean and tstar aar variables, spatial autocorrelation was also not taken account of. For further

research, Kriging interpolation could be considered for the imputation technique. With this method, spatial

autocorrelation of the variables is considered as it uses nearby observations to impute the missing values

(Cressie, 1988).

Lastly, the validations of the models could be more robust when nested k-fold cross-validation is used. In

this study, the models were executed on ten different seeds than the models were trained for. This procedure

resulted in an objective model comparison. Nonetheless, the scoring metrics of the models could increase

when the models are trained multiple times with different training sets with optimized hyperparameters for

each training set. Also, the generalizability of the models would improve as all glaciers will be used without

inducing bias, which is the issue with regular k-fold cross-validation (Cawley & Talbot, 2010).
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7 Conclusion

In this study, the SMB of 8099 HMA glaciers for the period 2000 - 2020 was simulated with 16 independent

variables as input. The SMB was modelled with a linear model and three nonlinear models. The responses

of the variables on the SMB were assessed with the coefficients of the linear model and with the SHAP and

permutation feature techniques of the XGBoost and Random Forest model. Also, the predictive power of the

models was compared. The two most important variables appear to be the average precipitation between

2000 and 2020 and the slope. The SHAP measure indicates a negative relationship between the average

precipitation and SMB, which is not in line with other research. An explanation for this inverse relationship

is the difference in regional effects and the effects of the underlying process. Other strong predictors are the

average temperature between 2000 and 2020, the median glacier elevation, the precipitation change between

1980 and 2000 and the temperature difference between 2000 and 2020. The higher the average temperature,

the more negative the SMB. However, more positive SMB values were associated with temperature rise

between 2000 and 2020, which is inexplicable and could be caused by inaccuracies in the temperature change

estimations. Certain variables appear to have nonlinear responses to the SMB, which are the climatic

variables, median glacier elevation and the presence of debris cover under the ELA. The nonlinear models

have performed significantly better than the linear models, as they capture these nonlinearities of the glacier

systems. Of the nonlinear models, the XGBoost performed best. This model scored highest regarding the

R2, RMSE and MAE.
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8 Appendix

Table A.1: Overview of variables used in study.
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Table A.2: Architecture of the ANN used in this study.

Layer Number of neurons Activation function Number of parameters

Input layer - - 0

Dense 150 LeakyReLU 1800

Dropout (0.3) - - 0

Dense 100 LeakyReLU 15,100

Dropout (0.1) - - 0

Dense 50 LeakyReLU 5050

Dropout (0.1) - - 0

Dense 50 LeakyReLU 2550

Dropout (0.1) - - 0

Dense 50 LeakyReLU 255

Dropout (0.1) - - 0

Dense 1 - 51

Total parameters: 27,101; trainable parameters: 27,100; non-trainable parameters: 0.

Table A.3: Regression table of multiple linear regression with Z-scored coefficients.

Variable \textbeta 95% CI t P>t

const -0.205 [-0.211, 0.066] 4.769 0.000

Area -0.022 [-0.044, 0] -1.939 0.052

avg ice thickness -0.011 [-0.038, 0.017] -0.758 0.448

debris vol ela p 0.038 [0.018, 0.058] 3.693 0.000

Slope 0.239 [0.214, 0.264] 18.785 0.000

Aspect 0.033 [0.015, 0.051] 3.534 0.000

Zmed -0.034 [-0.056, -0.012] -3.006 0.003

tstar aar 0.166 [0.146, 0.186] 16.228 0.000

temp diff 2000 2020 0.169 [0.147, 0.190] 15.647 0.000

temp mean 2000 2020 -0.232 [-0.260, -205] -16.533 0.000

prcp diff 2000 2020 0.059 [0.038, 0.080] 5.519 0.000

prcp mean 2000 2020 -0.217 [-0.244, -0.19] -15.787 0.000

glacial lake -0.464 [-0.528, -0.402] -14.476 0.000

temp diff 1980-2000 0.078 [0.056, 0.099] 7.172 0.000

prcp diff 1980 2000 -0.056 [-0.075, -0.037] -5.650 0.000

Note: R2 = 0.309 (N = 8099, P = 0.001). CI = confidence interval for β.
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Table A.4: Regression table of multiple linear regression.

Variable β 95% CI t P>t

const -0.8301 [-0.898, -0.762] -23.848 0

temp mean 2000 2020 -0.0166 [-0.019, -0.015] -16.223 0

temp diff 2000 2020 0.1988 [0.174, 0.224] 15.647 0

temp diff 1980-2000 0.0974 [0.071, 0.124] 7.146 0

prcp mean 2000 2020 -0.0001 [0, -9.83E-05] -15.683 0

prcp diff 2000 2020 0.0004 [0, 0.001] 5.719 0

prcp diff 1980 2000 -3.46E-05 [-4.68E-05, -2.25E-05] -5.577 0

Area -0.0003 [-0.001, 4.19E-06] -1.93 0.054

Slope 0.0121 [0.011, 0.013] 19.053 0

Aspect 7.73E-05 [3.44E-05, 0] 3.532 0

Zmed -1.71E-05 [-2.78E-05, -6.37E-06] -3.124 0.002

avg ice thickness -8.84E-05 [-0.001, 0] -0.406 0.685

debris area ela p 0.0003 [3.32E-05, 0.001] 2.215 0.027

tstar aar 0.6082 [0.533, 0.684] 15.783 0

glacial lake -0.1401 [-0.159, -1.121] -14.402 0

velocity mean -3.93E-05 [-0.002, 0.001] -0.052 0.958

surging 0.0097 [-0.018, 0.038] 0.686 0.493

Note: R = 0.309 (N = 8099, P = 0.001). CI = confidence interval for β
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Figure A.1: Residuals of each variable used in this study (Table A.1) versus the dmdtda, based upon the

selection of 8099 glaciers in HMA.
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Table A.5: Performance of Multiple Linear Regression and Random Forest models for ten random seeds.

Multiple linear regression Random Forest

Seed train test split MAE RMSE R2 MAE RMSE R2

94869 0.197 0.265 0.293 0.126 0.193 0.626

32389 0.186 0.242 0.321 0.115 0.167 0.676

58311 0.187 0.247 0.311 0.119 0.174 0.660

43783 0.192 0.252 0.311 0.118 0.170 0.688

73727 0.182 0.243 0.312 0.118 0.175 0.643

24894 0.190 0.254 0.292 0.118 0.174 0.668

35349 0.195 0.265 0.287 0.122 0.189 0.638

85399 0.186 0.249 0.309 0.121 0.179 0.644

45689 0.186 0.251 0.309 0.118 0.177 0.656

19359 0.186 0.243 0.328 0.118 0.172 0.664

Average 0.189 0.251 0.307 0.119 0.177 0.656

Standard deviation 0.005 0.008 0.013 0.003 0.008 0.019

Table A.6: Performance of XGBoost and Artificial Neural Network for ten random seeds.

XGBoost ANN

Seed train test split MAE RMSE R2 MAE RMSE R2

94869 0.123 0.187 0.650 0.126 0.191 0.641

32389 0.114 0.164 0.688 0.115 0.167 0.677

58311 0.116 0.169 0.680 0.117 0.169 0.677

43783 0.117 0.166 0.701 0.115 0.165 0.705

73727 0.116 0.170 0.664 0.118 0.175 0.639

24894 0.116 0.171 0.682 0.120 0.182 0.636

35349 0.119 0.184 0.656 0.117 0.181 0.649

85399 0.119 0.173 0.666 0.120 0.179 0.654

45689 0.116 0.173 0.673 0.117 0.180 0.650

19359 0.115 0.166 0.685 0.119 0.170 0.665

Average 0.117 0.172 0.675 0.119 0.176 0.659

Standard deviation 0.003 0.008 0.016 0.003 0.008 0.022
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9 Code and data availability

The source code of the SMB models is available at https://github.com/DEHartmann/SMBmodels. All

scripts used to generate plots and results are included in the repository.
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Steiner, D., Walter, A., & Zumbühl, H. (2005). The application of a non-linear back-propagation neural

network to study the mass balance of grosse aletschgletscher, switzerland. Journal of Glaciology ,

51 (173), 313–323.

Stokes, C. R., Sanderson, J. E., Miles, B. W., Jamieson, S. S., & Leeson, A. A. (2019). Widespread

distribution of supraglacial lakes around the margin of the east antarctic ice sheet. Scientific reports,

9 (1), 1–14.

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance

measures: Illustrations, sources and a solution. BMC bioinformatics, 8 (1), 1–21.

Tranmer, M., & Elliot, M. (2008). Multiple linear regression. The Cathie Marsh Centre for Census and

Survey Research (CCSR), 5 (5), 1–5.
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