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Abstract
Precipitation nowcasting tries to predict the intensity of rainfall in the near future. Due to the dependency of many
industries on accurate predictions of nowcasting methods, the development of such methods has increased in
recent years. In this research, we validated a Deep Generative Model of Radar (DGMR) developed by DeepMind
on weather data from the Netherlands. The results of the DGMR were compared to a baseline method S-PROG,
based on the PySTEPS framework. It was found that the DGMR outperformed the S-PROG method on multiple
metrics, scoring significantly higher for Mean Squared Error and Critical Success Index at timestamp t0 + 60.
However, the DGMR model often failed to correctly classify predictions at long lead times. Therefore, it was
concluded that this model is capable of making predictions for the Netherlands. However, re-training of the model
is required to achieve the full capabilities of the model.
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1. Introduction
Precipitation nowcasting tries to accurately predict the inten-
sity of rainfall in the near future (e.g., 0-6 hours) at high spatial
resolutions [1]. This type of forecasting informs decision-
making in many industries. These include, but are not limited
to, the agriculture industry, air and marine traffic control and
the entertainment industry. Besides, it plays an important role
in flood risk assessment due to the possibility of flooding as a
result of heavy rain [2]. Therefore, the safety and well-being
of many people depend on accurate predictions from nowcast-
ing models. Especially considering the growing frequency
and severity of heavy rain events in Europe and the United
States [3].
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The development of more accurate precipitation nowcasting
models has increased in recent years. These developments
have mostly focused on deep learning approaches because
they showed to provide more accurate results than earlier,
non-machine learning, methods [1, 2]. Besides, the prediction
of heavy rain events and precipitation, in general, requires the
analysis of vast amounts of data which is a task well suited for
deep learning approaches. A non-machine learning approach
commonly used for nowcasting is the framework PySTEPS
which provides many different prediction methods [4]. For ex-
ample, the Spectral Prognosis (S-PROG) method (will refer to
this method as the PySTEPS method). This method uses mo-
tion fields to predict future radar frames. Motion fields convey
the advection of precipitation fields. However, this approach
lacks the ability for highly accurate predictions. Mainly due
to the addition of a blurring effect, where the predictions get
smoothed for increasing lead times [5]. Although this method
is able to capture large precipitation structures, it is not able
to generate realistic nowscasts. Therefore, blurring is seen as
a problem for achieving highly accurate predictions [6].

In 2021 Google’s DeepMind department launched a new pre-
cipitation nowcasting model with a deep learning framework
in pursuit of solving the problems of earlier nowcasting mod-
els [7]. Here, a Deep Generative Model (DGM) was used to
generate predictions based on a series of radar images. This
complex model was trained and tested on radar data from the
United Kingdom MET office. Results show this model to
outperform traditional nowcasting methods, such as S-PROG
and STEPS and even perform better than other state-of-the-
art machine learning models [7]. Besides, they found that
a majority of meteorologists preferred the prediction of this
model over those of competing methods after a review of 56
meteorologists from the MET office [7]. This advanced model
could positively influence weather-based decision-making and
precipitation nowcasting applications in general, by solving
the problems of earlier methods.

The results of this deep learning model are promising, how-
ever, it is unknown if these results are applicable to areas
outside the scope of the original research as of now. Due to
the extensive computational cost, time, and research required
for the development of complex precipitation nowcasting mod-
els, additional validation can help determine the potential of
such models in new regions. Deepmind already validated the
model once on data from the USA. This research will further
investigate the abilities of this model by validating its perfor-
mance on Dutch weather data. From this, we can gather how
well the model generalizes on Dutch weather data and if it is
beneficial to implement this model in the Netherlands. This
country is well suited for this research due to the availability
of high-quality data and its high amount of average yearly
rainfall [8].

1.1 Research Questions
In this research, we aim to find the capabilities of the deep
learning methods for precipitation nowcasting in the Nether-
lands. The main question we will try to answer in this study
is Can the pre-trained DeepMind precipitation model be used
for successful precipitation nowcasting in the Netherlands?

Answering this question will be done on the basis of the an-
swers to three sub-questions. The answers found for the first
sub-question will aid in the comprehension of the data used
in the model and corresponding data preprocessing steps, and
reads: Is high-quality weather data available for the Nether-
lands that can be used with the pre-trained DGMR model?
The second sub-question we will answer is: Are alterations to
the model’s architecture needed for the prediction of rainfall
in the Netherlands? This question will help to get an under-
standing of the complex deep learning model and its possible
problems for use on Dutch weather data. From this, we could
also gather if alterations need to be made. Lastly, we will
answer the sub-question: Are the same patterns noticeable be-
tween the results on Dutch weather data and the results found
by DeepMind? This question will lead to a better interpreta-
tion of the results and their validity. Answering these three
sub-questions makes it possible to determine if the pre-trained
model is applicable as a nowcasting model in the Netherlands.

1.2 Relevance
This research on precipitation nowcasting will give insight
into the possibilities of complex models in solving the pre-
cipitation prediction problem. Furthermore, due to the large
dependency of many industries on precipitation nowcasting,
studies on more accurate methods will have a positive socio-
economic impact. Especially, given the increase in flooding
due to rainfall in the Netherlands and western Europe in recent
years [9]. More accurate nowcasting models could improve
detection of and therefore preparation for certain events.

2. Methods
In this section, we will describe the experiment conducted for
this thesis. The experiment will be on the validation of the
Deep Generative Model of Radar (DGMR) as introduced by
DeepMind on weather data from the Netherlands. By con-
ducting this experiment we hope to answer the question if
this pre-trained model can be used for successful precipita-
tion nowcasting for the Netherlands. Additionally, we will
investigate if the weather data available for this country is
of sufficient quality and fits the requirements for use in the
model. Furthermore, we will explore the model architecture
and evaluate the predictions of the model. A visualization of
the full process can be found in figure 1.

2.1 Data Availability
To validate the model, we will be using the Dutch National
Rainfallradar (NRR)1. This is a product of Nelen & Schuur-

1www.nationaleregenradar.nl
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Figure 1. Schematic representation of the full process.

mans in collaboration with the KNMI (Netherlands), WRD
(Germany), and Jabekke (Belgium). Here, images from 6
different radar stations are used in order to create a high-
resolution composite radar image representing the current rain
situation. The dimensions of the radar image are 497×525
cells, with a cell size of 1km, and cover an area of approxi-
mately 261 thousand km2. Such radar image shows the esti-
mate of precipitation intensity, corrected by ground measure-
ments, over a period of 5 minutes (mm/5min)

The main benefits of the NRR are the increase in area and
quality compared to the raw radar images from the KNMI
(based on only two radar stations). The latter is partly due to
the minimization of inconsistencies and missing data points.
Such problems can occur for rain data in areas close to (<30
km) or very far away from radar stations. The use of sev-
eral overlapping radar images mitigates this problem [10].
Besides, the raw radar images are corrected based on more
reliable ground stations resulting in a more sound radar image.

The images have a spatial resolution of 1km x 1km and a
latency of 5 minutes. These qualities make this unique dataset
very well suited for precipitation nowcasting applications.
Furthermore, the spatial resolution and latency of the radar
images of the NRR are equal to those of the MET office used
by DeepMind. The quality and characteristics are therefore
in line with the data used in the original research. Data is
available from 01-2010 until 05-2022, on the day of writing2.

2.2 Sampling and Preprocessing
Radar images are extracted using the Lizard API 3. Here, radar
frames from the last full year of available data, in our case
2021 were extracted. From this year data was extracted for
days on which 5mm or more rain was measured in de Bilt, the
Netherlands4. Meaning days on which 5 millimetres of rain
was measured over the whole day, certain moments of the day
will have no or little rain. This step is implemented to reduce

2Due to the correction of the data a slight delay occurs for data availability.
Uncorrected data is also available, but will not be used for this research.

3Product of Nelen & Schuurmans, https://lizard.net/
4Based on measurements from the KNMI.

Figure 2. Representation of the four cropped radar frames. The
green area indicates the size of the radar frames used as input for the
DGMR model. The red area indicates the size of the evaluation area
used for both methods.

processing times 5. This resulted in a set of 63 days, spread
across the year (see Appendix A). For every day, radar frames
were extracted from 00:00 until 23:55, with a temporal offset
of 5 minutes. Resulting in 288 frames per day and 18.144 in
total.

For pre-processing of these radar images we have used the
Python library Rasterio 6 First, we changed the temporal
support size of the radar frames from mm/5min to mm/h,
also known as resampling. In this way, the temporal support
size is equal to that used by DeepMind for training and com-
monly used in nowcasting applications in general [11, 12].
To achieve this we calculated the moving sum over 12 radar
frames, resulting in one radar frame representing the rainfall
intensity over a 1-hour period. From now on, the term radar
frame will be used for frames representing mm/h. For the
second preprocessing step, multiple consecutive radar frames
need to be grouped together to form a rain event. A rain
event consists of 24 consecutive radar frames, covering 120
minutes and is used as input for the nowcasting models. In
total 1421 rain events were created with a temporal offset of 1
hour. For the final step of pre-processing, the full radar frame
was cropped into smaller frames. This was done to adhere
to the strict size limitations for the snapshot of the DGMR
model made available 7. For every rain event four, partially
overlapping, crops were made with a dimension of 256×256.
Together these four crops cover the entire landmass of the
Netherlands and a total area of 147.456km2, see figure 2.

To create the final test set, we will sample the dataset based
on the intensity of rainfall. Here, rain events showing heavy
rain (5 mm h−1) will have a higher sampling chance than

5Extraction of the subset took approximately 10 hours
6https://rasterio.readthedocs.io/en/latest/index.html
7Two models, with different sized input, were made publicly available.

One model was used to predict precipitation for the whole of the UK
(xxxx×xxxx) and a model to make a prediction on an area of 256×256.
The latter was used during training and validation of the model as it meant
one full radar image could be cropped and used multiple times. Adding to
the size of the dataset
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events showing light (1 mm h−1) or even no rain. This step is
implemented because most (cropped) radar frames contain no
rain. These frames will contribute little to the overall results.
By implementing a sampling scheme we can reduce the com-
putational cost needed to make predictions over such frames,
without losing statistical power. Computing the sampling
probability (qn for cropped rain event n) was done follow-
ing the sampling scheme used by DeepMind in the original
research, in this way results of our validation will be more
comparable to those of DeepMind. Here the following equa-
tion was used:

qn = 10−3 +
2.2

24×256×256
× xn (1)

In this equation xn is equal to xn = ∑i(1− exp(−v/1)), with
v representing the intensity of rainfall in mm for grid cell
i, when indexing all 24× 256× 256 grid cells of a cropped
rain event. Furthermore, 10−3 is the minimum probability of
inclusion and 2.2 is a multiplier used to control the overall
inclusion rate. These values are equal to those used in the
original research. On the bases of the sampling probability, a
test set of size N has been created. The test set consists of 100
rain events spread across the year with a good balance between
samples from all four crops. For full details on the test, set
used see Appendix B. This sampling probability will also be
used during evaluation to correct for the bias introduces by
using a dataset that favours radar frames with heavier rainfall.
In section 2.4 this will be further explained.

2.3 Deep Generative Model of Radar (DGMR)
For this research, we will be validating a deep generative
nowcasting model (DGMR) that is introduced and trained by
DeepMind [7]. This model predicts N future radar frames
based on M past radar frames. These radar frames convey
estimates of precipitation intensity 8. We will explain this
model on the basis of the schematic as seen in figure 3.

We see that the input of the mode is split into context and
observations, combined these are equal to 22 radar frames of
a rain event. Firstly, the context, i.e. the input frames, is equal
to four consecutive radar frames (the previous 20 minutes).
The observations, i.e. target frames, are equal to the following
18 frames (the ‘future’ 90 minutes)9. The latter is only used
during training, to adjust the parameters of the model and
thereby guide learning.

The four input frames are used as input for the conditional
generative adversarial network (GAN). This network is spe-
cialized in the prediction of precipitation and therefore often

8Note that our data will slightly differ due to correction of ground-level
measurements as discussed in section 2.1

9Note that not the first two frames of a rain event are not used. The
model only uses 22 frames as input for training and 4 frames as input for
testing/validation. The reason for these numbers is not mentioned in the
original paper but is in line with other nowcasting methods.

used in nowcasting applications [13]. A radar generator is
used to generate multiple different future predictions of length
90 minutes (18 frames) based on the four input frames, guided
by latent random vector Z and parameters. During training,
these parameters are adjusted guided by two loss functions,
i.e. error terms, and a regularisation term. These influence
parameter adjustments by comparing the generated radar sam-
ples to real radar observations and play a significant role in
achieving more accurate and realistic predictions.

The input of the first loss function is a random crop of both
observed and generated radar frame sequences. This tempo-
ral discriminator ensures temporal consistency by classifying
real and fake radar frames using a three-dimensional convolu-
tional neural network (CNN). In this way, predictions that are
inconsistent in time, so-called jumpy predictions, are penal-
ized. The second loss function is defined by a CNN trained
to classify real and generated radar frames. This classifica-
tion is made on 8 random frames. Hereby, this loss function
tries to establish spatial consistency and non-blurry predic-
tions. The latter has shown problematic for earlier nowcasting
methods [6]. Accuracy is further improved by introducing
a regularization term that imposes a penalty for differences
at a per-grid-cell level between predicted and observed radar
frames. Here the mean over the N-generated samples is used.
The addition of this term improves location-accurate predic-
tions and overall performance.

The model was trained on a large collection of rain events,
consisting of cropped radar frames of size 256×25610 made
available by the MET office. A snapshot of the pre-trained
model is made available publicly and will be used for this
research.

2.4 Evaluation Metrics
For evaluation of the model three metrics will be used: Root
Mean Squared Error (RMSE), Critical Succes Index (CSI)
and Fraction Skill Score (FSS). These metrics are computed
over the central 128×128 grid cells, for each of the predicted
frames (see figure 2). This central square is used to prevent
the results to be influenced by boundary effects. Such effects
can have a negative effect on the model’s results due to the
model having no information about the area outside its scope,
i.e. outside the 256×256 grid11. For example, when looking
at observations in figure 7, we see a rain structure coming in
from the northwest. The DGMR model is unable to predict
this precipitation as no information was available regarding
this structure.

For evaluation, a weight will be used to correct for the bias
introduced by the use of a semi-random sampling scheme.

10The model is capable of predicting precipitation over larger areas, how-
ever, this will not be used for this study.

11Because the PySTEPS method makes prediction over the full radar frame
(of size 497×525), this effect is less prevalent. However, the same approach
is used for a better comparison of the results.
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Figure 3. Schematic representation of the DGMR model, showing
the four main components of the model. Note the distinction
between the black arrows, representing the N generated samples, i.e.
N different predictions, and the blue arrows, representing the
observation, i.e., the observed ground truth. The latter is only used
in the model during training.

For every rain event this weight is equal to wn = q−1
n , with qn

equal to the sampling probability (see equation 1). In this way,
rain events with a lower sampling probability, i.e. rain events
showing less rain, have a higher weight in the evaluation
compensating for the fact they are underrepresented in the test
set.

2.4.1 Root Mean Squared Error (RMSE)
RMSE gives a continuous measure of the accuracy of the
predictions based on the difference on a per-grid-cell level.
We index each grid cell of a predicted radar frame with i and
write Pi for the model’s prediction for grid cell i, and Oi for
the corresponding observed ground truth. This measure is
defined as:

RMSE =
√

∑
i

ŵn(Pi −Oi)2 (2)

Here, ŵn is equal to the normalized weight12 for event n.
Lower is better for RMSE. By addition of the square root
RMSE is measured in the same units as the target variable.
Thus a RMSE of 1, indicates an average difference of 1mm/h
over all grid cells in the radar frame.

2.4.2 Critical Succes Index (CSI)
CSI is used for a binary classification of the predicted frames
[7]. This metric evaluates whether or not rainfall exceeds a
threshold t, for example low rain (t = 1mm/h) or medium rain
(t = 4mm/h). It is defined as:

CSI =
wn ∗T P

wn ∗T P+wn ∗FP+wn ∗FN
(3)

12The weight for event n is normalized for the sum of all sampled events

TP, FP and FN are defined as a true positive (Pi ≤ t,Oi ≤ t),
false positive (Pi ≤ t,Oi < t) and false negative (Pi < t,Oi ≤ t),
respectively. CSI is popular in the nowcasting community due
to evaluating the model on both precision and recall in a single
measure [7].

2.4.3 Fraction Skill Score (FSS)
FSS is a spatial verification score that gives a direct error mea-
sure for the placement of rain. This measure has been shown
to give a valid assessment of the performance of precipitation
nowcasting. This score is defined as the fraction between cor-
rectly classified grid cells and incorrectly classified grid cells
in an area of size s2, multiplied by wn. With s representing a
variable scale in kilometres. The correctness of the prediction
of a grid cell is determined in the same way as for CSI, here
we used a constant threshold of 1mm/h. For further details on
this measure we refer to Skok and Roberts, 2016 [14].

2.5 Validation
The experiment consists of validating the DGMR model devel-
oped and trained by DeepMind on rain data from the Nether-
lands. For every event the DGMR model is used to predict
18 frames, representing the next 90 minutes of rain activity.
These 18 frames are then compared to the observed ground
truth (i.e. target frames) to compute the RMSE, CSI and FSS
for every timestamp. The average of these measurements over
the whole test set will be computed.

This procedure is repeated using the nowcasting method S-
PROG, to provide a baseline. Here, we use the Lukas-Kanade
local feature tracking module to extrapolate a motion field,
default parameters are used. For this model, predictions, are
made for the full, non-cropped, radar frames. However, com-
putation of the evaluation metrics was done over the same
areas as the DGMR model, for a valid comparison. Paired
t-tests will be performed to establish significance between
the results of both methods, with α = 0.05. Here we will
compare the results found at timestamp t0 + 60 minutes for
all metrics. The validation will be run over 100 rain events.
This number is chosen because it provides meaningful results
without making the run time unnecessarily long.

3. Results
In this section, the results of the DGRM model and the base-
line PySTEPS method will be shown. For all three metrics,
the mean is presented for timestamp t0 +30 minutes, t0 +60
minutes, and t0 +90 minutes, with t0 equal to the timestamp
of the final input frame13.

Tables 1, 2, and 3 show the mean RMSE, CSI and FSS score
over all 100 rain events for both precipitation nowcasting
methods used. After performing a paired t-test we found a
significant difference between the mean RMSE, t(99) = -2.128,
p = 0.035. The mean RMSE was lower (i.e. preferred) for

13For event 2021-01-01T12:10:00, t0 is at 2021-01-01T12:30:00.
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the predictions by the DGMR model (µ = 0.799 ± 0.677)
compared to the PySTEPS method (µ = 0.897 ± 0.912). The
same paired t-test was performed for the mean CSI (with
t = 1mm) which also found a significant difference, t(99) =
4.300, p < 0.001. The mean CSI was higher (i.e. preferred) for
the DGMR model (µ = 0.824 ± 0.158) compared to the results
from the PySTEPS method (µ = 0.778 ± 0.227). Lastly, the
paired t-test performed for the mean FSS (with t = 1mm,
s = 8km) found no significant difference, t(99) = 1.229, p
= 0.221. The mean FSS was higher (i.e. preferred) for the
DGMR model (µ = 0.579 ± 0.310) compared to the PySTEPS
method (µ = 0.557 ± 0.338).

Table 1

RMSE
Method +30 +60 +90
DGMR 0.519 0.799 0.923
PySTEPS 0.541 0.897 1.097

Table 2

CSI (1mm)
Method +30 +60 +90
DGMR 0.895 0.824 0.780
PySTEPS 0.862 0.778 0.732

Table 3

FSS (8km, 1mm)
Method +30 +60 +90
DGMR 0.788 0.579 0.487
PySTEPS 0.726 0.556 0.439

3.1 Analysis
The results show the DGMR model to outperform the PyS-
TEPS method for all three metrics. This is further emphasised
by the results of the paired t-test, showing a significant dif-
ference at t0 +60 for these two metrics. However, the results
from the FSS do not follow the same trend. Not only were the
differences found not significant at t0 +60, but for the lowest
scale used (2km), we see the score of the DGMR model to
even dip below that of the PySTEPS method. Furthermore,
figures 4, 5, and 6 show a clear decline off prediction accuracy
with increasing lead times. For both RMSE and CSI we also
see a bigger difference in prediction accuracy for increasing
lead times, in favour of the DGMR model.

These three metrics help us identify the strengths and weak-
nesses of the Deep Generative Model. First RMSE, this mea-
sure indicates the absolute error. This includes both the in-
tensity and placement of predicted precipitation. We see both
methods to start equally strong with a difference of only 0.022

Figure 4. Plot showing average Root Mean Squared Error over test
set for every timestamp. An increase in RMSE is visible for leading
timestamp for both methods used.

Figure 5. Plot showing average Critical Success Index over test set
for every timestamp and different thresholds set at 0.5mm/h (blue),
1mm/h (red) and 2mm/h (green).

Figure 6. Plot showing average Fraction Skill Score over test set
for every timestamp and different scales set at 2km (blue), 8km (red)
and 32km (green)
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at timestamp +30. However, after 40 minutes the DGMR
shows its strengths compared to the PySTEPS method. This
difference is most likely due to the blurring effect that is vis-
ible for the PySTEPS method as can be seen in figures 7,
8, and 9. The predictions of the DGMR model look more
realistic compared to the predictions of the PySTEPS method,
especially at increasing lead times. This seems a direct result
of the addition of the spatial discriminator to the model to
prevent blurring. However, we do see predictions where the
DGMR model incorrectly combines multiple smaller struc-
tures, as seen in figure 9.

In figure 2 we see the DGMR model outperform the PySTEPS
method for CSI on multiple thresholds (0.5mm, 1mm, and
2mm). This is an indication that the DGMR model can more
precisely predict the intensity of rainfall. A visual analysis
of the prediction in figure 7 indicates this as well. Here, we
see the predictions of the PySTEPS method to keep the same
(or even slightly increase) the intensity of rainfall over the
predicted 90 minutes, whereas the prediction of the DGMR
model shows a decrease in rainfall intensity over the predicted
place. The latter is more in line with the observed ground truth.
However, in figure 8, we see the DGMR is unable to predict
an increase in rainfall intensity. Contrary, in some cases, it
was found that the DGMR underestimated the intensity of
rainfall, with precipitation structures completely disappearing
over time for rain events showing light rain. This could be a
result of an over-representation of events showing this phe-
nomenon (disappearing rain structures) during training.

Lastly, the FSS metric indicates the spatial accuracy of the
prediction. Here the results of both methods show negligible
(and non-significant) differences for all scales. This seems to
indicate that the use of Deep Learning to estimate the move-
ment of precipitation structures is equally valid as the use of a
motion field. However, both methods struggle with capturing
the movement of rain structures. Often the DGMR model was
able to correctly classify the overall movement of a rain event
but failed to identify the movement of smaller precipitation
structures.

As discussed before, the addition of the spatial and temporal
loss functions does significantly improve the predicting accu-
racy. The complexity of the model can solve clear problems
of the PySTEPS method such as blurring and overestimation
of rain intensity. Nonetheless, the predictions of the DGMR
model show clear deviations from the ground truth, especially
at long lead times. DeepMind noted similar problems with
the DGMR model in the original research. However, the prob-
lems of underestimating rainfall intensity and the grouping of
multiple smaller precipitation structures were not encountered
by DeepMind. We assume this to be a direct result of not
retraining the model for our research.

4. Discussion
In this chapter, we will discuss the research conducted for this
thesis. Additionally, we will evaluate our limitations for this
research and propose possible alterations for further studies
on this topic.

4.1 Implications
The results have shown that the complex DGMR model is
able to make fairly accurate predictions of precipitation for
the Netherlands. This model was able to outperform the com-
monly used PySTEPS method S-PROG on multiple metrics.
These results are in line with earlier work on the use of Deep
Learning in solving the precipitation prediction problem and
emphasise the power of these techniques [1, 7].

Furthermore, in this research, we have been able to success-
fully apply the model to radar data from the Dutch National
Rainfall radar. Not only might this indicate that the available
data is of sufficient quality for validating this model, but it
could also be an indication of a high generalisability of the
model.
Even though the predictions are not flawless at long lead times,
the model showed greatly improved results over earlier meth-
ods. Especially in solving the problem of blurry predictions.
This leap in improvement also has positive implications for the
many industries that are dependent on nowcasting techniques.
The results from the original research in combination with the
results found in this study illustrate a positive socio-economic
impact of the use and development of complex deep learn-
ing precipitation nowcasting models. However, this positive
impact diminishes for increasing lead times.

4.2 Limitations
For this thesis, the reader should consider some limitations.

For one, we validated the DGMR model on Dutch weather
data without re-training the model first as this option was
not provided publicly by the DeepMind team. This most
likely lead to not achieving the full capabilities of the model.
Therefore, the differences in prediction accuracy between the
two nowcasting methods found could be larger when using
validation consisting of both training and testing. This be-
comes even more prevalent when considering that by using
a self-trained model, input size limitations could be avoided.
However, the original paper mentioned that training required
enormous amounts of processing power and time.

Secondly, when evaluating the models no ensemble metrics
were used. Ensemble metrics are computed over multiple
predicted samples for every rain event. These metrics provide
a statistically stronger evaluation, by, for example, mitigating
the influence of random factors. Besides, by using the en-
semble technique a larger variety of metrics can be computed.
However, due to a significant increase in processing time, this
was beyond the scope of this thesis. Besides, the evaluation



Validating a Deep Generative Precipitation Nowcasting Model on the Netherlands — 8/11

Figure 7. Predictions from both models for precipitation event starting at T=2021-07-27 at 12:00 UTC +1, showing three separate structures
of heavy rainfall moving from west to east over the Netherlands. Note, when visualizing precipitation the colour purple is often used to
indicate heavy rain, however, in the visualizations in this paper the colour purple is used for light rain.

Figure 8. Predictions from both models and the corresponding ground truth for precipitation event starting at T=2021-08-22 at 10:00 UTC
+1, showing a large structure of medium to heavy rainfall moving very slightly to the east over the north west of the Netherlands.



Validating a Deep Generative Precipitation Nowcasting Model on the Netherlands — 9/11

Figure 9. Predictions from both models and the corresponding ground truth for precipitation event starting at T=2021-07-26 at 14:00 UTC
+1, showing multiple smaller structures rainfall over the centre of the Netherlands.

metrics used provided a solid assessment of the predictive
qualities.

4.3 Further Studies
Due to the aforementioned limitations, there are multiple ways
in which the current study can be improved upon. These could
be alterations upon the conducted research or research on new
topics arising from this research.

For one, this research could be repeated for different countries.
Preferably researchers could use rain data from a country with
a vastly different climate to that of the United Kingdom and
the Netherlands. Given that generalisability found in this
study could very well be a result of the similarity of climates
between these two countries.

Furthermore, researchers could focus on variables in the data.
This could include a study on the difference in predictive qual-
ity between events from different periods (summer/winter) or
areas (north/south). This could also be an investigation into
the predictions of extreme rain events.

5. Conclusion
In this chapter, we will answer the main research question.
This will be done by first answering the three sub-questions.

The first sub-question asked if high-quality weather data avail-
able for the Netherlands that can be used with the pre-trained
DGMR model. After pre-processing the raw radar images
extracted from the RNN. We successfully made predictions
for multiple rain events. It was found that the quality, and
the characteristics, of the data, were sufficient for use in the
model. Only the dimensions of the raw radar images were
found to be inconsistent, however, this problem can be solved
by re-training the model. Still, we conclude the available data
to be of satisfactory quality.

The second sub-question ‘Are alterations to the models’ ar-
chitecture needed for the prediction of rainfall in the Nether-
lands?’ was answered by an overview of the models’ archi-
tecture and an evaluation of the results. It was found that
the choices made by DeepMind to solve problems of earlier
models, also saw positive effects in this study. However, the
prediction still encountered some problems not identified by
DeepMind. Most likely this is a result of not retraining the
model and not from elements of the model itself. This claim
is emphasised by the results of validation (consisting of both
training and testing) by DeepMind on the United States. From
this, we can conclude that the architecture in its current state
can be directly implemented for use in the Netherlands, but
re-training is needed.

Thirdly in this study, we tried to answer the question ‘Are
the same patterns noticeable between the results on Dutch
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weather data and the results found by DeepMind?’ by anal-
ysis of the results on three different metrics. From this anal-
ysis, we can conclude that the results found are in line with
those found by DeepMind. Here, the complex DGMR model
equally outperformed the PySTEPS method and was able to
mitigate problems of earlier nowcasting methods in a similar
fashion.

With the use of the answers found for the sub-questions, we
can answer the main research question of this thesis: Can
the pre-trained DeepMind precipitation model be used for
successful precipitation nowcasting in the Netherlands? This
thesis showed that the pre-trained DGMR model introduced
by Google DeepMind was able to predict precipitation events
for 90 minutes into the future better than the PySTEPS method
used as a baseline. Although this is an important step, the
predictions still showed room for improvement, especially
at long lead times. However, the intrigues and results of the
model in combination with the availability and quality of the
data give enough reason to assume that this model, after re-
training, can be used for successful precipitation nowcasting
in the Netherlands.
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Appendix

A
Days included for radar image extraction based on measure-
ments of rainfall in De Bilt, Netherlands.

Month Days
January 7, 12, 19, 21, 28, 29
February 2, 3, 18
March 13, 16
April 7, 10, 29, 30
May 4, 13, 16, 17, 19, 22, 24, 26
June 18, 19, 21, 27
July 3, 4, 15, 25, 26, 27, 31
August 3, 7, 8, 9, 16, 21, 22
September 10, 27, 29
October 1, 2, 3, 6, 12, 20, 21, 30, 31
November 13, 26, 27, 30
December 1, 2, 6, 24, 25, 29

B
Overview of the used test set.

Month Amount
January 11
February 5
March 3
April 7
May 15
June 7
July 9
August 8
September 6
October 18
November 3
December 8

Position Amount
North West 23
North East 16
South West 31
South East 30

C
The data and Google Colab Notebook containing the code
used for this research can be found here: Data and Code

https://colab.research.google.com/drive/1gAb5QI6EFg1q80razvYYuPZk6hg9QsCy?usp=sharing
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