


Abstract

Taking into account quantum effects, the cosmological horizon in de Sitter spacetime is
seen to radiate by a static observer, just like the event horizon of the Schwarzschild
black hole. A temperature and thermodynamic entropy is then associated to both.

Regarding both universes as quantum systems, we can also consider the von Neumann
entropy of their subregions. A side-by-side comparison between these spacetimes is
made on their thermodynamic properties, quantum entropy and the application of

replica wormholes to the von Neumann entropy of their radiation. For the black hole it
is known a classical replica derivation of its von Neumann entropy results in exactly its

thermodynamic entropy. We use the same method for the static patch in de Sitter
spacetime and also find its thermodynamic entropy. Recently it was shown a

semi-classical replica method can reproduce the island formula for radiation from an
eternal black hole by including replica wormholes. Again, we apply the same calculation

to de Sitter spacetime in the Bunch-Davies vacuum and recover the island formula.
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Chapter 1

Introduction

In 1975 Stephen Hawking studied the Schwarzschild black hole in a semi-classical ap-
proximation, and found a static observer standing outside of it would see radiation being
created by the black hole [1]. Even before this discovery, the link between black holes and
thermodynamics had been established by writing the dynamic relation between the black
hole mass and its horizon area in complete analogy to the first law of thermodynamics
[2]. The other three laws were also used to represent properties of a black hole. It was
proposed that the black hole temperature is proportional to its surface gravity, and it
would have an entropy proportional to the area of the event horizon A. Hawking’s calcu-
lation did indeed confirm this relation for the temperature and fixed the proportionality
constant for the entropy, called the Bekenstein-Hawking entropy:

SBH =
AkBc3

4Gℏ
.

As this thermodynamic entropy arises from taking into account the quantum aspects of
a black hole, we are moving into the realm of quantum gravity. General relativity is non-
renormalizable, so the usual way of quantizing a theory does not work. The main problem
lies in the fact that the metric is now also a dynamical field, and not just a fixed descrip-
tion of the background spacetime. Many paths to quantum gravity have been tried and
are still being worked on (see Chapter 14 of Wald [3] for a short overview). At this time
string theory is the most promising candidate in reconciling these two theories, and the
Bekenstein-Hawking entropy has turned up in it as a counting of black hole microstates [4].

For working purposes, however, a semi-classical approximation is usually taken where the
background spacetime is fixed (but can be curved) and a quantum field theory is then
defined on it. Already at the first order of this approximation Hawking radiation appears.
The next order would be the backreaction of the quantum fields on the background met-
ric, as their presence would change it via the Einstein field equations.

Now the customary definition of entropy for a quantum subsystem is the von Neumann
entropy (or entanglement entropy when the total state is a pure state), and Srednicki
showed it should also be proportional to the area of the boundary of the subsystem [5].
This has a striking similarity to the Bekenstein-Hawking entropy. In addition, the inter-
pretation of the von Neumann entropy as being a measure of how much is unknown about
a system suits the black hole.
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This lead Ryu and Takayanagi to propose a holographic derivation of the von Neumann
entropy [6], where it is proportional to the area of some minimal surface. Holography
describes the duality of a quantum gravity theory in a bulk spacetime to a quantum field
theory on its boundary and has been very useful in the study of black hole quantum prop-
erties. The proposal by Ryu and Takayanagi has been proven and extended to a covariant
expression containing the first semi-classical correction in the quantum extremal surface
formulation [7][8]. Considering a radiating and evaporation black hole, this formulation
has been found to successfully describe the unitary evolution of the black hole von Neu-
mann entropy in time [9].

Special interest goes out to the von Neumann entropy of the radiation and whether it
evolves unitarily. This is the core problem in the Black Hole Information Paradox and
is made apparent in the Page curve describing this entropy [10]. The unitary evolution
is described by the quantum extremal surface formalism when allowing for disconnected
surfaces. This is also called the island formula, and will be a central topic in this text.

Instead of assuming a thermodynamic law, the Bekenstein-Hawking entropy was also
derived using the relation between a Euclidean gravity theory and a statistical thermo-
dynamic theory [11]. Another way is to use Euclidean path integrals in combination with
a technique called the replica trick [7]. This method can also be applied to calculate
the von Neumann entropy of a subsystem. In 2019, two groups even showed that the
replica method can reproduce the island formula and performed explicit calculations for
the eternal black hole [12][13].

Very quickly after the finding of Hawking radiation, the same phenomenon was shown to
appear at other types of horizons [14]. Here, we want to study the cosmological horizon,
which arises in the expanding de Sitter spacetime for a static observer. They will observe
thermal radiation coming from this horizon at a temperature proportional to the surface
gravity. The horizon dynamics have also been formulated in thermodynamic-like laws and
the associated thermodynamic entropy is completely similar to the Bekenstein-Hawking
entropy:

SdS =
AkBc3

4Gℏ
,

with A the area of the cosmological horizon. These similarities between the event horizon
of a black hole and the cosmological horizon in de Sitter spacetime motivate us to study
how far the resemblance reaches and to discuss the differences of de Sitter in comparison.

The semi-classical properties of de Sitter have been derived as arising in quantum field
theory on curved spacetime, and using the relation between Euclidean gravity and thermo-
dynamics [14]. Also the island formula has been applied to de Sitter spacetime, although
it does not yet have a complete holographic dual description [15][16]. Our goal is, then,
to analyse the replica method in deriving the island formula in de Sitter spacetime. A
successful formulation will give more justification to its direct use.

The text is structured as follows: in chapter 2 first the necessary definitions are introduced
to discuss quantum information, then the Schwarzschild black hole and de Sitter space-
time are described as solutions to classical general relativity and with their semi-classical
thermodynamic laws. In addition, the black hole information paradox and possible “cos-
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mological information paradox” are discussed. In chapter 3 we introduce the Euclidean
path integral formulation of quantum field theory and the basics of holography, then we
go over the steps taken to formulate the quantum extremal surface prescription of von
Neumann entropy and in particular the island formula. In the final chapter 4 we first
re-derive the Bekenstein-Hawking entropy using a classical replica method, and perform
the same calculation for de Sitter spacetime. We find at the classical level their von
Neumann entropies are exactly the thermodynamic entropies. Then, we outline the semi-
classical replica method used to derive the island formula for the eternal Schwarzschild
black hole and discuss its analogy in de Sitter. We make a direct comparison to the
quantum extremal surface derivation by Watse Sybesma [15] and find the descriptions
agree.



Chapter 2

Preliminaries

2.1 Quantum Information

In this section we introduce the necessary axioms, definitions and theorems to talk about
quantum systems. The following is heavily based on lecture notes by Michael Walter and
Maris Ozols [17].

To be able to describe a quantum system mathematically, we introduce the following ax-
iom:

Axiom To every quantum system, we associate a Hilbert space H.

A Hilbert space is a complex vector space with an inner product ⟨ϕ|ψ⟩, where |ϕ⟩ is
a vector in H, and ⟨ψ| a dual vector in H∗. For our purposes we only consider finite
dimensional Hilbert spaces. The inner product has the following properties:

1. The inner product associates a complex number to each pair of elements in H.

2. The inner product of a pair of elements is the same as the complex conjugate of the
inner product of the swapped elements: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩.

3. The inner product is anti-linear in its first argument: ⟨aϕ+ bχ|ψ⟩ = a ⟨ϕ|ψ⟩ +
b ⟨χ|ψ⟩.

4. The inner product of an element with itself is positive definite:

⟨ϕ|ϕ⟩ > 0 if ϕ ̸= 0 ,

⟨ϕ|ϕ⟩ = 0 if ϕ = 0 .

Intuitively, it could help to view |ϕ⟩ as a column vector, and ⟨ϕ| as its corresponding
row vector obtained by taking the conjugate transpose. With this inner product, we can
define a norm on the Hilbert space as ∥ϕ∥ :=

√
⟨ϕ|ϕ⟩. A unit vector has a norm equal to

unity. Now we can define the orthonormal basis of the Hilbert space to be the collection
of vectors {|ei⟩} obeying ⟨ei|ej⟩ = 0 if i ̸= j, and ⟨ei|ej⟩ = 1 if i = j. This means the
identity operator can be written as

I =
∑
i

|ei⟩⟨ei| , (2.1)
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for any orthonormal basis {|ei⟩}. The trace of an operator, or matrix, M is

tr[M ] =
∑
i

⟨ei|M |ei⟩ . (2.2)

To be more specific, an operator M on H is a linear operator that transforms a vector
in H into another vector in H or another Hilbert space K. That is, M ∈ L(H,K) or
M ∈ L(H), with

L(H,K) := {A : H → K linear} , L(H) := L(H,H) := {A : H → H linear} . (2.3)

Every operator M ∈ L(H,K) has an adjoint M † ∈ L(K,H) defined by

⟨ϕ|M † |ψ⟩ = ⟨ϕ|M |ψ⟩ ∀ |ϕ⟩ ∈ H , |ψ⟩ ∈ K . (2.4)

Choosing a specific orthonormal basis, you can write the operator M as a matrix. Its
adjoint is then the conjugate transpose with respect to this basis: M † = AT = (A)T .
We call an operator A ∈ L(H) Hermitian when A = A†. Hermitian operators have real
eigenvalues and their eigenvectors form an orthonormal basis of the Hilbert space. This
means we can always write the operator in its eigendecomposition:

A =
d∑

i=1

ai |ϕi⟩⟨ϕi| , (2.5)

where d = dim(H), a1, . . . , ad ∈ R are its eigenvalues, and |ϕ1⟩ , . . . , |ϕd⟩ is an orthonormal
basis of H, such that for all 1 ≤ i ≤ d we have A |ϕi⟩ = ai |ϕi⟩. This means each |ϕi⟩ is
an eigenvector of A.

By acting with a function on a Hermitian operator we can construct a new operator. This
is defined by acting with the function on the eigenvalues, while keeping the eigenvectors
the same. More formally, let f : D → R be an arbitrary function with D ⊆ R. For any
Hermitian operator A with eigendecomposition (2.5) and all eigenvalues ai ∈ D, we define

f(A) :=
d∑

i=1

f(ai) |ϕi⟩⟨ϕi| . (2.6)

A special subset of Hermitian operators are the positive semidefinite (PSD) operators,
which we will denote by

PSD(H) = {A ∈ L(H) : A positive semidefinite} . (2.7)

Besides being Hermitian, they have the additional property of having nonnegative eigen-
values. As in (2.5), we can write them in their eigendecomposition with ai ≥ 0. A
positive definite (PD) operator has only positive eigenvalues ai > 0, so these are invert-
ible. Using PSD operators we can describe the specific states a quantum system can be in:

Definition A state, quantum state, density operator or density matrix ρ is a
positive semidefinite operator with tr[ρ] = 1.

The set of states on a Hilbert space H is

D(H) = {ρ ∈ PSD(H) : tr[ρ] = 1} . (2.8)
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Axiom The state space of a quantum system with Hilbert space H is D(H).

One might be more familiar with quantum states being described by unit vectors. And in-
deed, ρ = |ψ⟩⟨ψ| is a quantum state for any unit vector |ψ⟩ ∈ H. All states of this form are
called pure states; they have only one nonzero eigenvalue, that is automatically equal to
unity. There are, however, also quantum states that are not pure. These are called mixed.

So far we considered situations being described by a single Hilbert space, now we will
extend this to composite systems consisting of two or more subsystems:

Axiom For a quantum system composed of n subsystems with Hilbert spaces
H1, . . . ,Hn, the overall Hilbert space is given by their tensor product H = H1 ⊗ . . .⊗Hn.

This overall Hilbert space has a convenient product basis constructed from the basisvec-
tors of H1, . . . ,Hn. Let Bi be the set of basisvectors of Hi, then the basis B of H consists
of all vectors |bi⟩ ⊗ . . .⊗ |bn⟩, with |bi⟩ ∈ Bi.

One possible type of state on such a joint system is the product state. For ρi ∈ D(Hi)
with i = 1, . . . , n, the state ρ = ρi ⊗ . . . ⊗ ρn is a product state ρ ∈ D(H1 ⊗ . . . ⊗ Hn).
When a state is not a product state, it is called correlated.

Here we used the tensor product of operators, which is defined by the tensor product of
vectors. Take M ∈ L(H1,K1) and N ∈ L(H2,K2), then their tensor product M ⊗N is a
linear operator in L(H1 ⊗H2,K1 ⊗K2) defined as

(M ⊗N)(|ψ⟩ ⊗ |ϕ⟩) ≡M |ψ⟩ ⊗N |ϕ⟩ ∀ |ψ⟩ ∈ H1 , |ϕ⟩ ∈ H2 . (2.9)

Describing their tensor product in the product basis, we get the following matrix elements:

⟨a, b|M ⊗N |c, d⟩ = (⟨a| ⊗ ⟨b|)(M ⊗N)(|c⟩ ⊗ |d⟩) = ⟨a|M |c⟩ ⟨b|N |d⟩ , (2.10)

and we recognize this is just the Kronecker product of matrices.

Now we know how to construct a state in a composite system from the states of the
subsystems, we also want a way to distill the state describing a subsystem from the total
state. We can do so with the partial trace. For every operator MAB ∈ L(HA ⊗HB), the
partial trace over B is the linear map trB : L(HA ⊗HB) → L(HA) defined as

trB[MAB] :=
∑
b

(IA ⊗ ⟨b|)MAB(IA ⊗ |b⟩) , (2.11)

where {|b⟩} is an arbitrary orthonormal basis of HB.

Applying the partial trace to a state results in a state again, which completely describes
the subsystem independently of the system that is traced out. Thus this is a good method
to find the state of a subsystem, also called the reduced state.

Definition For a state ρAB on system AB, its reduced state on subsystem A is
defined by ρA := trB[ρAB]. Similarly, the reduced state on subsystem B is ρB := trA[ρAB].
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This definition can be naturally extended to states on three or more subsystems. Before,
we mentioned that states that are not product states are correlated. These correlations
come in two types: classical or quantum (also called entanglement). To distinguish be-
tween the two we introduce separable and entangled states.

A state ρAB ∈ D(HA⊗HB) is called separable or unentangled, if it is a convex combination
of product states:

ρAB =
∑
i∈I

pi ρA,i ⊗ ρB,i , (2.12)

with (pi)i∈I a probability distribution and ρA,i ∈ D(HA), ρB,i ∈ D(HB) quantum states.
In this construction only classical correlations are used. When a state is not separable
it is called entangled, and can not be constructed using classical correlations only. Note
that all product states are separable.

An interesting entangled state is the maximally entangled state. This is a pure state on
two Hilbert spaces HA and HB of the same dimension d constructed like

ρAB = |ΦAB⟩⟨ΦAB| , |ΦAB⟩
1√
d

d∑
i=1

|ei⟩ ⊗ |fi⟩ , (2.13)

where {|ei⟩}di=1 and {|ei⟩}di=1 are orthonormal bases of HA and HB, respectively. Its re-
duced states ρA and ρB are maximally mixed, which means they are of the form I/d, with
I the identity matrix on their corresponding Hilbert space.

Another interesting state is the thermofield double state [18], constructed from the eigen-
states and -values of a Hamiltonian H on two copies of the same Hilbert space:

ρTFD =
1

Z
∑
m,n

e−β(Em+En)/2 |m⟩ ⟨n|A ⊗ |m⟩ ⟨n|A′ , (2.14)

where H |n⟩ = En |n⟩, Z =
∑

n e
−βEn is the normalization factor. The overall state is

pure, while the reduced states are thermal states:

ρA =
1

Z
∑
n

e−βEn |n⟩ ⟨n|A

=
1

Z
e−βH ≡ ρth .

(2.15)

They describe a state in statistical thermodynamics using a canonical ensemble at inverse
temperature T = 1/β, and we recognize Z as its partition function.

In the following chapters the quantity of interest is the entropy, which we can define for
quantum systems in the following way:

Definition The von Neumann entropy of a state ρ is SvN(ρ) = − tr[ρ log (ρ)].

The logarithm is to base 2 (i.e. log 2 = 1), since the information is measured in bits. Re-
call that when ρ =

∑
i λi |ϕi⟩⟨ϕi| is its eigendecomposition, log (ρ) is defined as log (ρ) =∑

i log (λi) |ϕi⟩⟨ϕi|. The von Neumann entropy can then also be calculated in terms of its
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eigenvalues as SvN(ρ) = −
∑

i λi log (λi). Since the function f(x) = x log x can be contin-
uously extended to x = 0, the von Neumann entropy is well defined for all states ρ ∈ D(H).

Some properties of the von Neumann entropy are:

1. Nonnegativity SvN(ρ) ≥ 0 , and SvN(ρ) = 0 if and only if ρ is pure.

2. Upper bound SvN(ρ) ≤ log (dimH) , and SvN(ρ) = log (dimH) if and only if ρ
is maximally mixed (i.e. ρ = I/dimH).

3. Invariance under isometries SvN(ρ) = SvN(V ρV
†) for any isometry V .

4. Continuity

An operator V ∈ L(H,K) is an isometry if V †V = IH. When dimH = dimK, any isom-
etry U is a unitary and is also satisfies UU † = IK.

To talk about entanglement one always has to refer to two or more subsystems, so we
will go over what this means for the von Neumann entropy. For convenience we will use
the following notation: SvN(AB)ρ = SvN(ρAB) or even leave out the subscript when it is
clear to what state we refer. The entropies of subsystems are related to the entropy of
the overall system by the following inequalities:

1. ρAB is pure SvN(AB) = 0 and SvN(A) = SvN(B), which we call the entangle-
ment entropy.

2. ρAB is a product state SvN(AB) = SvN(A) + SvN(B).

3. Subadditivity SvN(A) + SvN(B) ≥ SvN(AB).

4. No monotonicity SvN(AB) ≱ SvN(A) and SvN(AB) ≱ SvN(B).

5. Araki-Lieb or triangle inequality SvN(AB) ≥ |SvN(A)− SvN(B)|.

6. Strong subadditivity SvN(AC) + SvN(BC) ≥ SvN(ABC) + SvN(C).

7. Weak monotonicity SvN(AC) + SvN(BC) ≥ SvN(A) + SvN(B).

The von Neumann entropy can be interpreted as a measure of how much is unknown
about a system. This is reflected by the minimal entropy of a pure state, and the maxi-
mal entropy of a maximally mixed state. Or from the upper bound of the von Neumann
entropy we see it counts the number of dimensions of the corresponding Hilbert space:
dimH = 2SvN . In statistical mechanics entropy is a counting of the number of microstates
associated with a particular macrostate: Sst = kB ln (number of microstates) [19], similar
to the counting of Hilbert space dimensions. In thermodynamics it is usually seen as a
measure of uncertainty (Gibbs’ entropy: Sth = −kB

∑
i Pi lnPi, with Pi the probability

of the system being in a certain macrostate), or disorder (“entropy of mixing”). If we
re-scale kB = 1 and use a logarithm to base e instead of 2, we see the von Neumann
entropy of a classical state and Gibbs’ entropy match in definition.
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This thermodynamic entropy is a specific type of coarse-grained entropy [20], which is
linked to the von Neumann entropy of a general state, also called fine-grained or quantum
entropy. The coarse-grained entropy of a state ρ is defined as

Scg(ρ) = max
ρ̃∈D(H)

[− tr[ρ̃ ln ρ̃]] , (2.16)

where ρ̃ describes the same statistics as state ρ ∈ D(H) for a number of observables Oi

we are interested in: tr[ρ̃ Oi] = tr[ρOi]. Working, for instance, in the canonical ensemble,
these observables are the number of particles, volume and temperature of the system.
The thermal state (2.15) satisfies the maximum Scg(ρ) = SvN(ρth), and we can check this
gives the thermodynamic entropy1:

SvN(ρth) = − tr

[
1

Z
∑
n

e−βEn |n⟩ ⟨n| ln

(
1

Z
∑
m

e−βEm |m⟩ ⟨m|

)]

= − tr

[
1

Z
∑
n

e−βEn ln

(
1

Z
e−βEn

)
|n⟩ ⟨n|

]

=
∑
n

1

Z
e−βEn ln

(
1

Z
e−βEn

)
=
∑
n

Pn ln (Pn) = Sth ,

(2.17)

where Pn = 1
Z e

−βEn is the probability the system has energy En. In contrast to the
von Neumann entropy, which is invariant under unitary time transformations, the coarse-
grained entropy obeys the second law of thermodynamics: dScg ≥ 0. From its definition
we also see

SvN(ρ) ≤ Scg(ρ) ∀ρ ∈ D(H) , (2.18)

where equality is included since we can always consider ρ itself as one of the options for
ρ̃.

Determining the von Neumann entropy of a system is quite hard as its definition includes
the logarithm of a density matrix. An easier way to obtain this quantity is to consider
the Rényi-n entropy [21] in the limit of n→ 1. For a quantum state ρ ∈ D(H), the Rényi
entropy is defined as

S(n)(ρ) =
1

1− n
ln (tr [ρn]) , n ∈ Z+ . (2.19)

When we extend this definition to n ∈ R+, we can use l’Hôpital’s rule to take the limit:

lim
n→1

S(n)(ρ) = lim
n→1

∂n ln (tr [ρ
n])

∂n(1− n)

= − lim
n→1

1

tr[ρn]
∂n (tr [ρ

n])

= − lim
n→1

∂n
(
tr [en ln ρ]

)
= − lim

n→1
tr[ρn ln ρ]

= − tr[ρ ln ρ] ≡ SvN(ρ) ,

(2.20)

1Note that we changed the base of the logarithm relative to its definition. This will just scale the
entropy by a factor 1/ ln(2), which does not change anything for the properties and inequalities of the
von Neumann entropy. Only the upper bound now becomes ln(dimH).
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where we used that tr[ρ] = 1 in the third line. So we have recast the problem of determin-
ing the logarithm of a density matrix into determining the trace of a density matrix to
the power n (its logarithm is just the logarithm of a number). This method is called the
“replica trick” and is very useful in determining the entanglement entropy in quantum
field theories. In chapter 3 we extend this to include gravity.

2.2 The Schwarzschild Black Hole

The Schwarzschild metric is a static solution to the vacuum Einstein field equations and
describes spherically symmetric gravitational fields [22]. The Einstein field equations are

Rµν −
1

2
Rgµν = 8πGTµν , (2.21)

with G Newton’s gravitational constant, gµν the metric tensor, Rµν = Rλ
µλν the Ricci

tensor, R = Rµ
µ the Ricci scalar and Tµν = −2/

√
−g δIM/δgµν the energy-momentum

tensor, where g is the determinant of the metric and IM the action describing matter
fields. In vacuum Tµν = 0 and the field equations can be rewritten as

Rµν = 0 . (2.22)

The Schwarzschild metric in four dimensions is

ds2 = −
(
1− rS

r

)
dt2 +

1

1− rS/r
dr2 + r2

(
dθ2 + sin2(θ) dϕ2

)
, (2.23)

where rS = 2GM is the Schwarzschild radius with M the mass we associate to the black
hole, and the coordinate ranges are −∞ ≤ t ≤ ∞, rS ≤ r ≤ ∞, 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π. This metric describes the viewpoint of a static observer somewhere outside
the black hole. One could, however, move towards or even inside the black hole and
the coordinate system can be extended to cover the complete spacetime. At r = 0 the
Kretschmann curvature scalar diverges, so this point is a curvature singularity. At r = rS
all curvature scalars remain finite, but the r = constant hypersurfaces become null. This
means timelike paths in the region r < rS can never cross this point to infinity, and r = rS
is an event horizon. As nothing can escape once it has crossed this boundary, we fittingly
call it a black hole.

Going through a series of coordinate transformations, we can rewrite the maximally ex-
tended metric in conformal coordinates and construct the corresponding conformal dia-
gram:

ds2 = ω−2(r, R, T )
(
−dT 2 + dR2

)
+ r2dΩ2

2 , (2.24)

with timelike coordinate T ∈ (−π/2, π/2), spacelike coordinate R ∈ (−π, π) and dΩ2
2 =

dθ2 + sin2(θ) dϕ2 the metric on a 2-sphere. The prefactor ω−2(r, R, T ) is the conformal
scale factor. The singularity and event horizon are still located at r = 0 and r = 2GM ,
respectively. We see the metric is conformally related to Minkowski spacetime at constant
angular direction. In fact, the spacetime is asymptotically flat, as they have the same
causal structure at conformal future and past null infinity I ± and spatial infinity i0. This
can be seen in the conformal diagram (figure 2.1).
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Figure 2.1: The conformal diagram of an eternal Schwarzschild black hole. At r = 0 there
is a curvature singularity and at r = 2GM is the event horizon. i± is future/past timelike
infinity, i0 is spatial infinity and I ± is future/past null infinity. Constant t and r curves
as in (2.23) are also indicated.

Since the metric of Schwarzschild spacetime is independent of t, it has an isometry gen-
erated by the Killing vector Kµ = (∂t)

µ. It is timelike outside of the black hole and can
be used to define time evolution and a conserved energy. The event horizon is its Killing
horizon, and inside the black hole it becomes spacelike. Together with the Ricci tensor it
can be used to construct a conserved current:

Jµ
R = KνR

µν , ∇µJ
µ = 0 . (2.25)

Its corresponding conserved energy is

ER =
1

4πG

∫
Σ

d3x
√
γ nµJ

µ
R , (2.26)

where Σ is a spacelike hypersurface, γij its induced metric, and nµ its unit normal vector.
Then, using the identities ∇µ∇νK

µ = KµRµν and ∇µKν = −∇νKµ, we can rewrite ER

with Stokes’ theorem to the Komar integral:

ER =
1

4πG

∫
∂Σ

d2x
√
γ(2) nµσν (∇µKν) . (2.27)

∂Σ is the boundary of Σ, with γ
(2)
ij its induced metric, and σµ its outward-pointing unit

normal vector. Evaluating this integral for the Schwarzschild black hole over a two-sphere
at spatial infinity, gives ER = M . Here we chose to normalize the Killing vector as
KµK

µ(r → ∞) = −1.

The Schwarzschild black hole is a solution to the classical theory of general relativity. We
know, however, nature fundamentally displays quantum behaviour and we expect it to
play a crucial role in extreme situations such as the beginning of the universe or gravi-
tational collapse. To take this into account we would like a theory of quantum gravity.
Unfortunately gravity is non-renormalizable, so the usual way of quantizing the theory
does not work. The main problem lies in the fact that the metric is now also a dynam-
ical field, and not just a fixed description of the background spacetime. Many paths to
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quantum gravity have been tried and are still being worked on (see Chapter 14 of Wald
[3] for a short overview).

An approximation we can make for now is to couple classical gravity to quantum matter
fields. Using this setup, Hawking discovered that black holes create and emit particles
at a temperature proportional to their surface gravity [1]. Black holes are thought to
be thermal objects that radiate and eventually evaporate completely. This process can
be derived and explained in several different ways. An intuitive one considers quantum
fields on a fixed black hole background [23]. The vacuum in quantum field theory is
an entangled state, which constantly produces entangled particle pairs at every point in
space. In the vacuum black hole solution at the event horizon, it can happen one of the
particles is lost inside the black hole, while the other one escapes to infinity. This latter
one is called Hawking radiation. Since there is global conservation of energy2, the black
hole will evaporate as its radiation carries away positive energy. This alters the conformal
diagram to figure 2.2.

Figure 2.2: Conformal diagram of an evaporating black hole formed by gravitational
collapse. At r = 0 there is a curvature singularity for some time behind the event horizon
at r = 2GM . i+ is future timelike infinity, i0 is spatial infinity and I ± is future/past
null infinity.

Two other ways to derive Hawking radiation are using Euclidean path integrals [18] and
Bogolubov transformations. The latter is based on the observation that different ob-
servers in quantum field theory in curved spacetime have different notions of the vacuum
state and the number of particles present. For instance, we can compare the viewpoint
of a static observer somewhere outside the black hole and a freely falling observer near
the horizon. Consider a massless scalar field living on a two-dimensional spacetime, that
obeys the Klein-Gordon equation. To quantize the field, both observers decompose the
field in positive and negative frequency modes. The static observer does so with respect

2This is the ADM energy defined with respect to a timelike Killing vector in a asymptotically flat
spacetime [22]. It agrees with the Komar integral expression when the metric deviations from flat space-
time at infinity are time-independent.
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to the time coordinate t as in (2.23) and defines creation/annihilation operators âi, and
the freely falling observer uses their proper time τ and defines operators b̂i. Then, both
will have their own definition of the vacuum state and neither definition is preferred as
they are both physically relevant. The relation between the two sets of modes are the
Bogolubov transformations, and can be used to transform between the â and b̂ operators.
Using them to transform between the two vacua, shows one of them can observe an empty
universe, while the other sees many particles. See chapter 9 of Carroll [22] for a much
more in depth discussion.

In two dimensions the quantum field can be decomposed in in- and outgoing modes (in
relation to the black hole) and we can independently choose in which vacuum state they
are [24]. There are then four possible vacua:

• Hartle-Hawking vacuum [25]
Both in- and outgoing modes are in vacuum with respect to τ (the b vacuum). In this
state the freely falling observer sees an empty spacetime, while the static observer
measures an equal in- and outgoing flux of radiation. The state describes an eternal
black hole and its corresponding energy-momentum tensor is regular everywhere.

• Boulware vacuum
Both in- and outgoing modes are in vacuum with respect to t (the a vacuum). This
describes a situation where no radiation leaves or enters the black hole. However,
in this state the enery-momentum tensor is singular on both the future and past
horizon, so the state is unphysical.

• Unruh vacuum [26]
The outgoing modes are in the b vacuum, and the ingoing modes are in the a
vacuum. This means there is an outgoing thermal flux, and the state describes an
evaporating black hole. It is singular on the past horizon, but as we saw in the
conformal diagram of an evaporating black hole, there is no past horizon, so the
state remains physical.

• Unruh’ vacuum
The outgoing modes are in the a vacuum, and the ingoing modes are in the b
vacuum. This is the reverse of the previous case, which is singular on the future
horizon. This is not a physically relevant vacuum.

Besides Hawking radiation, even more similarities between black hole dynamics and ther-
modynamics have been found. Actually, this link was established before, and Hawking’s
discovery put it on solid footing. In analogy these are called the four laws of black hole
mechanics [2]:

0. Zeroth Law
The temperature at which a Schwarzschild black hole radiates is

TBH =
ℏκ
2π

. (2.28)

The surface gravity κ of a stationary black hole is constant over its event horizon,
so likewise for its temperature. This statement is similar to the zeroth law in
thermodynamics, which says the temperature of a system in thermal equilibrium is
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constant everywhere. Since the event horizon of a black hole is a Killing horizon,
its surface gravity can be defined with the corresponding Killing vector Kµ:

κ2 := −1

2
(∇µKν)(∇µKν) |horizon . (2.29)

For the Schwarzschild black hole Kµ = (∂t)
µ, and κBH = 1/4GM . When the black

hole is not in thermal equilibrium and evaporates, it losses mass en its temperature
rises.

1. First Law
For a rotating black hole, its mass M , horizon area A and angular momentum J 3

are dynamically related via

dM =
κ

8πG
dA+ Ω dJ , (2.30)

where Ω is the rotational velocity of its horizon. As mentioned before, the surface
gravity is related to the black hole temperature. Then, making the assumption that
its area is proportional to its entropy (we will justify this in section 3), we find the
analog of dU = dQ+ dW :

dM = TBH dSBH + Ω dJ . (2.31)

Together with the expression for TBH , this fixes the entropy, called the Bekenstein-
Hawking entropy 4:

SBH = A/4ℏG . (2.32)

As a Schwarzschild black hole evaporates, the first law then tells its entropy decreases
at an accelerating rate.

2. Second Law
The assumed connection between the area and entropy is strengthened by the fact
that in the classical theory the horizon area never decreases (since mass can only
enter the black hole), like the entropy of a thermally isolated system can never
decrease:

dA ≥ 0 (classically) . (2.33)

This was proved by Hawking assuming cosmic censorship [27], i.e. there are no
naked singularities, and the weak energy condition TµνN

µNν ≥ 0 for every null
vector Nµ. However, including quantum effects the black hole radiates and loses
mass, leading to a decrease in its entropy. Bekenstein suggested (and it was later
proven [28]) that the sum of the entropy of the black and its exterior never decreases
[29]. This makes sense as a radiating black hole is not an isolated system. The total
is called the generalized entropy and obeys the second law:

dSgen = d(SBH + Sout) ≥ 0 . (2.34)

From this law and statistical arguments, Bekenstein derived an entropy bound for
any bounded system of radius R and energy E[30]:

S ≤ 2πRE . (2.35)

3The angular momentum of a rotating black hole is defined by a similar Komar integral as for its
mass/energy, but now using the rotational Killing vector Rµ = (∂ϕ)

µ.
4From now on we will set Planck’s constant to ℏ = 1.
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Thus, a black hole (with R =
√
A/4π and E = M = R/G) is the object that

contains the maximal amount of entropy inside a volume of radius R.

3. Third Law
The surface gravity of a black hole can not be reduced to zero in a finite number of
steps. Just like in thermodynamics, absolute zero temperature can not be obtained
in a finite number of steps. In the case of the Schwarzschild black hole the surface
gravity is κ = 1/4M , so it would take an infinite mass to make it vanish.

Bekenstein suggested to interpret the black hole entropy SBH = A/4G as a measure
of how much information inside the event horizon is inaccessible to an outside observer
[31]. This resembles the interpretation of the von Neumann entropy, while the generalized
entropy is more like a true thermodynamic entropy as it obeys the second law. A good
introduction to black hole thermodynamics and interpretations of its entropy (with many
additional references) are the lecture notes by T. Jacobson [32].

2.3 The Black Hole Information Paradox

We saw in the previous section that a black hole can be described as a regular thermal
object. This observation led to the following assumption called the central dogma [20]:

As seen from the outside, a black hole can be described in terms of a quantum system
with A/4G degrees of freedom, which evolves unitarily under time evolution.

This statement means the black hole is described by a unitary Hamiltonian defined on a
Hilbert space of finite dimensionality exp(A/4G). Considering the black hole in the com-
plete spacetime, there is usually chosen some fictitious surface around it and everything
inside it is regarded to be the quantum system as in the central dogma. Its degrees of
freedom are then entangled with the ones outside the cutoff surface, and the evolution
of the total coupled system should be unitary. The total Hilbert space is then also split
into two parts H = Hin ×Hout, or H = HBH ×Hrad

5. In the region outside the cut-off
surface gravity is expected to be negligible.

Now imagine we create a black hole in a pure quantum state with its surroundings: the
total state ρ is pure, and we know SvN(ρ) = 0. We want to track the evolution of the von
Neumann entropy of the Hawking radiation in time. The state describing the radiation
is ρrad = trBH [ρ] and, since the total state is pure, we know SvN(ρrad) = SvN(ρBH). In
the starting situation no Hawking radiation has been created yet, and the total state only
describes the black hole: SvN(ρrad) = 0. The black hole then starts to radiate and the
entanglement entropy grows as the in- and outgoing Hawking quanta are entangled (see
figure 2.3).

5This split is not well defined in a theory of gravity as the degrees of freedom are not localized. This
leads to UV divergences in expressions for the black hole entropy, since the vacuum is correlated over
short distances (see section 3.1).
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Figure 2.3: The conformal diagram of an evaporating black hole. Hawking radiation of
identical colour inside and outside the event horizon are entangled with each other. At
constant r a cut-off surface is introduced.

Meanwhile, the black hole losses mass and its horizon area decreases, according to (2.30).
When we believe the central dogma, this means the number of black hole degrees of
freedom decreases and will eventually become equal to the radiation degrees of freedom:
SvN(ρrad) = ABH/4G. At this time, both subsystems are in a maximally mixed state,
and the total state is maximally entangled. If the von Neumann entropy of the radiation
would surpass this value, the total state could no longer be pure, as not all radiation can
be entangled with the black hole. This is also prohibited by the upper bound property
of the von Neumann entropy (see property 2 in 2.1). According to unitarity, however, a
pure state remains pure (see property 4 in 2.1), so the radiation entropy would need to
start decreasing and eventually get to zero when the black hole is completely evaporated.
This evolution in time was first described by Don Page in the so-called Page curve (see
figure 2.4) [10]. The moment the radiation entropy is equal to the Bekenstein-Hawking
entropy of the black hole is called the Page time.
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Figure 2.4: The Page curve of the entanglement entropy of an evaporating black hole
and its Hawking radiation SvN(ρrad). The dark grey line SBH is the thermodynamic or
Bekenstein-Hawking entropy of the black hole, which decreases during evaporation. The
light grey line indicates the Hawking calculation for an ever-growing entropy. By unitarity
we expect the entropy to follow the pink line, where the entanglement entropy reaches its
maximum value at the Page time tPage.

We speak of a paradox because of the discrepancy between Hawking’s expectation and
the expectation from unitarity. Additionally, it is an information paradox, because we
expect no information can be lost in a unitary theory. Therefore, after the black hole has
evaporated completely, the radiation should encode the same information. Until the Page
time there is no problem. For Sagittarius A∗ [33], the black hole at the center of the Milky
Way, its lifetime is 8.31× 1086 yr and its Page time 7.27× 1086 yr [34]. The Page time is
estimated to be the time it takes for half of the black hole mass to be evaporated. These
times are very long compared to the age of the universe, about 13× 109 yr. Less massive
black holes will evaporate more quickly. Additionally, a black hole will only evaporate
when its temperature is above the cosmic microwave background temperature and lighter
black holes have a higher temperature. The core problem of the black hole information
paradox is finding the physical argument why the entropy of the outgoing radiation starts
decreasing after a certain time, and what happens to the information at the end of the
evaporation. We will focus mostly on the first question. For the second, various options
have been proposed, like a fire wall [35], remnants [36] or loss of information [37].

In the previous section we introduced the Bekenstein-Hawking entropy and the generalized
entropy, which is the coarse-grained or thermodynamic entropy of the black hole. When
we replace the black hole horizon in the expression for the generalized entropy with an
“extremal surface”, we have a gravitational expression for the von Neumann entropy of
the black hole:

SvN(ρBH) = min
X

(
ext
X

(
Area(X)

4G
+ Ssemi−cl(ΣX)

))
, (2.36)

where X is a codimension-2 surface and ΣX a codimension-1 region between X and the
cutoff surface. Ssemi−cl(ΣX) is the von Neumann entropy of quantum fields living on
ΣX while the geometry is regarded as classical (see section 3.3 for the derivation of this
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formula). The formula tells you to first find the surface that extremizes the generalized
entropy, or more concretely: maximizes in the time direction and minimizes in the spatial
direction. When there are multiple options, choose the one that gives the global mini-
mum. X is then called the extremal surface.

The von Neumann entropy of the black hole follows the same Page curve as for the radi-
ation, and (2.36) describes this curve correctly [9]. In the beginning the extremal surface
can be moved all the way to the center of the black hole, where its area vanishes and ΣX is
the entire space up to the cutoff surface (see the left diagram in figure 2.5). When the black
hole is formed in a pure state, Ssemi−cl(ΣX) will be zero. Then the black hole will start
to radiate and the entanglement entropy for the vanishing surface keeps growing as more
and more radiation escapes past the cutoff surface. Meanwhile, another non-vanishing
extremal surface appears just inside the black hole, varying in location depending on how
much radiation has escaped to infinity (see the middle diagram in figure 2.5). Here its
area will not be zero, but Ssemi−cl(ΣX) will be minimized. Since the black hole shrinks,
this extremal surface describes a decreasing von Neumann entropy. Now equation (2.36)
tells you to always take the minimum when there are multiple extremal surfaces, so we
recover the Page curve (see the right diagram in figure 2.5).

Figure 2.5: In the left diagram a vanishing extremal surface is considered in calculating
the entanglement entropy of the black hole. In time more and more Hawking radiation
is present on this surface and its entropy contribution keeps growing. In the middle
a non-vanishing extremal surface is shown, just behind the event horizon. Its entropy
contribution decreases in time. In the extremal surface formulation the one giving minimal
entropy should be considered; this is shown in the right diagram. At the Page time the
dominating surface switches and this gives rise to the Page curve. Adapted from [20].

Now from the point of view of the radiation, you would expect its von Neumann entropy
only grows, since the semi-classical entropy of the region beyond the cutoff surface Σrad

with everything inside increases. To describe the Page curve, however, we need to consider
the possibility that ΣX is disconnected. This gives the so-called island formula:

SvN(ρrad) = min
Σisland

(
ext

Σisland

(
Area(∂Σisland)

4G
+ Ssemi−cl(Σrad ∪ Σisland)

))
, (2.37)

where Σisland is a codimension-2 surface which is disconnected from Σrad (see figure 2.6).
There can be any number of islands, including none. Note there is no area term for the
boundary of Σrad as in this part of the spacetime gravitational effects are assumed to be
negligible.
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Figure 2.6: Depiction of a possible island Σisland in an evaporating black hole. Here X is
the boundary of the island (∂Σisland in the text) and t is the time coordinate as on the
cut-off surface. Adapted from [20].

In the case there is no island, the von Neumann entropy is continuously increasing, as
mentioned before. When we consider one island inside the black hole, there is an addi-
tional area term, but the entanglement entropy decreases since the Hawking quanta in the
interior of the black hole purify the outgoing radiation (see the left and middle diagram
in figure 2.7). Taking the minimum value at each time gives the Page curve (see the right
diagram in figure 2.7). Here, and for the black hole Page curve, the time coordinate we
use is the one defined on the cutoff surface.

Figure 2.7: In the left diagram the situation with no island is considered in calculating
the entanglement entropy of the radiation. In time more and more Hawking radiation
is present on this surface and its entropy contribution keeps growing. In the middle a
non-vanishing extremal surface is shown, just behind the event horizon. This creates an
island inside the black hole. Its entropy contribution decreases as more and more outgoing
Hawking radiation gets purified by the ones present inside the black hole. In the extremal
surface formulation the one giving minimal entropy should be considered; this is shown
in the right diagram. At the Page time the dominating surface switches and this gives
rise to the Page curve. Adapted from [20].

The island formula is a very good description of the Page curve, which is not just fabricated
to be so, but is derived from a more fundamental basis. In chapter 3 it is derived from
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holography and in chapter 4 it is derived using the replica trick in the Euclidean path
integral formalism. A good introduction to Hawking radiation, the Page curve and the
black hole information paradox is “The entropy of Hawking radiation” [20], and also the
reviews by Polchinski [37] and Mathur [23].

2.4 De Sitter Spacetime

We say an d-dimensional manifold is maximally symmetric when it has 1
2
d(d+ 1) Killing

vectors [22]. It also has a constant curvature (constant Ricci scalar) that is the same in
every direction, and together with the dimensionality d and metric signature it completely
specifies the space. In Lorentzian signature, Minkowski space is the maximally symmetric
spacetime with zero curvature. With positive curvature it is de Sitter spacetime, and
negative curvature Anti-de Sitter. Here we will focus on de Sitter spacetime, which is a
solution to the Einstein equations with a positive vacuum energy or cosmological constant
Λ:

Rµν −
1

2
Rgµν + Λ gµν = 0 . (2.38)

For general Λ, the maximally symmetric solutions to these equations are the well-known
Friedmann-Lemâıtre-Robertson-Walker spacetimes, described by

ds2 = −dt2 + a2(t)

(
1

1− kr2
dr2 + r2dΩ2

2

)
, (2.39)

where a(t) is the scale factor and k ∈ {−1, 0, 1} indicates constant negative, zero or
positive curvature, respectively. The scale factor is related to the Hubble parameter via

H(t) =
∂a(t)/∂t

a(t)
. (2.40)

When space is flat and dominated by the vacuum energy, the scale factor is an exponential
a(t) = exp(Ht), with H a constant. The metric, in planar coordinates, reads:

ds2 = −dt2 + eHt
(
dx2 + dy2 + dz2

)
. (2.41)

This describes an exponentially expanding universe, and is a solution to the Einstein
equations with positive cosmological constant. All solutions are locally unique, so this
metric represents de Sitter spacetime (actually part of it, as we will see later).

We can also represent four-dimensional de Sitter space as an embedding in five-dimensional
Minkowski space by using the following (hyperbolic) constraint [38]:

−x20 + x21 + x22 + x23 + x24 = L2 , (2.42)

where L =
√

3/Λ is the characteristic length scale of the space. Additionally, we use the
following coordinate transformations:

x0 = L sinh(t/L)

xi = Lωi cosh(t/L) i = 1, 2, 3, 4 ,
(2.43)
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with ωi the coordinates on a 4-sphere: ω1 = cos(θ1), ω2 = sin(θ1) cos(θ2), . . ., which obey∑
i ω

2
i = 1. Applying this condition and transformations to the Minkowski metric we get

the de Sitter metric in global coordinates:

ds2 = −dt2 + L2 cosh2(t/L)
(
dθ21 + sin2(θ1) dθ

2
2 + sin2(θ1) sin

2(θ2) dθ
2
3

)
, (2.44)

where −∞ < t <∞, 0 ≤ θ1, θ2 < π and 0 ≤ θ3 < 2π. We see in time the metric describes
a 3-sphere that initially shrinks, takes on minimal size at t = 0 and then expands again.
Its topology is R×S3, so it is a closed space and only has a boundary at past and future
null infinity.

From the point-of-view of a static observer, there is a certain radius around them beyond
which spacetime expands faster than the speed of light. Signals from beyond that radius
can then never reach the observer, so they are limited in how much they can see of the
universe. This point is called the cosmological horizon. The situation is the reverse
of Schwarzschild black hole case (see figure 2.8). A crucial difference, however, is that
multiple observers can agree on the location of a black hole horizon, while the cosmological
horizon is observer dependent. This is represented in the metric in static coordinates:

ds2 = −
(
1− r2

L2

)
dt2 +

1

1− r2/L2
dr2 + r2dΩ2

2 , (2.45)

where the coordinate ranges are −∞ ≤ t ≤ ∞ and 0 ≤ r ≤ L. The topology the metric
describes is R × B3, where Bd is the solid (d − 1)-sphere or d-ball. The cosmological
horizon is located at r = L, and is the point where constant r hypersurfaces become null.
Note that the time coordinates t are different in all coordinate systems introduced so far.

Figure 2.8: On the left the black hole situation is depicted where a distant observer looks
at the event horizon of a Schwarzschild black hole. On the right the point-of-view of
a static observer in de Sitter spacetime is depicted. They have a cosmological horizon
beyond which they can not observe the spacetime.

Starting from the metric in global coordinates we can change to conformal coordinates
using

cosh(t/L) =
1

cos(T )
, (2.46)

with T ∈ (−π/2, π/2). The metric becomes:

ds2 =
L2

cos2(T )

(
−dT 2 + dθ21 + sin2(θ1) dθ

2
2 + sin2(θ1) sin

2(θ2) dθ3
)
, (2.47)
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and the corresponding conformal diagram is figure 2.9.

Figure 2.9: The conformal diagram of d-dimensional de Sitter spacetime (with d > 2). A
horizontal line is a d − 1-sphere and every point is a d − 2-sphere. A static observer is
located on the north or south pole in the diagram. The diagonal lines are the cosmological
horizons for those observers. I ± is future/past null infinity. In the right static path lines
of constant r and t as in (2.45) are indicated.

Every horizontal constant T -line represents a three-sphere, and every point in the diagram
represents a two-sphere. The left and right timelike vertical lines are the south and north
pole. The top and bottom horizontal lines are, respectively, future and past null infinity.
For a static observer, their world line is the north pole, and their observable universe is
the rightmost triangular region, delimited by the past and future horizon (diagonal lines).
This region is called the static patch. The planar coordinates cover the causal past of the
observer, consisting of the static patch and the triangle containing past null infinity I −

(see figure 2.10).

Figure 2.10: On the left the northern static patch covered by metric (2.45) is highlighted.
On the right the region of the conformal diagram covered by planar coordinates (2.41) is
highlighted.

From the metric (2.45) we see ∂/∂t is a Killing vector in the static coordinate system.
In the static patch it is timelike, and can be used to define time evolution. On the
cosmological horizon, it becomes null, and beyond, it becomes spacelike. In the northern
static patch it is timelike, but points to the past. In other coordinate systems, ∂/∂t is not
a Killing vector. So, in de Sitter spacetime it is not possible to define a globally conserved
energy, as there is no globally well defined timelike killing vector. Restricting our view to
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the static patch only, we can use the Komar integral (2.27) to define a locally conserved
energy:

ER =
1

4πG

∫
∂Σ

d2x
√
γ(2) nµσν (∇µKν)

= − 1

4πG

∫
S2

dϕdθ L2 sin(θ) (∇tKr)

= − 1

4πG

∫
S2

dϕdθ L2 sin(θ) gtt(∂tK
r + Γr

tλK
λ)

= − 1

4πG

∫
S2

dϕdθ L2 sin(θ) gtt(Γr
ttK

t)

= − 1

4πG

∫
S2

dϕdθ L2 sin(θ)
r

L2
= − 2π

4πG
2 r |r=L = −L

G
.

(2.48)

The Killing vector is Kµ = (∂t)
µ = (1, 0, 0, 0), normalized as K2(r = 0) = −1. The inte-

gral is evaluated over the static patch at a constant time Σ = B3. Its boundary ∂Σ = S2

is located at the cosmological horizon r = L and has induced metric ds2 = L2(dθ2 +
sin2(θ) dϕ2). The future-pointing normal vector of Σ is nµ = (

√
1/(1− r2/L2), 0, 0, 0),

and the outward-pointing normal vector of ∂Σ is σµ = (0,
√
1− r2/L2, 0, 0). For general

dimensionality the energy is ER = − κ
4πG

A, with κ the surface gravity on the horizon and
A the area of the cosmological horizon.

After the discovery that black holes radiate, this idea was soon generalized by Gibbons
and Hawking to cosmological horizons [14]. A static observer in de Sitter space observes
radiation entering their static patch at a certain temperature. This is derived using
Euclidean path integrals in section 4.1.1. Additionally, Gibbons and Hawking generalized
the laws of black hole mechanics to event horizons that do not necessarily belong to black
holes, or are located in spacetimes that are not necessarily asymptotically flat:

0. Zeroth Law
A static observer feels a thermal bath at temperature

TdS =
κ

2π
. (2.49)

The cosmological horizon of the static patch is a Killing horizon for Killing vector
Kµ = (∂t)

µ, so we can define its surface gravity. First we have to normalize Kµ and
choose K2(r = 0) = −1. The surface gravity is constant over the horizon and has
the following value in four dimensions:

κdS :=

(
−1

2
(∇µKν)(∇µKν) |horizon

)1/2

|r=L (2.50)

=
1

L
. (2.51)

This immediately leads to a constant temperature TdS = 1/2πL on the horizon.
It depends on the characteristic length scale of the de Sitter space, or in other
words on the cosmological constant. This is not a variable like the mass is for the
Schwarzschild black hole.
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1. First Law
The dynamical relation between the energy associated with de Sitter spacetime as
defined with the Komar integral and the area of the cosmological horizon is

dE = − κ

8πG
dA . (2.52)

The minus sign is usually interpreted as arising from the fact that the energy de-
scribes the energy inside the cosmological horizon. In contrast to the Schwarzschild
black hole, then, the horizon area decreases, as more energy is introduced. Substi-
tuting the expression for the de Sitter temperature, gives the first law:

dE = −TdSdSdS , (2.53)

with the following expression for the de Sitter entropy:

SdS =
A
4G

. (2.54)

2. Second Law
Classically, the area of the cosmological horizon can only grow in time, so likewise
for the entropy:

dSdS ≥ 0 (classicaly) . (2.55)

Now as radiation enters the static patch, we can no longer consider the static patch
to be an isolated system and the horizon area decreases according to the first law.
Likewise for Schwarzschild, we can define a generalized second law:

dSgen = d(SdS + Sout) ≥ 0 . (2.56)

The proof by Wall [28] also holds for cosmological horizons.

3. Third Law
As TdS = 1/2πL in four dimensions, it would take an zero cosmological constant
to reach zero temperature. This means we would no longer be in de Sitter space,
but in flat Minkowski space. Or alternatively, since E ∝ L it would take an infinite
amount of energy. Thus, zero temperature/surface gravity can not be obtained in
a finite number of steps.

For a much more rigorous discussion of thermodynamics in de Sitter spacetime, that de-
scribes the developments and difficulties in this field up to now, see [39].

Gibbons and Hawking used a Euclidean path integral method to derive that a static
observer in de Sitter space observes to be in a heat bath. As in the black hole case,
we could also use the semi-classical approximation and compare possible different vacua.
We compare the situation for a static observer in the center of their static patch, using
coordinates as in (2.45), and a freely falling observer near the cosmological horizon (as
seen for the static observer), using their proper time coordinate τ , by quantizing a massless
scalar field. There are again four possible vacua (defined in two and generalized to higher
dimensions) [24]:

• Bunch-Davies vacuum [40]
Both in- and outgoing modes are in vacuum with respect to τ . This is the analogue
of the Hartle-Hawking vacuum. In this state the static observer observes thermal
equilibrium.
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• Static vacuum
Both in- and outgoing modes are in vacuum with respect to t. This is the analogue
of the Boulware vacuum. Now the static observer does not measure any radiation.
The energy-momentum tensor is singular on the future and past horizon.

• Unruh-de Sitter vacuum [24]
The ingoing modes are in vacuum with respect to τ , and the outgoing with respect to
t. The static observer measures an incoming thermal flux. Note that “in” and “out”
are switched compared to the black hole case, as now the observer is surrounded
by their horizon. The energy-momentum tensor is singular at the past horizon.
However, in planar coordinates this singularity does not show up and this vacuum
is an acceptable state in the planar patch (2.41).

• Unruh-de Sitter’ vacuum
This state is the reverse of the Unruh-de Sitter vacuum with an outgoing thermal
flux. For the remainder this is not a relevant case.

There is no consensus yet on how Gibbons-Hawking radiation backreacts in de Sitter
space. Since there is not a unique vacuum, there are multiple possible fates for de Sitter
to end up in. It could be stable against radiation (Bunch-Davies vacuum)[15][41], spread
out into flat space (static vacuum) [42] or collapse into a singular geometry (Unruh-de
Sitter vacuum)[16][24][43].

2.5 The Cosmological Information Paradox

The numerous similarities between the Schwarzschild black hole and de Sitter case entice
us to think about a possible “cosmological information paradox”. When we consider the
Unruh-de Sitter vacuum, a static observer detects an incoming thermal flux. This situa-
tion is most similar to the evaporating black hole, but there are many confusing differences
[44]. To start, there is no natural analog of the central dogma. The subject is now the
whole spacetime except for the static patch, which is also observer-dependent. If we do
proceed to view the unobservable universe (or more safely, the cosmological horizon as
seen from the inside) as one quantum system, we can place a cut-off surface between the
observer and their cosmological horizon. The Hilbert space is then split into two parts
H = HdS × Hrad. The radiation is collected by the observer in the center. To use the
island formula description, however, the radiation needs to be collected in a region where
gravity can be neglected, which is not plausible in the center of the static patch.

As the de Sitter entropy is SdS = A/4G, we expect (or hope) the number of degrees of
freedom of the horizon is A/4G. Although it has been shown that the de Sitter Hilbert
space is finite [45], there is no complete quantum formulation that gives the de Sitter
entropy as coming from a Hilbert space of states. It is also not clear what the entropy
would describe exactly [46]. Some possibilities are that it is the quantum entanglement
of degrees of freedom in- and outside the horizon, or that it counts the number of micro-
scopic states that macroscopically give rise to de Sitter space. Finally, unlike the black
hole case it is unclear how you can create de Sitter space from a known initial state. This
way we do not have a set initial entropy, like SBH = 0 when creating the black hole in a
total pure state.
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The evolution of de Sitter entropy has been studied in many different set-ups. Stick-
ing to the Unruh-de Sitter vacuum, the conclusion of [24], [43] (pure de Sitter) and [16]
(Schwarzschild-de Sitter) is that the horizon shrinks/a singularity forms and that there
is no Page curve for the entropy. In [15] and [47] the Bunch-Davies vacuum is considered
and a Page curve is found that takes on a constant value after some time. This is in line
with the prediction that de Sitter is stable when no radiation is collected. The entropy is
determined using islands in de Sitter spacetime.



Chapter 3

Gravitational Entanglement Entropy

In section 2.3 it was mentioned that the island formula gives a correct description of the
Page curve of the von Neumann entropy of outgoing Hawking radiation. This formula is a
product of a number of alterations, that we will go through in chronological order. It has
its origin in holography, and more specifically in the AdS/CFT correspondence. The result
is a way to calculate entanglement entropies in strictly gravitational theories, without the
use of a dual quantum field theory. Before that, we will introduce the Euclidean path
integral formalism of quantum field theory to determine the von Neumann entropy of
gravitational systems.

3.1 Entanglement Entropy in QFT

A continuum quantum field theory (QFT) is most conveniently expressed in the (Eu-
clidean) path integral formalism. Using the Rényi-n entropy and the replica trick (2.20),
the entanglement entropy is then given by the Euclidean partition function on a certain
manifold [21].

In a QFT the relevant variable is a field ˆϕ(x) living on a certain spacetime parametrized
by x. Recall that we can rewrite a transition amplitude from one state to another as
a path integral by splitting the time interval into infinitely many pieces and inserting a
complete eigenbasis of states between every interval:

⟨ϕ1(t1)|ϕ0(t0)⟩ = ⟨ϕ1| e−iH(t1−t0) |ϕ0⟩ =
∫ ϕ(t1)=ϕ1

ϕ(t0)=ϕ0

Dϕ(t) eiI[ϕ(t)] , (3.1)

where |ϕi⟩ is an eigenstate of the field operator ϕ̂, H the Hamiltonian or time evolution
operator and I its corresponding action [18]. Switching to Euclidean time τ = it, we get
the following Euclidean path integral:

⟨ϕ1(τ1)|ϕ0(τ0)⟩ = ⟨ϕ1| e−H(τ1−τ0) |ϕ0⟩ =
∫ ϕ(τ1)=ϕ1

ϕ(τ0)=ϕ0

Dϕ(τ) e−IE [ϕ(τ)] , (3.2)

where IE now is the Euclidean action. Depending on whether the topology of the space the
theory is defined on is a plane or a sphere, this path integral can be seen as integrating over
a strip [τ0, τ1]×Rd−1 or cylinder [τ0, τ1]×Sd−1 with the appropriate boundary conditions:

28
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For a transition amplitude we specify boundary conditions on both sides of the path
integral, a state vector can then be seen as an integral with one open boundary, or open
“cut” in the Euclidean manifold:

|Ψ⟩ = e−Hτ |ϕ0⟩ =
∫ ϕ(τ)=?

ϕ(0)=ϕ0

Dϕ(τ ′) e−IE [ϕ(τ ′)] (3.3)

Generally, an open cut Σ in a Euclidean manifold always defines a quantum state on Σ.
The state |Ψ⟩ above is defined by a Euclidean path integral, but it is still a state in the
Hilbert space of the Lorentzian theory. The state is constructed at a fixed Lorentzian
time, and can be evolved therein by the Hamiltonian:

|Ψ(t)⟩ = e−iHt |Ψ⟩ (3.4)

The ground state can be conveniently constructed by a Euclidean path integral. First
consider a generic state decomposed into its energy eigenstates:

|ϕ⟩ =
∑
n

pn |n⟩ , H |n⟩ = En |n⟩ . (3.5)
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Then we see that evolving the state over an infinite Euclidean time selects the ground
state:

e−Hτ |ϕ⟩ =
∑
n

e−Hτpn |n⟩
τ→∞
≈ p0e

−E0τ |0⟩ . (3.6)

Since E0 is the smallest energy eigenvalue, this term dominates in the limit. We can
conclude that we can construct the ground state in a similar way:

|0⟩ =
∫ ϕ(0)=?

τ=−∞
Dϕ(τ) e−IE [ϕ(τ)] (3.7)

In the same analogy, the density matrix ρ of a state is defined by a path integral with two
open cuts:

All figures can be seen as templates for calculating various complex numbers: specifying
the open boundary condition of a state |Ψ⟩ gives the wave function Ψ[ϕ] = ⟨ϕ|Ψ⟩, and
specifying the boundary conditions of a density matrix ρ specifies its matrix elements
⟨ϕ2| ρ |ϕ1⟩.
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All states and density matrices defined so far were not normalized. The normalization
factor of the vacuum density matrix ρ0 is the vacuum-to-vacuum transition amplitude or
vacuum partition function:

Z0 = tr[ρ0] = tr[|0⟩⟨0|] = ⟨0|0⟩ (3.8)

=
∑
ϕ

⟨0|ϕ⟩ ⟨ϕ|0⟩

=

∫ τ=∞

τ=−∞, ϕ(τ=0−)=ϕ(τ=0+)

Dϕ(τ) e−IE [ϕ(τ)] ,

where we used the cyclicity of the trace. The + and - superscripts indicate very small
deviations from τ = 0, respectively in the positive and negative time direction. We see
taking the trace is equivalent to gluing the open edges of the state |0⟩ and its conjugate.
The density matrix ρth = e−βH, familiar from statistical thermodynamics for describing
an ensemble at temperature T = 1/β, can be written as a Euclidean path integral for
τ = β:

ρth = e−βH (3.9)

=

∫ τ=β

τ=0

Dϕ(τ) e−IE [ϕ(τ)]
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And its corresponding normalization factor or thermal partition function is

Zth = tr[e−βH] (3.10)

=
∑
ϕ

⟨ϕ| e−βH |ϕ⟩

=

∫
ϕ(τ=0)=ϕ(τ=β)

Dϕ(τ) e−IE [ϕ(τ)] ,

We know all relevant thermodynamic variables can be distilled from the partition func-
tion, so it is a complete description of a thermal system at temperature T = 1/β on a
d − 1-dimensional space (Rd−1 or Sd−1). On the other hand, we see it describes a Eu-
clidean quantum field theory in a d-dimensional spacetime with periodic imaginary time
(Rd−1 × S1 or Sd−1 × S1). This correspondence gives us a quick way to derive the tem-
perature of spacetimes, as we will do explicitly in section 4.1.1.

To talk about entanglement entropy, we need to introduce an expression for reduced
density matrices in this setting. Let’s say the Hilbert space of our theory is bipartite
H = HA ⊗HB. Taking the partial trace over system B, or equivalently integrating over
all quantum field configurations with support only in subsystem B, gives us the reduced
density matrix on system A. For the vacuum and thermal state (now with the appropriate
normalization) defined above this looks like [48]:

ρ0,A =
1

Z0

trB[|0⟩⟨0|] (3.11)

=
1

Z0

∫
DϕB(0, x⃗ ∈ B)

〈
ϕB
∣∣0〉 〈0∣∣ϕB

〉



CHAPTER 3. GRAVITATIONAL ENTANGLEMENT ENTROPY 33

and

ρth,A =
1

Zth

trB[ρth] (3.12)

=
1

Zth

∫
DϕB(0, x⃗ ∈ B)

〈
ϕB
∣∣ ρth ∣∣ϕB

〉

Like the total trace, the partial trace over subsystem B acts as gluing the path integrals
along τ = 0 for all x⃗ ∈ B, such that a slit in the A subsystem remains.

For the remainder we will focus on the reduced density matrix in the vacuum state.
Specific matrix elements can be specified by boundary conditions on subsystem A of ϕA

i

at τ = 0− and ϕA
j at τ = 0+:

[ρ0,A]ij =
〈
ϕA
i

∣∣ ρ0,A ∣∣ϕA
j

〉
=

1

Z0

∫
DϕB(0, x⃗ ∈ B)

(〈
ϕA
i

∣∣⊗ 〈ϕB
∣∣) |0⟩⟨0|A (

∣∣ϕA
j

〉
⊗
∣∣ϕB
〉)

=
1

Z0

∫ τ=∞

t=−∞
Dϕ(τ, x⃗) e−IE [ϕ]

∏
x⃗∈A

δ(ϕ(0−, x⃗)− ϕA
i (x⃗)) δ(ϕ(0

+, x⃗)− ϕA
j (x⃗)) .

(3.13)

For the n-th power of the reduced density matrix we then need to consider n copies
(or replicas) of the original manifold M and glue the edges of the n slits systematically
together, as we can see from the matrix representation:

[ρn0,A]ij = [ρ0,A]ik[ρ0,A]kl . . . [ρ0,A]mj︸ ︷︷ ︸
n

=
1

Zn
0

∫ n−1∏
β=1

dϕ
A(β)
j (x⃗) δ(ϕ

A(β)
j (x⃗)− ϕ

A(β+1)
i (x⃗))

∫ τ=∞

t=−∞

n∏
α=1

Dϕ(α)(τ, x⃗) e−
∑n

α=1 IE [ϕ(α)]

∏
x⃗∈A

δ(ϕ(α)(0−, x⃗)− ϕ
A(α)
i (x⃗)) δ(ϕ(α)(0+, x⃗)− ϕ

A(α)
j (x⃗)) .

(3.14)

The first product of integrals acts such that we have repeating indices for the matrix
multiplication. For the trace we also need to identify the first and last edges of the slits:
ϕ
A(n)
j (x⃗) = ϕ

A(1)
i (x⃗). We can do so by including β = n in the first product and stating

that ϕ
A(n+1)
i (x⃗) = ϕ

A(1)
i (x⃗). Considering the big picture, we see that gluing the n sheets

together creates something we call the n-fold cover Mn of the original spacetime (see
figure 3.1).
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Figure 3.1: An n-fold cover is created by gluing n replicas of some Euclidean manifold
together along their slits.

Similar to the partition function of the original manifold being a path integral over the
complete space, we can now define the partition function of the n-fold cover Z0,n as being
proportional to the trace of the n-th power of ρ0,A:

tr[ρn0,A] =
Z0,n

Zn
0,1

, (3.15)

where we renamed the partition function of the original space Z0 to Z0,1. Again using the
Rényi-n entropy, l’Hôpital’s rule and this last equation, we can rewrite the entanglement
entropy of our state of interest in terms of partition functions:

SvN(ρ0,A) = lim
n→1

S(n)(ρ0,A)

= − lim
n→1

∂n ln
(
tr [ρn0,A]

)
= − lim

n→1
∂n (lnZ0,n − n lnZ0,1) .

(3.16)

The benefit of this expression is that we can include the effects of gravity directly alongside
the contribution of the quantum fields in the expression for the partition function:

Z0,n =

∫
Mn

DϕDgn e−IE,QFT [ϕ]−IE,HE [gn] , (3.17)

where IE,QFT is the Euclidean action of the quantum fields ϕ, and IE,HE is the Euclidean
Hilbert-Einstein action of the metric gn.

To end this section we should make some remarks. We assumed we could analytically
continue the Rényi-n entropies to non-integer values of n. In the next chapter we will
go into more depth on the replica trick in gravitating systems, and we will see we can
make this continuation with the use of “cosmic strings” (see section 4.1.2). Also, when
we consider a theory with non-trivial time dependence the method introduced here needs
to be adapted, since we do not have knowledge of the complete spacetime at every time.
The Schwinger-Keldysh formalism solves this by only making use of the causal past of
the Cauchy slice under consideration [49]–[51].
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Lastly, when splitting the Hilbert space of a continuum QFT, UV (high energy) diver-
gences arise [18][51]. There are degrees of freedom at arbitrarily small scales so it is
actually impossible to put in a dividing surface. We can deal with this by implementing
a UV cut-off parameter ϵ. The UV behaviour of the gravitational entanglement entropy
is

SvN(ρA) =

{
ad−2

(
ℓ
ϵ

)d−2
+ ad−4

(
ℓ
ϵ

)d−4
+ . . .+ a1

ℓ
ϵ
+ (−1)(d−1)/2 S̃A +O(ϵ) , d odd ,

ad−2

(
ℓ
ϵ

)d−2
+ ad−4

(
ℓ
ϵ

)d−4
+ . . .+ (−1)(d−1)/2 S̃A ln

(
ℓ
ϵ

)
+O(ϵ) , d even .

(3.18)
Here ℓ is the size of region A, ai are real coefficients and S̃A a term depending on the
theory, the shape and the total state. The leading UV divergence is always proportional
to Area(A).

3.2 Holography

Inspired by the Bekenstein bound (2.35) ’t Hooft[52] and Susskind[53] developed the holo-
graphic principle. It states that the number of degrees of freedom to describe a system
must not exceed a quarter of its boundary area. While you would expect the number of
degrees of freedom scales with volume, the bound has been shown to hold in a wide range
of situations [54]. A holographic theory is, then, one in which the entropy bound is man-
ifest, and currently the best developed one is the AdS/CFT (Anti-de Sitter/conformal
field theory) correspondence [55]. This is a specific type of gravity/QFT duality in which
quantum gravity in a (d+1)-dimensional spacetime (the bulk theory) describes the same
system as a d-dimensional quantum field theory without gravity (the boundary theory).
They have the same symmetry group and partition function ZAdSd+1

= ZCFTd
, and fields

in the bulk are represented by operators in the QFT. Since AdS has a conformal boundary
at spatial infinity, it is often said that the dual CFT lives there.

Holography is very useful since the framework of QFTs is much better understood and
developed than quantum gravity. Many black hole cases have already been described this
way, like the eternal black hole [56]. Unfortunately there is not yet a UV complete theory
for quantum gravity in de Sitter spacetime, like certain CFTs are for AdS. De Sitter space
is closed, so unfortunately does not have a spatial conformal boundary to define a dual
CFT on. It does have conformal boundaries at future and past null infinity, but we do
not expect two boundary descriptions. Also, an observer never has access to both, so this
description includes more than is physically measurable. Switching to a different view-
point like the planar or static patch leaves a part of spacetime to be unobservable, but we
can still define a dual CFT on past null infinity ([57] compares these two possibilities).
Other constructions like the so-called dS/dS correspondence[58] are also being studied.

A conformal field theory[59] is a quantum field theory in which lengths scales are not
physically relevant and only angles are. The theory is invariant under conformal trans-
formations, which are coordinate changes xα → x̃α(x) under which the metric changes
as

gµν(x) → Ω2(x)gµν(x) . (3.19)
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In the remaining chapters we will primarily be interested in using two-dimensional CFTs
on Euclidean spacetimes. It is then useful to work in complex coordinates

z = x1 + ix2 , z̄ = x1 − ix2 . (3.20)

In two dimensions the possible conformal transformations are translations, complex di-
latations and special conformal transformations.

The energy-momentum tensor is the conserved current under translations; ∇µT
µν = 0.

In flat spacetime it is traceless:

T µ
µ = 0 or Tzz̄ = 0 , (3.21)

so the off-diagonal elements vanish. Under conformal transformations it transforms as

T̃z̃z̃(z̃) =

(
∂z̃

∂z

)−2 [
Tzz(z)−

c

12
S(z̃, z)

]
, (3.22)

where S(z̃, z) is the Schwarzian, defined as

S(z̃, z) =

(
∂3z̃

∂z3

)(
∂z̃

∂z

)−1

− 3

2

(
∂2z̃

∂z2

)2(
∂z̃

∂z

)−2

. (3.23)

Here, c is the central charge, one of the most important characteristics of the theory and
an indication of the number of degrees of freedom. It is also present in the TT operator
product expansion (OPE):

Tzz(z)Tzz(w) =
c/2

(z − w)2
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . . (3.24)

And similarly for Tz̄z̄(z̄)Tw̄w̄(w̄) with central charge c̃. The + . . . indicates additional non-
singular terms. The OPE is always assumed to be in time-ordered correlation functions:

⟨Tzz(z)Tzz(w)⟩ =
1

Z

∫
Dϕe−S[ϕ]Tzz(z)Tzz(w) . (3.25)

In curved spacetime the energy-momentum tensor is not traceless and is related to the
central charge. This is called the Weyl or trace anomaly:〈

T µ
µ

〉
= − c

12
R . (3.26)

In two-dimensional CFTs there are some standard expressions for entanglement entropy
[60][61]. The entanglement entropy of a single interval of length ℓ in a infinitely long
system at zero temperature is

Sinf, T=0 =
c

3
ln

(
ℓ

ϵ

)
, (3.27)

where ϵ is a UV cut-off parameter. In a system of finite length L with periodic boundary
conditions, it is

Speriodic fin, T=0 =
c

3
ln

(
L

πϵ
sin

(
πℓ

L

))
. (3.28)
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The entropy of the interval in a thermal system at finite temperature β−1 is

Sinf, T=1/β =
c

3
ln

(
β

πϵ
sinh

(
πℓ

β

))
. (3.29)

For ℓ ≪ β we recover the first result. These expressions are all related by conformal
transformations.
When the system is the semi-infinite line [0,∞) and, thus, has one conformal boundary
at x = 0, the entropy is

Sfin, T=0 =
c

6
ln

(
2ℓ

ϵ

)
. (3.30)

This can also be transformed into other cases. Generally, the entropy of an interval [z1, z2]
with metric ds2 = Ω−2dzdz̄ is

S[z1,z2] =
c

6
ln

(
1

ϵ1ϵ2

|z1 − z2|2

Ω(z1, z̄1)Ω(z2, z̄2)

)
, (3.31)

with ϵi the UV cut-off at its corresponding boundary point [12].

In the AdS3/CFT2 correspondence the Ricci scalar of the gravity theory is related to the
central charge of the CFT by

c =
3R

2G3d

, (3.32)

where G(3) is gravitational constant in AdS3 [62].

3.3 From Holographic to Gravitational Entropy

Now we will go through the steps taken to arrive at the island formula introduced in
(2.37). In 2006 Ryu and Takayanagi (RT)[6] proposed that the entanglement entropy of a
region A in a d-dimensional CFT can be calculated by considering a minimal area surface
in the dual (d+ 1)-dimensional AdS spacetime:

SvN(A) =
Area(γA)

4G(d+1)
. (3.33)

The CFT is defined on R1,d−1 or R × Sd−1, and A is a subregion of this spacetime with
boundary ∂A ∈ Rd−1 or Sd−1. γA is the (d − 1)-dimensional static minimal area surface
in AdSd+1 which has the same boundary as A: ∂γA = ∂A. The situation is sketched in
figure 3.2. From this definition it immediately follows it obeys SvN(A) = SvN(A

c), with
Ac the complement of A, and subadditivity SvN(A) +SvN(B) ≥ SvN(A∪B). Lewkowycz
and Maldacena gave some additional arguments for this proposal using the gravitational
replica trick method introduced in 3.1[7].
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Figure 3.2: A CFT is defined on R×Sd−1 (a cylinder), which is dual to an d-dimensional
Anti-de Sitter spacetime in the inside. We take A to be a subregion on this AdS boundary
and Ac is its complement. γA is the minimal area surface which shares its boundaries with
those of A and lives in the AdS bulk. On the right the same situation is sketched at a
constant time slice.

Ultimately we want to describe the evolution of the entropy of an evaporating black hole
or de Sitter space with time. For this the RT proposal needs to be adapted to time
dependent geometries. This is what Hubeny, Rangamani and Takayanagi (HRT)[63] did
in 2012. The construction is based on light-sheets. A codimension two surface is specified
by two constraints

ϕ1(x
µ) = 0 ϕ2(x

µ) = 0 . (3.34)

From this we can construct two null one-forms ∇µϕ1+α±∇µϕ2, for two distinct values of
α±. Then

Nµ
± = gµν(∇µϕ1 + α±∇µϕ2) (3.35)

are two null vectors orthogonal to the surface. We can normalize them such that gµνN
µ
+N

ν
− =

−1 and compute the null extrinsic curvature

(χ±)µν = hαµh
β
ν∇α(N±)β , (3.36)

where hµν is the induced metric on the surface. Finally we take the trace to obtain the
expansion of the orthogonal null geodesic congruence:

θ± = (χ±)
µ
µ . (3.37)

This is a measure of how well null geodesics remain parallel when moving orthogonal to
the surface. The congruence then ends wherever two geodesics cross. It also gives the
rate of change of the area of the surface when moving it along the null vectors.

Using this, HRT proposed the entanglement entropy of a region A is given by

SvN(A) =
Area(YA)

4G(d+1)
, (3.38)

where YA is a codimension two surface in a (d + 1)-dimensional spacetime M with van-
ishing null geodesic expansions θ± = 0 and ∂YA = ∂A. A is a subregion of the boundary
of the spacetime A ⊂ ∂M. Additionally Y and A are homotopically equivalent, meaning
they can be continuously deformed into each other. See figure 3.3 for a sketch of the
situation.
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Figure 3.3: On the boundary ∂M of a bulk theory M a subregion A is defined. The
surface YA, living in the bulk, shares its boundaries with those of A and has vanishing
null geodesic expansions.

When Y is not unique, choose the one with minimal area. Y is called an extremal surface.
The condition of vanishing null geodesic expansions can also be rephrased as

δArea(Y)

δYµ
Nµ

± = 0 , (3.39)

where δYµ is an infinitesimal variation normal to Y (see figure 3.4). Y is then said to be
a classical marginally trapped surface.

Figure 3.4: The surface Y is called a classical marginally trapped surface since the varia-
tion of its area in the direction of its normal vectors Nµ

± vanishes.

The RT proposal is also purely classical, so to account for the quantum effect of Hawking
radiation Faulkner, Lewkowycz and Maldacena (FLM)[64] added a first order quantum
correction in 2013. As the minimal surface γA divides the bulk into two subsystems, the
quantum correction is given by the bulk entanglement entropy of these subsystems. More
precisely, denote the bulk region enclosed by A and γA Ab and its complement Ac

b (see
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figure 3.5). The entanglement entropy of A is then

SvN(A) = Scl(A) + Sq(A) +O(GN)

=
Area(γA)

4G(d+1)
+ Sbulk−ent(Ab) + . . . ,

(3.40)

where + . . . represents additional quantum corrections. One of them is a correction to the
area term since the classical background changes due to the quantum effects. They also
include terms that cancel the UV divergencies of Sbulk−ent, rendering Sq a finite quantity.
This first order correction was derived performing the replica trick while including the
partition function of the bulk quantum fields on a static spacetime. The total state
was assumed to be pure such that Sbulk−ent(Ab) = Sout(Ab), with Sout the von Neumann
entropy of matter fields living on Ab. To ensure that Ab is a spacelike region, γA has one
additional condition. It has to be homologous to A, i.e. the union of A and γA is the
boundary of a d-dimensional spacelike surface in the bulk.

Figure 3.5: A subregion A on the boundary ∂M of a bulk theory M is chosen. γA is
the minimal surface in the bulk homologous to A. It divides the bulk theory into two
subregions Ab and A

c
b.

In 2015 Engelhardt and Wall combined the quantum effects and covariant construction
into the quantum extremal surface prescription (QES)[8]. The idea is to find a extremal
surface that extremizes the total generalized entropy, instead of only the classical area
term like in the FLM case. This is then called a quantum extremal surface. More precisely,

SvN(A) = Sgen(XA)

=
Area(XA)

4G(d+1)
+ Sout(Ab) + . . . ,

(3.41)

where XA is a quantum marginally trapped surface, i.e. it obeys the following condition

δSgen(X )

δX µ
Nµ

± = 0 . (3.42)

Here δX µ is an infinitesimal variation normal to X andNµ
± two distinct null normal vectors

to X . Again, A lives in a field theory on the boundary of a particular spacetime M that
have a holographic duality. XA is a codimension two surface in M which is anchored at
A (∂X = ∂A) and is homologous to A. The region Ab is the part of M in between A
and X . When there are multiple extremal surfaces obeying these condition, the entropy
is given by the one that minimizes it. The QES formulation can also be written as

SvN(A) = min
XA

(
ext
XA

(
Area(XA)

4G(d+1)
+ Sout(Ab)

))
. (3.43)

The QES and FLM proposals are equivalent up to and including the first order quantum
corrections. When spacetime is static, there is a preferred time direction and the extremal
surface is minimal on a constant time slice.
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3.4 The Island Formula

The QES prescription has been successfully applied to the case of evaporating black holes
[9], [65]–[69]. The set-up is usually two-dimensional gravity theory that is asymptotically
AdS plus a two-dimensional matter CFT. Additionally, the theory is coupled to a heat
bath, such that the black hole can evaporate. This is taken to be the same CFT2 as
describing the matter fields, but now on a fixed flat spacetime “glued” to the conformal
boundary of the space. Alternatively, you can consider the boundary to be absorbing, or
place a cut-off surface beyond which you neglect gravity as in section 2.3.

The approach used in [66] is particularly convenient for computing the evolution of the
black hole entropy. It uses a matter CFT2 living in the gravity theory that is assumed to
have a three-dimensional holographic dual. The generalized entropy is then

Sgen(YA) =
Area(YA)

4G(d+1)
+ Sout(Ab)

≈ Area(YA)

4G(d+1)
+

Area(ΣY)

4G(d+2)
,

(3.44)

where we made the approximation that to first order the von Neumann entropy of the
matter fields living in the region enclosed by A and YA is given by the area of an extremal
surface in the (d+2)-dimensional gravity dual. This method is called double-holography.
From the (d+ 2)-dimensional point-of-view we have returned to the HRT method.

By applying the double-holography method to calculate the entropy of the radiation, the
island formula (2.37) was formulated. We restate it here for convenience:

SvN(A) = min
Σisland

(
ext

Σisland

(
Area(∂Σisland)

4G(d+1)
+ Sout(A ∪ Σisland)

))
. (3.45)

To compute the entanglement entropy of a region A in a quantum field theory that is
entangled with a system in a gravity theory we should use the island formula. Here A
and Σisland have the same dimensionality. The extremization is also over the number of
islands. This method is considered as the correct way to determine the entropy of any
system in or connected with a gravity theory, whether is has a holographic dual descrip-
tion or not. When there is a UV complete dual theory, the state of the system and its
entropy can be determined exactly. Otherwise, the island formula gives the entropy in the
effective gravity theory, which is a pretty impressive feat since the exact density matrix
is unknown and can not be determined. It is also assumed to hold in higher dimensions
than the 2D gravity considered in [66].

In the next chapter we will discuss the derivation of the island formula using the gravita-
tional replica trick. First we will review the method used for the eternal black hole, and
then apply it to de Sitter spacetime. Since there is no UV complete theory of quantum
gravity in de Sitter space, a derivation of the island formula using the replica trick would
put its use on a more solid footing.



Chapter 4

Replica Wormholes

In this chapter we will first review the derivation of the classical Bekenstein-Hawking
entropy of the Schwarzschild black hole using the replica trick method of Lewkowycz and
Maldacena [7], and apply the same method to pure de Sitter spacetime. Then, we will
go over the idea of the “replica wormhole” in deriving the island formula, and discuss its
application to de Sitter spacetime.

4.1 Bekenstein-Hawking entropy

In section 3.1 we saw we can calculate the von Neumann entropy of a state defined on a
Euclidean manifold M by considering the partition function of its corresponding n-fold
cover Mn. To derive the Bekenstein-Hawking entropy (S = A/4G), we only need to take
into account the gravitational contribution to the partition function, and we can make the
classical approximation to fix the metric in a saddle point g̃n [70]. Since g̃n is a solution
to the classical equations of motion and thus minimizes the action, it is the leading order
of the partition function:

Zth,n =

∫
Mn

DϕDgn e−IE,HE [gn]

≈ e−IE,HE [g̃n] + subleading terms ,

(4.1)

or
lnZth,n ≈ −IE,HE[g̃n] , (4.2)

where SE,HE is the Euclidean Hilbert-Einstein action. In this approximation, the entan-
glement entropy becomes

Sgrav = lim
n→1

∂n (IE,HE[g̃n]− n IE,HE[g̃1]) . (4.3)

For now we denote the entropy just by Sgrav as we make no reference to a quantum field
theory or specific quantum state.

42
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4.1.1 Euclidean Schwarzschild and de Sitter Geometry

To see what the n-fold covers of the Schwarzschild black hole and pure de Sitter space
look like, let us take a closer look at their Euclidean geometry. This means we take the
usual time coordinate and Wick rotate it: t→ −iτ . Then we will see τ becomes periodic
with a period β, which differs per geometry.

We start with the Schwarzschild black hole in four dimensions. Its metric is

ds2 = −
(
1− rS

r

)
dt2 +

1

1− rS/r
dr2 + r2(dθ2 + sin2(θ) dϕ2) , (4.4)

where rS = 2GM is the Schwarzschild radius, and the coordinate ranges are−∞ ≤ t ≤ ∞,
rS ≤ r ≤ ∞, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. In Euclidean time it is

ds2 =
(
1− rS

r

)
dτ 2 +

1

1− rS/r
dr2 + r2(dθ2 + sin2(θ) dϕ2) , (4.5)

where now 0 ≤ τ ≤ βBH . To determine the period βBH , we consider the near horizon
geometry by expanding around rS [20]:

ds2 ≈
(
1− rS

r̃ + rS

)
dτ 2 +

1

1− rS/(r̃ + rS)
dr̃2

≈ r̃

rS
dτ 2 +

rS
r̃
dr̃2 ,

(4.6)

where r̃ = r − rS ≪ 1 and we ignored the angular directions. If we now redefine r̃ =
z2/(4rS), we get

ds2 ≈ dz2 +
z2

4r2S
dτ 2

= dz2 + z2dψ2 ,

(4.7)

where we noted the similarity to the Euclidean plane metric and defined ψ = τ/2rS to
make this more apparent. To describe the whole plane, and avoid a conical singularity,
we know the range of ψ should be ψ ∈ [0, 2π]. By its definition, the range of τ then
should be τ ∈ [0, 4πrS], so its period βBH = 4πrS = 8πGM . As we saw in section 3.1,
the period of Euclidean time is related to the inverse temperature of a statistical theory,
so the temperature of the Schwarzschild black hole is TBH = 1/8πGM .

The topology described by the Lorentzian metric (4.4) is R × [rS,∞) × S2. Going to
the Euclidean metric (4.5), the time direction becomes a circle, so it describes M =
S1 × [rS,∞)× S2. Suppressing the second angular direction, this represents a solid torus
as depicted in figure 4.1.
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Figure 4.1: Geometry of the four-dimensional Euclidean Schwarzschild black hole (the
θ-direction is suppressed). The non-contractible circle of the torus is described by ϕ and
has radius r. The contractible circle is described by τ and has radius

√
1− rS/r.

At the horizon r = rS, the contractible τ -circle vanishes, leaving the ϕ-circle with radius
rS. If we now focus on the τ - and r-direction, we see the manifold takes on a “cigar
shape” (see the left figure in 4.2). The tip of the cigar is at the horizon, and the other end
stretches to asymptotic infinity. To make the replica manifold Mn, we know from section
3.1 we need to make a cut along τ = 0 and glue multiple of them systematically together.
The period of τ then becomes nβBH . This results in the n-fold cover as illustrated in the
right figure of 4.2.

Figure 4.2: Left: The r- and τ -direction of the Euclidean Schwarzschild black hole ge-
ometry form a cigar shape. The tip of the cigar is at the event horizon r = rS, while
the end is at asymptotic infinity r → ∞. At the end τ has period βBH . Right: The
r- and τ -direction of the replica manifold of the Euclidean Schwarzschild black hole. At
asymptotic infinity τ has period nβBH . In the figure n = 6.

Now for de Sitter spacetime we can follow the same steps. In the end we want to derive
the entropy of the cosmological horizon as observed for a static observer, so we need to
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consider the metric in static coordinates:

ds2 = −
(
1− r2

L2

)
dt2 +

1

1− r2/L2
dr2 + r2(dθ2 + sin2(θ) dϕ2) , (4.8)

where L =
√
3/Λ is the characteristic length scale of the space, and Λ > 0 the cosmological

constant. The coordinate ranges are −∞ ≤ t ≤ ∞, 0 ≤ r ≤ L, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.
Its Euclidean metric is

ds2 =

(
1− r2

L2

)
dτ 2 +

1

1− r2/L2
dr2 + r2(dθ2 + sin2(θ) dϕ2) , (4.9)

with 0 ≤ τ ≤ βdS. Examining the metric near the horizon gives

ds2 ≈
(
1− (L− r̃)2

L2

)
dτ 2 +

1

1− (L− r̃)2/L2
dr̃2

≈ 2r̃

L
dτ 2 − L

2r̃
dr̃2

= dz2 +
z2

L2
dτ 2

= dz2 + z2dψ2 .

(4.10)

We first expanded the radial coordinate close to the horizon: r̃ = L− r ≪ 1 (chosen such
that 0 ≤ r̃ ≤ L), while ignoring the angular directions. Then we made the substitutions
r̃ = −z2/2L and ψ = τ/L. Since ψ ∈ [0, 2π], the range for τ is τ ∈ [0, 2πL] and its pe-
riod is βdS = 2πL. The temperature of the de Sitter horizon is then TdS = 1/βdS = 1/2πL.

The static patch de Sitter space (4.8) has topology R×B3, where Bd is the solid (d− 1)-
sphere, or d-ball [71]. After the Wick rotation the topology becomes M = S1×B3, which
describes a solid torus (figure 4.3).

Figure 4.3: Geometry of four-dimensional de Sitter spacetime in static coordinates (the
θ-direction is suppressed). The non-contractible circle of the torus is described by τ and
has radius

√
1− r2/L2. The contractible circle is described by ϕ and has radius r.
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In this case, the non-contractable τ -circle collapses at the horizon r = L. The remaining
geometry is the solid 2-ball B2. Looking specifically at the (τ, r)-direction, we see we
get a cut-off version of the black hole cigar shape (see the left figure in 4.4). Like in the
black hole case, the tip of the cigar is at the horizon, and the other end is located where
the observer is. This time this is at the center of the spacetime, and not at asymptotic
infinity. We can again construct the replica manifold by making a cut along τ = 0, and
gluing multiple of them in between (see the right figure in 4.4).

Figure 4.4: Left: The r- and τ -direction of the Euclidean de Sitter geometry form a cigar
shape. The tip of the cigar is at the cosmological horizon r = L, while the end is at the
location of the static observer r = 0. At this origin τ has period βdS. Right: The r- and
τ -direction of the replica manifold of Euclidean de Sitter spacetime. At the location of
the static observer τ has period nβBH . In the figure n = 6.

4.1.2 Classical Replica Method

Now that we know what the n-fold covers look like, we can apply (4.3) to calculate their
entanglement entropy. In constructing the n-fold covers we made sure the geometry was
smooth everywhere and τ = τ + nβ. This means it has a replica symmetry Zn coming
from the cyclicity of the trace. This symmetry permutes the replicas and shifts τ over
β. Using this symmetry, Lewkowycz and Maldacena argued for a way to analytically
continue n to non-integer values needed to take the limit to n = 1 [7].

We use the symmetry to take the quotient space of (Mn, g̃n) and construct the orbifold
M̂n ≡ Mn/Zn. This results in a geometry topologically equivalent to the original Eu-
clidean space M1 but including singularities at the fixed points under Zn (see figure 4.5).
For both the Schwarzschild and de Sitter n-fold cover their respective horizon is a fixed
point, resulting in a conical singularity of deficit angle:

∆φ = 2π

(
1− 1

n

)
. (4.11)

Generally the fixed point can be taken to be a codimension two surface in spacetime [51].
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Figure 4.5: When taking the quotient space of the replica manifolds Mn of the
Schwarzschild or de Sitter spacetime with respect to the replica symmetry Zn a conical
singularity arises at the fixed points under this symmetry. That is at the event horizon
or cosmological horizon, respectively.

This singularity can be incorporated into the action by treating it as a source of energy-
momentum backreacting on M1 to deform it to M̂n

1. This is usually done by locating
a cosmic string at the fixed points of Zn. Such a cosmic string is a codimension-2 surface
with action2

Icosmic string =
1

4G

(
1− 1

n

)∫
Σd−2

dd−2y
√
h , (4.12)

where h is the determinant of the induced metric hµν on the string, and 4GTn = (1−1/n)
is the string tension [21]. This allows us to analytically continue n to non-integer values,
as this just tunes the strength of the tension.

The metric on the orbifold ĝn is a solution to the combined action

Î[M̂n] = IHE[M1] + Icosmic string[M1] . (4.13)

Here we switched notation from specifying the metric to the manifold. From this we can
determine the action of the n-fold cover by

I[Mn] = n Î[M̂n] . (4.14)

To be clear, we start with the original manifold M endowed with the saddle point solution
of the metric g̃, we replicate it to (Mn, g̃n) and then use the replica symmetry to bring it
to (M̂n, ĝn). For the computation, however, we start with the original manifold M and
add the cosmic string action to obtain M̂n.

1Actually, since the induced metric on the codimension-2 surface is fixed, the variation of the cosmic
string action with respect to gµν vanishes and it does not contribute to the Einstein field equations.
However, adding this action does change the value of the total action and incorporates the right curvature
of a manifold with a conical singularity [72].

2From now on I will drop the “E” subscript indicating an action is Euclidean, and specify when this
is not the case.
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Then, the calculation comes down to determining the effect of varying the replica number
n close to one on the action of the n-fold cover:

Sgrav = lim
n→1

∂n (IHE[Mn]− n IHE[M1])

= lim
n→1

∂n

(
n Î[M̂n]− n IHE[M1]

)
= lim

n→1

(
Î[M̂n]− IHE[M1] + n ∂nÎ[M̂n]

)
= lim

n→1

(
∂nÎ[M̂n]

)
.

(4.15)

In the last line we used that for n = 1 the orbifold action is just the action of the original
manifold Î[M̂1] = IHE[M1].

When varying the action of the orbifold we note that only perturbations of order (n− 1)
away from IHE[Mn] contribute to the entropy. Higher order terms will drop out when
taking the limit. We will vary the action with respect to δĝµνn = ∂nĝ

µν
n :

∂nÎ[M̂n] =

∫
M̂n

ddx
√
ĝn (EOM)µν δĝ

µν
n +

∫
horizon

dd−1y

√
ĥnΘ(ĝµνn , δĝµνn ) +O((n− 1)2) .

(4.16)

Here ĝn and ĥn are the determinants of ĝn,µν and of the induced metric on the horizon

ĥn,µν , respectively. The first order variation gives the equations of motion (EOM), which

vanish since we took ĝµνn as a solution to Î[M̂n]. However, when varying n we are changing
the string tension or opening angle of the singularity at the horizon. This changes the
boundary conditions and results in a boundary term Θ(ĝµνn , δĝµνn ) on the horizon. The
variation does still satisfy δĝµνn |∂M̂n

= 0, with ∂M̂n being asymptotic infinity in the
Schwarzschild geometry and the location of the static observer in the de Sitter geometry3.
The higher order terms come from the adjustment of the metric to this new boundary
condition [7]. This leaves us to conclude

Sgrav = lim
n→1

∫
horizon

dd−1y

√
ĥnΘ(ĝµνn , δĝµνn ) . (4.17)

Schwarzschild Black Hole
The Euclidean Hilbert-Einstein action with zero cosmological constant is

IHE[M] =
1

16πG

∫
M
ddx

√
g R +

1

8πG

∫
∂M

dd−1y
√
hK , (4.18)

where the second term is the Gibbons-Hawking-York boundary term with K the second
fundamental form or extrinsic curvature of the boundary [18]. It is defined as

K = gµνKµν

= gµν
(
∇µnν − n2nµ(n

λ∇λnν)
)
,

(4.19)

3This is of course not a real boundary as we know it, but we view it just as a reference location where
we fix the metric.
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with nµ a normal vector to the boundary normalized as n2 = ±1, for timelike and spacelike
boundaries respectively [22]. We included it to make the variational principle well-defined
on a manifold with a boundary. It ensures that metric solutions with δgµν = 0 on the
boundary correspond to an extremum of the action by making the first derivative of the
metric variation normal to the boundary vanish [11].

We know the Euclidean Schwarzschild metric (4.5) with geometry 4.1 is a solution to
(4.18). When going to the n-fold cover and orbifold we know from the previous sections
we should focus on the geometry near the horizon. As in (4.7) we write the near horizon
metric as

ds2 = dz2 + z2dψ2

= dz2 +
z2

n2
dτ 2

= n2dr̃2 + r̃2dτ 2 .

(4.20)

We started by noting the geometry locally looks like Euclidean flat space with ψ ∈ [0, 2π].
Then, we made some coordinate changes to explicitly incorporate the n dependence of
the τ coordinate: r̃ = r − rS = z/n and τ = nψ. On Mn its period is τ ∈ [0, 2πn] and
on M̂n it is τ ∈ [0, 2π]. So we see this metric automatically describes the correct conical
singularity close to the horizon [51][7]:

ds2 = n2dr̃2 + r̃2dτ 2 + r2SdΩ
2
2 . (4.21)

For future use, its relevant Christoffel symbols are

Γτ
τ,r̃ = Γτ

r̃,τ =
1

r̃
, Γr̃

ττ = − r̃

n2
. (4.22)

Now we will determine the variation of Î[M̂n] under δĝ
µν
n = ∂nĝ

µν
n :

∂nÎ[M̂n] =
1

16πG

∫
M̂n

ddx
√
ĝn∇λ

(
ĝn,µν∇λ∂n ĝ

µν
n −∇α∂n ĝ

λα
n

)
=

1

16πG

∫
horizon

dd−1y

√
ĥn nλ

(
ĝn,µν∇λ∂n ĝ

µν
n −∇α∂n ĝ

λα
n

)
=

n

16πG

∫
horizon

dd−1y

√
ĥn
(
ĝn,µν∇r̃∂n ĝ

µν
n −∇α∂n ĝ

r̃α
n

)
=

n

16πG

∫
horizon

dd−1y

√
ĥn
(
ĝn,µνg

r̃r̃(Γµ
r̃,α∂n ĝ

αν
n + Γν

r̃,α∂n ĝ
µα
n )− Γr̃

αβ∂n ĝ
βα
n − Γα

αβ∂n ĝ
r̃β
n

)
=

n

16πG

∫
horizon

dd−1y

√
ĥn
(
−Γτ

τ,r̃∂n ĝ
r̃β
n

)
=

1

n2

1

8πG

1

r̃

∫
horizon

dd−1y

√
ĥn

=
1

n2

1

8πG

1

r̃

∫ 2π

0

dτ

∫ π

0

dθ

∫ 2π

0

dϕ r̃ r2S sin θ

=
1

n2

A
4G

.

(4.23)

We started with equation (4.65) in Carroll [22] for the variation of the Ricci tensor. Then
we applied Stokes’ theorem to localize the integral on the horizon with outward pointing
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normal vector nµ = (0, 1/n, 0, 0), normalized as n2 = 1. In the fifth line we used that
only ∂nĝ

r̃r̃
n = −2/n3 is non-zero in combination with the only non-zero Christoffel symbols

(4.22). The induced metric is ds2 = r̃2dτ 2 + r2SdΩ
2
2 and we see the r̃ dependence drops

out leaving a non-zero finite expression when taking the limit r̃ → 0, or equivalently
evaluating r on the horizon. In the last line we recovered the area of the event horizon A.

To finish we take the limit n→ 1 and we obtain:

Sgrav,BH = lim
n→1

1

n2

A
4G

=
A
4G

. (4.24)

The classical zeroth order term of the von Neumann entropy of the quantum state gen-
erated by the path integral over the Euclidean Schwarzschild geometry with cut at τ = 0
is exactly the Bekenstein-Hawking entropy (2.32).

De Sitter Spacetime
The Euclidean de Sitter metric (4.9) with geometry 4.3 is a solution to

IHE[M] =
1

16πG

∫
M
ddx

√
g (R− 2Λ) , (4.25)

where we added the cosmological constant en omitted the Gibbons-Hawking-York bound-
ary term as Euclidean de Sitter space has a spherical topology without boundary [18].

The steps in calculating the entropy are completely analogous to the black hole case. The
metric on M̂n close to the horizon is

ds2 = n2dr̃2 + r̃2dτ 2 + L2dΩ2
2 , (4.26)

with r̃ = L− r and τ = [0, 2π]. The result is

Sgrav, dS =
A
4G

, (4.27)

with A the area of the cosmological horizon. Thus, also the classical zeroth order term
of the von Neumann entropy of the quantum state generated by the path integral over
the Euclidean de Sitter geometry with cut at τ = 0 is exactly its thermodynamic entropy
(2.54).

4.2 The Island Formula

Including quantum matter contributions, two groups [12][13] independently found that
applying the replica trick leads to the island formula (2.37). They considered an evapo-
rating black hole described in two-dimensional Jackiw-Teitelboim gravity. In determining
the partition functions they only fix the boundary conditions and let the path integral sum
over different geometries. There are two different saddle points of the gravitational path
integral that dominate at different times during black hole evaporation. In the beginning
all replicas are disconnected and lead to the Hawking result of an ever-growing matter
entropy. At the Page time, however, a different geometry dominates where all replicas
are connected with a so-called replica wormhole. The result for the entropy of radiation
is the island formula. Our goal is to discuss whether a replica trick method can also be
used to derive the island formula for radiation in de Sitter spacetime and compare it to
the quantum extremal surface method in the article by Watse Sybesma [15].
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4.2.1 Semi-Classical Replica Method

In this section we first go over the qualitative idea of the calculations performed in [12]
and [13]. Both study an evaporating black hole in the stable Hartle-Hawking vacuum.
Maldacena found this is equivalent to two disconnected copies of the same CFT entangled
in the thermofield double state (2.14). These CFTs are said to live on the asymptotic flat
regions of Anti-de Sitter space. This is then where boundary conditions are introduced
and the geometry of the spacetime is fixed to be flat, i.e. non-gravitating. The interior is
determined by the dominating saddle point of the path integral with the correct boundary
conditions. The calculations are done in Jackiw-Teitelboim (JT) gravity combined with
a CFT that lives on both the gravitational and non-gravitational part of the spacetime.
The path integral on the n-fold cover is, then,

Zth,n =

∫
Mn

DϕDgn e−IJT [gn]−ICFT [ϕ] , (4.28)

with the boundary condition that the geometry is flat and has Euclidean time period
τ = τ +nβ. On the original manifold M it has period β. The n-fold cover is constructed
by only gluing the replicas in the non-gravitational regions. The path integral fills in
the gravitational region and has two saddle points that can dominate: a geometry on
which all replicas are disconnected in the gravitational region and one where they are all
connected and form a replica wormhole (see figure 4.6).

Figure 4.6: Path integral representation of the n-fold cover. The replicas are glued to-
gether along the grey lines. The light pink regions are non-gravitational, while the dark
pink regions are and are filled in by the path integral. Left is the dominant saddle point
where the replicas are disconnected in the gravitational region. On the right the replica
wormhole is shown where all replicas are connected. Adapted from [12].

A dominating geometry, then, has the correct boundary conditions and is a solution to

I[Mn] = IJT [Mn] + ICFT [Mn] , (4.29)

where by IJT [Mn] we mean the JT action of the metric describing Mn and by ICFT [Mn]
we mean the CFT action of all matter fields living on Mn.

In the case all replicas are disconnected in the gravitational region, taking the quotient
space with respect to the replica symmetry M̂n = Mn/Zn does not result in conical
singularities. This means the orbifold metric ĝn is a solution to

Î[M̂n] = IJT [M1] . (4.30)

Then, we add n copies of the CFT originally defined on M1. Recall that the gravitational
part of the action on the n-fold cover is n times that of the orbifold:

IJT [Mn] = n IJT [M1] . (4.31)
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This means
I[Mn] = n IJT [M1] + ICFT [Mn] (4.32)

and the von Neumann entropy becomes

Sdis
vN = lim

n→1
∂n (I[Mn]− n I[M1])

= lim
n→1

∂n (ICFT [Mn]− n ICFT [M1])

= SvN(ρmatter, non−grav) .

(4.33)

Recalling that we constructed the n-fold cover by gluing the replicas along the non-
gravitational regions, we see we calculated the entanglement entropy between the matter
fields living inside and outside the non-gravitational region. This result is the Hawking
expectation of an increasing radiation entropy, when applied to an evaporating black hole.

When all replicas are connected we do need to account for possible conical singularities
in the gravitational region of the orbifold. The orbifold action becomes

Î[M̂n] = IJT [M1] + Icosmic string[M1] . (4.34)

The location of the cosmic string (or strings) is fixed by the Einstein equations corre-
sponding to the gravitational part of the action on the n-fold cover

IJT [Mn] = n (IJT [M1] + Icosmic string[M1]) . (4.35)

Then the von Neumann entropy can be calculated as

Scon
vN = lim

n→1
∂n (I[Mn]− n I[M1])

= lim
n→1

∂n

(
n Î[M̂n] + ICFT [Mn]− n IJT [M1]− n ICFT [M1]

)
= lim

n→1

(
Î[M̂n]− IJT [M1] + n ∂nÎ[M̂n] + ∂n(ICFT [Mn]− n ICFT [M1])

)
= lim

n→1

(
∂nÎ[M̂n] + SvN(ρmatter, connected)

)
=

A
4G

+ SvN(ρmatter, connected) .

(4.36)

In the fourth line we used that for n = 1 Î[M̂n] = IJT [M1] and we introduced the von
Neumann entropy of matter fields living in the non-gravitational region plus the region
connected through the wormhole. In the last line we followed [12] and our results in the
classical replica trick derivation to equate the variation of the orbifold action to the total
area of the fixed points. The end result is exactly the generalized entropy. Lastly, since
we need to extremize and minimize the action to find a dominating solution to the path
integral, this method corresponds to the QES formulation introduced in section 3.3 and
we obtain the island formula for the von Neumann entropy of the non-gravitational region
(3.45).

4.2.2 Jackiw-Teitelboim Gravity

For the discussion on de Sitter spacetime, we will also work in two-dimensional JT gravity.
This way we evade some of the technical difficulties and has the added benefit we can
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use the two-dimensional CFT set-up introduced in 3.2. In two dimensions the Hilbert-
Einstein action becomes trivial as the Ricci tensor only has one degree of freedom left and
by the Gauss-Bonnet theorem the action becomes

IHE =
1

16πG

∫
M
d2x

√
gR =

1

2G
(1− γ) =

1

4G
χ , (4.37)

where γ is the genus of the manifold M and χ its Euler characteristic [73][22] 4. A more
physically interesting method is to start with the four-dimensional system of interest and
use dimensional reduction to obtain a two-dimensional representation. The result are the
dilaton theories of gravity.

Here we are interested in the special case of Jackiw-Teitelboim (JT) gravity [73]. Its
action5 is

IJT =
1

16πG

(∫
M
d2x

√
gΦ (R− 2Λ) + Φb

∫
∂M

dy
√
h 2K

)
(4.38)

+
Φ0

16πG

(∫
M
d2x

√
g (R− 2Λ) +

∫
∂M

dy
√
h 2K

)
,

where Φ is called the dilaton, with Φb its value at the boundary. The action describes
de Sitter or Anti-de Sitter spacetime depending on the sign of Λ. The second term
proportional to a constant Φ0 is a purely geometrical term proportional to the Euler
characteristic, that does not contribute to the dynamics of the system. Also the Gibbons-
Hawking-York boundary term is included when relevant. Its equations of motion are

R− 2Λ = 0 , (4.39)

Φ(Rµν −
1

2
gµν(R− 2Λ)) + gµν∇2Φ−∇µ∇νΦ = 0 . (4.40)

The variation of the action with respect to the dilaton, gives a Lagrange multiplier con-
straint that fixes the curvature of possible solutions. For a derivation of the equation of
motion see appendix A.

In two dimensions we can choose the metric to be in conformal gauge:

ds2 = e2ρ(z,z̄)dzdz̄ , (4.41)

where z, z̄ are complex coordinates with −1 ≤ |z|2 ≤ 1. In these coordinates the curvature
constraint (4.39) becomes

R = −8e−2ρ∂z∂z̄ρ = 2Λ , (4.42)

with one solution being

e2ρ =
4

(1 + Λ|z|2)2
. (4.43)

The (zz̄)- and (zz)-components of the equations of motion are then, respectively,

∂z∂z̄Φ +
1

2
e2ρΛΦ = 8πGTzz̄ , (4.44)

−e2ρ∂z
(
e−2ρ∂zΦ

)
= 8πGTzz . (4.45)

4The Gauss-Bonnet theorem, actually, holds for compact orientable manifolds, also with boundary.
5Actually, there is opposite sign in front of the Λ term in the original JT action, but this is the usual

convention in the literature on this topic.
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The (z̄z̄)-component is similar to the (zz)-component. We also included the energy-
momentum tensor Tµν coming from a possible addition of a matter action Imat:

Tµν ≡ − 2
√
g

δImat

δgµν
. (4.46)

In vacuum a solution for the dilaton is

Φ = Φh
1 + Λ|z|2

1− Λ|z|2
, (4.47)

where Φh is the value of the dilaton at |z|2 = 0 6.

4.2.3 Semi-Classical Replica Method: de Sitter Spacetime

As mentioned, the JT action can be derived using dimensional reduction. Characteristics
of the two-dimensional metric and dilaton profile can then be linked to the higher dimen-
sional spacetime and given a more concrete physical interpretation. In the end we want to
compare our findings using the replica method to the quantum extremal method used in
an article by Watse Sybesma [15]. For this we will work with Euclidean JT gravity derived
from the three-dimensional spacetime and add a CFT in the Bunch-Davies vacuum.

We follow the same dimensional reduction as in [15] (see appendix B for the explicit
derivation) and perform a Wick rotation to obtain the Euclidean metric:

ds2 = −e2ρ(x+x−)dx+dx− = − 4

(1− Λx+x−)2
dx+dx−

=
4

(1 + Λ|w|2)2
dwdw̄ .

(4.48)

We started in the Lorentzian metric given by equation (3.10) in [15] in Kruskal coordinates
−1/Λ ≤ x+x− ≤ 1/Λ [38]. In the second line we made the coordinate transformation to
complex coordinates in Euclidean time

w = −x− , w̄ = x+ (4.49)

with −1/Λ ≤ |w|2 ≤ 1/Λ. We have recovered exactly the Euclidean JT metric solution
(4.43), as we should. From the higher dimensional theory we know the static observer is
located at |w|2 = 1/Λ, the cosmological horizon is at |w|2 = 0 and future and past infinity
at |w|2 = −1/Λ.

The dimensionless dilaton solution after Wick rotation is

Φ =
S

2

1− Λ|w|2

1 + Λ|w|2
. (4.50)

At |w|2 = 1/Λ the dilaton vanishes, while at |w|2 = 0 it is finite and takes on the value
Φh = S/2. S is the entropy in both three and two dimensions:

S ≡ S3d =
A3d

4G3d

=
πL

2G3d

= 2Φh =
1

4G2d/Φ
horizon =

A2d

4Geff

= S2d , (4.51)

6Notice the subtle minus sign differences to the usual expressions for the metric and dilaton [74]
because we are considering a Euclidean spacetime with arbitrary cosmological constant, not a Lorentzian
one with positive curvature or Euclidean one with negative curvature.
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where we used that G2d = 1/8 as follows from the dimensional reduction, and the dilaton
couples to the gravitational strength as it appears in front of the Ricci scalar in the action.

We now add a CFT and only consider the semi-classical contribution (see appendix C for
the derivation of the expressions used here). This is described in the off-diagonal part of
its energy-momentum tensor and is completely fixed by the trace anomaly (3.26):

⟨Tww̄ ⟩ =
c

6
∂w∂w̄ρ . (4.52)

We can then determine the diagonal entries by conservation of energy ∇µ ⟨T µν⟩ = 0 [75]:

⟨Tww ⟩ =
c

6

(
−∂2wρ+ (∂wρ)

2
)
+ tw(w)

⟨Tw̄w̄ ⟩ =
c

6

(
−∂2w̄ρ+ (∂w̄ρ)

2
)
+ tw̄(w̄) .

(4.53)

The tw and tw̄ functions arise as integration constants and should be chosen such that
the left-hand side transforms according to (3.22) under conformal transformations. Sub-
stituting the solution for e2ρ, we obtain

⟨Tww̄ ⟩ =
c

6

Λ

(1 + Λ|w|2)2

⟨Tww ⟩ = tw(w) ,

(4.54)

and similarly for ⟨Tw̄w̄ ⟩.

Recall from section 2.4 that the Bunch-Davies (BD) vacuum is a true vacuum for an
observer using Kruskal coordinates:

⟨Tww ⟩BD = ⟨Tw̄w̄ ⟩BD = 0 , (4.55)

i.e. tw(w) = tw̄(w̄) = 0. Using the Schwarzian (3.23), we can relate this to the vacuum
state in static coordinates z = r∗ − t = r∗ + iτ = ln (

√
Λw)/

√
Λ with −∞ < r∗ ≤ 0 the

tortoise coordinate and −∞ < t <∞:

⟨Tzz ⟩BD = ⟨Tz̄z̄ ⟩BD = tz(z) = tz̄(z̄) = − c

12

Λ

2
= −cπ

2

6
T 2 . (4.56)

The static observer observes thermal equilibrium at temperature T = 1/2πL [76]. Return-
ing to Kruskal coordinates, the trace anomaly alters the (ww̄)-component of the equations
of motion for the dilaton to

∂w∂w̄Φ +
1

2
e2ρΛΦ = π

c

6

Λ

(1 + Λ|w|2)2
(4.57)

and the dilaton gets a semi-classical correction:

Φsemi−cl =
S

2

1− Λ|w|2

1 + Λ|w|2
+
πc

12
. (4.58)

The dilaton mediates the gravitational strength, where Φ = 0 corresponds to a strong
gravitational field, and Φ → ∞ a weak one. Now due to the semi-classical correction
Φ never vanishes inside the described region −1/Λ ≤ |w|2 ≤ 1/Λ. The semi-classical
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approximation is most valid when 1 ≪ c≪ S, such that higher order quantum corrections
are subleading while the classical solution remains unchanged at leading order. We can
then define ϵ = πc/6S and rewrite

Φsemi−cl =
S

2
(1 + ϵ)

1− 1−ϵ
1+ϵ

Λ|w|2

1 + Λ|w|2
. (4.59)

The de Sitter static patch in the Bunch-Davies vacuum resembles the eternal black hole
in the Hartle-Hawking vacuum and together with the similarity between their conformal
diagrams drives us to see if we can say the de Sitter static patch is also in a thermofield
double state. We could use the proposal made by Susskind [77][78] (and references therin)
that, under the assumption there is a holographic description of the static patch, the de-
grees of freedom should be located on the cosmological horizon [79]. We, then, consider
the horizon to be a boundary of the spacetime although it is not a conformal boundary.
At the τ = 0 slice its Euclidean geometry consists of two disconnected d− 1-spheres and
τ connects them over an interval [0, βdS/2] (see figure 4.3). This is the usual geometry the
thermofield double state is defined on [18], but we cannot make the connection concrete
as there is no dual theory with a known Hilbert space.

Figure 4.7: Representation of gluing
the τ = 0 slice of the Euclidean de
Sitter spacetime to the t = 0 spatial
slice of the Lorentzian spacetime.

A more sound method of creating the vacuum is
using the Hartle-Hawking construction [25]. The
Lorentzian de Sitter metric (2.45) has a t → −t
symmetry. This means we can glue the τ = 0 slice
of the Euclidean metric to the t = 0 spatial slice
of the Lorentzian metric. A path integral over the
Euclidean part then produces de Sitter spacetime
suitable for a stable the Bunch-Davies vacuum at
the initial time [80]. Afterwards it is evolved over
Lorentzian time (see figure 4.7). In this section we
will take a different route and not use the cosmolog-
ical horizon as reference system, but specify bound-
ary conditions at the location of the static observer,
just as we did in the classical replica method deriva-
tion. This choice was also made and motivated in
[81].

Comparing the metric and dilaton solution to the black hole set-up in [12], we see we
are again in a reverse situation, where we want to fix the spacetime in the region around
the observer. In the conformal diagram this is indicated as region R (see figure 4.8). Its
right boundary is at the location of the observer, indicated with o, and its left boundary
is labeled with r from now on. We take the cut-off surface to be at r∗,r = −δ with δ ≪ ϵ
and for (1−

√
Λδ)/

√
Λ < |w| ≤ 1/

√
Λ we impose the metric is flat

ds2 =
1

1 + Λδ2
1

|w|2
dwdw̄ =

1

1 + 4π2δ2/β2

1

|w|2
dwdw̄ . (4.60)

The other region |w| < (1 −
√
Λδ)/

√
Λ 7 can be curved. The constant in front is chosen

such that the flat space metric and the Euclidean de Sitter metric are continuously glued

7To see the resemblance to [12] we can rewrite the bound as
√
Λ|w| < 1− 2π

β δ using β = 2πL = 2π/
√
Λ.
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at the cut-off surface. The dilaton Φ is only defined in the gravitational region. The CFT
is taken to be living on both regions with transparent boundary conditions at the cut-off.

Figure 4.8: Conformal diagram of de Sitter spacetime. In the static patch we introduce a
cut-off surface inside of which we neglect gravity and define a region R.

Using this set-up we want to determine the von Neumann entropy of the state ρR defined
by the gravitational path integral on region R (at constant τ). The main difference to the
black hole case is that the state is defined on a cut in a manifold with spherical topology,
instead of a disc. The replica trick method for such closed spacetimes is discussed in
[82][81]. In contrast to those, however, we do not take our state to be entangled with a
disconnected universe or to be living in a gravitating region. The general idea remains
the same. In evaluating the gravitational path integral there is one dominating saddle
point where all gravitating regions are disconnected, and one where they are all connected
through a Euclidean wormhole.

In the disconnected case, n two-spheres are connected only along the cut at region R
creating an n-fold cover Mn that is topologically again a two-sphere. Taking the quotient
space with respect to the replica symmetry group results in the orbifold M̂n with two
conical singularities at the boundaries of R. These do not contribute to the entropy since
we fix the metric on R and δĝµνn |R = 0. The resulting entropy comes purely from the
quantum fields as derived in (4.33):

Sdis
vN(ρR) = SCFT (ϕR)

=
c

6
ln

(
1

ϵ1ϵ2

|wo − wr|2

e−ρ(wo,w̄o)e−ρ(wr,w̄r)

)
=

c

12
ln

(
1

(ϵ1ϵ2)2
(wo − wr)

2(w̄o − w̄r)
2e2ρ(wo,w̄o)e2ρ(wr,w̄r)

) (4.61)

Although the quantum fields backreact on the geometry, it only affects the dilaton and not
the metric tensor. The CFT entropy can then still be determined in the original Euclidean
de Sitter spacetime [82]. We used the standard expression for the von Neumann entropy
of an interval in a CFT (3.31), with ϵ1,2 two UV cut-off parameters for each endpoint of
R. The conformal factors are as in (4.60) and wo and w̄o are positive constants such that
wow̄o = 1/Λ.
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When all replica manifolds are connected along region R but also with a Euclidean worm-
hole, additional conical singularities arise when forming the orbifold. These are located
at the boundary of some region I [81]. Then, analogous to the derivation in (4.36), the
entropy is

Scon
vN (ρR) =

A
4G

+ SCFT (ϕR∪ I)

=
Area(∂I)

4G
+ SCFT (ϕR∪ I)

=
Area(∂I)

4G
+ SCFT (ϕ(R∪ I)c)

= S(1 + ϵ)
1− 1−ϵ

1+ϵ
Λ|w∂I |2

1 + Λ|w∂I |2

+
c

12
ln

(
1

(ϵ1ϵ2)2
(wr − w∂I)

2(w̄r − w̄∂I)
2e2ρ(wr,w̄r)e2ρ(w∂I ,w̄∂I)

)
,

(4.62)

with the total area of fixed points A = Area(∂I) (I can consist of multiple disconnected
parts) and the quantum field entropy is calculated on a manifold both connected on R
and I to its replicas. In JT gravity the area of a point is determined by its corresponding
value of the dilaton (as mentioned in (4.51)). To compare our result to [15] we make the
same assumption that one island region arises with one of its boundary points being the
other pole. Then we can equivalently write SCFT (ϕR∪ I) = SCFT (ϕ(R∪ I)c) as the state on
the total constant τ slice is pure. The conformal factors are as in (4.48).

The von Neumann entropy is now determined firstly by which saddle point dominates
and secondly by which island region minimizes the generalized entropy (i.e. the action):

SvN(ρR)/S = ext
saddle point

ϵ
2
π
ln
(

Λ
(1+Λδ2)2

1
|wr|2 (wo − wr)

2(w̄o − w̄r)
2
)

min
∂I

(1 + ϵ)
1− 1−ϵ

1+ϵ
Λ|w∂I |2

1+Λ|w∂I |2
+ ϵ 2

π
ln
(

(wr−w∂I)
2(w̄r−w̄∂I)

2

(1+Λ|wr|2)2(1+Λ|w∂I |2
)2
)
(4.63)

This is the same result8 as derived in [15], now in Euclidean coordinates, and describes a
growing entropy that saturates at a maximum value S as a function of the Lorentzian time
coordinate on the cut-off surface tr. Considering replicas of Euclidean de Sitter spacetime
has successfully reproduced the island formula.

8Minor differences arose because a different convention was chosen in [15] in the expression for the
trace anomaly and conformal transformation of the energy-momentum tensor.
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Discussion & Conclusions

We have made a side-by-side comparison of the event horizon of the Schwarzschild black
hole and the cosmological horizon in de Sitter spacetime. In the semi-classical approx-
imation both seem to produce radiation and have almost identical temperature, ther-
modynamic entropy and thermodynamic-like horizon dynamics. However, also the first
differences become apparent. To study the cosmological horizon we need to consider de
Sitter spacetime from the point of view of a static observer. The cosmological horizon
is then manifestly observer dependent and there is also no asymptotic flat region. This
complicates the formulation of globally conserved quantities and the set-up of a quantum
field theory description.

Our main interest was the von Neumann entropy of radiation in both spacetimes. Consid-
ering the black hole in the Unruh vacuum, it will evaporate and the entropy of radiation
follows the Page curve. This gives a tangible description of the black hole information
paradox. A part of solving the paradox is understanding how the Page curve arises. In
de Sitter spacetime an analogous Unruh-de Sitter vacuum can be constructed and its
horizon will shrink and the spacetime will collapse. To study the radiation entropy, then,
we focused on the stable Hartle-Hawking and Bunch-Davies vacuum, for the black hole
and de Sitter respectively. For both the entropy is expected to grow initially and then
saturate at a constant value.

The Page curve is successfully described in the island formula. This description was based
on holography and the first Ryu-Takayanagi proposal. We discussed its transformation to
the island formula. Another method to determine the von Neumann entropy of a state is
using the replica method. We showed its application in the Euclidean path integral for-
mulation of quantum field theory including the extension to gravitational effects. First,
we calculated the von Neumann entropy of the classical Schwarzschild black hole and
de Sitter static patch. We did this only considering their Hilbert-Einstein action in the
gravitational path integral and approximating it in their known classical saddle point solu-
tions. For both spacetimes we found the result to be exactly their thermodynamic entropy.

Finally, we discussed the procedure of deriving the island formula using the replica trick for
the black hole in the Hartle-Hawking vacuum. We worked in two dimensional Euclidean
JT gravity and considered a conformal field theory action alongside it in a semi-classical
approximation. The two regimes of the Page curve arise from two alternating dominat-
ing saddle points in the gravitational path integral. De Sitter spacetime allows the same

59
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replica method. We formulated its solution in JT gravity coming from a dimensional
reduction of three dimensional Lorentzian de Sitter spacetime. Next, we added a con-
formal field theory in the Bunch-Davies vacuum and took into account its backreaction
on the geometry. In the von Neumann entropy calculation we studied the completely
disconnected and connected saddle points (analogous to the black hole calculation) and
recovered the island formula. It was checked the resulting Page curve is qualitatively the
same as directly applying the island formula in the same set-up.

We have not checked if the completely disconnected and connected replica manifolds are
indeed dominating configurations in the path integral, and whether there could be differ-
ent ones. The fact, however, that the island formula can be derived from the Euclidean
path integral formulation of semi-classical de Sitter spacetime provides more justification
to its use. This is especially nice since there is not a complete quantum dual description
of de Sitter spacetime yet in which we could otherwise formulate von Neumann entropies.
This does mean that the island formula is a way to calculate the von Neumann entropy of
some quantum state in an effective gravitational theory, while the exact state is unknown.

In the replica set-up we chose to specify boundary conditions at the location of the static
observer. This is preferred over the point of view of some universal observer as we want
to study the cosmological horizon and for any physically relevant description we can not
include more than we can observe. We also chose to fix spacetime to be flat in a small
region surrounding the observer. For future studies this is not needed, I believe, since
in the Euclidean path integral formalism a state can be defined on any spacelike cut,
including ones with non-zero curvature. This has been discussed for general geometries
without asymptotic AdS boundaries in [81].

Interesting directions for further research would be to study a possible replica method
application to de Sitter spacetime in the Unruh-de Sitter vacuum. This state has been
discussed in [16], [24] and [43], and is found to collapse under the accumulation of ra-
diation. It would be interesting to see if and how this could be reflected in a replica
method. For this, the Swinger-Keldysh formalism probably needs to be used as the state
does not have time reflection symmetry. On the other end, the formulation of a complete
quantum description of de Sitter spacetime would be a great direction into understanding
the physical interpretation of its (quantum) entropy.
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Appendix A

Jackiw-Teitelboim action

The action of two-dimensional Jackiw-Teitelboim gravity is

IJT =
1

16πG

(∫
M
d2x

√
gΦ (R− 2Λ) + Φb

∫
∂M

dy
√
h 2K

)
(A.1)

+
Φ0

16πG

(∫
M
d2x

√
g (R− 2Λ) +

∫
∂M

dy
√
h 2K

)
,

where Φ is called the dilaton, with Φb its value at the boundary. The action describes
de Sitter or Anti-de Sitter spacetime depending on the sign of Λ. The second term
proportional to a constant Φ0 is a purely geometrical term proportional to the Euler char-
acteristic, that does not contribute to the dynamics of the system. When the action is
derived from a higher-dimensional theory this term encodes knowledge of that system.
Also the Gibbons-Hawking-York boundary term is included when relevant. It ensures the
variational principle is well-defined for a spacetime with a boundary.

First, when we vary the action with respect to the dilaton Φ, we immediately obtain

R− 2Λ = 0 . (A.2)

This acts as a Lagrange multiplier and fixes the curvature of possible solutions.

Now we will vary the action with respect to gµν . First we note that

δgµν = −gµρgνσδgρσ (A.3)

independent of metric signature. For Euclidean signature

δ
√
g =

1

2

1
√
g
δg = −1

2

√
ggµνδg

µν . (A.4)

We will also need the following expressions, which can be found in Carroll [22],

δR = Rµνδg
µν + gµνδRµν ,

δRµν = ∇λ(δΓ
λ
νµ)−∇ν(δΓ

λ
λµ) ,

δΓλ
νµ = −1

2

(
gαν∇µ(δg

αλ) + gαµ∇ν(δg
αλ)− gµαgνβ∇λ(δgαβ)

)
.

(A.5)
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The variation of the action then is

δIJT =
1

16πG

∫
M
d2x (δ

√
g) Φ (R− 2Λ) +

√
gΦ (Rµνδg

µν + gµνδRµν)

=
1

16πG

∫
M
d2x

√
gΦ

(
−1

2
gµν(R− 2Λ) +Rµν

)
δgµν +

√
gΦgµν

(
∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ)
)

=
1

16πG

∫
M
d2x

√
gΦGµν δg

µν +
√
gΦ∇ρ

(
gµν(δΓρ

νµ)− gµρ(δΓλ
λµ)
)

=
1

16πG

∫
M
d2x

√
gΦGµν δg

µν +
√
gΦ∇ρ

(
gµν(∇ρδgµν)−∇λ(δg

ρλ)
)

=
1

16πG

∫
M
d2x

√
gΦGµν δg

µν −√
g (∇ρΦ)

(
gµν(∇ρδgµν)−∇λ(δg

ρλ)
)

=
1

16πG

∫
M
d2x

√
gΦGµν δg

µν +
√
g (gµν(∇ρ∇ρΦ)−∇ν∇µΦ) δg

µν .

(A.6)

In the first and line we plugged in the variation of the metric determinant, Ricci scalar
and Ricci tensor. In the third line we introduced the Einstein tensor Gµν = −1

2
gµν(R −

2Λ) + Rµν and rewrote the second term using the metric compatibility of the covariant
derivative. In fourth line we substituted the variation of the Christoffel symbols. In the
fifth and last line we performed an integration by parts, while omitting the boundary
contribution. Finding a stationary point δIJT/δg

µν = 0 we get the equations of motion:

Φ(Rµν −
1

2
gµν(R− 2Λ)) + gµν∇2Φ−∇µ∇νΦ = 0 . (A.7)
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Dimensional reduction

Here we will explicitly go through the dimensional reduction of three-dimensional de
Sitter spacetime to a two-dimensional model as is done in [15]. We begin with the three
dimensional Lorentzian action

I3d =
1

16πG

∫
M
d3x

√
−g (R− 2Λ) +

1

8πG

∫
∂M

d2x
√
−hK . (B.1)

Here, gµν is the metric tensor of the spacetime and g its determinant, hµν the induced
metric tensor on the boundary of the spacetime and h its determinant, R the Ricci scalar
and K the extrinsic curvature of the boundary. When varying this action, we obtain the
Einstein equations R = 6Λ. A solution is de Sitter spacetime with the following metric
in Kruskal coordinates:

ds2 =
1

(1− Λx+x−)2

(
−4dx+dx− +

1

Λ

(
1 + Λx+x−

)2
dθ2
)
, (B.2)

where θ ∈ [0, 2π], −1/Λ ≤ x+x− ≤ 1/Λ and both x+ and x− are functions of Euclidean
time. Λ is related to the de Sitter length scale via Λ = 1/L2. The northern static patch
is covered by coordinates σ± = t± r∗ related to the Kruskal coordinates by

x± = ± 1√
Λ
e±

√
Λσ±

, (B.3)

with r∗ the tortoise coordinate. The location of the observer is at r∗ = 0 and the cos-
mological horizon at r∗ = −∞. Now, we apply a circular dimensional reduction with the
following ansatz [15]:

ds2 = −e2ρ(x+,x−)dx+dx− + φ2(x+, x−)dθ2 . (B.4)

The first part will describe the two dimensional theory and is related to the three dimen-
sional theory via

√
−g3d =

√
−g2dφ ,

∫
d3x =

∫
d2x2π , R3d = R2d −

2

φ
□2dφ , K3d = K2d +

1

φ
∂nφ ,

(B.5)

where n is the normal direction to the boundary. We will go through their derivation one
by one:

√
−g3d =

√
−(−(−1

2
e2ρ)(−1

2
e2ρ)φ2) =

√
−g2dφ ,

∫
d3x =

∫
d2x

∫
dθ =

∫
d2x2π .

(B.6)
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We use the following definitions of the Christoffel symbols, Riemann tensor and Ricci
tensor and scalar, respectively:

Γλ
µν =

1

2
gλρ(∂µ gνρ + ∂ν gρµ − ∂ρ gµν) ,

Rρ
σµν = ∂µ Γ

ρ
νσ − ∂ν Γ

ρ
µσ + Γρ

µλ Γ
λ
νσ − Γρ

νλ Γ
λ
µσ ,

Rµν = Rλ
µλν ,

R = Rµ
µ .

(B.7)

The two-dimensional metric is ds2 = −e2ρ(x+,x−)dx+dx− and the non-zero Christoffel
symbols are

Γ±
±± = 2∂±ρ , (B.8)

and its Ricci tensor and scalar are

R2d
−+ = −∂+Γ−

−− − Γ+
++Γ

+
+− = −2∂−∂+ρ ,

R2d = 2(−2e−2ρ)R−+ = 8e−2ρ∂−∂+ρ .
(B.9)

The only non-zero Christoffel symbols for the three-dimensional metric are

Γ±
±± = 2∂±ρ , Γ±

θθ = 2e−2ρφ∂∓φ , Γθ
±θ =

1

φ
∂±φ , (B.10)

such that the Ricci tensors are

R3d
±± = −∂±Γθ

±θ + Γθ
±θΓ

±
±± − Γθ

±θΓ
θ
θ±

=
1

φ

(
2(∂±ρ)(∂±φ)− ∂2±φ

)
,

R3d
θθ = ∂−Γ

−
θθ + ∂+Γ

+
θθ + Γ−

−−Γ
−
θθ + Γ+

++Γ
+
θθ − Γ−

θθΓ
θ
−θ − Γ+

θθΓ
θ
+θ

= ∂−(2e
−2ρφ∂+φ) + ∂+(2e

−2ρφ∂−φ) + 4e−2ρ(∂−ρ)(φ∂+φ)

+ 4e−2ρ(∂+ρ)(φ∂−φ)− 4e−2ρ(∂−φ)(∂+φ)

= 4e−2ρφ∂−∂+φ ,

R3d
−+ = −∂+Γθ

−θ − ∂+Γ
−
−− + Γλ

λαΓ
α
−+ − Γθ

+θΓ
θ
−θ

= −2∂−∂+ρ−
1

φ
∂−∂+φ ,

(B.11)

and

R3d = 2(−2e−2ρ)(R−+) +
1

φ2
Rθθ

= 8e−2ρ∂−∂+ρ+ 8
1

φ
e−2ρφ∂−∂+φ

= R2d −
2

ϕ
□2dφ .

(B.12)

The extrinsic curvature is defined as

K = gµνKµν = gµν
(
∇µnν − n2nµ(n

λ∇λnν)
)
, (B.13)
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where nµ is the normal vector to the boundary. For both the two- and three-dimensional
theory this boundary is future and past infinity. It is characterized by x+x− = 1/Λ and
is a spacelike hypersurface. Its normal vector is

n± = e−ρ −x±√
−x−x+

, nθ = 0 , (B.14)

normalized as n2 = −1. The extrinsic curvature is

K3d = g+−K+− + g−+K−+ + gθθKθθ

= K2d +
1

φ2
Kθθ ,

(B.15)

since K+− and K−+ are independent of θ and φ. Then,

K3d
θθ = −Γλ

θθnλ

= −φe−ρ 1√
−x−x+

(x−(∂−φ) + x+(∂+φ))

= φnµ∂µφ ≡ φ∂nφ

→ K3d = K2d +
1

φ
∂nφ

(B.16)

We will now substitute these relations (B.5) in the three dimensional action (B.1) to
obtain the two dimensional action:

I2d =
1

16πG3d

∫
M
d2x 2π

√
−g2d φ (R2d −

2

φ
□2dφ− 2Λ) +

1

8πG3d

∫
∂M

dx 2π
√
−h2d φ (K2d +

1

φ
∂nφ)

=
1

8G3d

∫
M
d2x

√
−g2d φ (R2d − 2Λ) +

1

4G3d

∫
∂M

dx
√
−h2d φK2d

− 1

4G3d

∫
M
d2x

√
−g2d□2dφ+

1

4G3d

∫
∂M

dx
√
−h2d

1

φ
∂nφ

=
1

8G3d

∫
M
d2x

√
−g2d φ (R2d − 2Λ) +

1

4G3d

∫
∂M

dx
√
−h2d φK2d

=
1

2π

∫
M
d2x

√
−g2d Φ (R2d − 2Λ) +

1

π

∫
∂M

dx
√

−h2d ΦK2d ,

(B.17)

where the last two integrals in the second line cancel each other by Stokes’ theorem. In
the last line we introduced the dimensionless dilaton Φ:

1

4G3d

φ =
1

π
Φ . (B.18)

Comparing to the usual prefactor of 1/16πG to the action, we can see that G2d = 1/8.
Now for the metric and dilaton solution we can just compare (B.4) to (B.2):

ds2 = −e2ρ(x+,x−)dx+dx− , e2ρ(x
+,x−) =

4

(1− Λx+x−)2
, Φ =

S

2

1 + Λx+x−

1− Λx+x−
, (B.19)

with S the usual three-dimensional entropy

S =
A

4G3d

=
π

2G3d

√
Λ
. (B.20)



Appendix C

Semi-classical de Sitter spacetime

To discuss the semi-classical effect of quantum fields on de Sitter spacetime we work in
the two-dimensional JT model defined in B and add a CFT in the Bunch-Davies vacuum.
The classical metric and dilaton solution in Euclidean signature are (B.19):

ds2 = e2ρ(w,w̄)dwdw̄ , e2ρ(w,w̄) =
4

(1 + Λ|w|2)2
, Φ =

S

2

1− Λ|w|2

1 + Λ|w|2
. (C.1)

We use Euclidean Kruskal coordinates w = −x− and w̄ = x+, which are related to the
static patch coordinate z = r∗ + iτ via

w =
1√
Λ
e
√
Λz . (C.2)

Then, we add a CFT action which results in a non-zero energy-momentum tensor in the
field equations via

Tµν ≡ − 2
√
g

δICFT

δgµν
. (C.3)

We assume the equation of motion for the CFT are satisfied and only consider the semi-
classical effect coming from the trace anomaly on curved spacetimes(3.26):〈

T µ
µ

〉
= − c

12
R (C.4)

4e−2ρ ⟨Tww̄ ⟩ =
c

12
8e−2ρ∂w∂w̄ρ (C.5)

⟨Tww̄ ⟩ =
c

6
∂w∂w̄ρ =

c

6

Λ

(1 + Λ|w|2)2
, (C.6)

where we used that the Ricci scalar in Euclidean signature is R = 8e−2ρ∂w∂w̄ρ and plugged
in the known solution for e2ρ(w,w̄) in the last line. We can determine the diagonal elements
of the energy-momentum tensor using conservation of energy ∇µ ⟨T µν⟩ = 0:

∇µT
µw = ∂µT

µw + Γα
αβT

βw + Γw
αβT

αβ

= 4 (∂wT
ww + ∂w̄T

w̄w + 2Γw
wwT

ww + Γw̄
w̄w̄T

w̄w)

= 4e−4ρ (∂wTw̄w̄ + ∂w̄Tww̄ − 2(∂w̄ρ)Tww̄) ,

∇µT
µw̄ = 4e−4ρ (∂w̄Tww + ∂wTww̄ − 2(∂wρ)Tww̄) .

(C.7)
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We neglected to write angle brackets around each element of the tensor. Equating these
expressions to zero and plugging in Tww̄ = c

6
∂w∂w̄ρ we get:

∂wTw̄w̄ = −∂w̄Tww̄ + 2(∂w̄ρ)Tww̄

=
c

6
∂w
(
−∂2wρ+ (∂wρ)

2
)
,

∂w̄Tww = −∂wTww̄ + 2(∂wρ)Tww̄

=
c

6
∂w̄
(
−∂2w̄ρ+ (∂w̄ρ)

2
)
.

(C.8)

Finally, we can integrate over w and w̄ respectively:

Tw̄w̄ =
c

6

(
−∂2wρ+ (∂wρ)

2
)
+ tw̄(w̄) = tw̄(w̄) ,

Tww =
c

6

(
−∂2w̄ρ+ (∂w̄ρ)

2
)
+ tw(w) = tw(w) .

(C.9)

We again substituted the known solution for e2ρ(w,w̄) in the last step.

Now we want to define the CFT to be in the Bunch-Davies vacuum. We know in this
state a static observer, using Euclidean static coordinates z = ln (

√
Λw)/

√
Λ, measures

an equal in- and outgoing energy flux at a temperature T = 1/2πL =
√
Λ/2π [76]:

Tzz = Tz̄z̄ = −cπ
2

6
T 2 = − c

24
Λ . (C.10)

We can relate this to the energy-momentum tensor in Euclidean Kruskal coordinates via
its transformation under the coordinate change (3.22):

Tww(w, w̄) = tw(w) =

(
∂w

∂z

)−2 [
Tzz(z)−

c

12
S(w, z)

]
=

(
∂w

∂z

)−2
[
Tzz(z)−

c

12

((
∂3w

∂z3

)(
∂w

∂z

)−1

− 3

2

(
∂2w

∂z2

)2(
∂w

∂z

)−2
)]

=
(
e
√
Λz
)−2

[
Tzz(z)−

c

12

((
Λe

√
Λz
)(

e
√
Λz
)−1

− 3

2

(√
Λe

√
Λz
)2 (

e
√
Λz
)−2
)]

=
(√

Λw
)−2

[
Tzz(z)−

c

12

(
−1

2
Λ

)]
,

→ Λw2 tw(w) = Tzz(z) +
c

24
Λ = 0 .

(C.11)

We see in Kruskal coordinates the Bunch-Davies vacuum is a true vacuum and the diag-
onal components of the energy-momentum tensor vanish.

In Kruskal coordinates, then, only the off-diagonal component of the equations of motion
(4.44) gets altered to

∂w∂w̄Φ +
1

2
e2ρΛΦ = 8πG2dTww̄ = π

c

6

Λ

(1 + Λ|w|2)2

= Λ
c

6

π

4
e2ρ

→ ∂w∂w̄Φ+
1

2
e2ρΛ

(
Φ− πc

12

)
= 0 ,

(C.12)
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so we immediately see the semi-classical dilaton solution is

Φsemi−cl =
S

2

1− Λ|w|2

1 + Λ|w|2
+
πc

12
. (C.13)
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