
UTRECHT UNIVERSITY

FACULTY OF SCIENCE

Applied Data Science

Final Thesis Project

Using artificial neural networks to
improve hydrological streamflow
predictions from PCR-GLOBWB

Oriol Pomarol Moyà

—
—

Advisors
——–

Edwin Sutanudjaja (UU), Derek Karssenberg (UU), Youchen Shen (UU)

July, 2022

Contents

Abstract 3

1 Introduction 3

2 Data 5

3 Methods 7
3.1 PCR-GLOBWB . 8
3.2 Error-correction . 9

3.2.1 MLR . 9
3.2.2 FCNN . 9
3.2.3 TCNN . 10

3.3 Model setup and evaluation 11

4 Results 14
4.1 Model variability . 16
4.2 Performance consistency . 19

5 Conclusion and Discussion 22

A Appendix 27

B Appendix 30

2

Abstract

This project aimed to improve the streamflow discharge simulation perfor-
mance of the PCR-GLOBWB hydrology model in the Rhine basin by mod-
elling its residuals using artificial neural networks. Two architectures were
used, a more generic fully connected network and a temporal convolutional
network, as well as a multiple linear regression as a baseline. The predictors
included a bunch of PCR-GLOBWB output variables (e.g. runoff compo-
nents, groundwater recharge, snow, groundwater stores, etc.) and meteo-
rological input variables (precipitation, temperature and reference potential
evaporation), which were fed to the models either directly or by adding lagged
versions of them of up to 60 days. The results showed increased performances
to the original PCR-GLOBWB simulations, but no significant differences
were found between the different machine learning models.

1 Introduction

Streamflow is a most important hydrological variable that can affect agricul-
ture, ecosystems and, ultimately, society. Being able to accurately predict
long-term streamflow can lead to an improvement in water resource manage-
ment as well as flood mitigation.

The use of machine learning (ML) models in hydrology has been rapidly
spreading in the past few years due to their high performance and flexibil-
ity. C. Shen et al. (2021) showcases many different ML applications in a
wide range of hydrology-related topics. Such an increase in popularity is
not only due to the increase of computational power but also to the large
quantities of data that have become available, which contain significantly
more information than hydrologists have been able to capture within theo-
ries, according to Nearing et al. (2021). This article also states that, when
ML models have been benchmarked against calibrated conceptual models or
process-based models, they have generally performed better. Conversely, in
many cases when predictions involve scenario analysis (e.g. when evaluat-
ing effects of climate change or land-use change on river flow) ML may not
function properly. To try and get the best of both worlds, some researchers

3

have implemented a combination of the two approaches within a single mod-
ular model, referred to as hybrid modelling in the literature (Lange & Sippel,
2020), that can obtain improved forecasts.

Isik et al. (2013), for example, used two fully connected artificial neural
networks to predict baseflow and stormflow from the surface runoff as de-
termined by the SCS-CN model as well as other meteorological variables. A
much simpler approach was followed by Noori and Kalin (2016), who created
a fully connected artificial neural network to improve the streamflow pre-
diction from the baseflow and stormflow outputted by the physically-based
SWAT model. Y. Shen et al. (2022) used a Random Forests approach taking
an extensive set of hydrological state variables simulated with the PCR-
GLOBWB model along with precipitation, temperature and evapotranspira-
tion in a coupled model that corrected the initial PCR-GLOBWB prediction,
improving its performance significantly at three streamflow gauging stations
in the Rhine basin. This strategy will be quoted as an error-correction model
from now on.

In parallel, the adoption of ANNs in hydrology has had a long history
(Lange & Sippel, 2020) due to their ability to learn non-linear relationships
between variables and find relationships between those and the output with-
out prior knowledge of the physical characteristics of the problem. Mah-
eswaran and Khosa (2012) found that the studied streamflow series from two
rivers in India showed significant results for the presence of non-linear fea-
tures. In the study from Duan et al. (2020), the linear model performed the
worst among other neural network alternatives when predicting streamflow
from meteorological variables in almost all of the studied basins, which they
attributed to the non-linearity of the prediction problem. On top of that, in
the same study, the models that took into account the temporal dependency
of the data performed even better than a fully connected network, especially
the Temporal Convolutional Neural Network. Other articles such as Gao
et al. (2010) have also used artificial neural networks to predict streamflow
from meteorological data in order to study the impact of different climate
change scenarios in hydrology.

This project aims to improve the streamflow predictive performance of
the PCR-GLOBWB model by using an ANN-based error-correction model,
taking its simulated variables and meteorological data as input in a similar
setting as Y. Shen et al. (2022). In that paper, the use of a Random Forests

4

model produced a significant increase in performance from the base PCR-
GLOBWB model, which raises the question of whether similar or better
results can be achieved with already proven ANN methods.

Two ANN architectures have been employed in this project, a fully con-
nected neural network (FCNN) and a Temporal Convolutional Neural Net-
work (TCNN). While the first is a more generic and widely used ANN ar-
chitecture, the second takes into account the temporal information from the
data and has been shown by Duan et al. (2020) to outperform other com-
mon time-series approaches such as LSTM or GRU. To check whether such
complex models are worth using, a Multiple Linear Regression (MLR) is also
executed as a baseline. The data is fed to the models in two formats; adding
their lagged versions up to a certain threshold, or not.

The main research question is then the following: Can artificial neural
networks significantly improve the performance from PCR-GLOBWB in an
error-correction approach for streamflow prediction in the Rhine basin? Fur-
thermore, four sub-questions grouped into two main topics will be tackled.

1. Are non-linear ANN models significantly better than multiple linear
regression for error-correction modelling in streamflow prediction? Are
the predictions of such models performing equally well for all streamflow
values?

2. Does the introduction of lagged variable information significantly im-
prove the performance of the error-correction models? Can a time-
series specific model (TCNN) perform significantly better than other
more generic approaches (MLR, ANN)?

In the following sections we will explore the data used in this project, the
methods put into practice to respond to these questions, the obtained results
and, to conclude, a brief discussion of their implications.

2 Data

The data from this study belongs to two different locations in the Rhine
basin: Basel and Lobith. It was obtained from GitHub (Y. Shen, 2021)

5

and contains daily observations consisting of 3 meteorological features and
18 simulated state variables from the PCR-GLOBWB model, for a period
of twenty full years, from 1981 to 2000. The data was already clean and
complete.

The meteorological variables were precipitation, temperature and refer-
ence potential evapotranspiration, all of which have been commonly adopted
for both direct streamflow prediction (Duan et al., 2020; Gao et al., 2010)
and hybrid models (Isik et al., 2013; Y. Shen et al., 2022).

As mentioned before, the rest of the predictors fed into the machine learn-
ing model were the variables simulated by PCR-GLOBWB, which are listed
in Table 1. More information on the PCR-GLOBWB model can be found in
Section 3.1.

The predicted variable fed to the ML models was the PCR-GLOBWB
residual, obtained by subtracting its streamflow prediction from the actual
observations of the gauging stations in each location. As can be seen in
Figure 1, despite the noise, there is a clear seasonal variation of the observed
streamflow that differs between locations. The figure shows only half of
the full extent of the data, to allow for easier visualization of the seasonal
variability.

In Basel, there is a nival regime characterized by high discharge in sum-
mer due to the melting ice, while in Lobith there is a pluvial regime which
typically corresponds to higher discharge in winter and spring as a direct
consequence of precipitation. The residuals obtained from the uncalibrated
PCR-GLOBWB model also show a certain seasonal variation, generally in-
creasing for higher runoff values and thus following an analogous shape to
the streamflow observations, especially in Lobith. In Basel, some peaks are
inverted in the residuals instead. This seems to imply a certain correlation be-
tween the streamflow observations and the residuals or, at least, an increased
difficulty from PCR-GLOBWB to correctly predict the high streamflow pe-
riods.

6

Figure 1: Time series of the observed streamflow and residuals from the PCR-GLOBWB
prediction for Basel and Lobith, between 1981 and 1990.

3 Methods

The error-correction approach mentioned in previous sections has been ap-
plied in this project in the following way. First, the PCR-GLOBWB model
was run for the selected time period and location to obtain its simulated
state variables and streamflow prediction as part of the input data. Then,
the available data was split between training and testing. For the training
set, an ML model was fitted using both the state variables and some addi-
tional meteorological variables as predictors, and the residual from the PCR-
GLOBWB streamflow prediction as a dependent variable. To make models
aware of seasonality, the day of the year was also included as a predictor.
For the test set, the output of the ML model was summed to the streamflow
prediction from PCR-GLOBWB to obtain the definitive streamflow forecast
to be compared in the results.

In the next sub-sections both PCR-GLOBWB and ML models (MLR,
FCNN and TCNN), as well as their choice of parameters, are explained.

7

3.1 PCR-GLOBWB

The PCR-GLOBWB model (Sutanudjaja, 2017) is a grid-based global hy-
drology and water resources model that can predict streamflow as well as
other state variables described in Table 1.

The model consists of three layers, two soil moisture storages and a
groundwater storage. Each of those has its own water flow (surface runoff,
stormflow and baseflow), as well as water exchange between them, with the
atmosphere through the top layer, and with human interaction through in-
dustry, livestock, domestic use and irrigation.

Table 1: Simulated state variables obtained from the PCR-GLOBWB model as described
in Y. Shen et al. (2022).

Variable name Unit Explanation
baseflow m/day baseflow, groundwater discharge
directRunoff m/day surface runoff
domesticWaterWithdrawal m/day domestic water withdrawal
gwRecharge m/day groundwater recharge, fluxes from the lower soil layer to

groundwater stores
industryWaterWithdrawal m/day industrial water withdrawal
interflowTotal m/day interflow, shallow sub-surface flow
irrigationWaterWithdrawal m/day water withdrawal allocated for irrigation purposes
livestockWaterWithdrawal m/day water withdrawal allocated for livestock demand
nonIrrWaterConsumption m/day non-irrigation sectoral (domestic, industry and livestock)

water consumption, i.e. non-irrigation sectoral withdrawal
minus return flow

snowCoverSWE m snow cover/storage in water equivalent thickness (excluding
liquid part)

snowFreeWater m liquid water/meltwater storage in the snowpack
storGroundwater m groundwater storage (renewable part)
storUppTotal m S1 actual upper soil water storage
storLowTotal m S2 actual lower soil water storage
surfaceWaterStorage m surface water storage (lakes, reservoirs, rivers, and inun-

dated water)
totLandSurfaceActuaET m/day total evaporation and transpiration from land part
storGroundwater m/day total evaporation and transpiration from land and water

body parts

The model was run with a daily time step and a spatial resolution of 30
arcmins. For the rest, the default parameter values were used since Y. Shen
et al. (2022) found that, after applying the error-correction model in each
location, the performances of calibrated and uncalibrated PCR-GLOBWB
runs were equally good, so this extra step was not necessary.

8

3.2 Error-correction

As introduced in Section 1, to compare the importance of time-series in
streamflow prediction, two ANN architectures were tested; a fully connected
neural network (FCNN) and a temporal convolutional neural network (TCNN).
Additionally, a Multiple Linear Regression (MLR) was used as a benchmark.
All of these models are explained in the following subsections.

3.2.1 MLR

The multiple linear regression is the simplest model of them all since it takes
into account only linear dependence between the dependant and each of
the independent variables. It was implemented using the LinearRegression()
method from Scikit-learn (Pedregosa et al., 2011) library using the default
setup. Linear regression was also used as a baseline for other ML models in
(Duan et al., 2020).

3.2.2 FCNN

A fully connected neural network is a type of ANN, a family of ML mod-
els that uses layers of units called neurons. Every neuron takes as input
the response from the previous units to which it is connected, computes a
weighted sum, and applies a certain activation function to obtain its output.
In regression problems, the last layer consists of only one neuron with a lin-
ear activation function, the output of which corresponds to the prediction
of the model. The weights of the connections between neurons are trainable
parameters, optimized for the task at hand through a process called back-
propagation. In FCNN in particular, every neuron takes its input from all
the neurons in the previous layer. This is a generic structure that can adapt
to many scenarios and has been found to improve streamflow prediction when
coupled with physically-based models (Noori and Kalin, 2016).

The model was built using Keras (Chollet et al., 2015) and the hyper-
parameters of the network were optimized using the Hyperband tuner from
KerasTuner (O’Malley et al., 2019), using a randomized 20% of the training
data as validation and mean squared error (MSE) as the loss metric. For

9

the activation function, after a few test runs allowing the tuner to choose be-
tween the two most common options, relu and sigmoid, it was observed that
the former was almost always preferred over the latter. Since relu was also
the choice in Duan et al. (2020), it was fixed for future runs. The number of
hidden layers was also allowed to vary at first between 1 and 3, but it was
finally set to 2 for similar reasons. The learning rate was mirrored to that of
Duan et al. (2020), fixing it at 0.0005 and using the Adam optimizer. Hav-
ing all of these parameters remain constant allowed the model to run much
faster, a necessity considering the little resources available for this project.
The only parameter that was allowed to vary between runs was the number
of neurons in each layer, between 25 and 200 in steps of 25. Finally, a 0.05
dropout layer was added after every hidden layer to improve generalizability.

3.2.3 TCNN

Convolutional neural networks are a class of ANNs in which every neuron
in any given layer is only connected to a distinct subset of neurons from the
previous layer, defined by a sliding kernel.

The temporal convolutional neural networks use this same structure but
adapt it to time-series data. The main difference is that, due to the temporal
nature of the data, it must use casual convolutions, meaning that a neuron
can only receive information coming from past time steps. In Figure 2, this
implies that the output neurons can not be connected, directly or indirectly,
to any unit to their right. Additionally, it uses dilated convolutions, which
reduces the number of connections as depicted in Figure 2, speeding up its
training and reducing the model’s complexity. For every value of streamflow,
a certain time window from every predictor variable must be provided, so the
model can learn the temporal patterns of the data. Duan et al., 2020 found
that TCNN performed better than other deep network architectures such as
FCNN, LSTM or GRU when predicting streamflow, and complimented its
potential to perform future hydrology projections.

The Keras TCN (Rémy, 2022) library was used to implement a TCN layer
with a kernel size of 3 and dilation of (1,2,4,8). Using these parameters, the
resulting receptive field had a size of 61, meaning how far can each output
neuron receive information from the input. This value should be bigger than

10

Figure 2: Visualization of a stack of dilated causal convolutional layers (Oord et al., 2016),
with a kernel size of 2 and dilation of (1,2,4,8).

the time window so that all of the information provided can be "seen" by
the model. Additionally, a dropout rate of 0.05 (as recommended by the
author of the package) and layer normalization were applied. The nb_filters
parameter, which determines the complexity of the model, was optimized for
each run with KerasTuner between 25 and 200 in steps of 25.

3.3 Model setup and evaluation

For the input variables, two different settings were tested, including the ad-
dition or not of lagged variables (Table 2). In the no_lag models, all the
variables described in Section 2 were fed directly to the MLR and FCNN
models. The lag models, on the other hand, were inputted additional lagged
versions of all the previous variables to introduce the time-series information
to them.

The number of time steps added for the lagged version of the data was of
60 days, on account of a parallel thesis project (Afshari Hemmatalikeykha,
2022) based on the same data, which found that there was still a significant
correlation between the past values from some meteorological variables up to
this number and the streamflow observations. In this project, it was assumed
that the same was true for the residuals, considering they showed some de-
gree of correlation with the streamflow (see Section 2). On the other hand,
increasing the lag or fine-tuning it would have increased the running time of
the algorithms to unattainable levels given the time and resources available
for this project. The lagged version of the data was obtained by adding, for

11

every existing variable v, as many new variables vlag_i as determined by the
lag parameter l. These new variables contained the past ith time step for
every observation j, as demonstrated in Equation 1.

vlag_i(j) = v(j − i) i = 1, 2, . . . , l (1)

For TCNN the data must be formatted to follow a different structure
that uses a time window instead, but the information available to the model
is the same. The first few rows, where no information on the previous time
steps is available, had to be discarded, slightly reducing the total amount
of observations available for the lag models. Each variable was standardized
based on training data only, not to overestimate the performance, and the
lagged versions of the variables were standardized using the parameters from
their non-lagged counterparts.

The metric chosen to assess model performance is the Kling-Gupta ef-
ficiency (KGE), which is gaining dominance in recent hydrology literature
and is preferable to other popular metrics such as Nash-Sutcliffe Efficiency
for streamflow prediction since it can better capture the data seasonality (Y.
Shen et al., 2022). To achieve that, it combines three components (Gupta
et al., 2009). First, there is the linear correlation between predictions and
observations r, second, a measure of relative variability α, and finally a bias
term β. From these, the KGE can be obtained as shown in Equation 2.
In practice, the KGE was computed using the hydroeval (Hallouin, 2021)
library.

KGE = 1−
√
(r − 1)2 + (α− 1)2 + (β − 1)2 (2)

where α = σs/σo and β = µs/µo, and µ and σ refer to the mean and standard
deviation from the simulated xs and observed xo values.

To evaluate the models, five-fold cross-validation was employed, taking
80% of the data each run as training and leaving the remaining 20% unused
during model parameter tuning to test the performance on unseen data. The
numbered combinations of train-test splits are represented in Figure 3, and
are comprised of five compact blocks of test set data of roughly four years

12

covering the full range of observations. Cross-validation can provide a better
idea about the stability of the models’ performance given the relatively small
amount of data available. Moreover, to study the intrinsic variability of the
ANN models, they were also run five extra times on the same test set. The
review of all of the model runs can be seen in Table 2.

The Welch’s t-test was used to determine whether there is a significant
difference in performance between the models from the five KGE values ob-
tained for each of the cross-validation runs.

Figure 3: Representation of the five different test-train splits from the available data used
to evaluate the models, with time increasing from left to right.

Table 2: Type and name of each model, whether or not it includes lagged variables and
number of runs for every location using either cross-validation or test set 5 exclusively.

Runs
Model Name Lagged vars. Cross-val. Test set 5

MLR mlr_no_lag No 5x -
mlr_lag Yes 5x -

FCNN fcn_no_lag No 5x 5x
fcn_lag Yes 5x 5x

TCNN tcn_lag Yes 5x 5x

All of the code was run on Google Colab using Python 3.7.13. MLR
was the fastest model by far, taking less than 10s for each run, even when
including the lagged variables. FCNN runs took 3-4 min when not using
lagged variables and 4-5 min when including them. When TCNN was run

13

with the same hardware settings, it was roughly estimated to take up to 4h
for each run, which made it unpractical, but using GPU boosting greatly
reduced it to 6-12 min.

4 Results

The performances obtained from running the models are displayed in Figure
4. The box plots help visualize the results obtained by running the models
with the five different train and test samples (see Section 3.3). The full
results are available in Appendix B.

All of the error-correction models showed a clear improvement over the
performance of PCR-GLOBWB in both analysed locations. In Basel, the
non-lagged version of FCNN showcased a slightly better average performance
and less fluctuation between test sets compared to MLR, both reducing the
variability from the PCR-GLOBWB predictions greatly. In Lobith, FCNN
also performed better than MLR on average but, on this occasion, the model
fluctuations were higher, and there was not a clear improvement in variability
compared to PCR-GLOBWB.

Including lagged variables slightly decreased the performance of the FCNN
models in both locations, as can be seen in the second column of Figure 4.
While the PCR-GLOBWB model data is the same, it is displayed again for
two reasons; it makes it easier to compare against the lagged error-correction
models, and also the test regions changed slightly due to the introduction of
lagged variables. TCNN performed better than the lagged version of FCNN
in both locations, but in Lobith the fcn_no_lag model had marginally bet-
ter results. Nevertheless, all models failed to match the performance of the
mlr_lag model.

The points that the box plots represent as outliers are only coincident
between FCNN and TCNN in a given location, but do not seem to indicate
any relevant feature of the data or the models.

According to Welch’s t-test, the only significant differences in perfor-
mance, i.e., with a p-value lower than 0.05, were between PCR-GLOBWB

14

Figure 4: Distribution of KGE values for PCR-GLOBWB and the error-correction models
without (left) and with (right) the addition of lagged variables, for Basel and Lobith.

and all of the error-correction models. This means that the difference be-
tween MLR, FCNN and TCNN, with or without the use of lagged variables,
could not be considered large enough to extract any statistically significant
conclusions.

The results in this project exceeded the KGE obtained by Y. Shen et al.
(2022) using the same data, even though on that occasion the models were
trained with only half the total extent of the data and they used a lag of
10. In Basel, their best-performing RF-based error-correction model only
achieved a KGE of 0.75, while the models showcased in this project achieved
average results ranging from 0.80 to 0.87. In Lobith, the improvement is not
so much, 0.85 for RF compared to 0.85-0.88 in this project. As a reference,
a sibling thesis project (Afshari Hemmatalikeykha, 2022), which used the
same data and an ANN approach but predicted the streamflow directly from
lagged meteorological variables only, obtained a lower KGE of 0.72 in Basel
and 0.84 in Lobith. The same analysis without lagged variables yielded even

15

worse results.

The streamflow forecast from all of the models for the last two years of
data (corresponding to test set 5) are shown in Figures 5 and 6 for Basel
and Lobith respectively. The observed values are displayed in black, the
PCR-GLOBWB model prediction in blue and, for each plot, the different
error-correction model forecasts are in red.

The predictions from all of the models showed a similar shape; they in-
herited a struggle to accurately predict high values of streamflow from PCR-
GLOBWB, while, for low-flow regions, they fitted the observations much
better. In general, PCR-GLOBWB overestimated the streamflow predic-
tions, a tendency that is fixed by the error-correction models, which even
underestimated a bit the results, especially in Lobith. It can be seen that
the highest error in the predictions occurred in an unusual streamflow peak
in early spring 1999 for both locations, which all models failed to properly
predict, even though they showed some improvement compared to PCR-
GLOBWB. It can also be noted that mlr_lag, the best performing model,
was able to better capture the variability in observations, whereas the others
only modified the PCR-GLOBWB values in a more generic way, missing the
higher frequency patterns of the observations. Examples of this behaviour
can be observed in the autumn of 1999 for Basel, and the late spring of 2000
for Lobith.

4.1 Model variability

Contrary to MLR, there was some variability in the performance of the ANN
models when run on the same train and test set, mainly due to the param-
eter tuning, which relies on a small validation set, but also caused by their
stochastic nature. The results, though, showed very similar performance
within runs on the same test set.

For FCNN, the standard deviations of KGE values obtained by repeatedly
running it on test set 5 were 0.025 and 0.011 (with and without lagged
variables) for Basel, and 0.029 and 0.018 for Lobith. This was approximately
half the amount obtained when running the model on the different test sets,
0.049 and 0.026 for Basel, and 0.062 and 0.040 for Lobith. For TCNN, this

16

Figure 5: Streamflow observations (black), predictions from PCR-GLOBWB (blue) and
from the different error-correction models (red) in Basel from the years 1999 and 2000.

17

Figure 6: Streamflow observations (black), predictions from PCR-GLOBWB (blue) and
from the different error-correction models (red) in Lobith from the years 1999 and 2000.

18

ratio was more than six times smaller, from 0.043 to 0.006 in Basel and from
0.063 to 0.010 on Lobith. Therefore, it can be concluded that the largest part
of the variance came from using different train-test splits (especially from the
test sets, as 3/4 of the train set was shared between any pair of runs) and
not from the models’ intrinsic variability.

It is also interesting to analyze the values of the tuned parameters for
every run and their variation. They can be examined in Appendix B. For the
non-lagged version of FCNN, the number of units for both layers oscillated
between 200 and 175 consistently in the two locations. The lagged FCNN
model still featured 200 and 175 as the most common number of units but, in
Basel, there was more variability as the number of units dropped sporadically
to much lower values, in some cases even when using the same test set. For
the TCNN model, the nb_filters parameter also tended to reach the upper
bound, either 200 or 175, showing perfect coherence between runs within the
same test set for both locations.

4.2 Performance consistency

In order to analyze if the models performed constantly well for different
observed values of streamflow, their cumulative frequency curves are plotted
against the ones obtained from the observations in Figures 7 and 8, for Basel
and Lobith respectively. In this plot, the full range of the available data is
covered, made possible by cross-validation, and thus providing a more general
picture of how the models perform.

A common behaviour for all models was to overestimate the amount of
extremely low streamflow values, up to approximately 500 m³/s in Basel
and to 1000 m³/s in Lobith, which were extremely rare in the observations.
Surprisingly, all models seemed to perform worse than PCR-GLOBWB in
that aspect, and only TCNN showed a distribution that closely resembled
the observations reliably for both locations.

The bulk of the data, comprised between 500-1500 m³/s in Basel and
between 1000-3000 m³/s in Lobith was not properly captured by the PCR-
GLOBWB model, which clearly overestimated the predictions for this range
of values. This was fixed by the rest of the models, as exemplified in Figures

19

Figure 7: Cumulative frequency curve of the observations (black) compared to PCR-
GLOBWB and the five error-correction models (red) in Basel.

20

Figure 8: Cumulative frequency curve of the observations (black) compared to PCR-
GLOBWB and the five error-correction models (red) in Lobith.

21

5 and 6. The MLR still suffered from this overestimation, although the
lagged version fitted the observations much better. For the FCNN with and
without lag, this only happened towards the higher portion of streamflow
values while, for TCNN, the curve showed an almost perfect fit during the
whole extent.

Finally, for the highest observed streamflow values, above 1500 m³/s in
Basel and above 3000 m³/s in Lobith, there was a different behaviour between
the two locations. In Basel, PCR-GLOBWB overestimated the presence of
high streamflow values, while most of the models showcased a slightly lower
curve at first but then became very similar to the observations for the highest
values. TCNN, though, also fitted the curve very well in this range. In Lobith
the opposite happens, as the prediction curve of the models was generally
much steeper than the one from the observations in the higher part of the
spectrum, indicating that they failed to predict the largest values. This was
more noticeable in PCR-GLOBWB, but could be observed to an extent in
the other models as well. On this occasion, both FCNN models had a better
fit.

To further support this evidence from another point of view, plots of the
observed against predicted streamflow values have been obtained and can be
found in Appendix A. A few more characteristics of the predictions are also
discussed there.

5 Conclusion and Discussion

The results clearly showed a remarkable increase in the performance of the
error-correction models over PCR-GLOBWB in both locations, confirming
the validity of this approach. It also obtained better results than the sibling
project predicting streamflow directly from meteorological variables (Afshari
Hemmatalikeykha, 2022), the difference being especially large in Basel, possi-
bly due to the nival regime present in the area that would be better captured
by the PCR-GLOBWB model.

However, the use of ANNs did not provide a significant change in per-
formance compared to MLR. Despite this fact, assigning more observations
to the training set improved the performance of all models compared to Y.

22

Shen et al. (2022), even with the linear model, so it would be interesting to
analyze if it is possible to increase the performance even further by using a
larger volume of data which may, in turn, favour the ANNs.

The addition of lagged variables up to 60 days did not increase the per-
formance significantly, although the best-performing model was the lagged
version of MLR. The main reason for this low increase in performance might
be the fact that PCR-GLOBWB model states were used as predictors. These
model state variables already capture some memory in the system, e.g.
through the groundwater and snow storage. The TCNN model generally
performed better than FCNN, which even decreases its performance slightly
with the addition of lag, but the gain was not significant enough to draw any
solid conclusions. On the other hand, of all of the models in both locations,
TCNN showcased the most similar cumulative distribution of streamflow val-
ues compared to the observed one, especially in the lower values, which can
be crucial as indicators of extreme drought.

Even though in this study the ANNs did not show a substantial enough
improvement compared to linear regression that can justify their use, given
their much higher complexity and computational expense, this should not
be taken as proof to disregard the non-linearity of streamflow forecasting.
Firstly, the use of PCR-GLOBWB state variables are already taking into ac-
count some of the non-linearity of the problem. In addition, ANNs have many
hyperparameters, the most important ones described in Section 3, which can
affect their performance greatly (Claesen & De Moor, 2015). Due to the
scope of this project and the computational power available, hyperparam-
eter tuning had to be severely limited. Both the units per layer in FCNN
and the nb_filters in TCNN took values close to the upper bound for all of
the model runs, which could indicate that higher values may provide better
results. Additionally, a more comprehensive analysis of the effect of the other
hyperparameters on the performance of the models would be desirable. The
success of the linear models for this type of error-correction model, though,
is undeniable and should be analyzed more in-depth in additional research.

Finally, the variation in performance by using a subset of input variables
or by changing the lag would also be interesting to investigate further. Some
preliminary results suggest that the performance could fluctuate substantially
between seasons, which may also be explored. Ultimately, this work opens
many more questions and challenges to be tackled in the future of hydrology.

23

Code availability

The data and source codes used in this study are available on https://github.
com/oriol-pomarol/final_thesis_project.

24

https://github.com/oriol-pomarol/final_thesis_project
https://github.com/oriol-pomarol/final_thesis_project

References
Afshari Hemmatalikeykha, M. (2022). Using LSTM and XGBoost for stream-

flow prediction based on meteorologial time series data (Master’s the-
sis). University of Utrecht. Utrecht.

Chollet, F. et al. (2015). Keras. https://keras.io
Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine

Learning [Number: arXiv:1502.02127 arXiv:1502.02127 [cs, stat]]. https:
//doi.org/10.48550/arXiv.1502.02127

Duan, S., Ullrich, P., & Shu, L. (2020). Using Convolutional Neural Networks
for Streamflow Projection in California. Frontiers in Water, 2, 28.
https://doi.org/10.3389/frwa.2020.00028

Gao, C., Gemmer, M., Zeng, X., Liu, B., Su, B., & Wen, Y. (2010). Projected
streamflow in the Huaihe River Basin (2010–2100) using artificial neu-
ral network. Stochastic Environmental Research and Risk Assessment,
24 (5), 685–697. https://doi.org/10.1007/s00477-009-0355-6

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decompo-
sition of the mean squared error and NSE performance criteria: Im-
plications for improving hydrological modelling. Journal of Hydrology,
377 (1), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

Hallouin, T. (2021). Hydroeval: An evaluator for streamflow time series in
Python. https://doi.org/10.5281/zenodo.4709652

Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P., & Graeme Lockaby, B.
(2013). Modeling effects of changing land use/cover on daily stream-
flow: An Artificial Neural Network and curve number based hybrid
approach. Journal of Hydrology, 485, 103–112. https://doi.org/10.
1016/j.jhydrol.2012.08.032

Lange, H., & Sippel, S. (2020). Machine Learning Applications in Hydrology.
In D. F. Levia, D. E. Carlyle-Moses, S. Iida, B. Michalzik, K. Nanko, &
A. Tischer (Eds.), Forest-Water Interactions (pp. 233–257). Springer
International Publishing. https://doi.org/10.1007/978-3-030-26086-
6_10

Maheswaran, R., & Khosa, R. (2012). Wavelet–Volterra coupled model for
monthly stream flow forecasting. Journal of Hydrology, 450-451, 320–
335. https://doi.org/10.1016/j.jhydrol.2012.04.017

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D.,
Frame, J. M., Prieto, C., & Gupta, H. V. (2021). What Role Does
Hydrological Science Play in the Age of Machine Learning? [_eprint:

25

https://keras.io
https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.3389/frwa.2020.00028
https://doi.org/10.1007/s00477-009-0355-6
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.5281/zenodo.4709652
https://doi.org/10.1016/j.jhydrol.2012.08.032
https://doi.org/10.1016/j.jhydrol.2012.08.032
https://doi.org/10.1007/978-3-030-26086-6_10
https://doi.org/10.1007/978-3-030-26086-6_10
https://doi.org/10.1016/j.jhydrol.2012.04.017

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020WR028091].
Water Resources Research, 57 (3), e2020WR028091. https://doi.org/
10.1029/2020WR028091

Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for en-
hanced daily streamflow prediction. Journal of Hydrology, 533, 141–
151. https://doi.org/10.1016/j.jhydrol.2015.11.050

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.
(2019). KerasTuner. https://github.com/keras-team/keras-tuner

Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A
Generative Model for Raw Audio.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duches-
nay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12 (85), 2825–2830. Retrieved June 30,
2022, from http://jmlr.org/papers/v12/pedregosa11a.html

Rémy, P. (2022). Keras TCN [original-date: 2018-03-22T02:40:06Z]. Retrieved
May 26, 2022, from https://github.com/philipperemy/keras-tcn

Shen, C., Chen, X., & Laloy, E. (2021). Editorial: Broadening the Use of
Machine Learning in Hydrology. Frontiers in Water, 3, 681023. https:
//doi.org/10.3389/frwa.2021.681023

Shen, Y. (2021). Co822ee/PCR-GLOBWB_error-correction: V2. https ://
doi.org/10.5281/zenodo.5068517

Shen, Y., Ruijsch, J., Lu, M., Sutanudjaja, E. H., & Karssenberg, D. (2022).
Random forests-based error-correction of streamflow from a large-
scale hydrological model: Using model state variables to estimate error
terms. Computers & Geosciences, 159, 105019. https://doi.org/10.
1016/j.cageo.2021.105019

Sutanudjaja, E. (2017). PCR-GLOBWB_model: PCR-GLOBWB version
v2.1.0_beta_1. https://doi.org/10.5281/zenodo.247139

26

https://doi.org/10.1029/2020WR028091
https://doi.org/10.1029/2020WR028091
https://doi.org/10.1016/j.jhydrol.2015.11.050
https://github.com/keras-team/keras-tuner
http://jmlr.org/papers/v12/pedregosa11a.html
https://github.com/philipperemy/keras-tcn
https://doi.org/10.3389/frwa.2021.681023
https://doi.org/10.3389/frwa.2021.681023
https://doi.org/10.5281/zenodo.5068517
https://doi.org/10.5281/zenodo.5068517
https://doi.org/10.1016/j.cageo.2021.105019
https://doi.org/10.1016/j.cageo.2021.105019
https://doi.org/10.5281/zenodo.247139

A Appendix

Figures A1 and A2 showcase the observed against predictions plots for every
model in Basel and Lobith respectively. It can be seen for which values of
streamflow the models performed the best, and whether they overestimated
(below 1:1 line) or underestimated (above 1:1 line) in their predictions.

The results reinforce the idea that all models but TCNN tended to predict
unrealistically low values of streamflow. Also, the limitations of the PCR-
GLOBWB model to adapt to the different regions became clear, overesti-
mating the streamflow in Basel and failing to predict high streamflow values
in Lobith, both correctly addressed by the error-correction models. Lastly,
a general increase in prediction variability could be seen as the streamflow
values increase.

27

Figure A1: Plot of observed against predicted streamflow values for PCR-GLOBWB
(pcr_no_lag) and the five error-correction models (Table 2) in Basel. In red is the ideal
1:1 line.

28

Figure A2: Plot of observed against predicted streamflow values for PCR-GLOBWB
(pcr_no_lag) and the five error-correction models (Table 2) in Lobith. In red is the
ideal 1:1 line.

29

B Appendix

In the tables available in this section, the performance of the models, includ-
ing KGE and the unused NSE, as well as the value of the tuned parameters
(if applicable) for every run, is displayed for both Basel and Lobith separated
between the models that used lagged variables and the ones that did not.

Table B1: Results obtained from the no_lag models in Basel.

Model Parameters Description NSE KGE
PCR - Test set 1 -0.35 0.39

Test set 2 0.08 0.47
Test set 3 -0.12 0.55
Test set 4 0.11 0.60
Test set 5 0.27 0.66

MLR - Test set 1 0.49 0.75
Test set 2 0.69 0.84
Test set 3 0.55 0.78
Test set 4 0.72 0.86
Test set 5 0.72 0.82

FCN Units: 200, 175 Test set 1 0.58 0.78
Units: 200, 175 Test set 2 0.72 0.83
Units: 175, 200 Test set 3 0.60 0.81
Units: 200, 200 Test set 4 0.73 0.85
Units: 200, 175 Test set 5 0.73 0.82
(Test set 5)
Units: 200, 200 Run 1 0.74 0.84
Units: 200, 200 Run 2 0.73 0.84
Units: 200, 200 Run 3 0.73 0.84
Units: 175, 175 Run 4 0.72 0.82
Units: 200, 175 Run 5 0.74 0.85

30

Table B2: Results obtained from the lag models in Basel.

Model Parameters Description NSE KGE
PCR - Test set 1 -0.35 0.39

Test set 2 0.09 0.47
Test set 3 -0.16 0.54
Test set 4 0.11 0.60
Test set 5 0.28 0.66

MLR - Test set 1 0.72 0.86
Test set 2 0.85 0.93
Test set 3 0.73 0.87
Test set 4 0.80 0.90
Test set 5 0.79 0.78

FCN Units: 175, 200 Test set 1 0.55 0.74
Units: 200, 100 Test set 2 0.77 0.84
Units: 175, 200 Test set 3 0.66 0.83
Units: 200, 200 Test set 4 0.67 0.83
Units: 175, 150 Test set 5 0.72 0.80
Test set: 5
Units: 125, 200 Run 1 0.73 0.82
Units: 150, 200 Run 2 0.75 0.84
Units: 200, 50 Run 3 0.72 0.81
Units: 125, 200 Run 4 0.76 0.83
Units: 175, 125 Run 5 0.70 0.79

TCNN Units: 175 Test set 1 0.59 0.77
Units: 200 Test set 2 0.78 0.88
Units: 175 Test set 3 0.67 0.84
Units: 200 Test set 4 0.73 0.85
Units: 200 Test set 5 0.74 0.87
Test set: 5
Units: 200 Run 1 0.76 0.87
Units: 200 Run 2 0.74 0.87
Units: 200 Run 3 0.76 0.87
Units: 200 Run 4 0.74 0.86
Units: 200 Run 5 0.74 0.86

31

Table B3: Results obtained from the no_lag models in Lobith.

Model Parameters Description NSE KGE
PCR - Test set 1 0.32 0.52

Test set 2 0.22 0.51
Test set 3 0.33 0.58
Test set 4 0.40 0.51
Test set 5 0.32 0.50

MLR - Test set 1 0.74 0.86
Test set 2 0.80 0.87
Test set 3 0.78 0.88
Test set 4 0.79 0.80
Test set 5 0.80 0.84

FCN Units: 175, 200 Test set 1 0.74 0.86
Units: 200, 200 Test set 2 0.84 0.91
Units: 200, 200 Test set 3 0.82 0.87
Units: 200, 150 Test set 4 0.88 0.90
Units: 200, 175 Test set 5 0.79 0.79
Test set 5
Units: 175, 200 Run 1 0.81 0.79
Units: 175, 200 Run 2 0.76 0.76
Units: 200, 200 Run 3 0.83 0.82
Units: 200, 175 Run 4 0.78 0.77
Units: 200, 175 Run 5 0.81 0.80

32

Table B4: Results obtained from the lag models in Lobith.

Model Parameters Description NSE KGE
PCR - Test set 1 0.32 0.53

Test set 2 0.22 0.52
Test set 3 0.34 0.58
Test set 4 0.40 0.51
Test set 5 0.32 0.51

MLR Test set 1 0.78 0.87
Test set 2 0.84 0.89

- Test set 3 0.74 0.85
Test set 4 0.86 0.89
Test set 5 0.84 0.89

FCN Units: 200, 200 Test set 1 0.74 0.84
Units: 200, 200 Test set 2 0.85 0.88
Units: 200, 150 Test set 3 0.82 0.86
Units: 200, 200 Test set 4 0.86 0.92
Units: 200, 175 Test set 5 0.86 0.75
Test set 5
Units: 175, 175 Run 1 0.78 0.78
Units: 200, 175 Run 2 0.79 0.79
Units: 200, 200 Run 3 0.69 0.72
Units: 200, 175 Run 4 0.78 0.78
Units: 200, 175 Run 5 0.74 0.76

TCNN Units: 200 Test set 1 0.82 0.90
Units: 175 Test set 2 0.88 0.85
Units: 200 Test set 3 0.81 0.84
Units: 200 Test set 4 0.86 0.91
Units: 200 Test set 5 0.79 0.75
Test set 5
Units: 200 Run 1 0.82 0.78
Units: 200 Run 2 0.82 0.79
Units: 200 Run 3 0.82 0.78
Units: 200 Run 4 0.82 0.79
Units: 200 Run 5 0.82 0.77

33

	Abstract
	Introduction
	Data
	Methods
	PCR-GLOBWB
	Error-correction
	MLR
	FCNN
	TCNN

	Model setup and evaluation

	Results
	Model variability
	Performance consistency

	Conclusion and Discussion
	Appendix
	Appendix

