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Abstract

We discuss the theory of isogeny graphs; we mainly consider supersingular
isogeny graphs, where the vertices of the graphs are given by j-invariants of
supersingular elliptic curves over some finite field and the edges denote the ℓ-
degree isogenies between the elliptic curves that have those j-invariants. We
look at some cryptographic protocols, both key exchange protocols and a Σ-
protocol, that use supersingular isogeny graphs. Finally, we introduce ori-
entations, which are injective ring homomorphisms that embed quadratic or-
ders into the endomorphism algebras of (supersingular) elliptic curves. We
consider the key exchange protocol OSIDH, which uses orientations and we
construct a 3-move protocol that uses orientations and could potentially be
a Σ-protocol.
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1 Introduction

In this thesis, we will look at supersingular isogeny graphs, orientations and
their applications in cryptography. Supersingular isogeny graphs gained a
lot of interest from mathematicians and cryptographers lately, mainly due to
some characteristics that are promising for use in cryptographic protocols. For
example [1], [2] and [3] study isogeny-based cryptography and even introduce
isogeny-based cryptographic protocols. Over the past years, the arrival of a
quantum computer has become more and more realistic [4] and with that come
some problems with current standard cryptographic protocols. In particular, some
of these protocols will or might be broken, because algorithms that attack the
security of those protocols, but run too slowly on current computers, might run in
e.g. polynomial time on quantum computers. One example of such an algorithm
is Schor’s algorithm, which can factor integers. This was enough reason for the
National Institute of Standards and Technology to start a competition in 2016
to find protocols that will be resistant against quantum attacks, so that they can
be used as new standardised protocols. One of the submissions for a quantum
resistant key exchange protocol is SIKE, which is based on Supersingular Isogeny
Diffie-Hellman (SIDH), which was introduced in 2011 in [3]. As the name
suggests, SIDH uses supersingular isogeny graphs.

Supersingular isogeny graphs are graphs whose vertices are j-invariants of
supersingular elliptic curves over a finite field and whose edges are isogenies of
prime degree ℓ. As we will see, there are some good reasons to believe that these
graphs can form a good basis for post-quantum cryptography. The goal of this
thesis is to explore and understand the theory of supersingular isogeny graphs and
some of their applications in cryptography.

In Chapter 2 we will start by looking at the theory of elliptic curves and isogenies.
After that, we discuss some basic graph theory in Chapter 3 and look at key
exchange protocols in Chapter 4, we will mainly consider key exchange protocols
that resemble the standard Diffie-Hellman protocol. Then we introduce isogeny
graphs and we discuss and prove some of the most important properties of
supersingular isogeny graphs in Chapter 5, so we can see why supersingular
isogeny graphs can be useful primitives. In Chapter 6 we will also discuss some
cryptographic protocols based on isogeny graphs; the Rostovtsev-Stolbunov
protocol, SIDH and SQISign. The first one uses ordinary isogeny graphs and the
others use supersingular isogeny graphs.

Page 4



Supersingular Isogeny Graphs Anne Wouda (6658210)

Finally, we will look at the theory of orientations in Chapter 7, which are em-
beddings into the endomorphism algebras of (supersingular) elliptic curves. We
will see a key exchange protocol called OSIDH, which stands for Oriented Super-
singular Isogeny Diffie-Hellman, which uses orientations. We will also introduce
a 3-move protocol that uses orientations; this protocol is potentially a Σ-protocol.
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2 Elliptic curves

Before we introduce (supersingular) isogeny graphs, we will discuss some basics.
In this section we will give a short overview of the theory of elliptic curves and
isogenies.

2.1 Elliptic curves

Definition 2.1. An elliptic curve E over a field k with charpkq , 2 is a nonsingular
curve given by a Weierstrass equation of the form

E : y2 “ x3 ` αx2 ` βx ` γ, with α, β, γ P k.

If charpkq , 2, 3, E can be given by an equation of the form

E : y2 “ x3 ` ax ` b, with a, b P k.

When considering E in projective coordinates there is an extra point compared to
when we consider E in affine coordinates. This is the point r0, 1, 0s, we denote it
by O. This point is called the point at infinity.

In more general terms we may say that an elliptic curve is a smooth projective
curve of genus one. One of the reasons elliptic curves are so useful is because one
can define a group law on the points of an elliptic curve over k, where O is the
unit element. This group law is not quite obvious from the equation for the elliptic
curve and its construction is completely geometric. In this section we will only see
the equations for adding points, but [5, p. 51] explains the construction of the group
law in more detail. The explicit formulas for the group law for addition of points
on the curve, are as follows; let P1 “ px1, y1q and P2 “ px2, y2q with x1 , x2, be
points on the elliptic curve E, given by the equation E : y2 “ x3 ` αx2 ` βx ` γ,
denote P1 ` P2 “ px3,´y3q. The coordinates x3 and y3 are given by

x3 “

ˆ

y2 ´ y1

x2 ´ x1

˙2

´ α ´ x1 ´ x2 and y3 “
y2 ´ y1

x2 ´ x1
x3 ` ν, (1)

here ν is given by

ν “ y1 ´
y2 ´ y1

x2 ´ x1
x1 “ y2 ´

y2 ´ y1

x2 ´ x1
x2.

Now consider the case where x1 “ x2 but y1 , y2. In this case P1 and P2 are each
other’s (additive) inverse, so adding them together gives the unit element, which is
point at infinity; P1 ` P2 “ O. We can also construct an explicit formula for the
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case where we want to add a point P “ px, yq to itself. This formula, which gives
the x-coordinate of 2P “ px1, y1q is called the duplication formula:

x1 “
x4 ´ 2βx2 ´ 8γx ` β2 ´ 4αγ

4x3 ` 4αx2 ` 4βx ` 4γ
. (2)

Consider an elliptic curve over a field k. In this thesis, we will generally assume
that the field k does not have characteristic 2 or 3. This means that E can be given
by an equation of the form

E : y2 “ x3 ` ax ` b, with a, b P k.

We define the following quantities.

Definition 2.2. Let E{k be an elliptic curve over a field with charpkq , 2, 3.
The discriminant of the elliptic curve E is denoted by ∆pEq and it equals

∆pEq “ ´16p4a3 ` 27b2q.

The j-invariant of the elliptic curve E is denoted by jpEq and it equals

jpEq “ 1728
4a3

4a3 ` 27b2 “ 1728
4a3

´∆pEq{16
.

As mentioned before, elliptic curves are nonsingular, which means that they do
not have any nodes or cusps. For elliptic curves this is equivalent to saying
that ∆pEq , 0, this is proven in [5, Proposition III.1.4 (a)]. Also, the j-invariant of
two curves E and E1 can tell us whether the curves “look alike” in a certain sense.
To make this more precise, we need the concept of isomorphisms of elliptic curves,
which will be introduced in the next section.

2.2 Isogenies

Another important concept for (supersingular) isogeny graphs are isogenies. In this
section we will define isogenies and list some of their most important properties.

Definition 2.3. Let E1, E2 be elliptic curves over a field k given by

E1 : y2 “ x3 ` ax ` b and E2 : y2 “ x3 ` a1x ` b1.

A morphism ϕ : E1 Ñ E2 is a mapping ϕpx, yq “ pϕxpx, yq, ϕypx, yqq where ϕx

and ϕy are functions on E1 such that ϕ2
y “ ϕ3

x ` a1ϕx ` b1.
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Definition 2.4. Given two elliptic curves E1 and E2 over a field k, we say that E1
and E2 are isomorphic if there exist morphisms ϕ : E1 Ñ E2 and ψ : E2 Ñ E1
such that ψ ˝ ϕ and ϕ ˝ ψ are the identity maps on E1 and E2, respectively. The
maps ϕ and ψ are called isomorphisms.

Theorem 2.5. Let E1 and E2 be elliptic curves over a field k. The curves E1 and E2
are isomorphic over the algebraic closure k of k, if and only if jpE1q “ jpE2q.

Proof. For the proof we refer to [5, p. 45]. □

Definition 2.6. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism

ϕ : E1 Ñ E2 where ϕpO1q “ O2.

All isogenies satisfy ϕpE1q “ tO2u or ϕpE1q “ E2. In other words, all isogenies
are either constant or surjective (more generally, this holds for all morphisms
between elliptic curves). We say that two curves E1 and E2 are isogenous if there
exists a non-constant isogeny between them. Being isogenous is an equivalence
relation, so in particular, when there is an isogeny from E1 to E2, we know that
there is also an isogeny from E2 to E1. We will discuss this in more detail at the
end of this section.

Two elliptic curves given by E1 : f1px, yq :“ y2 ´ px3 ` ax2 ` bx ` cq “ 0
and E2 : f2px, yq :“ y2 ´ px3 ` a1x2 ` b1x ` c1q “ 0 over a field k, have function
fields kpE1q respectively kpE2q that equal the field of fractions of the affine coordi-
nate rings krx, ys{p f1px, yqq and krx, ys{p f2px, yqq, respectively. Given an isogeny ϕ
between elliptic curves, i.e., ϕ : E1 Ñ E2, we define the map ϕ˚ as follows:

ϕ˚ : kpE2q Ñ kpE1q, ϕ˚ f “ f ˝ ϕ.

Theorem 2.7. Let E1{k and E2{k be elliptic curves and let ϕ : E1 Ñ E2 be a
non-constant isogeny.

(i) The map ϕ˚ induces an injection of function fields kpE2q in kpE1q, fixing k.

(ii) Let ϕ be non-constant. Then kpE1q is a finite extension of ϕ˚pkpE2qq.

Proof. For the proof we refer to [6, Theorem II.6.8]. □

We say an isogeny ϕ is separable, when the extension kpE1q{ϕ˚pkpE2qq is sep-
arable. Similarly we say that ϕ is (purely) inseparable when the extension
kpE1q{ϕ˚pkpE2qq is (purely) inseparable.
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Definition 2.8. Let ϕ : E1 Ñ E2 be a morphism of elliptic curves over k. If ϕ is
constant, we define the degree of ϕ as degpϕq “ 0. Otherwise we define the degree
of ϕ as

degpϕq “ rkpE1q : ϕ˚pkpE2qqs.

We call the separable and inseparable degrees of the extension degspϕq and
degipϕq, respectively.

By Theorem 2.7(ii), we know that the degree is finite. The degree is multiplicative,
so for maps ϕ and ψ, we have that degpϕ˝ψq “ degpϕq¨degpψq. Also, the degree as
a map from HompE1, E2q to Z, is a positive definite quadratic form, this is proven
in [5, Corollary III.6.3].

Theorem 2.9. Let E1 and E2 be elliptic curves over k and let ϕ : E1 Ñ E2 be an
isogeny. Then

ϕpP ` Qq “ ϕpPq ` ϕpQq,

for all points P,Q P E1pkq.

Proof. The proof is given in [5, Theorem III.4.8]. □

Theorem 2.10. Let ϕ : E1 Ñ E2 be a non-zero isogeny.

(i) The group kerpϕq :“ ϕ´1pOq, is defined to be the kernel of ϕ and it is a finite
group.

(ii) For every Q P E2, we have #ϕ´1pQq “ degspϕq.

(iii) Suppose ϕ is separable. Then # kerpϕq “ degspϕq.

Proof. The fact that kerpϕq is a group follows from Theorem 2.9, and (iii) fol-
lows directly from (ii) with Q “ O. The rest of the proof needs the theory of
orders and divisors, which we do not want to go into here. The proof can be found
in [5, Theorem III.4.9] and [5, Theorem III.4.10]. □

Next we will see two isogenies that occur often when studying elliptic curves: the
multiplication-by-m-map and the Frobenius map.

Definition 2.11. An endomorphism is an isogeny from an elliptic curve to itself.

Definition 2.12. Let E be an elliptic curve over k. For each m P Z, we define the
multiplication-by-m map as follows

rms : E Ñ E, rmsP ÞÑ P ` P ` ¨ ¨ ¨ ` P
loooooooomoooooooon

m times

.
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As mentioned, the multiplication-by-m map is an example of an endomorphism.
Another endomorphism is given in the next definition.

Definition 2.13. Let E be an (elliptic) curve in P2 given by

E : Y2Z “ X3 ` aXZ2 ` bZ3.

The elliptic curve Epqq is given by

Epqq : Y2Z “ X3 ` aqXZ2 ` bqZ3.

Definition 2.14. Let E{k be an elliptic curve and let charpkq “ p ą 0. The p-
power Frobenius endomorphism π is defined as

π : E Ñ Eppq, rX,Y,Zs ÞÑ rXp,Y p,Zps.

The Frobenius endomorphism has degree equal to p and is purely inseparable.

Theorem 2.15. Let ψ be an isogeny over a field k of characteristic p ą 0. Then

ψ “ ψsep ˝ πn,

where ψsep is some separable isogeny and π is the p-power Frobenius endomor-
phism.

Proof. For the proof we refer to [5, Corollary II.2.12]. □

Theorem 2.16. Let ϕ : E1 Ñ E2 be a non-constant isogeny of degree m. Then
there exists a unique isogeny

pϕ : E2 Ñ E1 satisfying pϕ ˝ ϕ “ rms.

This isogeny is called the dual isogeny.

Proof. For the proof we refer to Theorem 6.1(a) in [5, Theorem III.6.1(a)]. □

The next theorem illustrates some useful properties of the dual isogeny.

Theorem 2.17. Let ϕ : E1 Ñ E2 be an isogeny.

(i) Let degpϕq “ m. Then ϕ̂ ˝ ϕ “ rms on E1 and ϕ ˝ pϕ “ rms on E2.

(ii) Let ψ : E2 Ñ E3 be another isogeny. Then zψ ˝ ϕ “ pϕ ˝ pψ.

(iii) Let λ : E1 Ñ E2 be another isogeny. Then zϕ ` λ “ pϕ ` pλ.
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(iv) For all m P Z, xrms “ rms and degrms “ m2.

(v) We have that degpϕq “ degppϕq.

(vi) We have that ˆ̂ϕ “ ϕ.

Proof. For the proof we refer to [5, Theorem 6.2]. □

The multiplication-by-m map is a non-constant map. This can be shown by consid-
ering the duplication formula and the formula for multiplying a point by three. The
multiplication-by-m map is an endomorphism. The kernel of the multiplication-
by-m map is denoted by Erms and its points correspond to the m-torsion points
on Epkq.

Proposition 2.18. Let E be an elliptic curve over a field k and let m , 0 be an
integer. The kernel of the multiplication-by-m map, denoted Erms, is of the form

(i) Erms � pZ{mZq2, if charpkq does not divide m.

(ii) Erpis �

#

Z{piZ

tOu
, if charpkq “ p.

Proof. (i) If rms is separable then #kerprmsq “ degprmsq “ m2. We know that
if m , 0 in k, then rms is separable by [5, Corollary 5.4]. In particular, for
all divisors d of m, it holds that d , 0 in k. So for d the same thing holds,
namely #Erds “ degprdsq “ d2. We can factor m as m “

śt
i“1 pei

i , where
the pi are primes. Using this factorisation and the fact that Erms is an abelian
group, we can write

Erms � G1 ˆ ¨ ¨ ¨ ˆ Gt,

where the Gi have order p2ei
i , since #Erms “ m2. For any divisor pe of m,

we know by the above that #Erpes “ p2e, hence there are p2e elements of
order pe. Therefore the Gi have to be of the form pZ{pei

i Zq2. This shows that

Erms � pZ{pe1
1 Zq2 ˆ ¨ ¨ ¨ ˆ pZ{pet

t Zq2 � pZ{pe1
1 Zˆ ¨ ¨ ¨ ˆ Z{pet

t Zq2.

By the Chinese remainder theorem we conclude that

Erms � pZ{mZq2.
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(ii) The following holds:

#Erpis “ degsprpisq

“ degsppπ ˝ pπqiq

“ degspπ ˝ pπqi

“ degsppπqi.

In general, an isogeny can be separable, inseparable or purely inseparable.
In this case, we only have to distinguish two cases, since the (total) degree
of the isogeny is a prime p:

p “ degppπq “ degippπq ¨ degsppπq.

This shows that either the inseparable or the separable degree of pπ equals 1,
so that pπ is either separable or purely inseparable. So we distinguish two
cases; the case where π̂ is purely inseparable and the case where pπ is sepa-
rable. Firstly, if pπ is purely inseparable, that means that degppπq “ degippπq.
Therefore degsppπq “ 1, so Erpis “ tOu.
Secondly, if pπ is separable, then degsppπq “ p. Therefore #Erpis “ pi, which
holds for all i. So for all i, there are pi elements that have order pi. This
implies that Erpis � Z{piZ.

□

The next theorem shows that for all finite subgroups G of Epkq, there exists a
unique separable isogeny from E to some curve E1 that has kernel G. It also gives
explicit formulas with which the isogeny and the curve E1 can be computed. These
formulas are very useful when constructing (supersingular) isogeny graphs, as we
will see in Section 5.

Theorem 2.19 (Vélu’s formulas). Let E be an elliptic curve given
by E : y2 “ x3 ` ax ` b. Suppose that G Ă Epkq is a finite sub-
group. Then there exists a unique separable isogeny ϕ : E Ñ E{G with kernel G.
It is given by

ϕpPq “

¨

˝xpPq `
ÿ

QPGztOu

xpP ` Qq ´ xpQq, ypPq `
ÿ

QPGztOu

ypP ` Qq ´ ypQq

˛

‚.

The curve E{G is given by E{G : y2 “ x3 ` a1x ` b1, where

a1 “ a ´ 5
ÿ

QPGztOu

p3xpQq2 ` aq

b1 “ b ´ 7
ÿ

QPGztOu

p5xpQq3 ` 3axpQq ` bq.
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Proof. Vélu showed this in [7]. □

2.3 Endomorphism rings

The upcoming part will contain relevant information about the endomorphism
rings of elliptic curves, concluding with a theorem (Theorem 2.27) that shows the
structure of the endomorphism ring of an elliptic curve. We will start by listing
some facts about endomorphism rings.

The set of isogenies defined over k between two elliptic curves E1{k
and E2{k is denoted by HompE1, E2q. Defining addition in this set
as pϕ ` ψqpPq :“ ϕpPq ` ψpPq gives it a group structure.

Definition 2.20. The endomorphism ring of an elliptic curve E{k is defined as

EndpEq :“ HompE, Eq.

The endomorphism ring consists of all isogenies going from an elliptic curve E to
itself. It has the structure of a ring, where we define multiplication of elements as
composition of maps, i.e. ϕ ¨ ψ “ ϕ ˝ ψ.

Definition 2.21. Let k be a field and let A be a vector space over k, equipped with
a bilinear map A ˆ A Ñ A, we the map by ¨ here. Then A is an algebra over k if for
all x, y, z P A and for all a, b P k the following hold:

• px ` yq ¨ z “ x ¨ z ` y ¨ z

• z ¨ px ` yq “ z ¨ x ` z ¨ y

• paxq ¨ pbyq “ pabqpx ¨ yq.

Definition 2.22. Let K be a Q-algebra that is finitely generated over Q. An or-
der O of K is a subring of K that is finitely generated as a Z-module and satis-
fies O b Q “ K .

Definition 2.23. A quaternion algebra over Q is an algebra of the form

Q` Qi ` Q j ` Qk,

where the multiplication satisfies

i2, j2 P Q, i2 ă 0, j2 ă 0, i j “ ´ ji “ k.
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It is important to note that a quaternion algebra is not commutative.

Given an elliptic curve E over a field k with characteristic p ě 0, the multiplication-
by-rms map is non-constant whenever m , 0 (from [5, Theorem III.4.2.(a)]). This
implies the following theorem.

Theorem 2.24. Let E1, E2 be elliptic curves over k. Then HompE1, E2q is a
torsion-free Z-module.

Proof. We have seen that HompE1, E2q has a group structure. Moreover, the
multiplication-by-rms map can be used to give scalar multiplication

Zˆ HompE1, E2q Ñ HompE1, E2q

pm, ϕq ÞÑ rms ˝ ϕ.

Also, whenever rms ˝ ϕ “ r0s for non-trivial m, degprmsq ¨ degpϕq “ 0. Since m is
non-trivial, degprmsq ě 1, hence ϕ must be the zero map. Therefore HompE1, E2q

is torsion-free. □

Now consider HompE, Eq “: EndpEq, for some elliptic curve E{k. As mentioned,
using composition as the multiplication in EndpEq, we give EndpEq a ring struc-
ture.

Theorem 2.25. Let E be an elliptic curve over k. Then EndpEq is a domain.

Proof. By the previous theorem, HompE, Eq is torsion-free, hence EndpEq

has characteristic zero. Moreover, EndpEq is an integral domain, since
for ϕ, ψ P EndpEq,

ϕ ˝ ψ “ r0s

implies that degpϕq ¨ degpψq “ 0, hence either ϕ or ψ has to be the zero map. □

For an endomorphism ring of an elliptic curve EndpEq, we define the (reduced)
trace and (reduced) norm maps as follows

T pϕq :“ ϕ ` ϕ̂ and Npϕq :“ ϕϕ̂.

Note that the norm map defined as above coincides with multiplication by the
degree of ϕ, i.e. Npϕq “ ϕϕ̂ “ ϕ ˝ ϕ̂ “ rdegpϕqs. As mentioned before, the degree
map is a positive definite quadratic form.

We will now define the concept of ramification. We denote the p-adic numbers
by Qp.
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Definition 2.26. Let K be a quaternion algebra over Q and let p be a prime. We
say K is split at p or unramified at p if Kp :“ Qp b K � M2ˆ2pQpq. We say
that K is non-split at p or ramified at p if Kp is not isomorphic to M2ˆ2pQpq.
Similarly we say that K is split at infinity if K8 :“ R b K � M2ˆ2pRq. We say
that K is ramified at infinity if K8 is not isomorphic to M2ˆ2pRq.

Theorem 2.27 (Deuring). Let E be an elliptic curve over a field k of characteris-
tic p. Then the endomorphism ring EndpEq is isomorphic to one of the following:

(i) Z, this only happens if p “ 0;

(ii) An order O in a quadratic imaginary field, in this case we say that E has
complex multiplication by O;

(iii) An order in a quaternion algebra over Q ramified at p and the point at infin-
ity, this only happens when p ą 0. In this case we say that E is supersingular.

Proof. For the proof we refer to [5, Corollary III.9.4]. □

Definition 2.28. Let E be an elliptic curve over a field k of characteristic p. If the
endomorphism ring of E is isomorphic to an order O in an imaginary quadratic
field, we say that E is ordinary and that E has complex multiplication by O.
If the endomorphism ring of E is isomorphic to an order in a quaternion algebra
over Q ramified at p and 8, we say that E is supersingular.

2.4 Supersingular elliptic curves

In this section we will consider supersingular elliptic curves in more detail.

Theorem 2.29. Let ϕ : E Ñ E1 be a non-constant isogeny. The elliptic curve E is
supersingular if and only if E1 is supersingular.

Proof. This follows from [8, Exercise 42.1].
□

Theorem 2.30. Let E{k be an elliptic curve and let charpkq “ p ą 0. Recall that
we denote the pr-th power Frobenius map as πr. The following are equivalent:

(i) E is supersingular.

(ii) pπr is purely inseparable for r “ 1, or equivalently, for all r ě 1.

(iii) rps is purely inseparable and jpEq P Fp2 .

(iv) Erprs “ tOu for r “ 1, or equivalently, for all r ě 1.
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Proof.

(ii) ô (iv) : By Proposition 2.11 in [5, p. 25], the pr-th Frobenius en-
domorphism is purely inseparable for all r, i.e., degspπrq “ 1.
Also, degprprsq “ degpπrq ¨ degppπrq. When taking the separable degrees,
we see that degsprprsq “ degspπrq ¨ degsppπrq “ degsppπrq. This gives

degsppπrq “ degsprprsq “ #kerprprsq “ #Erprs.

Hence, when pϕr is purely inseparable, #Erprs “ 1 so Erprs “ tOu.
When Erprs “ tOu, the above shows that degsppπrq “ 1. This proves
the direction from (ii) to (iv) and vice versa.

(i) ñ (ii) : The proof of this implication will use some knowledge of Dieudonné mod-
ules, we do not want to introduce them in this paper, but more information
can be found in [5, p. 87]. We will prove the contrapositive statement, so we
start by assuming that pπr is separable for all r ě 1. By Proposition 2.18, this
shows that Erprs � Z{prZ for all r. We consider the map

Tp : EndpEq Ñ EndpTppEqq,

which sends ψ to ψp. Suppose that ψp “ 0, then ψpErprsq “ 0 for all r ě 1.
In particular this implies that #kerpψq ě pr for all r ě 1. However, all non-
constant isogenies have finite kernel, therefore ψ “ 0. This shows that Tp

is injective. By [5, p. 88], we have that TppEq � Zp, using the assump-
tion that pπr is separable for all r ě 1. Therefore also EndpTppEqq � Zp,
which is commutative. Since Tp is injective, the above implies that EndpEq

is commutative as well. This proves the statement.

(ii) ñ (iii) : Again by Proposition 2.11 in [5, p. 25], we know that π is purely insepara-
ble. We assume in (ii) that pπ is also purely inseparable. Since rps “ π ˝ pπ

and the degree is multiplicative, this implies that rps is also purely insepara-
ble.

Since rps is purely inseparable, we know that rps has separable degree equal
to 1. We know that rps can be written as the composition of a separable
isogeny and a power of the Frobenius endomorphism by Theorem 2.15.
Hence

rps “ ψ ˝ π,

where ψ is some separable isogeny and π is the Frobenius endomorphism.
Since rps is purely inseparable, ψ has degree one and thus it is an isomor-
phism. The isogeny ψ is a map from Epp2q to E, so jpEq “ jpEp2

q “ jpEqp2
,
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where the last equality holds since charpkq “ p. This means that jpEq is
fixed by the field automorphism σ : x ÞÑ xp2

. In other words, it belongs to
a subfield in which xp2

´ x “ 0, so either the field is Fp or it is Fp2 . This
shows that jpEq is in Fp2 (and sometimes even in Fp).

(iii) ñ (i) : Let E, E1 be elliptic curves over k and let E be a curve on which rps

is purely inseparable and jpEq P Fp2 . Suppose that ψ : E Ñ E1 is an
isogeny. We write rpsE for the multiplication-by-p map on E and rpsE1 for
the multiplication-by-p map on E1. We know that rpsE1 ˝ ψ “ ψ ˝ rpsE .
Since rpsE on E is purely inseparable, this shows that rpsE1 on E1 is purely
inseparable as well. We saw in the proof of the previous implication that
this implies jpE1q P Fp2 . Therefore, there can only be finitely many elliptic
curves that are isogenous to E.

Suppose for contradiction that E is not supersingular. Then EndpEq b Q

is isomorphic to Q or an imaginary quadratic extension of Q, i.e. Qp
?

dq

where d ă 0 (this follows from Theorem 2.27). We claim that in both cases,
there are infinitely many primes ℓ such that there is no endomorphism of
degree ℓ. If EndpEq b Q � Q then EndpEq � Z and the isomorphism is
given by m ÞÑ rms. This implies that every endomorphism in EndpEq has
degree equal to a square, meaning that there are no isomorphisms of prime
degree. Now we suppose that EndpEq b Q � Qp

?
dq for some d ă 0.

Let ϕ P EndpEq and note that ϕ is a root of the polynomial

f pxq :“ x2 ´ trpϕqx ` degpϕq.

Then the discriminant D f of the polynomial above has to be the square of an
element in EndpEq, since ϕ is a root of f . Suppose that ϕ has degree ℓ, then
we have D f “ trpϕq2 ´ 4ℓ “ u2d, for some u P Q. This is true since EndpEq

is isomorphic to an order O in Qp
?

dq, which in particular implies that O is
a Z-lattice in Qp

?
dq and that it spans Qp

?
dq over Q. Therefore elements

in O are of the form α ` β
?

d.

The above implies that d is a square modulo ℓ. By quadratic reci-
procity, assuming d ă 0 and d and ℓ coprime, we can consider the cases
where ℓ “ ˘ 1 mod 4 and where ℓ is a square mod d or not a square
mod d. These cases fully determine whether d is a square modulo ℓ. Hence
whether d is a square modulo ℓ or not depends on the residue class of ℓ
modulo 4d. There is at least one residue class such that d is not a square
modulo ℓ. Dirichlet’s theorem on primes in arithmetic progressions then
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implies that there are infinitely many primes for which d is not a square
modulo ℓ.

Therefore we can take ℓ1, ℓ2, . . . to be an infinite sequence of primes, not
equal to p, such that there are no endomorphisms in EndpEq of degree ℓi.
By Theorem 2.19, we can construct a separable isogeny ϕi that has ker-
nel Gi Ă Erℓis � pZ{ℓiZq2 with ℓi elements, so degpϕiq “ ℓi. We
denote the target curve by Ei, so ϕ : E Ñ Ei. By Theorem 2.29 we know
that the Ei are also supersingular and by the above there can only be finitely
many elliptic curves isogenous to E, hence there must be some m and n such
that Em � En. Let α be the isomorphism between Em and En. Now consider
the endomorphism ψ :“ pϕn˝α˝ϕm, which has degree ℓmℓn. Note that EndpEq

cannot be isomorphic to Z since we assume that the characteristic is not 0.
Therefore we must have that EndpEq b Q � Qp

?
dq, the isogeny ψ is a root

of the polynomial

gpxq :“ x2 ´ trpψqx ` degpψq.

In particular this implies that the discriminant Dg “ trpψq2´4ℓ1ℓ2 is a square
in O. By the same argument as before this implies that d has to be a square
modulo ℓ1 and ℓ2, which is a contradiction.

□

In Theorem 2.30, we saw some equivalent characterizations for supersingular el-
liptic curves. In Definition 2.28 we defined a supersingular elliptic curve to be an
elliptic curve whose endomorphism ring is isomorphic to an order in a quaternion
algebra ramified only at p and at infinity. The next theorem, initially proved by
Deuring, gives a slightly stronger result.

Theorem 2.31. Let E be a supersingular elliptic curve defined over a field k of
characteristic p ą 0. Then EndpEq is isomorphic to a maximal order in a quater-
nion algebra ramified only at p and at infinity.

Proof. For the proof we refer to [9, Theorem 4.2]. □

With this theorem, we can change part (iii) of Theorem 2.27 by replacing “an
order” with “a maximal order”.
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3 Graphs

3.1 Graph theory

In this section we will briefly go over some basic graph theory and highlight some
important results.

Definition 3.1. An undirected graph is a pair pV, Eq, where V is a set whose el-
ements are called vertices, and where E Ă V ˆ V is a collection of unordered
pairs pv,wq of elements v,w P V , called the edges.

We can also consider directed graphs. These also consist of a vertex set V and an
edge set E, however the edge set consists of ordered pairs of elements in V ˆ V .
We will be considering undirected graphs in the rest of this section.

Definition 3.2. Two vertices v,w P V are said to be connected by an edge
if pv,wq P E. The neighbours of a vertex v P V are the vertices of V connected
to v by an edge.

Definition 3.3. A path between two vertices v,w P V is a sequence of ver-
tices v Ñ v1 Ñ ¨ ¨ ¨ Ñ vn Ñ w where each vertex vi is connected to
the next vertex vi`1.
We define the length of a path to be the number of edges in the path. The distance
between two vertices, denoted by dpv,wq, is defined as the length of the shortest
path between the vertices. If there is no such path, the vertices are said to be at
infinite distance.

Definition 3.4. A graph is connected if any two vertices in V have a path connect-
ing them. If this is not the case, the graph is called disconnected.

Definition 3.5. The diameter of a graph, denoted δpGq, is defined to be the largest
of all distances between the vertices in V , i.e.

δpGq :“ max
v,wPV

tdpv,wqu

Definition 3.6. The degree of a vertex is the number of distinct edges pointing to
(or from) the vertex. A graph where every edge has the same degree k is called k-
regular.

Definition 3.7. The adjacency matrix of a graph G “ pV, Eq with V “ tv1, . . . , vnu,
is the n ˆ n-matrix where the pi, jq-th entry equals the number of edges between
the vertices vi and v j.
An undirected graph therefore has a symmetric adjacency matrix. Symmetric ma-
trices have n real eigenvalues λ1 ě ¨ ¨ ¨ ě λn.

Page 19



Supersingular Isogeny Graphs Anne Wouda (6658210)

Example 3.8. We give an example of a graph and its characteristics.

v1 v2 v3

v4

v6

v5

The vertices of the graph are the elements vi for i P t1, . . . , 6u. The edges are
the black lines between the vertices. We can see for example that v4 is connected
to v2, but v4 is not connected to v5 or v3. However, there is a path from v4 to v3,
e.g. the path given by v4 Ñ v2 Ñ v3, but there is no path from v4 to v5. Note
that the distance from v4 to v3 equals 2, i.e. dpv4, v3q “ 2. This is true since v4
and v3 are not connected to each other, so their distance cannot equal 1, but the
path v4 Ñ v2 Ñ v3 has length 2. The distance between v4 and v5 is infinite,
since there is no path between the vertices. The graph is disconnected, because
there is no path from v5 to another vertex. This also implies that the diameter of
the graph is infinite. If we were to delete v5 from the graph, the diameter of the
graph would be 3, since the maximum of the distances between any pair of vertices
in the graph would equal 3. Note that the vertex v5 has degree 1 and that the
vertex v2 has degree 4. The graph is not k-regular, since the degree of the vertices
is not the same for all vertices. The adjacency matrix of the graph looks as follows:

»

—

—

—

—

—

—

–

0 1 0 1 0 1
1 0 2 1 0 0
0 2 0 0 0 0
1 1 0 0 0 1
0 0 0 0 1 0
1 0 0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proposition 3.9. If G “ pV, Eq is a k-regular undirected graph, then its largest
and smallest eigenvalues satisfy

k “ λ1 ě λ2 ě ¨ ¨ ¨ λn ě ´k.

Proof. We can view the adjacency matrix A as a self-adjoint operator, since the
matrix is symmetric and real. In particular this means that A does the following

A : L2pVq Ñ L2pVq

f ÞÑ A f ,
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where
A f pvq “

ÿ

wPV
tv,wuPE

f pwq.

We define 1 to be the constant function sending every vertex to 1. It follows
that A ¨ 1 “ k ¨ 1, since A ¨ 1 maps any v P V to the sum of 1 over its neighbours,
which equals k since the graph we are considering is k-regular. Therefore k is an
eigenvalue of A with eigenvector 1.
Next we look at the operator norm of A. It equals the supremum of |xA f , gy|,
for f , g with norm less than or equal 1, i.e. } f }2 ď 1 and }g}2 ď 1. Therefore for
some f , g P L2pVq with norm 1, we have

}A}op ď |xA f , gy|

“ |
ÿ

vPV

ÿ

wPV
tv,wuPE

f pwqgpvq|

ď
1
2

ÿ

v,wPV
tv,wuPE

| f pwq|2 ` |gpvq|2

ď
1
2

¨ k ¨ } f }2 `
1
2

¨ k ¨ }g}2 “ k.

Therefore the operator norm is bounded by k. In particular, we can calculate the
operator norm by taking the supremum over }Ax}

}x}
for non-zero x. Therefore for any

eigenvalue λ of A, we have

|λ| “
|λ|}x}

}x}
“

}Ax}

}x}
ď k.

This shows that every eigenvalue has absolute value bounded by k.
□

3.2 Expander graphs and Ramanujan graphs

Definition 3.10. Let ε ą 0 and k ě 1. Let G be a finite k-regular graph consisting
of n vertices. G is called a one-sided ε-expander if

λ2 ď p1 ´ εqk;

and it is called a two-sided ε-expander if it also satisfies

λn ě ´p1 ´ εqk.
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A sequence of k-regular graphs Gi “ pVi, Eiq with #Vi Ñ 8 is said to be a one-
sided (resp. two-sided) expander family if there exists an ε ą 0 such that Gi is a
one-sided (resp. two-sided) ε-expander for all sufficiently large i.

Definition 3.11. Let G “ pV, Eq be a graph. Let F Ă V be a subset of the set
vertices. The boundary of F, denoted by δF Ă E, is the subset of the edges of G
that go from F to VzF. The edge expansion ratio of G, denoted by hpGq, is the
quantity

hpGq “ min FĂV
#Fď#V{2

#δF
#F

.

This expansion ratio tells us that even for a small set S Ă V , we have at
least hpGq ¨ #S edges going from S to its complement. Suppose that we are
considering random walks on the graph, i.e. we know a starting position but we do
not know where the walk ends. Then the higher the edge expansion ratio, the more
difficult it is to determine where a random walk ended, since at a given vertex
there are more edges that can be chosen to walk over. Therefore, if we want to
let the random walks look as “random as possible” we like to have a large edge
expansion ratio.

Theorem 3.12 (Alon, Dodziuk, Milman, Tanner). Suppose that G “ pV, Eq is
a k-regular graph, then

k ´ λ2

2
ď hpGq ď

b

2kpk ´ λ2q.

Proof. The proof is given in [10, Proposition 1.84]. □

The theorem above gives a bound for the edge expansion ratio in terms of the
largest eigenvalue of G that does not equal k, i.e. λ2. In particular, hpGq is large if
and only if λ2 is small. Therefore, if we want random walks to look as “random as
possible”, we want λ2 to be as small as possible. This motivates the introduction
of so-called Ramanujan graphs.

Definition 3.13 (Big O notation). Suppose f is a real or complex valued function
and suppose that g is a real valued function. We say f pxq “ Opgpxqq if there exist
some real number M ą 0 and a real number x0 such that | f pxq| ď Mgpxq for
all x ě x0.
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Theorem 3.14. Let k ě 1 and let pGnq be a sequence of k-regular graphs with n
vertices. We denote the eigenvalues of Gn by λn, j for j P t1, . . . , nu. Then

maxt|λn,2|, |λn,n|u ě 2
?

k ´ 1 ´ Op1q,

as n Ñ 8.

Proof. This is proven in [11, Theorem 5.3] □

Definition 3.15. A graph such that |λi| ď 2
?

k ´ 1 for every λi except for λ1, is
called a Ramanujan graph.

This means that Ramanujan graphs are graphs for which the eigenvalues are
as small as possible. In particular this means that Ramanujan graphs are “the
best possible” expander graphs, since a small λ2 gives a large edge expansion
ratio hpGq. As mentioned before, this gives the graph nice randomness properties.
This was used for example by [1] to create a hash function using supersingular
isogeny graphs. These graphs are Ramanujan, as we will see in Section 5. This
hash function uses its input as “directions” on a supersingular isogeny graph,
i.e. it converts the input into a walk on the graph, starting at a certain vertex.
The output of the hash function is a vertex on the graph. A good hash function
needs to generate a random looking output (by definition), hence the rapid
mixing property of the isogeny graph (which is Ramanujan) makes the output
look random. Randomness is important in many aspects of cryptography; when
choosing a secret key for example, we need “sufficient” randomness, otherwise
an adversary might be able to guess the secret key with too large probability.
Hence the aforementioned fact that supersingular isogeny graphs are Ramanujan
potentially makes them very useful for cryptographic protocols.

The rapid mixing property of Ramanujan graphs is the reason for the observed
randomness. We will formalise what it means to have “rapid mixing”.

Definition 3.16. Let G be a k-regular undirected graph and denote its adjacency
matrix by A. Then the normalized adjacency matrix for G is given by

P :“
1
k

¨ A.

We label the vertices of G “ pV, Eq by vi for i P t1, . . . , nu. When we con-
sider Ppvi, v jq, we look at the i, j-th entry in the matrix P. We view this value as
the probability that, in one step, a random walk that starts at vi ends at v j.
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We are considering the case where we choose a random vertex, according to some
probability distribution p on the vertices, and then take a random walk of length 1.
Given a starting point vi, we know that the probability of the walk ending at v j

equals Ppvi, v jq. Therefore, the probability of a random walk of length 1 (when we
are not given a starting point) terminating at a vertex v j equals

ÿ

viĂV

ppviqPpvi, v jq.

Note that we can consider the distribution p to be some vector in Rn such
that ppviq ě 0 for all i and such that

ř

viPV ppviq “ 1. Then, using the fact that P
is symmetric, we have that the probability distribution after one step is described
by the vector

pT ¨ P “ P ¨ p.

Iterating this, we see that for a random walk of length r, where the starting point
is chosen according to the distribution p, the endpoint of the walk is distributed
according to

Pr ¨ p.

Let u be the uniform distribution. Viewing the distributions as vectors in Rn, we
can consider the distance between the distribution of the endpoint of a random walk
and the uniform distribution. We measure this distance using the total variation
distance.

Definition 3.17. Let p and q be distributions over the set of vertices V . We define
the total variation distance or statistical distance as

max
S ĂV

˜

ÿ

vPS

ppvq ´
ÿ

vPS

qpvq

¸

.

Distributions with disjoint support have total variation equal to 1, this is also the
largest possible value. Hence two distributions that have total variation 1 are max-
imally far from each other in the sense of this measure of distance. One can show
that the total variation distance equals 1

2 ¨ ||p ´ q||1, where || ¨ ||1 stands for the 1-
norm or “taxicab norm”. The 1-norm of a vector v of length n equals:

||v||1 “:“
n

ÿ

i“1

|vi|.

Proposition 3.18. Let p and q be distributions over the set of vertices V. The total
variation distance equals

max
S ĂV

˜

ÿ

vPS

ppvq ´
ÿ

vPS

qpvq

¸

“
1
2

||p ´ q||1.
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Proof. Recall that ||p ´ q||1 :“
ř

vPV |ppvq ´ qpvq|. Let A Ă V and consider the
set B Ă V where B :“ tv P V : ppvq ě qpvqu. We have the following

ppAq ´ qpAq ď ppA X Bq ´ qpA X Bq ď ppBq ´ qpBq,

where we use the definition of B. Also,

qpAq ´ ppAq ď qpA X Bcq ´ ppA X Bcq ď qpBcq ´ ppBcq “ ppBq ´ qpBq.

Therefore we have that

|ppAq ´ qpAq| ď ppBq ´ qpBq, (3)

for all sets A Ă V . Note that |ppAq ´ qpAq| “ |
ř

vPA ppvq ´
ř

vPA qpvq| and note
that |ppAq ´ qpAq| is maximal when A “ B or A “ Bc, by (3). Therefore

max
S ĂV

˜

ÿ

vPS

ppvq ´
ÿ

vPS

qpvq

¸

“
1
2

|ppBq ´ qpBq| `
1
2

|ppBcq ´ qpBcq|

“
1
2

pppBq ´ qpBqq `
1
2

pqpBcq ´ ppBcqq

“
1
2

ÿ

vPB

pppvq ´ qpvqq `
1
2

ÿ

wPBc

pqpwq ´ ppwqq

“
1
2

ÿ

vPB

|ppvq ´ qpvq| `
1
2

ÿ

wPBc

|ppwq ´ qpwq|

“
1
2

ÿ

vPV

|ppvq ´ qpvq| “
1
2

||p ´ q||1.

□

Theorem 3.19. Let G be a k-regular graph with n vertices and let P be its nor-
malized adjacency matrix. Then for every distribution p over the vertices and for
every r, we have that

||Prp ´ u||1 ď
?

n
ˆ

λ2

k

˙r

,

where u is the uniform distribution.

Proof. The proof is given in [12, Lemma 1]. □
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Theorem 3.20. Let G be a k-regular ε-expander graph and let P be its normalized
adjacency matrix. Then it takes O

´

log n
1´λ2

¯

steps before

||Prp ´ u||1 ă
1
n
.

We call the amount of steps necessary to reach this the mixing time of the graph.

Proof. By Theorem 3.19 and the fact that k ě λ2 we have that

||Prp ´ u||1 ď
?

n ¨ λr
2.

If we want the right-hand side to be less than 1{n we need

r ą

log
´

1
n

?
n

¯

logpλ2q
“

logpn
?

nq

log
´

1
λ2

¯ .

Note that

logp1{λ2q “

8
ÿ

i“1

p´1qi`1 p1{λ2 ´ 1qi

i
.

Hence logp1{λ2q “ O p1{λ2 ´ 1q “ Op1 ´ λ2q. Also note
that logpn

?
nq “ 3

2 logpnq, therefore logpn
?

nq “ Oplogpnqq. We con-
clude that r has to be of the order

O

ˆ

logpnq

1 ´ λ2

˙

.

□

Again we see that a small value for λ2 has an advantage for the randomness prop-
erty of the graph, since the smaller λ2 is, the faster the graph mixes. Ramanujan
graphs are defined to be expander graphs with eigenvalues as small as possible,
hence they mix as fast as is possible for a graph.
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4 Key Exchange

In secret key encryption (also private key encryption or symmetric key encryption)
two people try to communicate over a channel using the same key and without
letting anyone else, i.e. some eavesdropper, gain “too much” information on their
message or key. A natural question to ask is the following: how do the two parties
agree on a key, without leaking too much information about the key? This is where
the so called key exchange protocols come into play. In this section we will look
at some (standard) key exchange protocols. In Section 6 we will see how isogeny
graphs can be useful for key exchange protocols.

In 1976 Diffie and Hellman published a cryptographic protocol for key exchange,
called the Diffie-Hellman key exchange (although Hellman later suggested it be
called the Diffie-Hellman-Merkle key exchange, since the protocol was based on a
concept by Merkle). It is based on the assumption that given a cyclic group G, a
generator g for the group and an element x P G, it is hard to find a such that x “ ga.
This is called the discrete logarithm assumption. Diffie-Hellman key exchange is
illustrated in the figure below. Here x Ð$ S means that x is chosen uniformly at
random from a set S .

Diffie-Hellman key exchange

Public parameters : A group pZ{pZq˚, where p is prime
g P pZ{pZq˚ where g is a generator

Alice Bob

a Ð$ t1, . . . p ´ 1u b Ð$ t1, . . . p ´ 1u

A :“ ga B :“ gb

A

B

k :“ Ba k :“ Ab

Figure 1: Diffie-Hellman
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There are some necessary constraints to eliminate the possibility of ‘simple’ attacks
on this protocol, but we will not go into those here. Note that since gab “ gba

Alice and Bob indeed agree on the same key, without simply leaking the key to a
potential eavesdropper.

This protocol can easily be generalized to the case where pZ{pZq˚ is a cyclic group
of prime order in which the discrete logarithm problem is assumed to be hard. To
do this we can replace the group pZ{pZq˚ by some cyclic group G “ xgy. For
example, we can take the cyclic group to be the points on an elliptic curve over a
finite field Fp where p is prime. The protocol that generalizes the Diffie-Hellman
protocol using elliptic curves is called the Elliptic Curve Diffie-Hellman protocol,
it is illustrated in the figure below.

Elliptic Curve Diffie-Hellman

Public parameters : A finite field Fp, where p is prime
An elliptic curve E{Fp with #EpFpq prime
A generator P of EpFpq

Alice Bob

a Ð$ t1, . . . , #EpFpqu b Ð$ t1, . . . , #EpFpqu

A :“ rasP B :“ rbsP

A

B

k :“ rasB k :“ rbsA

Figure 2: ECDH

Since the multiplication-by-m map is commutative, Alice and Bob end up with the
same key. Also, the discrete logarithm problem is assumed to be hard in the group
of points of an elliptic curve. Elliptic Curve Diffie-Hellman (ECDH) is used for
example in TLS. TLS (Transport Layer Security) is a cryptographic protocol that
is widely used, e.g. for secure web browsing, but also for other applications like
e-mail, instant messaging and file transfers.
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Next we will define the concept of Schreier graphs, which are useful for key ex-
change protocols in which the secrets are random walks.

Definition 4.1 (Schreier graphs). Let G be a group acting freely on a set X, i.e.,
there is a map

G ˆ X Ñ X

pσ, xq ÞÑ σ ¨ x

such that σ¨ x “ x if and only if σ “ 1, and σ¨pτxq “ pσ¨τq¨ x, for all σ, τ P G and
for all x P X. Let S Ă G be a symmetric subset, i.e., a subset not containing 1 and
closed under inversion. The Schreier graph of pS , Xq is the graph whose vertices
are the elements of X. Two elements x, x1 P X are connected by an edge if and only
if σ ¨ x “ x1 for some σ P S .

Schreier graphs are undirected and regular graphs and often they are good expander
graphs as well [13, Exercise III.2]. To construct a key exchange protocol we restrict
to cyclic groups of order p, where p is a prime, and we pick a generator g for G,
so G “ Z{pZ “ xgy. We choose D “ ts1, . . . , snu Ă pZ{pZqˆ such that
whenever σ P D, σ´1 < D. Let S :“ D Y D´1. If we consider Gzt1u, we see
that S acts freely on Gzt1u. We also say that G is a principal homogeneous space
for pZ{pZqˆ under the action

σpgq “ gσ for σ P D and g P Gzt1u.

Hence we can consider the Schreier graph pS ,Gzt1uq, where a walk from a vertex
g0 corresponds to the action of an element σ1, . . . , σn for σi P S on g0, such that
the end point of the walk equals gσ1¨¨¨σn

0 . We call such a sequence ρ :“ pσ1, . . . , σnq

a directed route. We denote ρpgq for the vertex where the walk defined by ρ and
g ends. When considering two directed routes ρ, ρ1 on the Schreier graph G and g
is a vertex, we can see that ρ1pρpgqqq “ ρpρ1pgqq. This commutativity gives us a
simple way to generalize Diffie-Hellman using a Schreier graph:
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Key exchange with Schreier graphs

Public parameters :A finite group G of order p, which is prime

A generating set D Ă pZ{pZqˆ such that σ P D ñ σ < D´1

A generator g of G

Alice Bob

a “

n
ź

i“1

sai
i b “

n
ź

i“1

sbi
i

ga :“ apgq gb :“ bpgq

ga

gb

k :“ apgbq k :“ bpgaq

Figure 3: Key exchange with Schreier graphs

We can clearly see the similarities between the (standard) Diffie-Hellman protocol
and the protocol based on Schreier graphs. One can imagine that for this protocol
to be safe, it is necessary that the walks that Alice and Bob take look “random
enough”. Since if the walks are too predictable, an adversary (or eavesdropper)
could for example try some of the walks that they think might be the ones Alice or
Bob took and then try to find the key k by starting a walk at ga or gb.

A protocol that uses these Schreier graphs is the Rostovtsev-Stolbunov protocol.
In this protocol we consider the set EllqpOq, which is the set of Fq-isomorphism
classes of elliptic curves that have complex multiplication by some fixed or-
der O Ă Qp

?
dq, where d ă 0. It turns out that the class group of O acts freely

on EllqpOq (we will not specify the group action, but more details can be found
in [14]). The vertices of the graph hence correspond to the j-invariants belonging
to the isomorphism class of elliptic curves and the edges correspond to isogenies.
This protocol can be used for key exchange, but unfortunately it is too slow to use
in practice. The Rostovtsev-Stolbunov protocol uses ordinary elliptic curves since
the class group of an order in an imaginary quadratic field is commutative. For
supersingular elliptic curves this is not true in general, therefore we would have to
make some larger adaptations to define a key exchange protocol using supersingu-
lar isogeny graphs in a similar way. In the upcoming sections we will see how we
can instantiate a key exchange protocol using supersingular elliptic curves.
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5 Isogeny graphs

Isogeny graphs from both ordinary and supersingular elliptic curves have been
considered for use in cryptographic protocols. The main differences between these
type of graphs lies in the fact that the endomorphism ring of supersingular elliptic
curves is isomorphic to a (maximal) order in a quaternion algebra, which is non-
commutative.

Definition 5.1. Let p be a prime. An isogeny graph is a (multi-)graph that has
vertex set V , consisting of the isomorphism classes of elliptic curves over Fp that
are isogenous and the edge set E consists of the isogenies between the elements of
the isomorphism classes.

We first direct our attention to isogeny graphs of ordinary elliptic curves, i.e. the
vertices consist of isomorphism classes of ordinary elliptic curves.

5.1 Ordinary isogeny graphs

In this section we will consider ordinary isogeny graphs.

Theorem 5.2. Let Fq be a finite field, let O Ă Qr
?

´ds, where d ą 0, be an order
in an imaginary quadratic field. Denote by EllqpOq the set of elliptic curves defined
over Fq that have complex multiplication by O, i.e., their endomorphism rings are
isomorphic to O. Assume that EllqpOq is non-empty. Then the class group ClpOq

acts freely and transitively on it (alternatively we can say that the action is simply
transitive); in other words, there is a map

ClpOq ˆ EllqpOq Ñ EllqpOq

pa, Eq ÞÑ a ¨ E

such that p1q ¨ E “ E and a ¨ pb ¨ Eq “ pabq ¨ E for all a, b P ClpOq and for
all E P EllqpOq. Also, the map is such that for any E, E1 P EllqpOq there is a
unique a P ClpOq such that E1 “ a ¨ E.

Proof. For the proof we refer to [9, Theorem 4.5], we will only give an outline of
the proof here. For an element a in the class group, we define

Eras :“ tP P EpFqq | σpPq “ 0E @σ P au.

The map in question is given by

a ¨ E :“ E{Eras.

Page 31



Supersingular Isogeny Graphs Anne Wouda (6658210)

Let B be the endomorphism algebra of an ordinary elliptic curve E,
i.e., B “ EndpEq b Q, and let O be an order in B that is possibly an endo-
morphism ring. It can be shown that the ideal class group ClpOq operates freely
on the isomorphism classes of curves with endomorphism ring O. This follows
from [9, Theorem 3.11]. What’s left to show is that the action is transitive and this
is equivalent to showing that there is only one orbit. The fact that there is only one
orbit follows by proving that all subgroups of an (ordinary) elliptic curve E can be
written as H “ Eras for some O-ideal a. □

The fact that the class group acts on EllqpOq in this way gives us a way to choose
an isogeny graph that is also a Schreier graph. There are a couple of conditions that
need to be met for such isogeny graphs to be (useful) Schreier graphs, but we will
not go into detail on those conditions here, for more details we refer to [14]. After
making this into a Schreier graph, the key exchange protocol that was explained
in Figure 3 can be executed using an ordinary isogeny graph. This protocol was
first described such that it could be efficiently implemented by Rostovtsev and
Stolbunov, it is also called the Rostovtsev-Stolbunov protocol [15].

What happens essentially in this protocol is the following: first a starting point E
in the graph is chosen and primes ℓi are fixed. Alice chooses a random exponent ai

for each ℓi and computes a curve EA that is
ś

ℓai
i -isogenous to E. Bob does the

same with exponents bi and arrives at some curve EB. Alice and Bob publish EA

and EB, respectively, but they keep their exponents ai and bi a secret. Alice
now computes a curve EBA that is

ś

ℓai
i -isogenous to EB and Bob computes a

curve EAB that is
ś

ℓbi
i -isogenous to EA. Since the endomorphism ring of ordinary

elliptic curves is commutative, the curves EAB and EBA are isomorphic, hence
Alice and Bob have arrived at the same point in the isogeny graph.

However, the Rostovtsev-Stolbunov protocol turns out to be too slow to be useful
(in this form) in practice. Also, Childs, Jao and Soukharev showed that the
protocol could be broken with a sub-exponential quantum attack [16]. Therefore
the parameters of the protocol need to be scaled up asymptotically to make it safe,
but this makes the protocol even slower than it already was.

As we mentioned, the main differences between ordinary and supersingular
isogeny graphs lies in the fact that the endomorphism ring of supersingular el-
liptic curves is isomorphic to a (maximal) order in a quaternion algebra, which is
non-commutative, whereas the endomorphism ring of an ordinary elliptic curve is
commutative. The commutativity of the endomorphism ring of ordinary elliptic
curves is the reason that the Rostovtsev-Stolbunov protocol could be quite ‘sim-
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ple’. If we would want to do something similar with supersingular elliptic curves,
we would have to do some more work because we do not have the commutativity
of the class group of the endomorphism ring. In the next section we will direct our
attention to supersingular isogeny graphs.

5.2 Supersingular isogeny graphs

Definition 5.3. Let p be a prime and let ℓ be a prime such that ℓ , p. The super-
singular isogeny graph Gpp, ℓq is a graph that has vertex set V , which consists of
the isomorphism classes of supersingular elliptic curves over Fp2 . Furthermore, the
edge set E consists of all isogenies of degree ℓ between the isomorphism classes
up to post-composition by an automorphism.

Remark 5.4. One can use the so called modular polynomials to solve the question
whether two given j-invariants are ℓ-isogenous. Modular polynomials Φℓpx, yq are
the polynomials such that when setting Φℓpx, yq “ 0, they represent a classical
modular curve called X0pℓq. We denote the ℓ-th modular polynomial by Φℓpx, yq.
The following holds:

Φℓp j1, j2q “ 0 if and only if j1 and j2 are ℓ ´ isogenous.

This can be found in e.g. [17, Section 2.3]. In [18] the following is stated

Φ2pX, 1728q “ pX ´ 1728qpX ´ 663q2 and Φ2pX, 0q “ pX ´ 24 ¨ 33 ¨ 53q3,

this implies that j “ 1728 has an edge with itself and two edges with 663 and
that j “ 0 has three edges with 24 ¨ 33 ¨ 53.

Remark 5.5. Because of the existence and uniqueness of the dual isogeny in The-
orem 2.16, we can make Gpp, ℓq into an “almost” undirected graph, in particular,
it is undirected except at j “ 0 and j “ 1728; consider any edge between the iso-
morphism classes of two elliptic curves E1 and E2, where E1 and E2 do not have j-
invariant 0 or 1728. This edge corresponds to an isogeny ϕ. By Theorem 2.16 there
exists a unique isogeny pϕ going from E2 to E1, such that pϕ ˝ ϕ “ rdegpϕqs “ rℓs.
The isogeny pϕ corresponds to an edge from E2 to E1, since degppϕq “ degpϕq “ ℓ.
However, something else happens at the j-invariants j “ 0 and j “ 1728. Indeed,
we will see that supersingular isogeny graphs are ℓ ` 1 regular and connected
and we saw Remark 5.4 that in the graph Gpp, 2q, the vertex j “ 0 always has
three edges going to the vertex with j “ 24 ¨ 33 ¨ 53. If the isogeny graph were
undirected, that would mean that three edges would have to go back to the ver-
tex j “ 0, but then the graph would have a disconnected component consisting of
the vertices j “ 0 and j “ 24 ¨ 33 ¨ 53 and three edges between them. The problem

Page 33



Supersingular Isogeny Graphs Anne Wouda (6658210)

here lies in the way we define the edges of the supersingular isogeny graph. Some
papers say that the edges of the supersingular isogeny graph are isogenies ‘up to
isomorphism’, what this means precisely is not always specified. In [19], two iso-
genies ϕ : E1 Ñ E2 and ϕ1 : E1

1 Ñ E1
2 are said to be equivalent (i.e. represent the

same edge in the graph) if there exists isomorphisms α : E1
1 Ñ E1 and β : E2 Ñ E1

2
such that

ϕ1 “ β ˝ ϕ ˝ α.

Note that if we define the edges in this way, the supersingular isogeny graphs will
in general not be ℓ ` 1-regular, because according to 5.4, j “ 0 will only have one
edge (going to j “ 24 ¨ 33 ¨ 53) and j “ 1728 will only have two edges (going
to j “ 1728 and j “ 663). We use another definition for the edges, which is also
in line with the definition of Brandt matrices (which we will see later on). Using
this definition we preserve the ℓ+1 regularity.

We say in Definition 5.3 that two isogenies ϕ and ϕ1 are equivalent if there exists
an automorphism α such that

ϕ “ α ˝ ϕ1.

This gives an interesting situation at the j-invariants j “ 0 and j “ 1728, since
their automorphism groups are larger than those of other j-invariants. In fact, an el-
liptic curve with j-invariant 0 has automorphism group Z{6Z and an elliptic curve
with j-invariant 1728 has automorphism group Z{4Z, whereas elliptic curves with
other j-invariants have automorphism group Z{2Z. We consider what happens
at j “ 0 in a 2-isogeny graph. We denote the elements of the automorphism group
for j “ 0 as r1s, r´1s, rζ3s, r2ζ3s, r´ζ3s, r´2ζ3s (hence r´ζ3s generates the auto-
morphism group). For j , 0, 1728, the automorphism group consists of r1s, r´1s.
Suppose ϕ : E Ñ E1 is an isogeny of degree 2 and jpEq “ 0 and jpE1q “ 24 ¨33 ¨53.
Then we can consider this isogeny composed with automorphisms of E, we get

ϕ1 :“ ϕ ˝ r1s

ϕ2 :“ ϕ ˝ rζ3s

ϕ3 :“ ϕ ˝ r2ζ3s

ϕ4 :“ ϕ ˝ r´1s

ϕ5 :“ ϕ ˝ r´ζ3s

ϕ6 :“ ϕ ˝ r´2ζ3s.

The only post-compositions of automorphisms we can make at jpE1q are with r1s

and r´1s. Therefore ϕ1 „ ϕ4 and ϕ2 „ ϕ5 and ϕ3 „ ϕ6, but there are no other
equivalences than this. Therefore we have three edges going from jpEq to jpE1q.
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However, considering the duals of ϕ1, ϕ2 and ϕ3, we see that

pϕ1 “ pϕ and pϕ2 “ r2ζ3s ˝ pϕ and pϕ3 “ rζ3s ˝ pϕ.

Since rζ3s and r2ζ3s are automorphisms of E, we have that all these duals are
equivalent, and therefore we only have a single edge going from jpE1q to jpEq in
a 2-isogeny graph with p ą 5. Something similar happens at j “ 1728, where
there is up to equivalence one extra automorphism compared to other j-invariants.
Therefore we get two edges going out of j “ 1728 (if the characteristic is not 2
or 3), but only one comes back. Note that at all other j-invariants, the graph does
not have this problem, since the automorhpism groups are all Z{2Z.

Defining isogeny graphs in this way, the number of edges originating at j “ 0
and j “ 1728 agrees with the multiplicity of the zeroes in the modular polynomials.
In Example 5.6 we will be able to see how the edges look at j “ 0 and j “ 1728
in the isogeny graph Gp59, 2q.

Example 5.6. We will construct the supersingular isogeny graph Gp59, 2q. Silver-
man shows in [5, Theorem V.4.1(c)] that the number of isomorphism classes of
supersingular elliptic curves over Fp equals

Y p
12

]

`

$

’

&

’

%

0 if p ” 1 mod 12;
1 if p ” 5, 7 mod 12;
2 if p ” 11 mod 12.

Therefore we expect 6 isomorphism classes of supersingular elliptic curves
over F59. Using Magma (the code can be found in the Appendix), we can determine
that the isomorphism classes can be represented by the following j-invariants:

t0, 15, 17, 28, 47, 48u,

where 1728 mod 59 ” 17 and 54000 mod 59 ” 15 and 663 mod 59 ” 48, these
numbers are interesting because from Remark 5.4 we know that they have edges
with j “ 0 and j “ 1728. Using the modular polynomial Φ2p j1, j2q in Magma, we
can determine whether there exists a degree 2 isogeny between the j-invariants j1
and j2. We find the following:

j “ 0 2 ´ isogenous to j “ 15;

j “ 15 2 ´ isogenous to j “ 0, 28, 47;

j “ 17 2 ´ isogenous to j “ 17, 48;

j “ 28 2 ´ isogenous to j “ 15, 48;

j “ 47 2 ´ isogenous to j “ 15, 47;

j “ 48 2 ´ isogenous to j “ 17, 28.
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Using our knowledge about the edges at j “ 0 and j “ 1728 from Remark 5.4 and
the fact that the rest of the graph is 3-regular, we construct the following graph for
Gp59, 2q:

48 17

28 47

15

0

Lemma 5.7. Let E{k be an elliptic curve over a finite field, where charpkq “ p.
Let ℓ , p be a prime, then there are ℓ ` 1 subgroups of order ℓ in Erℓs.

Proof. Since ℓ is a prime not equal to p, by Proposition 2.18 we know
that Erℓs � pZ{ℓZq2. All elements in Erℓs have order ℓ, except for 0, hence
there are ℓ2 ´ 1 elements that generate subgroups of order ℓ. However if px, yq

generates a subgroup of order ℓ, then all elements in this subgroup, except for the
zero element, generate the same subgroup of order ℓ. Hence for every subgroup of
order ℓ there are ℓ ´ 1 elements that generate the same subgroup. Therefore there
are ℓ2´1

ℓ´1 “ ℓ ` 1 subgroups of order ℓ in Erℓs. □

Lemma 5.8. The vertices of a supersingular isogeny graph Gpp, ℓq can be viewed
as the subgroups H of order ℓ of the group of points on some supersingular elliptic
curve E over a field of characteristic p.

Proof. Note that by Theorem 2.30, all supersingular elliptic curves E over a field
of characteristic p have jpEq P Fp2 . Generally, the vertices of an isogeny graph
are labeled with the corresponding j-invariants. Let j1 be one of the j-invariants
occurring in the vertex set. Pick E1 such that jpE1q “ j1 and choose a subgroup H1
of E1 of order ℓ. We can pick such a subgroup because Lemma 5.7 tells us that
there are ℓ ` 1 of them. We connect the vertices j1 and j2, where j2 :“ jpE2q,
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with E2 “ E1{H1. Hence we consider the edge set to consist of E{H, where E is a
supersingular elliptic curve and where H is a subgroup of E of order ℓ. This char-
acterization of the edge set E of Gpp, ℓq is equivalent to the characterization in the
definition because of the following. First note that E1{H1 indeed is a supersingular
elliptic curve by Theorem 2.29. Given an elliptic curve E1 and a subgroup H1, by
Theorem 2.19 there is a unique (up to isomorphism) elliptic curve E2 and a unique
separable isogeny ϕ, such that ϕ : E1 Ñ E2 and kerpϕq “ H1. Now suppose that
we have such a separable isogeny ϕ : E1 Ñ E1{H1 where H1 is a subgroup of
order ℓ. This is an isogeny of degree ℓ, since degpϕq “ degspϕq “ #kerpϕq “ ℓ.
For the implication the other way; suppose that ϕ : E1 Ñ E2 is an isogeny of
degree ℓ. Then ℓ “ degpϕq “ pn ¨ degspϕq by Theorem 2.15. Moreover, ℓ , p
gives that ℓ “ degspϕq “ #kerpϕq. Also, kerpϕq is a subgroup of E1, therefore we
have ϕ : E1 Ñ E1{kerpϕq and kerpϕq has order ℓ. This shows that every isogeny of
degree ℓ can be written as a separable isogeny from a curve E to E{H, where H is
a subgroup of order ℓ and vice versa. □

5.3 Supersingular isogeny graphs are Ramanujan

Lemma 5.8 and Lemma 5.7 together show that supersingular isogeny
graphs Gpp, ℓq are ℓ ` 1-regular. In this section we will prove even more char-
acteristics of supersingular isogeny graphs; we will prove (part of) the following
theorem:

Theorem 5.9. The supersingular isogeny graph Gpp, ℓq is pℓ ` 1q-regular, con-
nected and Ramanujan.

This theorem gives another reason why supersingular isogeny graphs are useful
for cryptographic protocols. As mentioned in Section 3, Ramanujan graphs are
“optimal” expander graphs, and expander graphs have the property that random
walks of certain minimal length on the graph terminate on any vertex with
probability close to uniform. Generally this would make it hard for an adversary
to distinguish the random walk from a uniformly sampled element.

The main goal of this section will be to give an outline of the proof of the state-
ment in Theorem 5.9. To this end, we will first see how we can use the endomor-
phism ring of supersingular elliptic curves to gain information about the vertices
and edges of a supersingular isogeny graph (from now on to be called isogeny
graph). Also, from now on we will denote the identity element of an elliptic curve
E by 0E , to avoid confusion with the notation of an order.
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5.3.1 The endomorphism ring of supersingular isogeny graphs

Definition 5.10. Let A be a quaternion algebra and let a Ă A be an non-trivial
ideal. The left order of a is defined as the ring Opaq :“ tx P A | xa Ă au.
Let O be an order in a quaternion algebra A. We say that a is a left O-ideal
if O Ă Opaq.

Definition 5.11. Let E be an elliptic curve defined over some finite field Fq of
characteristic p. Let a Ă O be an ideal. Then the a-torsion group of E is defined
as follows

Eras :“ tP P EpFqq | σpPq “ 0E @σ P au.

Note that the group Eras can also be described as the intersection of the kernels of
all elements in a, i.e. Eras “

Ş

tkerpαq : α P au.

Definition 5.12. The separable isogeny ϕa is defined to be the isogeny with do-
main E and kernel Eras, i.e.

ϕa : E Ñ E{Eras.

We denote the isomorphism class of the image of ϕa by a ¨ E.

By the third isomorphism theorem, we know that, up to isomorphism, there is a
unique isogeny with given kernel and it is clear that there is a unique image curve.
By [9, Theorem 3.11] we know that E{Eras � E{Erbs if and only if ras “ rbs.
Therefore the isogeny ϕa is well-defined.

Definition 5.13. The reduced norm of an ideal a in a quaternion algebraA, denoted
by Npaq, is defined as follows

Npaq :“ gcdptNpαq : α P auq,

here Npαq “ αα. In the case where we consider the endomorphism algebra of a
supersingular elliptic curve this means that Npαq “ pϕ ˝ ϕ, as defined in Section 2.

Definition 5.14. Let E be a supersingular elliptic curve over a finite field Fq with
endomorphism ring O and let H be a subgroup of Epkq. We define

IpHq :“ tα P O : αpPq “ 0E @P P Hu.

The set IpHq is a left O-ideal which is non-empty since it contains r#Hs.
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Lemma 5.15. Let E be a supersingular elliptic curve over a finite field Fq and
let H1,H2 be finite subgroups of Epkq such that H1 Ă H2 and IpH1q “ IpH2q.
Then H1 “ H2.

Proof. For the proof we refer to [8, Lemma 42.2.15] □

Lemma 5.16. Let E be a supersingular elliptic curve over a finite field Fq and let a
be an O-ideal. Then

IpErasq “ a.

Proof. For the proof we refer to [8, Proposition 42.2.16]. □

Theorem 5.17. Let E be a supersingular elliptic curve over a finite field k and
let O “ EndpEq. Then every subgroup of Epkq is of the form Eras, for some left O-
ideal a. The rank of Eras equals the reduced norm Npaq.

Proof. We will give the outline of the proof of the fact that every subgroup of Epkq

is of the form Eras for some left O-ideal a. Suppose that we have some subgroup H
of Epkq, in particular H is finite since k is a finite field. We define a :“ IpHq,
then it is clear that H Ă Eras. Also IpHq “ a “ IpErasq, where the second
equality follows from Lemma 5.16. Now using Lemma 5.15 we can conclude
that H “ Eras. Hence every subgroup of Epkq is of the form Eras for some left O-
ideal a.
For the rest of the proof we refer to [9, Theorem 3.15].

□

Lemma 5.18. The degree of ϕa equals the reduced norm of the ideal a it is associ-
ated to, i.e.

degpϕaq “ Npaq.

Proof. The isogeny ϕa is separable, hence its degree equals the number of elements
in its kernel. The kernel, kerpϕaq “ Eras, has rank equal toNpaq by Theorem 5.17.
We conclude that degpϕaq “ Npaq. □

Remark 5.19. We already showed that the j-invariants in the isogeny
graph Gpp, ℓq could be viewed as the isomorphism classes of E{H, where H is
a subgroup of a supersingular elliptic curve E with ℓ elements. The results above
show that every such subgroup H is of the form Eras for a left O-ideal awhere Eras

has rank ℓ. By Theorem 5.17, this rank equals the reduced norm of a, which in turn
equals the degree of ϕa by Lemma 5.18, showing that the isogeny corresponding
to E Ñ E{H, denote by ϕa, indeed has degree ℓ. Vice versa, any Eras for a left O-
ideal a of reduced norm ℓ, is a finite subgroup of E, since it equals the intersection
of the kernels of the elements in a. Moreover, this subgroup has rank ℓ since it
equals Npaq “ ℓ.
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Therefore j-invariants can be viewed as E{Eras for a supersingular elliptic curve E
and some left O-ideal of reduced norm ℓ, where O “ EndpEq. So, the isomorphism
class (as O-modules) of every left O-ideal a of reduced norm ℓ corresponds to a
vertex. This gives a useful relation between the vertices and edges of an isogeny
graph and (the ideals of) the endomorphism ring O.

Theorem 5.20. Let ϕa be as above and define Ea :“ E{Eras. Then the pullback
map

ϕ˚
a : HompEa, Eq Ñ a

ψ ÞÑ ψϕa

defines an isomorphism of left O-modules.

Proof. For the proof we refer to [8, Theorem 42.2.8]. □

Theorem 5.20 says that every left O-ideal a is of the form HompEa, Eqϕa.
In other words, every element α P a corresponds to an element ψ ˝ ϕa,
where ψ P HompEa, Eq.

Corollary 5.21. Let ψ P HompEa, Eq and denote by α the image under ϕ˚
a of ψ

in a. Then
degpψq “ Npαq{Npaq.

Proof. Since ϕ˚
a pψq “ α, we have that α “ ψ ˝ϕa. Taking the norm of α we obtain

Npαq “ degpψq ¨ degpϕaq.

Using Lemma 5.18 we obtain the desired result. □

Theorem 5.20 gives a way to relate isogenies that have image E to left O-ideals.
More generally, it is possible to relate isogenies between any two elliptic curves to
the set of ideals of the form b´1a, using the following theorem.

Theorem 5.22. Let a, b Ă O be two nonzero left O-ideals. Then there is a bijection

HompEa, Ebq Ñ b´1
a

ψ ÞÑ ϕ´1
b

˝ ψ ˝ ϕa.

Proof. For the proof we refer to [8, Lemma 42.2.22] □
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Corollary 5.23. Let ψ P HompEa, Ebq and denote by α the element in b´1a that ψ
corresponds to. Then

degpψq “ Npαq ¨
Npbq

Npaq
.

Proof. The endomorphism ψ corresponds to an element α of the
form α “ ϕ´1

b
˝ ψ ˝ ϕa. Therefore

Npαq “ degpϕaq{ degpϕbq ¨ degpψq.

By Lemma 5.18 we have that ϕa “ Npaq and ϕb “ Npbq. Rewriting the above
gives

degpψq “ Npαq ¨
Npbq

Npaq
.

□

Theorem 5.24. Let a and b be ideals of O. Then E{Eras � E{Erbs if and only if a
and b are isomorphic as O-modules if and only if a “ bλ for some invertible λ P O.
We say a „ b, i.e. the ideals are equivalent, if such a λ exists.

Proof. For the proof we refer to [9, Theorem 3.11] and [9, Theorem 3.15]. □

The next theorem is a consequence of (amongst others) the above statements and
says something more about the connection between an isogeny graph and the en-
domorphism ring of a supersingular elliptic curve.

Theorem 5.25 (Deuring correpondence). Let E0 be a supersingular elliptic curve
over a finite field Fq with endomorphism ring EndpE0q � O0. There is a bijec-
tion between isomorphism classes of supersingular elliptic curves over Fq and the
left class set ClLpO0q. Under this bijection, if E ÞÑ I, then EndpEq � ORpIq

and AutpEq � ORpIqˆ.

Proof. The theorem is stated in [14, p. 25]. The proof uses the results from Theo-
rem 5.20 and Theorem 5.22. For the full proof we refer to [8, p.778]. □

5.3.2 Proving supersingular isogeny graphs are Ramanujan

In this section we will introduce a theorem by Pizer that shows that supersingular
isogeny graphs are Ramanujan. We will first discuss some necessary definitions
and notation before we state Pizer’s theorem.

Page 41



Supersingular Isogeny Graphs Anne Wouda (6658210)

Definition 5.26. LetA be the quaternion algebra overQp, where p is an odd prime.
An order O of A is said to level p2 if O is isomorphic over Zp to the order

"ˆ

α β

uβσ ασ

˙

: α P Zp ` Zp
?

p, β P p
?

pq

*

,

where u is a quadratic non-residue modulo p and σ denotes conjugation
of Qpp

?
pq{Qp.

Definition 5.27. Let p be a prime, let M be a positive integer and let Bp,8 be
the unique (up to isomorphism) quaternion algebra over Q ramified only at p
and 8. When O is an order in Bp,8 and ℓ is a prime we define Oℓ “ O bZ Zℓ
and pBp,8qℓ “ Bp,8 bQ Qℓ.
An order O in Bp,8 is said to have level p2M if

(i) Op is an order of level p2 in pBp,8qp;

(ii) Oℓ is isomorphic over Zℓ to
ˆ

Zℓ Zℓ
MZℓ Zℓ

˙

for all primes ℓ , p.

If we have representatives of the distinct left O-ideals a1, . . . , aH , then all right
orders of the ai

tx P Bp,8 : xai Ă aiu

are orders of level p2M.

We write a1, . . . , aH for the distinct left O-ideal classes. Here H is the class number
of O. It is given by

H “
p2 ´ 1

12
M

ź

q|M

p1 ` 1{qq,

where q is prime. Both the fact that the distinct left O-ideal classes have level p2M
and the equation above come from [20, p. 187]. In Pizer’s theorem we will con-
sider graphs with adjacency matrices that are Brandt matrices. Brandt matrices are
defined as follows.

Definition 5.28. Let M be a positive integer coprime to p and let O be an order
of level p2M in a quaternion algebra over Q ramified at p and infinity. Again, we
write a1, . . . , aH for the distinct left O-ideal classes. The Brandt matrix is denoted
by Bpp2,M; ℓq or Bpℓq, where ℓ is coprime to p. Its entries bi jpℓq are defined as
follows. Consider the two left O-ideals ai and a j. Let e j denote the number of units
in the right order of a j, i.e. in Opa jq. Then bi jpℓq equals e´1

j times the number of
elements α P a

´1
j ai with Npαq “ ℓNpaiq{Npa jq, here Np¨q denotes the reduced
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norm. In other words, the i jth entry of the Brandt matrix denotes the number of
elements with which one can go from a j to ai up to units, with normalized reduced
norm ℓ.

We will show that the adjacency matrix of an isogeny graph is a Brandt matrix in
order to apply Pizer’s Theorem 5.30.

Theorem 5.29. Let Gpp, ℓq be a supersingular isogeny graph. The adjacency ma-
trix of Gpp, ℓq is Bpℓq.

Proof. We know by Theorem 5.25 that there is a one-to-one correspondence be-
tween the class group ClpOq and the isomorphism classes of supersingular elliptic
curves sending a representative ai to ai¨E, such that Endpai¨Eq � Opaiq. We write Ei

for Eai , by [21, p. 124] we know that there is an isomorphism as left EndpEiq and as
right EndpE jq modules: HompE j, Eiq � a

´1
j ai, Theorem 5.22 illustrates the map.

In other words: there is a one-to-one correspondence between isogenies E j Ñ Ei

and elements in the ideal a´1
j ai. If α is a nonzero element in a´1

j ai, it is sent by
the isomorphism to some isogeny ϕα in HompE j, Eiq. The degree of ϕα is given
by degpϕαq “

Npαq

Npaiq{Npa jq
by Corollary 5.23. By the definition of a Brandt matrix

the α P a
´1
j ai that contribute to the Brandt matrix have Npαq

Npaiq{Npa j
q “ ℓ, therefore

the corresponding isogeny ϕα : E j Ñ Ei has degree ℓ. The same reasoning holds
the other way around, therefore the Brandt matrix Bpℓq as defined above equals the
adjacency matrix of Gpp, ℓq.
We have skipped one detail, since we have not yet explained what it means to di-
vide by the units in a j in the endomorphism ring. The units in a j have norm 1
and therefore they correspond to elements in the endomorphism ring of degree 1,
i.e. they correspond to the isomorphisms. In the supersingular isogeny graph, we
defined two isogenies ϕ and ϕ1 to be equivalent if there exists an automorphism
α such that αϕ “ ϕ1. Therefore in order to count the isogenies properly we have
to divide by the number of isomorphisms in the endomorphism ring of the target
curve. □

Theorem 5.30 (Pizer). Let O be an order of level N “ p2M in a quaternion
algebra A, ramified at p and at infinity, with class number

H “

ˆ

p2 ´ 1
12

˙

M
ź

q|M

p1 ` 1{qq,

here the q are primes. Let ℓ be a prime with ℓ ă p{4 and ℓ ∤ N. Then the associated
multigraph Gpℓq “ Gpp2,M; ℓq that has adjacency matrix Bpℓq, is defined and is
an ℓ ` 1-regular connected Ramanujan graph.
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Proof. For the proof we refer to [22, p. 131]. □

Theorem 5.29 shows that supersingular isogeny graphs have an adjacency matrix
that is a Brandt matrix, therefore Theorem 5.30 implies that supersingular isogeny
graphs are ℓ ` 1-regular connected Ramanujan graphs.
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6 Supersingular elliptic curves in cryptography

As mentioned before, supersingular elliptic curves are interesting objects for cryp-
tography. In this chapter we will see some applications of them in cryptography.
We will start with some prerequisites. After that we will look at a key exchange
protocol called Supersingular Isogeny Diffie-Hellman (SIDH), identification pro-
tocols and a signature scheme called SQISign. Many definitions in this section
come from [23].

6.1 Prerequisites

In this section we will discuss some prerequisites for understanding the upcoming
cryptographic protocol.

Definition 6.1 (Negligible function). We say µ : N Ñ R is a negligible func-
tion if for every positive polynomial f there exists a number N ą 0 such that for
all λ ą N:

|µpλq| ă
1

f pλq
.

Intuitively, this means that a negligible function goes to zero faster than any poly-
nomial goes to zero.

Theorem 6.2. Suppose we have a supersingular elliptic curve E over some fi-
nite field Fp2 where p is a prime of the form p “ ℓe1

1 ¨ ℓe2
2 ¨ f ˘ 1, where ℓ1

and ℓ2 are distinct (small) primes and f is some integer cofactor. We choose E
such that Erℓei

i s consists only of Fp2-rational points. Let xP1,Q1y be a basis
for Erℓe1

1 s and let xP2,Q2y be a basis for Erℓe2
2 s. Let m, n,m1, n1 be integers and

let K :“ rmsP1 ` rnsQ1 and K1 :“ rm1sP2 ` rn1sQ2. Define ϕ : E Ñ E{xKy

and ϕ1 : E Ñ E{xK1y to be the unique (separable) isogenies with kernel xKy

and xK1y respectively. We define P1
1 :“ ϕ1pP1q, Q1

1 :“ ϕ1pQ1q, P1
2 :“ ϕpP2q

and Q1
2 :“ ϕpQ2q. We define ψ, ψ1 to be isogenies such that

ψ : E{xK1y Ñ pE{xK1yq{xrmsP1
1 ` rnsQ1

1y “: E1

and
ψ1 : E{xKy Ñ pE{xKyq{xrm1sP1

2 ` rn1sQ1
2y “: E2.

Then
E1 � E2.
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Proof. First note that since ϕ and ϕ1 are isogenies,

rmsϕ1pP1q ` rnsϕ1pQ1q “ ϕ1prmsP1 ` rnsQ1q “ ϕ1pKq

and that
rm1sϕpP2q ` rn1sϕpQ2q “ ϕprm1sP2 ` rn1sQ2q “ ϕpK1q.

Note that the curve E1 � pψ ˝ ϕ1qpEq and similarly that E2 � pψ1 ˝ ϕqpEq, since
isogenies are surjective. Therefore we have that

kerpψ1 ˝ ϕq “ xK,K1y and kerpψ ˝ ϕ1q “ xK,K1y.

Therefore we have two isogenies with domain E that have the same kernel. By the
third isomorphism theorem this implies that

E1 � E{kerpψ ˝ ϕ1q � E{kerpψ1 ˝ ϕq � E2,

again using the fact that isogenies are surjective. Therefore the curves E1 and E2
are isomorphic (and the isogenies differ only by an automorphism). □

Generally, the cofactor f can (and will) be chosen to be 1. If we would want to have
a larger set of useable primes p for the protocol, we could take another value for f .
We will see in the next section why we choose a prime p of the form ℓe1

1 ¨ℓe2
2 ¨ f ˘1.

6.2 Supersingular Isogeny Diffie-Hellman (SIDH)

In this section we describe the supersingular isogeny Diffie-Hellman protocol
(SIDH), which is a key exchange protocol that resembles the Diffie-Hellman key
exchange protocol. SIDH is used in SIKE (which stands for supersingular isogeny
key encapsulation). SIKE basically applies a transformation to SIDH that allows
its users to reuse the same (private) secret key. It was submitted to the NIST
standardization process on post-quantum cryptography and is currently one of the
final contenders.

We start by setting the public parameters. Alice and Bob agree on a
prime p “ ℓe1

1 ¨ ℓe2
2 ¨ f ˘ 1 where ℓ1 and ℓ2 are small primes (often ℓ1 “ 2

and ℓ2 “ 3) such that ℓe1
1 « ℓe2

2 and f is some integer cofactor. As mentioned, the
cofactor is introduced to make the set of primes that can be chosen larger, however
in practice it is (as far as is known at this moment) sufficient to choose f “ 1. They
also fix a supersingular elliptic curve E over Fp2 such that

EpFp2q � pZ{ℓe1
1 Zq2 ‘ pZ{ℓe2

2 Zq2 ‘ pZ{ fZq2.
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They also agree on bases xP1,Q1y for Erℓe1
1 s and xP2,Q2y for Erℓe2

2 s.

The secrets are the following. Alice chooses integers mA, nA and Bob chooses
integers mB, nB. These integers are Alice’ and Bob’s private secret keys.
Subsequently, Alice computes A :“ xrmAsP1 ` rnAsQ1y and Bob com-
putes B :“ x rmBsP2 ` rnBsQ2 y. Note that A Ă Erℓe1

1 s and that B Ă Erℓe2
2 s.

Alice and Bob now have secret isogenies, ϕA and ϕB respectively, such that

ϕA : E Ñ E{A

ϕB : E Ñ E{B.

They can compute the isogenies and the target curves using Vélu’s formulas. Alice
publishes EA :“ E{A and Bob publishes EB :“ E{B.

Alice and Bob need some more information from each other to get to the
same curve. Alice computes P1

2 :“ ϕApP2q and Q1
2 :“ ϕApQ2q and Bob com-

putes P1
1 :“ ϕBpP1q and Q1

1 :“ ϕBpQ1q and they both publish their results. Alice
will compute E{xrmasP1

1 ` rnAsQ1
1y and Bob will compute E{xrmBsP1

2 ` rnBsQ1
2y.

Because of Theorem 6.2 these two curves are isomorphic, so Alice and Bob have
arrived at the same vertex, which will be their shared secret key.

How do Alice and Bob choose a curve E such
that EpFp2q � pZ{ℓe1

1 Zq2 ‘ pZ{ℓe2
2 Zq2 ‘ pZ{ fZq2? From [18, p.5] we

know that every supersingular elliptic curve is isomorphic to a supersingular
elliptic curve E for which the trace of the Frobenius map πE satisfies πE “ ´2p.
The explicit representatives for such an elliptic curve are also given in [18]. Using
[5, Theorem 2.3.1], we know that

#EpFp2q “ p2 ` 1 ´ trpπEq.

If we chose E such that πE “ ´2p, we have #EpFp2q “ pp ` 1q2. Combining this
with Proposition 2.18, we obtain

EpFp2q � pZ{pp ` 1qZq ‘ pZ{pp ` 1qZq

Choosing p “ ℓe1
1 ¨ ℓe2

2 ¨ f ´ 1 gives

EpFp2q � pZ{pℓe1
1 ℓ

e2
2 f qZq ‘ pZ{pℓe1

1 ℓ
e2
2 f qZq

� pZ{ℓe1
1 Zq2 ‘ pZ{ℓe2

2 Zq2 ‘ pZ{ fZq2,

where we use the fact that ℓ1, ℓ2 and f are coprime.
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Supersingular Isogeny Diffie-Hellman (SIDH)

Public parameters : Prime p “ ℓe1
1 ¨ ℓe2

2 ¨ f ˘ 1
Supersingular elliptic curve E{Fp2

Basis xP1,Q1y for Erℓe1
1 s

Basis xP2,Q2y for Erℓe2
2 s

Alice Bob

A :“ xrmAsP1 ` rnAsQ1y B :“ xrmBsP2 ` rnBsQ2y

ϕA : E Ñ E{A “: EA ϕB : E Ñ E{B “: EB

EA

P1
2 :“ ϕApP2q,Q1

2 :“ ϕApQ2q

EB

P1
1 :“ ϕBpP1q,Q1

1 :“ ϕBpQ1q

A1 :“ xrmAsP1
1 ` rnAsQ1

1y B1 :“ xrmBsP1
2 ` rnBsQ1

2y

EAB “ EB{A1 EBA “ EA{B1

Output : jpEABq Output : jpEBAq

Figure 4: An illustration of SIDH

6.3 The supersingular ℓ-isogeny path problem

In this section we introduce the ℓ-isogeny path problem, which is interesting for the
security of some cryptographic protocols based on supersingular isogenies, like the
hash function introduced by Charles, Goren and Lauter [1].

Problem 1 (The supersingular ℓ-isogeny path problem). Let p, ℓ be primes such
that p , ℓ. Let E0 and E1 be supersingular elliptic curves over Fp2 . Compute an
isogeny

ϕ : E0 Ñ E1,

such that ϕ has degree degpϕq “ ℓe for some non-zero e.

If we can (efficiently) compute such an isogeny ϕ, it means that we have found a
path of length e in the supersingular isogeny graph Gpp, ℓq between two vertices. It
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turns out to be quite hard to solve this problem efficiently when considering elliptic
curves and isogenies. However the Deuring correspondence gives a way to turn this
into a problem in the quaternions.

Problem 2 (The quaternion ℓ-isogeny path problem). Let p, ℓ be primes such
that p , ℓ. Let O be a maximal order in a quaternion algebra A and let I be
a left O-ideal. Find a left O-ideal J such that J „ I with norm ℓe for some non-
zero e.

In [24] a probabilistic algorithm was proposed that can solve the quaternion ℓ-
isogeny path problem efficiently, this algorithm is referred to as the KLPT
algorithm. The algorithm uses the Deuring correspondence, i.e., the correspon-
dence between supersingular elliptic curves and their endomorphism rings as
mentioned in Theorem 5.25.

In table 6.3 we summarize the Deuring correspondence as discussed in Subsec-
tion 5.3.1 and Theorem 5.25. We fix a supersingular elliptic curve E{Fp2 and we
write Bp,8 for the (unique) quaternion algebra in which the endomorphism ring is
an order. We write Oi for the order that EndpEiq is isomorphic to.

Table 1: The Deuring correspondence
Supersingular j-invariants over Fp2 Maximal orders in Bp,8

jpEq O � EndpEq

pE1, ϕq with ϕ : E Ñ E1 Iϕ integral left O-ideal and right O1-ideal
α P EndpEq Principal ideal Oα

degpϕq NpIϕq

ϕ : E Ñ E1 and ψ : E Ñ E1 Equivalent ideals Iϕ „ Iψ
i.e. Iϕ “ λIψ for some λ

Supersingular j-invariants over Fp2 ClpOq
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6.4 Σ-protocols

In this section we define Σ-protocols, following [25]. A Σ-protocol is a 3-move
cryptographic protocol between two parties: a so called “Prover” and “Verifier”.
The idea of such a protocol is that the Prover identifies himself to the Verifier in a
way in which they, i.e. the Prover, do not give away too much information. For
example, if someone wants to have access to their bank account, they generally
need to sign in using their password. However, if some malicious party managed
to build a website that looks exactly like that of the bank, logging into this website
would mean giving away your password to someone else. Σ-protocols are designed
so that the person trying to prove their identity does not have to give away sensitive
secret information like a password. The idea of a Σ-protocol is that the Prover
shows enough knowledge of its identity, without giving all of it away, so that the
Verifier knows with enough certainty that the Prover is who they pretend to be.

In this section we will use the notation t0, 1u˚, which is defined to be the set of
arbitrary length bitstrings. In other words, it is the union of all bitstring of length n,
so t0, 1u˚ :“

Ť

nPN t0, 1un. We will also use the notation |x| for a bitstring x,
where |x| denotes the length of the bitstring. Finally, as we mentioned before,

when we write c $
ÐÝ C that means that an element c is chosen uniformly at random

from a set C.

Definition 6.3. We say an algorithm A runs in polynomial time, if there exists a
polynomial p P Nrxs such that for every input x P t0, 1u˚ the computation of Apxq

terminates within at most pp|x|q steps.
An algorithm A running in time p is said to be probabilistic, if A on input x ad-
ditionally has access to at most ppxq ‘unbiased random bits’ (i.e., equal to 0 with
probability 1/2 and equal to 1 with probability 1/2) to be used within the computa-
tion. For a probabilistic polynomial-time algorithm, we write PPT in short.

We will now define the notion of a Σ-protocol (the name comes from the observa-
tion that the communication between the two parties follows the shape of a Σ).

Definition 6.4 (Σ-protocol). We let C be a set and R be a binary rela-
tion R Ă t0, 1u˚ ˆ t0, 1u˚ such that whenever px,wq P R, then |w| ď pp|x|q,
where p is some polynomial. Π is a protocol consisting of three moves (a 3-move
protocol) between a Prover P and a Verifier V , where the Prover and Verifier are
PPT algorithms. P gets as input some px,wq P R and V only gets x. The protocol Π
is a Σ-protocol with challenge space C if

• P sends a message a to V
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• V sends back a random λ-bitstring c $
ÐÝ C to P

• P responds by sending some z to V .

Additionally, when the communication has ended, the Verifier outputs a
bit b P t0, 1u, where 0 corresponds to “reject” and 1 corresponds to “accept”
by computing a deterministic function with inputs x, pa, c, zq. We denote the output
of the Verifier by xP,Vypx; wq and we denote the protocol transcript by Πpx; wq.
Also, the protocol needs to satisfy the following three conditions

• Completeness: For every px,wq P R, PrrxP,Vypx; wq “ 1s “ 1.

• Special soundness: There exists a polynomial time algorithm E (also
called the extractor) such that on input of two accepting transcripts pa, c, zq

and pa, c1, z1q for x with c , c1, outputs a witness w̃ such that px, w̃q P R.

• Special honest verifier zero-knowledge: There exists a PPT algorithm Sim
such that on input of x, Sim outputs a transcript pã, c̃, z̃q such that the
transcript has the same probability distribution as the honest protocol tran-
script Πpx; wq.

Definition 6.5. We define the language of a relation R Ă X ˆ W to be

LR :“ tx P X | Dw P W : px,wq P Ru.

Definition 6.6. Let κ : t0, 1u˚ Ñ r0, 1s be a function. A protocol pP,Vq is a
proof of knowledge for the relation R with knowledge error κ if the following are
satisfied:

• Completeness: For every px,wq P R, PrrxP,Vypx; wq “ 1s “ 1.

• Knowledge soundness: There exists a probabilistic polynomial time algo-
rithm K, called the knowledge extractor, such that for every Prover P˚ and
every x P LR, K satisfies the following condition. Let εpxq be the probability
that V accepts on input x after interacting with P˚. If εpxq ą κpxq, then on
input x and (oracle) access to P˚, K outputs some w̃ such that px,wq P R
with probability at least εp|x|q ´ κp|x|q.

The “knowledge soundness” property is in fact equivalent to the following:
let K, ε and κ be as before. There exists a constant c ą 0 such that if εpxq ą κpxq,
then on input x and (oracle) access to P˚, K outputs a witness w such that px,wq P R
within an expected number of steps bounded by

|x|c

εpxq ´ κpxq
. (4)
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One of the nice properties of Σ-protocols is mentioned in the next theorem, which
shows that every Σ-protocol is in fact a proof of knowledge (with a certain knowl-
edge error).

Theorem 6.7. Let Π be a Σ-protocol for a relation R with challenge length λ.
Then Π is a proof of knowledge with knowledge error 2´λ.

Proof. For the proof we refer to [25, Theorem 6.3.2]. □

We will give an example of a Σ-protocol, but in order to understand the require-
ments of such a protocol better, we will first give some examples of protocols that
do not meet the requirements of a Σ-protocol.

Example 6.8. We consider the relation R “ tph,wq P G ˆ Zq | h “ gwu,
where G is a cyclic group with generator g. Note that the related lan-
guage LR “ th P G | D w : ph,wq P Ru equals G. The prover gets as input a
pair h,w, the verifier only knows h. The goal of the Prover is to prove knowledge
of a witness w. We will make some first attempts to construct a Σ-protocol:

• A first naive attempt is to let a and c be arbitrary messages and let z “ w.
This way a verifier can simply compute whether gz “ h holds. However, this
is not a Σ-protocol, since the special honest verifier zero-knowledge property
is not met, since that would require the algorithm Sim to be able to find a
witness for any given h. This illustrates the idea of special honest verifier
zero-knowledge, which basically says that an honest verifier learns nothing
from the protocol transcript, since it could have simulated the transcript in
its head without knowledge of the witness.

• A smarter way to go about this is to choose the first message, i.e. a, in such
a way that the verifier can use it to check whether the prover has knowl-
edge of w. Suppose that the prover samples a random r and sets a “ gr.
Let z “ r ` w and let the verifier output 1 if and only if gz “ h ¨ gr.
This clearly satisfies correctness. However a malicious party is capable of
computing h´1 “ g´w, since h is public. It can send a “ grh´1 for some
random r, to the verifier. The verifier will reply with some c and after that
the prover will send z “ r ´ w ` w “ r. The verifier will accept
this transcript, even though the prover did not need knowledge of a witness
for this transcript. In particular, given two such transcripts there is no in-
formation about the witness to be extracted, unless one is capable of finding
the discrete logarithm in polynomial time, which is generally assumed to not
be possible. This implies that there can not be an extractor and hence the
protocol is not special sound.
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Often the properties of a Σ-protocol can be proven to be true using some kind of
hardness assumption, e.g. assuming that the discrete logarithm problem is hard
with respect to some group. We give an example of a Σ-protocol called Schnorr’s
identification scheme below.

Schnorr’s identification scheme

Public parameters :A cyclic group G of prime order q

A generator g of the group G

Prover Verifier

r $
ÐÝ Zq

a :“ gr

c $
ÐÝ Zq

c

z :“ r ` c ¨ w

z

Check if gz “ a ¨ hc

Figure 5: Schnorr’s identification scheme

Theorem 6.9. We define R to be the following relation

R :“ tph,wq P Gˆ Zq | h “ gwu.

We assume that the discrete logarithm problem is hard with respect to G, i.e. given
an element h P G it is hard to find w such that h “ gw. Then the protocol in
Figure 5 is a Σ-protocol for R with challenge space Zq.

Proof. It is clear that the protocol is a 3-move protocol as described in the defini-
ton of Σ-protocols. We will prove that the protocol satisfies completeness, special
soundness and special honest verifier zero-knowledge.

• Completeness: We want to show that the verifier always accepts when the
prover has the required information and executes the protocol correctly. This
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means that the prover, given some h, knows a w such that h “ gw. The prover
has computed z :“ r ` c ¨ w, so

gz “ gr`c¨w “ gr ¨ pgwqc “ a ¨ hc.

The verifier will always output 1 if this is the case, therefore the verifier will
always output 1 when the prover has the required knowledge and follows the
protocol, i.e. PrrxP,Vyph; wq “ 1s “ 1 for all ph,wq P R.

• Special soundness: We want to show there exists a polynomial time algo-
rithm E that, given two transcripts pa, c, zq and pa, c1, z1q with c , c1, outputs
a witness w̃ such that ph, w̃q P R. Suppose that we have two such tran-
scripts pa, c, zq and pa, c1, z1q. Then

z “ r ` c ¨ w and z1 “ r ` c1 ¨ w.

In particular this means that pz ´ z1q ¨ pc ´ c1q´1 ” w mod q. Note that c ´ c1

is invertible since c , c1 and q is prime. Therefore we can let E be such that
it outputs w̃ “ pz ´ z1q ¨ pc ´ c1q´1, which can be computed in polynomial
time. Then

gw̃ ” gw ” h,

so w̃ is indeed a witness for h.

• Special honest verifier zero-knowledge: We want a probabilistic polynomial
time algorithm Sim that on input of h can generate some pã, c̃, z̃q that ‘looks
like’ a protocol transcript, i.e. such that the outputs of Sim are distributed
the same as the outputs of honest protocol executions. The PPT algorithm
Sim operates as follows: on input h, Sim samples z̃, c̃ $

ÐÝ Zq uniformly at
random. It then sets ã :“ gz̃ ¨ h´c̃. This makes that ã looks like an element
from G that is chosen uniformly at random. Also z̃ is the unique element
in Zq such that gz̃ “ ã ¨ hc̃, so the generated transcript will be accepted if and
only if gz̃ “ ã ¨ hc̃, which is exactly what is true for a real protocol transcript
as well.

□
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6.5 Identification protocol and signature scheme based on supersin-
gular isogeny graphs

We will now look at a Σ-protocol and a signature scheme based on supersingular
isogeny graphs introduced in [2] by De Feo, Kohel, Leroux, Petit and Wesolowski.
The signature scheme is called SQISign (for Short Quaternion and Isogeny
Signature) and seems to be a quantum-proof signature scheme which also has
relatively short public key and signature size.

Definition 6.10. Let R be a ring. Let I be a subset of R that is an additive subgroup
such that for all r P R and for all a P I it holds that ra P I, then we say that I is a
left ideal of R. We can analogously define the notion of right ideals of R.

Definition 6.11. Let I be a subset of a ring R, we say that I is a 2-sided ideal of R
if I is both a left R-ideal and a right R-ideal. If R is a commutative ring, all ideals
are 2-sided. The 2-sided class group is defined analogously to the class group, but
is defined instead only using the 2-sided ideals.

Proposition 6.12. LetO be an order in a quaternion algebra ramified only at p and
at 8. Then there exists a unique maximal 2-sided ideal P over p. Furthermore, P
is principal if and only if there exists an element π in O such that π2 “ ´p.

Proof. This is stated in [24, Section 2.3]. □

Proposition 6.13. LetO be as above and letP be its unique maximal 2-sided ideal.
Then P is a generator of the 2-sided class group.

Proof. This is stated in [24, Section 2.3]. □

Definition 6.14. Let R be some non-commutative ring. The p-extremal orders are
the orders O that have an element π such that π2 “ ´p. By the above this is
equivalent to O having trivial 2-sided class group.

Remark 6.15. By [9, Theorem 4.1.5] we know that for every prime p there exists
a supersingular elliptic curve E over Fp such that its Frobenius endomorphism π

has trpπq “ 0. Therefore π satisfies

π2 ` degpπq “ 0 so π2 “ ´p.

By the same Theorem in [9], such elliptic curves do not have their full endomor-
phism ring defined over their field of definition, which in this case is Fp. Also,
by [9, Theorem 4.2.3] we have that: if EndpEq b Q is the endomorphism algebra
of a supersingular elliptic curve E for which not all endomorphisms are defined,
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then the orders in EndpEq b Q which are endomorphism rings of elliptic curves in
the isogeny class of E, are the orders which contain π (and are maximal at p), so
all these elliptic curves have endomorphism rings that are p-extremal orders.

Definition 6.16. Let A Ă B be a ring extension where B is free of rank n as an A-
module. We define Mx : B Ñ B as the multiplication-by-x map, i.e. Mxpbq “ xb,
which is an A-linear map. We define

TrB{Apxq “ tracepMxq.

Definition 6.17. LetO be an order in a quaternion algebra of free-rank n, having Z-
basis x1, . . . , xn. Then the discriminant of O is

discpOq “ detpTrO{Zpxix jqqn
i, j“1.

Definition 6.18. Let O be as in Definition 6.17 and additionally let O have a dis-
tinguished quadratic subring S . For a maximal order O, we define

dpOq :“ mintdiscpS q : Z , S ⊊ Ou.

Definition 6.19. Let O be a p-extremal maximal order. Among all p-extremal
maximal orders, we say that O is a special p-extremal maximal order if dpOq is
minimal.

Definition 6.20. Let m be a natural number and let B be a positive real number.
Then m is called B-smooth if it has no prime divisors larger than B. We say m is
smooth if it is B-smooth for sufficiently small B.

Definition 6.21. Let ϕ : E Ñ E1 be an isogeny. We say ϕ is a cyclic isogeny
if kerpϕq is a cyclic group, i.e. kerpϕq is generated as a group by one element.

Lemma 6.22. Let E, E1 be elliptic curves over a finite field Fq. If ϕ : E Ñ E1 is a
cyclic isogeny of degree n coprime to q, then pϕ is also a cyclic isogeny.

Proof. Note that Erns � Z{nZ ˆ Z{nZ by Theorem 2.18. Therefore in E{kerpϕq

there is a point of order n, because ϕ cannot send all points of order n to zero since
it is cyclic but Erns is not. Let ϕpPq be a point of order n in E1 � E{kerpϕq such
that P < kerpϕq. Note that

pϕpϕpPqq “ rdegpϕqsP “ nP “ 0E .

Therefore ϕpPq is in the kernel of pϕ and ϕpPq has order n “ degppϕq “ |kerppϕq|.
Therefore ϕpPq generates the kernel of pϕ, so pϕ is a cyclic isogeny as well. □
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The Σ-protocol in SQISign
Parameters: The setup of the scheme is as follows. A prime p is chosen and then
a supersingular elliptic curve E0 over Fp with special extremal endomorphism
ring O0 is chosen. We choose Dc to be an odd smooth number of λ bits and D “ 2e

where e is above the diameter of the supersingular 2-isogeny graph. The prover
wants to prove knowledge of a secret τ.

Key generation: The key pair, consisting of a public key and a secret key, is
generated as follows. A random isogeny walk starting at E0 is chosen. This
isogeny walk is denoted by τ and ends at some vertex corresponding to an elliptic
curve EA. The public key is the curve EA and the secret key is the isogeny τ, i.e.
the key pair is ppk, skq “ pEA, τq.

The protocol:

• First the Prover P picks a random (secret) ψ : E0 Ñ E1. It sends E1 to the
Verifier V .

• The Verifier V picks a cyclic isogeny ϕ : E1 Ñ E2 of degree Dc and sends a
description of ϕ to P.

• The prover P constructs from ϕ ˝ ψ ˝ pτ : EA Ñ E2 some new isogeny σ :
EA Ñ E2 of degree D such that pϕ ˝ σ is cyclic.

• The Verifier V accepts when σ is an isogeny from EA Ñ E2 of degree D
and pϕ ˝ σ is cyclic.

An illustration of the three-move protocol is given on the next page.
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The Σ-protocol in SQISign

Public parameters : p prime
Supersingular elliptic curve EA over Fp

OA :“ EndpEAq is an order
Dc an odd smooth number of λ bits
D “ 2e, e above the diameter of Gpp, 2q

Prover Verifier

ψ : E0 Ñ E1

E1

ϕ : E1 Ñ E2,

cyclic, degpϕq “ Dc

ϕ

σ : EA Ñ E2, degpσq “ D,
pϕ ˝ σ cyclic

σ

Figure 6: The Σ-protocol in SQISign

6.5.1 Completeness

In this section we will analyze the completeness property of the Σ-protocol
introduced in the previous section. The most important tool to prove completeness
lies in an algorithm proposed in [2, p. 24], called SigningKLPT. In the algorithm
we take O0 to be a special extremal maximal order and O to be a maximal order.
Viewing the algorithm as a black box, it looks as follows:

SigningKLPTpI, Iτq
Input: Iτ is a left O0-ideal and a right O-ideal of norm Nτ. I is a left O-ideal.
Output: An ideal J „ I of norm ℓe, where e is fixed.

In the Σ-protocol we consider a 2-isogeny graph, so we take ℓ “ 2 in the algorithm
above. The algorithm is shown to be correct and to terminate heuristically in
probabilistic polynomial time in [2].

What we need for completeness, is that whenever an honest prover P executes the
protocol and indeed has the information τ, the verifier V will always accept. The
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verifier always accepts when it is given an isogeny σ : EA Ñ E2 of degree 2e such
that pϕ ˝ σ is cyclic. Therefore we want the prover P to be able to construct such
an isogeny σ every time it has the information τ. The isogenies and elliptic curves
in question are given in the diagram below. The blue dashed lines correspond to
secret isogenies and the red lines correspond to public isogenies.

E0 E1

EA E2

ψ

τ ϕ
ϕ˝ψ˝pτ

σ

As mentioned before, we want P to be able to construct an isogeny σ, where σ
is as described above, whenever P really knows τ. Note that when P indeed has
knowledge of τ, P knows the isogeny ϕ ˝ ψ ˝ pτ. Denote by OA the order corre-
sponding to the endomorphism ring of EA and by O0 the order corresponding to
the endomorphism ring of E0. By the Deuring correspondence, as illustrated in
Table 6.3, such an isogeny correponds to an ideal Iϕ˝ψ˝pτ that is a left OA-ideal.
We denote by Iτ the ideal corresponding to the isogeny τ, so Iτ is a left O0-ideal
and a right OA-ideal. The prover can now run SigningKLPTpIϕ˝ψ˝pτ, Iτq and it will
obtain an ideal J „ Iϕ ˝ ψ ˝ pτ of norm 2e. Such an ideal J corresponds to an
isogeny σ : EA Ñ E2 with degpσq “ NpIϕ˝ψ˝pτq “ 2e. Therefore the prover will
be able to output an isogeny that will be accepted by the verifier, due to the cor-
rectness of SigningKLPT (the cyclicity also follows from the algorithm, we refer
to [2] for the details).

6.5.2 Special soundness

In this section we will analyse the special soundness property of the Σ-protocol in
SQISign. We define the relation R as follows:

R :“ tpEA, αq : α is a cyclic endomorphism of smooth degreeu.

We assume that the following problem is hard. This will help us prove the special
soundness of the given protocol.

Problem 3 (Supersingular Smooth Endomorphism Problem). Given a prime p and
a supersingular elliptic curve E{Fp2 , find a (non-trivial) cyclic endomorphism of E
of smooth degree.

This problem can be shown to be equivalent to the Endomorphism Ring Problem
(given E{Fp2 compute endomorphisms that form a Z-basis of EndpEq), which is

Page 59



Supersingular Isogeny Graphs Anne Wouda (6658210)

assumed to be hard. We will also need the following lemma to prove the special
soundness of the protocol.

Lemma 6.23. Given two accepting transcripts pE1, ϕ, σq and pE1, ϕ
1, σ1q, where ϕ

and ϕ1 are not equivalent (i.e. they do not represent the same path in the isogeny
graph, we denote this by ϕ / ϕ1), the composition pσ1 ˝ ϕ1 ˝ pϕ ˝ σ is a non-scalar
endomorphism of EA and it has smooth degree.

Proof. We know that ϕ and ϕ1 have degree Dc, so also their duals have degree Dc.
Also we know that σ and σ1 have degree D, so their duals also have degree D. This
means that

degppσ1 ˝ ϕ1 ˝ pϕ ˝ σq “ degppσ1q ¨ degpϕ1q ¨ degpϕq ¨ degpσq “ pDDcq2.

Since D and Dc are smooth numbers, their product is also smooth, so the given
composition of endomorphisms indeed has smooth degree.
What’s left to show is that the composition pσ1 ˝ ϕ1 ˝ pϕ ˝ σ is a non-scalar endo-
morphism. Suppose for contradiction that it is a scalar endomorphism. Since its
degree is pDDcq2, we have that

pσ1 ˝ ϕ1 ˝ pϕ ˝ σ “ rDDcs.

Since pσ1 ˝ ϕ1 and pσ1 ˝ ϕ1 have the same degree and pσ1 ˝ ϕ1 ˝ pϕ ˝σ “ rdegppσ1 ˝ ϕ1qs,
we conclude that pσ1 ˝ϕ1 and pϕ ˝σ are duals, by the uniqueness of the dual isogeny.
This implies

pσ1 ˝ ϕ1 “ pσ ˝ ϕ.

In particular this implies that kerppσ1 ˝ ϕ1q “ kerppσ ˝ ϕq. Suppose
that kerpσq “ kerpσ1q, this implies that σ “ σ1. However the equal-
ity pσ1 ˝ ϕ1 “ pσ ˝ ϕ then implies that ϕ “ ϕ1, which is not possible. Therefore
we must have that kerpσq , kerpσ1q. However, σ and σ1 are of degree 2e, which
by assumption is coprime to p. Therefore σ and σ1 are separable isogenies. Hence

# kerpσq “ degspσq “ degpσq “ degpσ1q “ degspσ
1q “ # kerpσ1q.

We know that kerpσq and kerpσ1q are cyclic subgroups of Er2es � pZ{2eZq2. Since
both have (separable) degree 2e that implies that kerpσ1q � kerpσq � Z{2eZ. This
implies that σ and σ1 only differ by an isomorphism and since pσ1 ˝ ϕ1 “ pσ ˝ ϕ, we
conclude that ϕ1 and ϕ also differ only by an isomorphism. In particular, this shows
that ϕ „ ϕ1, which is a contradiction. □
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Corollary 6.24. The Σ-protocol used in SQISign satisfies special soundness.

Proof. This follows directly from Lemma 6.23. Since pσ1 ˝ ϕ1 ˝ pϕ ˝ σ is a cyclic
endomorphism of EA of smooth degree it follows that

pEA, pσ1 ˝ ϕ1 ˝ pϕ ˝ σq P R.

Also note that this isogeny can be computed in (probabilistic) polynomial time.
Therefore we define the extractor E to be such that it outputs pσ1 ˝ ϕ1 ˝ pϕ ˝ σ as
witness for EA. □

Theorem 6.25. If there is an adversary that breaks the soundness of the protocol
with probability w and expected running time r for the public key EA, then there
is an algorithm for the Supersingular Smooth Endomorphism Problem on EA with
expected running time O

´

r
w´1{C

¯

, where C is the size of the challenge space.

Proof. As mentioned, the endomorphism pσ1 ˝ ϕ1 ˝ pϕ ˝ σ given in Lemma 6.23 is
a cyclic endomorphism of EA that has smooth degree. Therefore a witness for EA

gives a solution to the Supersingular Smooth Endomorphism Problem of EA. The
special soundness of the protocol implies that it also has knowledge soundness with
knowledge error 1{C where C is the size of the challenge space (this follows from
e.g. [26, Theorem 1]). In other words, the number of steps necessary to output a
witness is bounded by

|x|c

εpxq ´ 1{C
.

The running time r is of the size of a power of the length of the input and the
probability of breaking the soundness of the protocol w is equal to εpxq, i.e. the
probability that the verifier accepts after interaction with the (possibly malicious)
prover. Therefore the expected running time is

O

ˆ

r
w ´ 1{C

˙

.

□

Note that if we had proven already that the protocol is a Σ-protocol, we could have
used Theorem 6.7 and (4) to prove Theorem 6.25.

6.5.3 Zero-Knowledge

In this subsection we will prove the zero-knowledge property of the Σ-protocol.
We will not give the full proof, but give the proof of an easier statement where we
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use an assumption on the public key EA. This assumption can be proven to be true,
as is done in [2, Section 7].

Definition 6.26. Let X “ tXλuλPN and Y “ tYλuλPN be families of random vari-
ables. We say X and Y are computationally close or computationally indistinguish-
able, if for all probabilistic polynomial time adversariesA, there exists a negligible
function f (defined in Definition 6.1) such that for all λ P N:

|PrrApxq : x Ð Xλs ´ PrrApxq : x Ð Yλs| ď f pλq.

We will denote X „ Y if X and Y are computationally indistinguishable.
We define computational Honest-Verifier Zero-Knowledge analogous to Honest-
Verifier Zero-Knowledge, only we require the distributions to be computationally
indistinguishable, instead of indistinguishable.

The above definition means as much as: the probability that a PPT adversary
outputs the same value for an element from Xλ as an element from Yλ is quite
large, which implies that it is hard for any PPT adversary to distinguish the family
of random variables X from the other family of random variables, Y .

Lemma 6.27. LetDpEAq denote the distribution of the isogenies σ in the SQISign
identification protocol. If we assume that for any SQISign public key EA, there ex-
ists a probabilistic polynomial time algorithm S , taking EA as input, whose output
distribution is (computationally) indistinguishable from DpEAq, then the SQISign
identification protocol is (computationally) Honest-Verifier Zero-Knowledge.

Proof. For the Honest-Verifier Zero Knowledge property to hold we need to con-
struct a PPT algorithm Sim that on input x outputs a transcript whose distribution
is (computationally) indistinguishable from the distribution of the honest protocol
transcript. We construct Sim as follows: on input of some elliptic curve EA, Sim
lets S generate a σ̃ by giving it input EA, i.e. S pEAq “ σ̃ : EA Ñ Ẽ2. Also
Sim generates a uniformly random pϕ̃ : Ẽ2 Ñ Ẽ1 of degree Dc, i.e. ϕ̃ is chosen
uniformly at random from the set of isogenies going from E2 Ñ E1 and have
degree Dc. Finally it outputs

SimpEAq “ pẼ1, ϕ̃, Ẽ2, σ̃q.

We check if this transcript distribution is (computationally) indistinguishable from
the distribution of an honest protocol transcript, we denote pE1, ϕ, E2, σq for an
honest protocol transcript. Note that ϕ and ϕ̃ are both chosen uniformly at random
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from the set of isogenies of degree Dc with domain some elliptic curve E1 and Ẽ1,
respectively. We denote the distribution of ϕ and ϕ̃ byDpϕq andDpϕ̃q, respectively,
so Dpϕq and Dpϕ̃q are identical. By assumption on S , σ̃ has the same distribution
as σ from the honest protocol transcript. What’s left to show is that the ellip-
tic curves in the output of the simulator have the same distribution as the elliptic
curves in the output of the honest protocol transcript. If we choose D and Dc suf-
ficiently large, then the walk corresponding to ψ and pϕ̃ consist of sufficiently many
steps which means that the distribution of the endpoint of a random walk is approx-
imately the uniform distribution, which follows from Theorem 3.20. Sufficiently
large here means that the number of steps in the walk should be O

´

#V
logp1´λ2q

¯

,

as is stated in Theorem 3.20 as well. In particular this means that the curve Ẽ1
and E1 are both chosen according to a uniform random distribution. Finally, the
elliptic curve Ẽ2 is chosen by S , which by assumption gives as output something
with the same distribution as DpEAq hence the distribution of Ẽ2 computationally
indistinguishable from the distribution of E2 (from an honest protocol). □

For more information on the distributionDpEAq we refer to [2, Section 7.2].

Lemma 6.27 shows that the SQISign identification protocol satisfies (compu-
tational) Honest-Verifier Zero Knowledge under the assumption that there is a
PPT algorithm that on input EA outputs an isogeny and a target curve whose
distribution are (computationally) indistinguishable from the distribution in which
they occur in the honest protocol transcript. It is shown in [2, Section 7] that this
assumption holds.

6.5.4 The signature scheme SQISign

In the previous subsections we have seen that the introduced 3-move protocol,
the SQISign identification scheme, is indeed a Σ-protocol. In this section we
will introduce (digital) signature schemes and we will show how to construct a
signature scheme from a Σ-protocol. For this we will use the Σ-protocol that we
discussed in the previous subsections. The signature scheme we construct is the
SQISign scheme introduced in [2].

Definition 6.28 ((Digital) Signature scheme). A (digital) signature scheme con-
sists of three polynomial-time algorithms pGen,Sign,Verq such that:

1. The key generation algorithm Gen takes as input some parameter

λ
hkkkikkkj

p1, . . . , 1q
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and outputs a pair of keys ppk, skq, i.e. the public key and the secret key.

2. The signing algorithm Sign takes as input a private key sk and a message m,
and outputs a signature σ.

3. The verification algorithm Ver is a deterministic algorithm which takes
as input a public key pk, a message m and a signature σ. It outputs a
bit b P t0, 1u, where 0 means invalid and 1 means valid.

Furthermore, we require a correctness guarantee: Verppk,m,Signpsk,mqq “ 1
except with negligible probability (i.e. with probability 1 ´ f pλq where f is a
negligible function).

There are several definitions of security for signature schemes, one of those is
called existential unforgeability against chosen message attacks, abbreviated as
EUF-CMA. If a signature scheme satisfies EUF-CMA security, this basically
means that any PPT adversary that can query messages and receive a valid
signature, cannot produce a forgery, that is, a message-signature pair pm, σq, that
gets accepted by the verifying algorithm Ver (and m was not previously queried).
We will not give the formal definition of this type of security here, but it can be
found in any textbook on basic cryptography, e.g., [27].

To be complete we will give the definitions of a hash-function and a random oracle.
Both are used a lot in cryptographic proofs and/or protocols so it is no surprise that
they show up in the signature scheme that we will consider. However, we will not
go into the theory behind hash functions and random oracles deeply, since there is
a lot of theory, but it is not strictly necessary for what we are considering here.

Definition 6.29 (Hash-function). A hash function H is a deterministic func-
tion H : t0, 1u˚ Ñ t0, 1ucλ , where λ is some security parameter and cλ is
some constant depending on λ.

Definition 6.30 (Random Oracle). A random oracle is a theoretical black box that
responds to every unique query with a truly random response chosen uniformly
from its set of possible outputs.

Theoretically, a truly random function can be seen as a function g : A Ñ B,
where A and B are sets and g is such that even when we know all gpxiq

for xi P A z txu, we could not predict gpxq better than just picking some y P B
at random. In the optimal case, a hash function behaves like a truly random
function. Random oracles are often used in proofs where it is not enough to use a
(cryptographic) hash-function. Security proofs that use a random oracle will often
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state something in terms of: “the protocol is secure in the random oracle model”.
Sometimes a proof in the random oracle model is called a “heuristic proof”.

The next definition gives a signature scheme that is built from a Σ-protocol. It was
introduced by Fiat and Shamir in [28].

Definition 6.31 (Fiat-Shamir). Given a Σ-protocol for a relation R with challenge
space C and some public hash function H : t0, 1u˚ Ñ t0, 1ucλ , where λ is a
security parameter, the Fiat-Shamir transform is as follows.

• The signing algorithm has access to both the secret and public key, which
in this case corresponds to x and w. It starts by generating an a accord-
ing to the Σ-protocol, like a prover would do. Next it sets c :“ Hpx||aq

(here x||a means that we concatenate the bitstrings x and a) and using the
partial transcript pa, cq it generates a z in the same way a prover would do
when given pa, cq. Finally:

Signpx,wq “ pa, zq.

• The verification algorithm computes Hpx||aq and checks
whether pa,Hpx||aq, zq is accepted by the verifier in the Σ-protocol.
In other words

Verpx, a, zq “

#

1 if xP,Vypx; wq “ 1 given the transcript pa,Hpx||aq, zq

0 if xP,Vypx; wq “ 0 given the transcript pa,Hpx||aq, zq.

We leave out the proof that the Fiat-Shamir transform is in fact a digital signature
scheme. Fiat and Shamir suggested to use a random oracle for H. Indeed it
turns out that this gives EUF-CMA security, as long as the underlying Σ-protocol
satisfies a certain type of security (we will not go into this here, the precise
statement is given in [29, Theorem 1]). However there has been a lot of research
to find instantiations for H that render the Fiat-Shamir transform secure in the
standard model (i.e. where we do not have to assume that H is a random oracle)
for many widely-used protocols.

We can now introduce the signature scheme, SQISign, from [2]. Recall the Σ-
protocol introduced in Section 6.5, SQISign is basically a Fiat-Shamir transform
of this Σ-protocol. To be precise, it is as follows:
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SQISign
Parameters: A prime p is chosen and then a supersingular elliptic curve E0
over Fp with special extremal endomorphism ring O0 is chosen. We
choose Dc “

śn
i“1 ℓei

i to be an odd smooth number of λ bits and D “ 2e

where e is above the diameter of the supersingular 2-isogeny graph. We
let µpDcq “

śn
i“1 ℓei´1

i pℓi ` 1q. We consider a cryptographically secure hash
function H : t0, 1u˚ Ñ r1, µpDcqs and we let ΦDc be an arbitrary function that
maps an elliptic curve E and an element s P r1, µpDcqs to a non-backtracking
sequence of isogenies of total degree Dc, starting at E.

Key generation: The key pair, consisting of a public key and a secret key, is
generated as follows. A random isogeny walk starting at E0 is chosen. This
isogeny walk is denoted by τ and ends at some vertex corresponding to an elliptic
curve EA. The public key is the curve EA and the secret key is the isogeny τ, i.e.
the key pair is ppk, skq “ pEA, τq.

The protocol:

• Sign: It gets as input psk,mq. First it chooses a random (secret)
isogeny ψ : E0 Ñ E1, like the prover in the Σ-protocol would do. Then it
sets s :“ Hp jpE1q,mq and outputs the isogeny ΦDcpE1, sq “: ϕ : E1 Ñ E2,
in the Σ-protocol this would correspond to the answer of a verifier. From OA

and ϕ ˝ψ : E0 Ñ E2 it constructs an isogeny σ : EA Ñ E2 of degree D such
that pϕ ˝ σ is cyclic. It outputs:

Signpsk,mq “ pE1, σq.

• Verify: It gets as input ppk,m, E1, σq. It calculates s “ Hp jpE1,mq and then
computes ΦDcpE1, sq “ ϕ. It then checks whether σ is indeed an isogeny
from EA to E2 of degree D and checks whether pϕ ˝ σ is a cyclic isogeny, if
so, it outputs 1, else it outputs 0.

The protocol can be illustrated as the diagram below. Here the red parts denote
public information and the blue ones secret information. It is important to keep in
mind that the signature σ does not equal ϕ˝ψ˝pτ. However, σ is constructed using
ϕ ˝ ψ ˝ pτ as input in Algorithm 5 in [2, Section 6].

E0 E1

EA E2

ψ

τ ϕ
ϕ˝ψ˝pτ

σ
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7 Orientations and OSIDH

7.1 Orientations

In this section we will discuss the notion of orientations. We will introduce an
orientation on elliptic curves and isogenies and using these orientations we will
look at isogeny graphs where both the elliptic curves and the isogenies have a
certain orientation.

Definition 7.1. Let k be the algebraic closure of some field of characteristic p,
where p is a prime. Let K be an imaginary quadratic field and let E be an el-
liptic curve over k. A K-orientation on the elliptic curve E{k is an injective ring
homomorphism (i.e. an embedding)

ι : K ãÑ EndpEq bZ Q.

Theorem 7.2. Let K “ Qp
?

dq be an imaginary quadratic field and let
´

m,n
Q

¯

be
the quaternion algebra over the rationals given by

ˆ

m, n
Q

˙

“ Q` Qi ` Q j ` Qi j,

where i2 “ m, j2 “ n and i j “ ´ ji. Then there exists an embedding, i.e. an
injective ring homomorphism

ι : K ãÑ

ˆ

m, n
Q

˙

,

if and only if there exists an ω P

´

m,n
Q

¯

such that ω2 “ d.

Proof. First suppose that there exists such ω. We define a map ι from K “ Qp
?

dq

to
´

m,n
Q

¯

as follows

Qp
?

dq Ñ

ˆ

m, n
Q

˙

with a ` b
?

d ÞÑ a ` bω,

where a, b are rationals. Note that ι is a ring homomorphism since

ιpa ` b
?

dq ` ιpa1 ` b1
?

dq “ a ` bω ` a1 ` b1ω

“ a ` a1 ` pb ` b1qω

“ ιppa ` b
?

dq ` pa1 ` b1
?

dqq,
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and

ιpa ` b
?

dq ¨ ιpa1 ` b1
?

dq “ pa ` bωq ¨ pa1 ` b1ωq

“ aa1 ` a1b ` ab1ω ` ω2

“ ιpaa1 ` a1b
?

d ` ab1
?

d ` dq

“ ιppa ` b
?

dq ¨ pa1 ` b1
?

dqq,

for all a, a1, b, b1 P Q. Also ι is injective, since ιpa ` b
?

dq “ 0 if and only
if a “ b “ 0. Hence the kernel of ι is trivial, so ι is injective. Therefore ι gives
an embedding of K into

´

m,n
Q

¯

.
For the other direction, we suppose that there exists an embedding

ι : K “ Qp
?

dq ãÑ

ˆ

m, n
Q

˙

.

Since embeddings of number fields necessarily leave Q unchanged, we have
that ι

` a
b

˘

“ a
b for all a

b P Q. Moreover, this means that if we set ω “ ιp
?

dq,
then

ω2 “ ιp
?

dq2 “ ιpdq “ d.

□

Theorem 7.2 gives a necessary and sufficient condition for the existence of a K-
orientation on a supersingular elliptic curve, since endomorphism algebras of su-
persingular elliptic curves are rational quaternion algebras.

Example 7.3. Let E be an elliptic curve given by y2 “ x3 ` x over some finite
field k. This curve has j-invariant jpEq “ 1728, and by [5, Example V.4.5] we
know that curves with j “ 1728 are supersingular if and only if p ” 3 mod 4.
Now suppose that k has characteristic p ” 3 mod 4, then E is supersingular.
Consider the field K “ Qpiq, where i is such that i2 “ ´1. By Theorem 7.2 we
know that there exists an embedding of K into End0pEq if and only if there is some
element that acts as ´1. Consider the isogeny

σ : px, yq ÞÑ p´x, ayq,

where a is such that a2 “ ´1. Note that the image of σ is exactly the elliptic
curve E, hence σ is an endomorphism. Also note that

σ2px, yq “ px,´yq “ ´ px, yq,
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therefore applying σ twice corresponds to the multiplication by ´1. Denote the
isomorphism from

´

m,n
Q

¯

to End0pEq by ψ. Then we have an embedding

K ãÑ

ˆ

m, n
Q

˙

with a ` bi ÞÑ a ` bψ´1pσq,

and composing this embedding with the isomorphism ψ we have an embedding ι
of K into End0pEq. Hence we have aQpiq-orientation on the (supersingular) elliptic
curve E over a field of characteristic p where p ” 3 mod 4.

Definition 7.4. Let k,K and E be as before and let O be an order in K. We say that
a K-orientation is an O-orientation if ιpOq Ă EndpEq.
We say that an O-orientation is primitive if ιpOq “ EndpEq X ιpKq. Note that in
this case ι gives an isomorphism between the order O and the endomorphism ring
of E considered in the image of K under ι.
If ι is a K-orientation on E, respectively a (primitive) O-orientation on E, we
say that the pair pE, ιq is a K-oriented elliptic curve, respectively a (primitive) O-
oriented elliptic curve.

Throughout this section we will assume that k,K, E are as introduced in Definition
7.1.

Definition 7.5. Let pE, ιq be a K-oriented elliptic curve, let F be some elliptic
curve over k and let ϕ : E Ñ F be an isogeny of degree ℓ. We define a K-
orientation ϕ˚pιq on F by

ϕ˚pιqpαq “
1
ℓ
ϕ ˝ ιpαq ˝ pϕ,

for α P K.
Given two K-oriented elliptic curves pE, ιEq and pF, ιFq, an isogeny ϕ : E Ñ F
is K-oriented if ϕ˚pιEq “ ιF . We denote this by ϕ : pE, ιEq Ñ pF, ιFq.

Proposition 7.6. Suppose E has a primitive O-orientation, denoted by ιE , and
there is an isogeny ϕ : E Ñ F of degree ℓ. Then F admits an induced primitive O1-
orientation by an order O1 satisfying

Z` ℓO Ď O1 and Z` ℓO1 Ď O.

Proof. The induced orientation on F is defined as ιFpαq :“ 1
ℓϕ ˝ ιEpαq ˝ pϕ,

for α P K. Rewriting this, by multiplying both sides with ϕ and its dual, gives
ιEpαq “ 1

ℓ
pϕ˝ιFpαq˝ϕ. We claim that ι´1

E pψq “ 1
ℓ ι

´1
F pϕ˝ψ˝pϕq, for ψ P EndpEq. It

can be checked that indeed ι´1
E pιEpαqq “ 1 and that ιEpι´1

E pψqq “ r1s. Similarly,
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we can check that ι´1
F pψq “ 1

ℓ ι
´1
E ppϕ ˝ ψ ˝ ϕq, by checking that ι´1

F pιFpαqq “ 1 and
that ιFpι´1

F pψqq “ r1s.
Note that O “ ι´1

E pEndpEqq and that O1 “ ι´1
F pEndpFqq. Let ψ P EndpEq

and a P Z, then
a ` ℓι´1

E pψq P Z` ℓO.

We have that

a ` ℓι´1
E pψq “ a ` ℓ

1
ℓ
ι´1
F pϕ ˝ ψ ˝ pϕq

“ a ` ι´1
F pϕ ˝ ψ ˝ pϕq.

Since a P ι´1
F pEndpFqq and since ϕ ˝ ψ ˝ pϕ P EndpFq, we conclude

that a ` ℓ ι´1
E pψq P ι´1

F pEndpFqq “ O1, so

Z` ℓO Ď O1.

The other inclusion can be proven in the same way. □

Proposition 7.7. Let ϕ : pE, ιEq Ñ pF, ιFq be a K-oriented isogeny of degree ℓ.
LetO “ EndpEq X ιEpKq and letO1 “ EndpFqXιFpKq so that ιE is a primitiveO-
orientation and ιF a primitive O1-orientation. We can distinguish three cases:

• we say ϕ is horizontal if O “ O1;

• we say ϕ is ascending if O ⊊ O1. In this case rO1 : Os “ ℓ;

• we say ϕ is descending if O ⊋ O1. In this case rO : O1s “ ℓ.

Proof. The proof of this statement is also given in [30, Proposition 21]. We
use [30, Proposition 5]. This proposition says that if E and F are isogenous and
if E has an endomorphism ring that is an order in a quadratic imaginary extension
of Q, then there exists unique relatively prime integers mE and mF such that

Z` mE ¨ ιEpEndpEqq “ Z` mF ¨ ιFpEndpFqq,

where the degree of every isogeny from E to F is divisible by mEmF . Therefore,
we must have that mEmF divides ℓ, which is prime. So either mE “ mF “ 1
or mE “ ℓ and mF “ 1 or mE “ 1 and mF “ ℓ. Hence we have one of the three
following cases:

Z` ℓO1 “ Z` O or Z` ℓO “ Z` O1 or Z` O “ Z` O1. (5)

This implies that either O “ O1, or O ⊊ O1 with rO1 : Os “ ℓ or O ⊋ O1

with rO : O1s “ ℓ.

□
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Definition 7.8. A K-oriented isogeny ϕ : pE, ιEq Ñ pF, ιFq is a K-oriented
isomorphism if there exists a K-oriented isogeny ψ : pF, ιFq Ñ pE, ιEq such
that ψ ˝ ϕ “ idE and ϕ ˝ ψ “ idF . In this case we say that pE, ιEq and pF, ιFq

are K-isomorphic and we write pE, ιEq � pF, ιFq.

We now return to the subject of isogeny graphs. In particular, we consider super-
singular isogeny graphs. Let E0{k be a supersingular isogeny graph and let ℓ , p.

Definition 7.9. An ℓ-isogeny chain of length n from E0 to E is a sequence of iso-
genies of degree ℓ:

E0
ϕ0
ÝÑ E1

ϕ1
ÝÑ E2

ϕ2
ÝÑ ¨ ¨ ¨

ϕn´1
ÝÝÑ En “ E.

We say that the chain is without backtracking if kerpϕi`1 ˝ ϕiq , Eirℓs for
all i P t0, . . . , i´1u. Furthermore we say the chain is ascending (or descending or
horizontal) if all isogenies ϕi are ascending (respectively descending or horizontal).

We can consider ℓ-isogeny chains to be walks in an isogeny graph. Since pϕi is
the unique isogeny such that composition with ϕi gives rℓs, “without backtracking”
means that the walk, considered in the isogeny graph, does not go back immedi-
ately to the vertex it came from.

Lemma 7.10. The composition of isogenies in an ℓ-isogeny chain is cyclic if and
only if the ℓ-isogeny chain is without backtracking.

Proof. It is clear that backtracking implies that the composition is not cyclic,
since then the kernel will contain pZ{ℓZq2, which is not a cyclic group. Now
suppose that the composition is not cyclic, that implies that there is an i such
that kerpϕi`1 ˝ ϕiq is not cyclic. That means that kerpϕi`1 ˝ ϕiq is a non-
cyclic subgroup of Eirℓs � pZ{ℓZq2. In particular this implies that there is
an element pa, bq P kerpϕi`1 ˝ ϕiq such that a and b are both not the unit el-
ement. But every element in Z{ℓZ for a prime ℓ generates the entire group.
Hence kerpϕi`1 ˝ ϕiq “ pZ{ℓZq2 “ Eirℓs and therefore the chain is with
backtracking. □

Remark 7.11. Note that descending ℓ-isogeny chains automatically do not have
backtracking, since the unique isogeny ψ that satisfies ψ ˝ ϕi “ Eirℓs is the dual
isogeny of ϕi, which is ascending. The same holds for ascending ℓ-isogeny chains.

Theorem 7.12. Let pEi, ϕiq be a descending ℓ-isogeny chain, such that E0 is
equipped with an OK-orientation, where OK is the maximal order of K. For
each i let ιi : K ãÑ End0pEiq be the induced K-orientation on Ei. We de-
note Oi “ EndpEiq X ιipKq, where O0 :“ OK . Then ιi induces an isomorphism

ιi : Z` ℓiOK � Oi.
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Proof. We know that O1 has index ℓ in OK , by Proposition 7.7, and similarly Oi`1
has index ℓ in Oi. By the multiplicativity of the index this implies that

rOK : Ois “ rOK : O1s ¨ rO1 : O2s ¨ ¨ ¨ rOi´1 : Ois “ ℓi.

For imaginary quadratic fields it holds that the conductor of an order O equals its
index in the ring of integers, i.e. it equals rOK : Os. In particular this implies
that Oi “ Z ` rOK : OisOK , so Oi “ Z` ℓiOK . □

Next we will introduce the concept of isogeny ladders. We use the same notation
as in Theorem 7.12. Let q be prime (in Z) different from p and ℓ that splits in OK .
Let q be a prime over q in OK . Set qi “ ιipqq X Oi. We define

Ci :“ Eirqis “ tP P Eirqs | ψpPq “ 0 @ψ P qiu.

Define Fi :“ Ei{Ci and let ψi : Ei Ñ Fi be an isogeny of degree q. Suppose that
we have an ℓ-isogeny chain pEi, ϕiq and q-isogenies ψi as defined. Then for all i
there is a unique ϕ1

i : Fi Ñ Fi`1 with kernel ψipkerpϕiqq such that the following
diagram commutes.

Ei Ei`1

Fi Fi`1

ϕi

ψi ψi`1

ϕ1
i

Furthermore, because the diagram commutes and ψi have degree q and ϕi have
degree ℓ, we know that the isogenies ϕ1

i all have degree ℓ too.

Definition 7.13. An ℓ-ladder of degree q is a commutative diagram of ℓ-isogeny
chains pEi, ϕiq and pFi, ϕ

1
iq of length n connected by q-isogenies pψi : Ei Ñ Fiq.

E0 E1 E2 ¨ ¨ ¨ En “ E

F0 F1 F2 ¨ ¨ ¨ Fn “ F

ϕ0

ψ0

ϕ1

ψ1

ϕ2

ψ2

ϕn´1

ψn

ϕ1
0 ϕ1

1 ϕ1
2

ϕ1
n´1

We say that the ladder is ascending if pEi, ϕiq is ascending and similarly we call it
descending or horizontal if the chain pEi, ϕiq is descending, respectively horizontal.
We say the ladder is level if ψ0 is a horizontal q-isogeny.
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Remark 7.14. Note that given an ℓ-isogeny chain of length n where E0 has an
orientation on it, the choice of an isogeny ψ0 : E0 Ñ F0 for some curve F0 gives
a unique choice for all other ψi and all Fi, since the kernels of the ψi are given
by Eirqis. Here we define qi “ ιipqq X EndpEiq X ιipKq. This way, given an ℓ-
isogeny chain of length n where E0 is oriented by some order in K, we can push
forward an isogeny ψ0 to an ℓ-ladder of length n.

Lemma 7.15. An ℓ-ladder ψ : pEi, ϕiq Ñ pFi, ϕ
1
iq of oriented elliptic curves is

level if and only if EndppEi, ιiqq is isomorphic to EndpFi, ι
1
iq for all 0 ď i ď n.

In particular, if the ℓ-ladder is level, then pEi, ϕiq is descending (or ascending, or
horizontal) if and only if pFi, ϕ

1
iq is descending (or ascending, or horizontal).

Proof. This is stated in [31, Lemma 6]. □

In [31] the authors state that the class group of an order O acts transitively and
freely on the set of K-isomorphism classes of primitive O-oriented supersingular
elliptic curves. This set is denoted by SSpr

O
ppq. In [32] it was shown that this claim

had to be slightly modified. The author proved the following Theorem 7.17.

To understand the Theorem we will first say something about reductions. We
do not want to go into detail about the subjects used here. For more informa-
tion on the subject we refer to [33, Section II.1]. Let L be a number field con-
taining K “ Qp

?
dq for some d ă 0. Let E be an elliptic curve over L

with EndpEq � O, where O is an order in K. Let r¨sE : O Ñ EndpEq be an
isomorphism such that pE, r¨sEq is normalized, i.e., for any invariant differential ω
on E,

prαsEq˚ω “ αω @α P O.

Let p be a prime ideal of L lying above a prime p at which E has good reduction.
A pair pE, r¨sEq determines a K-oriented elliptic curve pẼ, r¨sẼq by the reduction
modulo p where r¨sẼ : K Ñ End0pẼq is defined by

rαsẼ “ rαsE mod p @α P O.

The above can be found in [32, Section 3.3.2].

Definition 7.16. We define JO as the set of j-invariants of elliptic curves over C
with EndpEq � O.
We let L be a number field and p be a prime ideal of L lying above a prime p such
that for all j P JO there exists an elliptic curve over L whose j-invariant is j and
which has good reduction at p.
We define EllpOq as the set of isomorphism classes of all elliptic curves E over L
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such that jpEq P JO and E has good reduction at p.
We define the reduction modulo p map as

ρ : EllpOq Ñ SSpr
O

ppq by E ÞÑ pẼ, r¨sẼq.

Theorem 7.17. Let K be an imaginary quadratic field such that p does not split
in K, and let O be an order in K such that p does not divide the conductor of O.
Then the ideal class group ClpOq acts freely and transitively on ρpEllpOqq.

Proof. The proof is given in [32, Theorem 3.4]. □

Proposition 7.18. For all pF, ιq P SSpr
O

ppq we have

pF, ιq P ρpEllpOqq or pFppq, ιppqq P ρpEllpOqq.

Proof. The proof is given in [32, Proposition 3.3]. □

Proposition 7.18 tells us that ρ is surjective up to the p-th power Frobenius map,
hence the class group ClpOq acts transitively and freely on SSpr

O
ppq up to the p-th

power Frobenius map.

Example 7.19. We consider an elliptic curve E over the finite field F59,
with jpEq “ 0. By Example V.4.4 of [5], we know that an elliptic curve with j-
invariant 0 is supersingular if and only if charpkq ” 2 mod 3, therefore the elliptic
curve we chose is supersingular. By [34, p.11] we have that

EndpEq � Z` Z

„

1 ` i
2

ȷ

` Zr js ` Z

„

3 ` i ` 3 j ` k
6

ȷ

,

where i2 “ ´3, j2 “ ´59 and i j “ k “ ´ ji. We let K “ Qp
?

´3q and
since ´3 ” 1 mod 4, we have that the ring of integers of K equals

OK “ Z

„

1 `
?

´3
2

ȷ

.

We define a Qp
?

´3q-orientation on E by

ι : Qp
?

´3q ãÑ EndpEq b Q where a ` bιp
?

´3q “ a ` bi.

We define ζ3 :“ 1`
?

´3
2 , note that

ι pZ rζ3sq “ EndpEq X ιpQp
?

´3qq.

Therefore E has a primitive Zrζ3s-orientation, given by ι. For a cube root of
unity ζ3, we know that Zrζ3s has class number 1. We already constructed the
isogeny graph Gp59, 2q in Example 5.6 in Section 5. It looks as follows:
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48 17

28 47

15

0

We can view the possible 2-isogeny chains by considering paths in the supersin-
gular isogeny graph Gp2, 59q. The descending 2-isogeny chains starting at the
vertex j “ 0 and having length 4 can be illustrated as below. We let the edges
between 0 and 15 be as in the isogeny graph, since the graph is not 2-regular at
these vertices. This way we obtain a tree structure:

17 28 17 48 15 47 15 47

48 48 47 47

28 47

15

0

We know that for a primitve pk-th root of unity, a prime q , p splits (and
is unramified) in Zrζns. We choose the following 2-isogeny chain from the
graph: r0, 15, 28, 48, 17s. We choose a prime ideal over the split prime 7 in Zrζ3s,
we denote it by p7. We will consider the action of this prime ideal on the given 2-
isogeny chain, in order to construct a 2-isogeny ladder. To construct such a ladder

Page 75



Supersingular Isogeny Graphs Anne Wouda (6658210)

we can use the so called modular polynomials, as introduced in Chapter 5. Since
the class number of Zrζ3s equals 1, the ladder will look like:

0 15 28 48 17

0 F1 F2 F3 F4.

For F1 we solve
Φ2p0, Xq “ 0 and Φ7p15, Xq “ 0.

Subsequently we solve

Φ2pF1, Xq “ 0 and Φp28, Xq “ 0.

Continuing like this, we can construct a ladder. At F2, we have two options, cor-
responding to the j-invariants 47 and 28. Depending on how we chose p7 (i.e.
whether it is principal here or not), we will go along to either one of the two j-
invariants. Suppose that we chose p7 such that F2 “ 47. Solving the subsequent
systems of equations, we obtain the following ladder

0 15 28 48 17

0 15 47 47 15.
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7.2 Oriented Supersingular Isogeny Diffie-Hellman (OSIDH)

Oriented Supersingular Isogeny Diffie-Hellman, abbreviated as OSIDH, is a key
exchange protocol that uses oriented supersingular elliptic curves. This protocol
uses ℓ-isogeny ladders, as were defined in the previous section. We will first look at
an obvious, but insecure, way to construct a key exchange protocol using oriented
supersingular elliptic curves. After this we will look at the actual OSIDH protocol.

7.2.1 Preliminaries

We will first try to construct a key exchange protocol using orientations in a simple
manner.

The setup is as follows: Alice and Bob choose a descending ℓ-isogeny chain

E0 Ñ E1 Ñ ¨ ¨ ¨ Ñ En,

where E0 has anOK-orientation. This information is public. Additionally they both
choose a secret endomorphism of smooth degree of E0, denoted by ψA for Alice
and ψB for Bob.
In the protocol they will both build a ladder on the given ℓ-isogeny chain using the
secret isogeny ψA and ψB. Therefore Alice obtains

E0 E1 E2 ¨ ¨ ¨ En

F0 F1 F2 ¨ ¨ ¨ Fn,

ϕ0

ψA

ϕ1 ϕ2 ϕn´1

ϕA,0 ϕA,1 ϕA,2 ϕA,n´1

in this ladder everything that is colored red is known only to Alice. Bob obtains

E0 E1 E2 ¨ ¨ ¨ En

G0 G1 G2 ¨ ¨ ¨ Gn,

ϕ0

ψA

ϕ1 ϕ2 ϕn´1

ϕB,0 ϕB,1 ϕA,2 ϕA,n´1

in this ladder everything that is colored blue is known only to Bob. Now they will
exchange their complete ℓ-isogeny chain, i.e. Alice sends pFi, ϕA,iq to Bob and
Bob sends pGi, ϕB,iq to Alice. After the exchange they will both apply their own
secret isogeny, ψA and ψB, to the ladder they obtained. That will give them both
a new ℓ-isogeny chain and the chains they obtain will be the same since the class
group of an order in an imaginary quadratic field is commutative. Denoting the
final ℓ-isogeny chain by pHiq we can illustrate the protocol in a diagram as follows:
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H0 H1 H2 ¨ ¨ ¨ Hn

G0 G1 G2 ¨ ¨ ¨ Gn

F0 F1 F2 ¨ ¨ ¨ Fn

E0 E1 E2 ¨ ¨ ¨ En

ψA
ψB

Here the red colours still denote the isogenies that belong to Alice and the blue
ones the ones that belong to Bob. It is clear that Alice and Bob will share a (secret)
curve Hn in the end. However, in this protocol they share a lot of information,
namely their constructed ladders. It is shown in [31, Section 5.1] that this is too
much information as it renders the protocol insecure. Note that if the isogeny,
denote it by ψ, between En and Fn is known to some adversary, then the adversary
can compute Gn{kerpψq to obtain Hn, since the class group is commutative. This
would leak the secret key.

The authors show that it is feasible for an adversary to compute such an isogeny
between En and Fn. For the details we refer to [31, Section 5.1], but the idea is as
follows; by sharing the full isogeny chains pEiq and pFiq, it is possible to compute
the endomorphism rings EndpEnq and EndpFnq. It is believed that computing an
isogeny between supersingular elliptic curves En Ñ Fn while knowing EndpEnq is
broadly equivalent to computing EndpFnq. This is the case since, as described in
Section 5.3.1, we can identify supersingular elliptic curves and isogenies between
them with left EndpFnq-ideals. Therefore, the protocol as described in this section
gives away too much information. In the next section we will see how to construct
a protocol where Alice and Bob don’t have to share their full isogeny chains.

7.2.2 The protocol

We will now introduce the actual OSIDH protocol. As mentioned, the problem
with the previous protocol lies in the fact that Alice and Bob both share their
full ℓ-isogeny chains. If we make some adjustments to the set-up, it turns out that
they can use a similar method where they do not have to share the full chains and
can securely arrive at the same secret curve/key.

The set-up is as follows: Alice and Bob agree on an imaginary quadratic field K
and on a descending ℓ-isogeny chain E0 Ñ E1 Ñ E2 Ñ ¨ ¨ ¨ Ñ En where E0 has
an OK-orientation. They also agree on prime ideals q1, q2, . . . , qt in EndpEnq X K
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that split in OK and lie over primes q1, q2, . . . , qt, respectively. Then Alice picks a
secret key pe1, e2, . . . , etq where ei P r´r, rs for some r that is known to both. Bob
picks a secret key pd1, d2, . . . , dtq with di P r´r, rs. They both construct a ladder,
this time the ladder is a lot bigger than in the previous section. For Alice, the ladder
looks as follows:

E0
E0

Eorq1s
¨ ¨ ¨

E0

E0rq
e1
1 s

E0

E0rq
e1
1 q2s

¨ ¨ ¨ F0 :“ E0

E0rq
e1
1 q

e2
2 ¨¨¨q

et
t s

E1
E1

E1rq1s
¨ ¨ ¨

E1

E1rq
e1
1 s

E1

E1rq
e1
1 q2s

¨ ¨ ¨ F1 :“ E1

E1rq
e1
1 q

e2
2 ¨¨¨q

et
t s

E2
E2

E2rq1s
¨ ¨ ¨

E2

E2rq
e1
1 s

E2

E2rq
e1
1 q2s

¨ ¨ ¨ F2 :“ E2

E2rq
e1
1 q

e2
2 ¨¨¨q

et
t s

...
...

...
...

En Fp1q
n :“ En

Enrq1s
¨ ¨ ¨ Fpe1q

n :“ En

Enrq
e1
1 s

Fpe1,1q
n :“ En

Enrq
e1
1 q2s

¨ ¨ ¨ Fn :“ En

Enrq
e1
1 q

e2
2 ¨¨¨q

et
t s

We can view the isogeny from E0 to F0, denoted by ψA,0, as the analogue of the
secret isogeny ψA in the previous protocol, since the ei are secret. Note that we
choose qi to be in EndpEnq X K “: On and that Oi ⊋ Oi`1 since we have a de-
scending chain. Therefore all ψ P qi are endomorphisms of all E j, for all i and
for all j. Bob constructs a similar ladder using his secret key pd1, . . . , dtq, arriving
at some curve Gn :“ En

Enrq
d1
1 ¨¨¨q

dt
t s

. Alice and Bob will share their final curves Fn

and Gn, without orientation. They will build another ladder on top of this curve
using their own secret keys again. However, since they haven’t shared their full
ladder this time, they do not know with which isogeny to build the ladder (there
are qi ` i isogenies of degree qi). This happens since they don’t know the cho-
sen orientation on the final curve Fn and Gn. Of course both Alice and Bob know
the orientation ι0 on E0, but Alice chooses some secret isogeny ψA,0 : E0 Ñ F0
and Bob chooses some secret isogeny ψB,0 : E0 Ñ G0. This makes that every
isogeny ψA,i : Ei Ñ Fi and ψB,i : Ei Ñ Gi is secret. The orientation on Fn is
given by

1
degpψA,nq

ψA,n ˝ ιn ˝ yψA,n,

where ιn is the induced orientation, by ι0 on E0, on En. Hence the orientation on
the final curves is secret and Alice and Bob need to share some more information
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to get to the same curve in the end, however they should not share the full ladder
as we have seen in the previous section.

Theoretically, there is not really a difference between computing all the in-
termediate steps/ladders and computing just the final ladder pFiq. However,
in [32, Assumption 5.1] and [32, Theorem 6.2] it is shown that to construct a lad-
der ppEi, ϕiq, ψi, pFi, ϕ

1
iqq we can compute

gcdpΦℓpX, jpEi`1qq,ΦqpX, jpFiqqq “ 0

for all i. For this we assume that q is a prime, but if we would want to compute the
final ladder at once we would have a power of q, which is not prime. Moreover, the
larger q becomes, the more difficult the modular polynomialΦq will be to calculate.

Note that to construct the ladder, Alice chose some ψA,0 : E0 Ñ F0. However, she
does not share this isogeny with Bob. Similarly, Bob chose some isogeny to push
forward his ladder and did not share this isogeny with Alice. They also shouldn’t
share these isogenies since that would reveal the ladder. However, it is secure for
Alice and Bob to share the following information: using the isogeny they used to
push forward their own ladder, they can continue to compute

Fp jq
n,i :“

En

Enrq
e1
1 ¨ ¨ ¨ q

ei` j
i ¨ ¨ ¨ q

et
t s

and Gp jq
n,i :“

En

Enrq
d1
1 ¨ ¨ ¨ q

di` j
i ¨ ¨ ¨ q

dt
t s
.

They will compute these values for all i P t1, . . . , tu and for all j P r´r, rs. Then
they will send these to the other party. Now Alice can use her secret key to take
the correct amount of steps in the direction of each qi, as illustrated in Figure 7. In
this figure e1 ă 0 and e2 ą 0.
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Gprq

n,2

...

Gpe1,e2q

n,2 ¨ ¨ ¨ ‚ Gpe2q

n,2

...
...

...

Gpe1,1q

n,2 ¨ ¨ ¨ ‚ Gp1q

n,2

Gp´rq

n,1 ¨ ¨ ¨ Gpe1q

n,1 ¨ ¨ ¨ Gp´1q

n,1 Gn Gp1q

n,1 ¨ ¨ ¨ Gprq

n,1

Gp´1q

n,2

...

Gp´rq

n,2

Figure 7: How Alice finds Gpe1,e2q

n,2

Continuing like this, Alice will end up with the following curve

Gn

Gnrq
e1
1 ¨ ¨ ¨ q

et
t s

“
En

Enrq
e1`d1
1 ¨ ¨ ¨ q

et`dt
t s

“: Hn.

Bob will do the same thing with his own secret key and the directions that he got
from Alice. In the end he will also end up with the curve

Fn

Fnrq
d1
1 ¨ ¨ ¨ q

dt
t s

“
En

Enrq
e1`d1
1 ¨ ¨ ¨ q

et`dt
t s

“ Hn.

Therefore, after carrying out the protocol, Alice and Bob end up with the same
(secret) curve Hn. We can summarize these steps in the following protocol:
For a discussion of the parameters and security considerations of OSIDH, we refer
to [31].
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Oriented Supersingular Isogeny Diffie-Hellman (OSIDH)

Public parameters : A descending ℓ´isogeny chain :
E0 Ñ E1 Ñ ¨ ¨ ¨ Ñ En.

A set of splitting primes :
q1, q2 ¨ ¨ ¨ qt Ď EndpEnq X K.

Alice Bob

pe1, . . . , etq pd1, . . . , dtq

Fn :“
En

Enrq
e1
1 ¨ ¨ ¨ q

et
t s

Gn :“
En

Enrq
d1
1 ¨ ¨ ¨ q

dt
t s

Fn Ñ Fp1q

n,i Ñ ¨ ¨ ¨ Ñ Fprq

n,i Gn Ñ Gp1q

n,i Ñ ¨ ¨ ¨ Ñ Gprq

n,i

Fn Ñ Fp´1q

n,i Ñ ¨ ¨ ¨ Ñ Fp´rq

n,i Gn Ñ Gp´1q

n,i Ñ ¨ ¨ ¨ Ñ Gp´rq

n,i

Fn ´ directions

Gn ´ directions

Take ei steps in qi´isogeny chain Take di steps in qi´isogeny chain
and push forward information @ j ą i and push forward information @ j ą i

Output :
Gn

Gnrq
e1
1 ¨ ¨ ¨ q

et
t s

“ Hn Output :
Fn

Fnrq
d1
1 ¨ ¨ ¨ q

dt
t s

“ Hn

Figure 8: An illustration of OSIDH

7.2.3 Relation to SIDH

OSIDH is based loosely on SIDH. Recall that in SIDH, Alice and Bob perform
(roughly) the three following steps

• They construct secret isogenies to curves EA (for Alice) and EB (for Bob).

• They exchange the curves EA and EB plus some additional information (i.e.
the secret isogenies applied on a generator of the basis of the ℓ1 and ℓ2 torsion
points).

• Using the exchanged information, Alice and Bob are able to apply their own
secret isogeny and arrive at the same (secret) curve.

Looking at OSIDH in the same way, we see a lot of similarities in the protocol. We
can roughly distinguish the following three steps in OSIDH:

• Alice and Bob choose secret isogenies (ψA,0 and ψB,0) and using a ladder
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construction they end up at the (oriented) curves Fn (for Alice) and Gn (for
Bob).

• They exchange the (unoriented) curve Fn and Gn plus some additional infor-
mation (i.e., the Fn-directions and Gn-directions).

• Using the exchanged information, Alice and Bob are able to apply their own
secret keys to get to the same (secret) curve.

The methods look quite similar; the curves EA and Fn and the isogenies to them,
are both obtained by choosing some secret kernel. However, there is some extra
structure in OSIDH due to the composition of isogenies and the orientations on the
curves. In OSIDH, we do not have to rely on a basis for certain torsion groups and
therefore also not on computations on the basis. Another difference is that since
we consider imaginary quadratic fields, the class groups we consider in OSIDH
are commutative, whereas the ones in SIDH are not.

Overall, SIDH and OSIDH are quite similar, this fact gives rise to the question if
we could do something similar for SQISign, i.e., can we build a Σ-protocol (based
on SQISign) that uses orientations? We will look at this in the next section.

Page 83



Supersingular Isogeny Graphs Anne Wouda (6658210)

7.3 Orientations and Σ-protocols

7.3.1 Σ-protocol in SQISign

In this section we will try to construct a Σ-protocol that looks like SQISign and
uses orientations. Recall the Σ-protocol for SQISign from Section 6.5.

Parameters: The setup of the scheme is as follows. A prime p is chosen and then
a supersingular elliptic curve E0 over Fp with special extremal endomorphism
ring O0 is chosen. We choose Dc to be an odd smooth number of λ bits and D “ 2e

where e is above the diameter of the supersingular 2-isogeny graph. The prover
wants to prove knowledge of a secret τ.

Key generation: The key pair, consisting of a public key and a secret key, is
generated as follows. A random isogeny walk starting at E0 is chosen. This
isogeny walk is denoted by τ and ends at some vertex corresponding to an elliptic
curve EA. The public key is the curve EA and the secret key is the isogeny τ, i.e.
the key pair is ppk, skq “ pEA, τq.

The protocol:

• First the Prover P picks a random (secret) ψ : E0 Ñ E1. It sends E1 to the
Verifier V .

• The Verifier V picks a cyclic isogeny ϕ : E1 Ñ E2 of degree Dc and sends a
description of ϕ to P.

• The prover P constructs from ϕ ˝ ψ ˝ pτ : EA Ñ E2 some new
isogeny σ : EA Ñ E2 of degree D such that pϕ ˝ σ is cyclic.

• The Verifier V accepts when σ is an isogeny from EA Ñ E2 of degree D
and pϕ ˝ σ is cyclic.

The protocol can be illustrated as the diagram below. Here the red parts denote
public information and the blue ones secret information. Note that σ , ϕ ˝ ψ ˝ pτ.

E0 E1

EA E2

ψ

τ ϕ
ϕ˝ψ˝pτ

σ
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7.3.2 New 3-move protocol using orientations

Remark 7.20. Note that we know that a curve E0, as in the Σ-protocol for SQISign,
has an element π in its endomorphism ring such that π2 “ ´p, i.e. there is an
element that acts as the square root of ´p. In particular this implies that there is an
embedding

Qp
a

´pq ãÑ End0pE0q

and
Zr

a

´ps ãÑ EndpE0q.

Therefore E0 has a Qp
?

´pq-orientation and a Zr
?

´ps-orientation.

The fact that there is such an orientation allows us to construct ℓ-isogeny chains
and ladders starting at E0.

We will now illustrate an attempt at a Σ-protocol. The setup is as follows: Let E0
be a supersingular elliptic curve with special extremal endormorphism ring, then
by Remark 7.20 we know that E0 has a Zr

?
´ps-orientation. The key generation

algorithm outputs a (secret) isogeny τ0 : E0 Ñ EA,0, where EA,0 is public, so the
public key is EA,0 and the secret key is τ0. The 3-step protocol looks as follows:

• The prover constructs an ℓ-isogeny chain starting at E0

E0
ψ0
ÝÑ E1

ψ1
ÝÑ E2

ψ2
ÝÑ ¨ ¨ ¨

ψN´1
ÝÝÝÑ EN .

The prover constructs a ladder on this chain, using the secret isogeny τ0. It
will send EA,i and Ei for all i to the verifier.

EA,0 EA,1 EA,2 ¨ ¨ ¨ EA,N

E0 E1 E2 ¨ ¨ ¨ EN
ψ0

τ0

ψ1

τ1

ψ2 ψN´1

• The verifier will output a random isogeny ϕ0 : E0 Ñ EB,0, where EB,0 is
some supersingular elliptic curve. It will send both ϕ0 and EB,0 to the prover.

• The prover can construct a ladder on the chain pEi, ψiq using the isogeny ϕ0
from the verifier. It can build isogenies ξi : EB,i Ñ Fi and σi : EA,0 Ñ Fi

using the given information, in such a way that we obtain a commutative
diagram as below.
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F0 F1 F2 ¨ ¨ ¨ FN

EA,0 EA,1 EA,2 ¨ ¨ ¨ EA,N

EB,0 EB,1 EB,2 ¨ ¨ ¨ EB,N

E0 E1 E2 ¨ ¨ ¨ EN

σ0

ξ0

ψ0

τ0
ϕ0

ψ1

Note that the choice for Fi and ξi and σi is unique, since we can view
the diagram below as a ladder of length 2 that comes from the isogeny
chain Ei Ñ EB,i and the isogeny τi. The prover sends the Fi, all isoge-
nies between the Fi and Fi`1 and the isogenies σi for all i to the verifier.

Ei EB,i

EA,i Fi,

τi

ϕi

ξi

σi

The verifier checks whether all σi are indeed maps from EA,i

of degpσiq “ degpϕiq “ degpϕ0q. In the diagrams all red colored sym-
bols are public/shared and the blue ones are secret.

Remark 7.21. First note that the protocol satisfies correctness, since the verifier
will always accept when the prover indeed knows τ0, since it will be able to con-
struct proper σi.
Note that if we don’t require the isogenies between the Fi to be sent, a malicious
prover could compute a subgroup of EA,i with degpϕiq elements and then use Vélu
to construct an isogeny starting at EA,0 with proper degree. This isogeny probably
doesn’t give the commutative diagram, hence we need a means for the verifier to
be able to check the commutativity.

But, if we require the prover to send the full ℓ-isogeny chain pFiq (as we did in
the protocol) to the verifier, the prover doesn’t get away with the method from
Remark 7.21, since he will also have to find degree ℓ isogenies between all Fi

and Fi`1, which is generally not easy.
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This method looks a lot like SQISign, but here the prover doesn’t need an algorithm
to mask ξi ˝ϕi ˝ pτi, since we simply don’t need to share ξi. That is solved by sending
the ℓ-isogeny chain Fi, which seems difficult to construct for anyone that doesn’t
actually know τ0. Also, we do not require the cyclicity conditions anymore. This is
possible because of the commutativity of the diagram constructed in the protocol.

Remark 7.22. Note that in this protocol we do not actually need to have a supersin-
gular elliptic curve with a special extremal endomorphism ring. In fact, it suffices
to choose E0 to be any supersingular elliptic curve that has an O-orientation on
it. For example, we could choose E{Fp2 with jpEq “ 0 and p ” 2 mod 3, this
has a (primitive) Zrζ3s-orientation or we could choose E{Fp2 with jpEq “ 1728
and p ” 3 mod 4, which has a (primitive) Zris-orientation. Generally, this is also
how the initial curves in OSIDH are chosen. This makes the suggested protocol
generally more applicable.

7.3.3 Properties of Σ-protocols

The described protocol satisfies the basic properties of a Σ-protocol, however, for
it to actually be a Σ-protocol it needs to satisfy correctness, special soundness and
special honest verifier zero-knowledge as described in Definition 6.4. Up to now,
we know that it satisfies correctness, but special soundness and special honest
verifier zero-knowledge remain to be proven.

The correctness of the described protocol follows in the same way that Alice and
Bob arrive at the same curve in the section “First naive protocol” in [31], which
is described in subsection 7.2.1. The idea is as follows: if the prover actually
knows τ0, it can use it to push it forward on some ladder and he will obtain
isogenies τi’s to curves EA,i’s. Subsequently, using ϕ0 on the same ladder, he
obtains another ladder: (EB,i). By the commutativity of the class group, using τ0
on EB,0 and ϕ0 on EA,0, he will get a unique curve F0. The same holds for the
other Fi. The maps σi : EB,i Ñ Fi will have degpσiq “ degpϕ0q by construction
and the constructed ladder pFiq with isogenies ρi will satisfy degpρiq “ ℓ by
construction as well. Therefore the verfier will output accept everytime the prover
follows the protocol and actually knows τ0.

The other two properties are special soundness and special honest verifier zero-
knowledge. Recall the definitions:

• Special soundness: There exists a polynomial time algorithm E (also
called the extractor) such that on input of two accepting transcripts pa, c, zq

and pa, c1, z1q for x with c , c1, outputs a witness w̃ such that px, w̃q P R.
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• Special honest verifier zero-knowledge: There exists a PPT algorithm Sim
such that on input of x, Sim outputs a transcript pã, c̃, z̃q such that the
transcript has the same probability distribution as the honest protocol tran-
script Πpx; wq.

Special soundness for the SQISign Σ-protocol was proven using the relation:

R “ tpEA, αq : where α is a cyclic endomorphism of smooth degreeu

and it basically relies on the assumption that the Supersingular Smooth Endomor-
phism Problem is hard. This problem is stated as follows:

Problem. (Supersingular Smooth Endomorphism Problem)
Given a prime p and a supersingular elliptic curve E{Fp2 , find a (non-trivial) cyclic
endomorphism of E of smooth degree.

However, in our protocol, the signature does not only consist of an isogeny like α,
but it consists of several isogenies σi together with their target curves Fi and a full
description of the ladder pFi, ρiq. Therefore we would have to define a relation of
the sort

R “ tpEA,i, σi, pFi, ρiqq : σi : EA,i Ñ Fi and ρi : Fi Ñ Fi`1 for i P t1, . . .Nuu.

This relation is quite different from the relation that is used for the SQISign Σ-
protocol. Therefore we cannot simply use the method and assumption used in
SQISign, but it is possible that we can use properties of isogeny ladders to prove
the special soundness property.

We have not yet considered the honest verifier zero-knowledge property of the pro-
tocol, hence this part still needs to be researched.

7.3.4 Security considerations

The secret information in this protocol is the secret key: τ0. This is the in-
formation that should not be given away or leaked via the protocol. Therefore
when considering the security of the protocol, we need to consider attacks
that try to gain information on τ0. When considering the first attempt at a
key exchange protocol using orientations, we saw that the ℓ-isogeny chains
gave away too much information, in particular they could be used to compute
endomorphism rings and those could in turn be used to compute isogenies between
the final curves E and F. In the case of the protocol described above, we have
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information on the endomorphism ring of E0, since the orientation is known.
However, an adversary will not know the endomorphism ring of F0 a priori, or via
isogeny chains. Therefore, the same type of attack would not work on this protocol.

This is only one of the possible attacks on the scheme. More (possible) attacks
need to be considered before being able to say anything about the security.
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Appendix
A Magma code

This is a function for finding supersingular j-invariants over a field with N ele-
ments:

> J := function(N)

function> jSuperInvs := [];

function> for x in GF(N) do

function|for> if IsSupersingular(EllipticCurveFromjInvariant(x)) then

function|for|if> Include(˜jSuperInvs,x);

function|for|if> end if;

function|for> end for;

function> return jSuperInvs;

function> end function;

Given a field with N elements and an element Y corresponding to the j-invariant
of a supersingular elliptic curve over this field, this code determines which j-
invariants it is L-isogenous to:

> R<x,y> := PolynomialRing(GF(N),2);

> PL := R!ClassicalModularPolynomial(L);

> for x in J(N) do

for> if Evaluate((Evaluate(PL, 1, GF(N)!Y)), 2, x) eq 0 then

for|if> x;

for|if> end if;

for> end for;
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