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Abstract

Scan operations are a common building block in various parallel algorithms. Scan

operations are usually significantly faster on GPUs when dealing with large datasets,

due to their parallelism. In 2016, D. Merrill and M. Garland released a single-pass

decoupled look-back scan, which was significantly faster then the state-of-the art at

that time.

We extend this single-pass decoupled look-back scan to support irregular segmented

scans, where we scan over a ragged array using a separate array with flags. This

is then implemented into the Accelerate framework, a framework for parallel array

computations in Haskell. The performance of the algorithm was compared to the

original irregular segmented scan implementation in Accelerate. The changed single-

pass decoupled look-back performed significantly better than the original when deal-

ing with large datasets.
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1 Introduction

A scan operation is a common operation used in many algorithms. It is an operation

that takes in an array, some operator, and optionally some sort of initial element

and then outputs an array with the operator applied to the elements stepwise: with

the output depending on the combination of the preceding elements. For example,

an implementation in Haskell would look like the following:

scan :: (b -> a -> b) -> b -> [a] -> [b]

scan op initial xs = initial : (case ls of

[] -> []

x:xs -> scan op (op initial x) xs)

However, this is only one particular kind of scan. There are instead several kinds of

scans, with different use cases depending on the problem being solved.

Even though this function seems to be inherently sequential, if an associative oper-

ator is used, scans can be executed by parallel algorithms. These scan operations

have been a vital part of several parallel algorithms over the years. Even back in

1989, the potential of this operation was recognized by E. Blelloch, who made it a

primitive building block for a multitude of parallel algorithms [3].

When the development of Graphics Processing Units (GPUs) became widespread,

scan operations again became a key tool for several algorithms. Throughout the

years, several scan algorithms were designed for GPUs, which tried to improve the

performance of these operations [6].

Many researchers have spent a lot of time and effort into trying to make scan op-

erations fast, as scan operations are important building blocks. In 2016, look-back

algorithms were created by D. Merrill and M. Garland, significantly improving per-

formance over other scan implementations [11]. These improvements were achieved

by utilizing the memory bandwidth of the GPU better, and by allowing redundant

computations to disassociate from global memory latency.

In parallel with the developments in these algorithms, advances were made in the

design of frameworks to help programmers program GPUs easier, by providing easy-

to-use abstractions of low-level primitives. These developments allowed simpler ac-

cess to GPUs, which allowed for easier use of these massively parallel structures, and

allowed more programmers to use GPUs to optimize their programs. A framework

like that is Accelerate, which is an embedded language within Haskell, designed

to make parallel algorithms easier to write and execute on the GPU, or multicore

CPUs [4].

The look-back algorithm of D. Merrill and M. Garland was a significant improvement

for scans as it was generally faster and reduced the effects of memory latency other

algorithms had problems with. However, it is limited to only the class of scans we
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introduced above. The main question this thesis will answer is how to generalize and

optimize the look-back scan to support another class of scans: irregular segmented

scans.

In summary, the main contributions of the thesis are the following:

• An irregular segmented scan based on the look-back algorithm

• The implementation of such a scan in a GPU framework, such as Accelerate

• Benchmarks assessing the irregular segmented scan and several possible opti-

mizations in a framework such as Accelerate
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2 Background

2.1 Parallel computing

While ordinary CPUs are still making significant gains in single-core performance,

various predictions exist that the performance of electronics in general will no longer

double within fixed costs every two years [17]. This is due to various reasons, such as

transistors that will become as small as a few atoms, which are running into physical

limits. As such, other techniques to speed up computing have been developing, one

of these being parallel computing.

Parallel computing can be understood as using multiple computing resources simul-

taneous to solve some sort of computational problem [1]. This can circumvent the

problem that single-core performance doubling is no longer feasible, as you could in-

stead increase the number of CPU cores or use other more specialized architectures.

This brings its own set of problems with it, as synchronization between the various

processors will be required in various cases. One such specialized architecture take

will be explained further are Graphics Processing Units.

2.2 Graphics Processing Units & CUDA

Graphics Processing Units (GPUs) have seen an uptick in use in calculation-heavy

computer programs in the last few years. This uptick is partly due to their unique

architecture, by allowing many parallel cores to work on a problem at the same

time. While a CPU may have somewhere between 2 and 32 cores, a modern GPU

can have thousand of data-parallel cores. This allows certain parallel algorithms to

run much faster than on a CPU, at the cost of flexibility in the execution. This

is due to the fact that data-parallel cores can usually only differ in the data they

process, but cannot differ on the current instruction to execute [14]. This limitation

is by design: GPUs are designed for tasks related to graphics and excel at that,

but that makes it harder to apply to other domains. However, CPUs are general

purpose and designed to be as good as possible for all tasks.

2.2.1 Thread hierarchy

There are various ways of programming a GPU, which usually depends on the man-

ufacturer of the graphics card. Graphics cards from the NVIDIA Corporation can

be programmed using the CUDA toolkit [7]. Within CUDA, a group of threads

that perform the same code is called a thread group, while multiple thread groups

are combined into a thread block, see Figure 1. This hierarchy is similar to other

architectures, but with different names.

These thread blocks are scheduled by the scheduler of the GPU and executed on the

GPU. Thread blocks should be independent of each other: it should be possible to
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Figure 1: The thread hierarchy of CUDA. Original by the NVIDIA Corporation [13]

execute thread blocks in any order, be it sequential or parallel. Some communication

between threads within a thread block is possible, such as some synchronization

primitives and the usage of shared memory. Otherwise, only global memory can be

used to communicate between threads [13]. The main reasons for this are that it

is difficult to communicate efficiently between thread blocks, as well as difficulties

in scaling communication to the many thread blocks that can run simultaneously.

These thread groups are then grouped into a grid, which represents the groups

needed to fully process all your inputs.

2.2.2 Memory hierarchy

Within the programming model of CUDA, it is important to understand the memory

hierarchy and the distinction between shared memory and global memory, which is

shown in Figure 2. Shared memory is memory that is only available to the current

thread block. Due to the memory being very close to the chip executing the code,

it is very fast with latency comparable to register access [18].

Global memory doesn’t have the limitation that it is only accessible within the

current thread block. Instead, every thread on the GPU can access every part of

global memory. However, this comes at a trade-off: significantly reduced speed,

increased latency and heavier synchronization [13]. As such, efficient algorithms

usually try to avoid reading and writing into global memory as much as possible.

Instead, they generally copy their section of data into shared memory to perform

the various operations needed. After the result is calculated, the data is copied back

into global memory from the shared memory. Shared memory can be seen as similar

to CPU caches, where keeping as much relevant data in the CPU caches is more

efficient than having to resort to the global memory.
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Figure 2: The memory hierarchy of CUDA. Original by the NVIDIA Corpora-

tion [13]

2.3 Scans

In 1989, E. Blelloch set the stage for scan operations to become a primitive building

block for a multitude of parallel algorithms [3], such as the line-of-sight problem and

Radix-Sort [2]. The scan operator takes a binary associative operator, an initial

element, and an input array and returns an array, where the binary associative

operator is applied to each element and the result of the operation on the previous

elements. For example, given the input x = [x0..xm−1], an initial element n and

some binary associative operator ⊕, the result would be

[n⊕ x0, n⊕ x0 ⊕ x1, ..., n⊕ x0 ⊕ ...⊕ xm−1] (1)

Today, the scan operation is still highly relevant, for example in cooperative alloca-

tion within dynamic and irregular data structures [2, 11].

These parallel scan algorithms work in a variety of ways. An example of such an

algorithm is reduce-then-scan [12], which is shown in Figure 3. Reduce-then-scan

first splits up the elements into blocks. Each of these blocks is then reduced to

a single value using the reduce operation. Then, these values are put into a scan

operation, which results in an array of intermediate values, representing the value

of the scan operation between each block. At last, a scan is done over all blocks,

with the corresponding intermediate value added.
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Figure 3: An example of a reduce-then-scan execution. Each block is separated by

a red dotted line. Figure was edited, original made by D. Merrill and M. Garland [11]

2.3.1 Performance

A key property of a scan operation is the number of passes it requires. A pass here

is a series of operations which have to finish for all blocks before the algorithm is

able to continue. For example, in a reduce-then-scan, the first pass is the reduction

of all blocks. Only after all blocks have been reduced, the second pass can start with

a scan over those reduced values. Again, only after the scan over the reduced values

is completely done, the final scan can be computed to incorporate those reduced

values. As such, reduce-then-scan is a 3-pass algorithm. In general having multiple

passes is disadvantageous for performance, as blocks cannot progress until other

blocks have finished.

For scans, the performance is generally bound by memory access in contrast to the

binary operations [11]. As such, reducing the number of reads and writes in global

memory is of high importance to make a practical and well-performing algorithm.

This is quantified by the amount of data movement: the number of reads and writes

in global memory. Several scan algorithms for GPUs have a data-movement of 3n:

2 global memory reads and a single global memory write per element. For example,

the reduce-then-scan has this data-movement of 3n [11]. This 3n data-movement

can be seen in Figure 3, where the first read happens in the reduce phase, and then

the second read happens in the scan incorporating the reduced values. At last, the

result has to be written back, which results in a total of 3n data-movement. 3n

data-movement is however not the minimum: a scan can be done using only one

read and one write per element [19].

2.3.2 Segmented Scans

While scans work on 1-dimensional arrays, we have to define what it means to scan

matrices. For example, when dealing with matrices, we could define a scan to per-
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form a 1-dimensional scan for each inner row within the matrix. The implementation

then becomes fairly simple: just re-use the existing scan and apply it to each inner

row.

However, this method has a couple of downsides. First, if there is any overhead

for starting the scan, this is now significantly increased as this overhead is applied

for each row in the inner dimension. Secondly, when the inner dimension is small it

might mean that not all resources of the processor are utilized. For example, if there

are fewer elements than CUDA threads, some threads will not be used, reducing the

throughput of the algorithm.

A potential solution for these downsides would be to create a scan that after each

inner row ‘resets’ its value back to the initial element. A matrix could then be

represented in memory as a flat array, and a single scan could be started to scan

the whole matrix. This is more commonly called a regular segmented scan. Regular

in this case referring to the regular segment sizes of the scan.

However, it is not required for matrices to have the same number of elements in

the inner dimension. Instead, a matrix could be a ragged matrix, with an irregular

number of elements in each row. To solve this problem in a single scan, an additional

array would be needed to keep track of where these rows start and end. This could

be done with a second array with flags, where each truthful value represents the

start of a new segment, and such the end of the previous. At each new segment,

the scan resets and the scan continues with the initial element [3]. As an example,

given the matrix: x0 x1 x2

x3

x4 x5

 (2)

the flag array would be [true, false, false, true, true, false]. With the flat repre-

sentation of matrix arrays, the result of this scan would be:

[n⊕ x0, n⊕ x0 ⊕ x1, n⊕ x0 ⊕ x1 ⊕ x2, n⊕ x3, n⊕ x4, n⊕ x4 ⊕ x5] (3)

which represented in matrix form would be:

n⊕ x0 n⊕ x0 ⊕ x1 n⊕ x0 ⊕ x1 ⊕ x2

n⊕ x3

n⊕ x4 n⊕ x4 ⊕ x5

 (4)

This is also called an irregular segmented scan, and is the class of scans that this

thesis will dive further into.
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The implementation of segmented scans is varied. Segmented scans can be imple-

mented by changing the operation of a normal scan into a segmented operation which

operates on pairs of flags and values [15, 16]. This is called operator lifting. First,

the flag for a specific element is combined into a tuple of (flag, element). Then, the

combine function ⊕ is lifted to operator ⊕seg to operate on these flag-value pairs

[15, 16]:

(fx, x)⊕seg (fy, y) = (fx|fy, if fy then y else x⊕ y) (5)

and a non-segmented scan is executed with this new operator. This approach has

its upsides and downsides. The big upside is that the implementation of segmented

scans is fairly easy: the previous scan algorithms can be reused and only the pairing

and operator lifting have to be implemented. However, downsides exist as well.

Since normal scans are used, there is no possibility for optimizations that possibly

exist for segmented scans. It also changes the external interface of scan methods [16],

as well as not allowing for certain optimizations. As such, some implementations

chose to make segmented scan a separate implementation, so that the operation can

stay the same [16].

2.4 Look-back

For non-segmented scans, getting 2n global data-movement can improve the per-

formance of parallel scan operations. The chained-scan algorithm is designed for

this, however it suffered severely from serial dependencies between adjacent pro-

cessors [19]. The algorithm was later improved to reduce the serial dependencies

between adjacent processors, which became the single-pass parallel prefix scan with

decoupled look-back [11].

The algorithm works in a couple of steps, with each of these steps taken by their

respective processor. Figure 4 shows a visual representation of these steps. In

context of GPUs such as explained in Section 2.2, a “processor” is a thread block.

Each thread block then takes care of a certain number of elements, which can vary

depending on the number of threads in a block and the number of elements a single

thread processes. The steps the algorithm then takes are as follows:

1. Initialization: Initialize various fields in global memory, including the aggre-

gate, inclusive prefix, and the current status.

2. Synchronization: Make sure that each processor has a consistent view of the

global memory fields.

3. Compute the aggregate: Calculate the aggregate of the partition that is as-

signed to the respective processor. Then update the aggregate field in global

memory and set the status to “aggregate available”
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Figure 4: A single-pass parallel prefix scan with look-back. Original from D. Merrill

and M. Garland [11]

4. Compute the exclusive prefix: An attempt will be made to calculate the ex-

clusive prefix. Look back at the predecessors. We now have three possible

options:

• The predecessor does not have an aggregate yet. Block until it has an

aggregate.

• There is an aggregate, but not an inclusive prefix. Then add the aggregate

to the current exclusive prefix, and repeat these steps for the predecessor.

• There is an inclusive prefix. Add the inclusive prefix to the current ex-

clusive prefix, and go to the next step

5. Save the exclusive prefix: If we have a complete exclusive prefix, add our

aggregate, save it and set the status to “Inclusive prefix available”.

6. Integrate the exclusive prefix: Go though all the elements of the partition and

incorporate the exclusive prefix.

This does mean that to algorithm does some redundant computations. A single

scan and a reduce operation are performed, and computing the exclusive prefix

does redundant work when an aggregate is available but not an inclusive prefix.

However, if there is latency from the propagation of the exclusive scan values from a

predecessor, this can now be circumvented by using the aggregate and an inclusive

prefix of the second predecessor. This has the capability to significantly improve the

performance of scan operations. Depending on the use-case, the speedup is between

1.1x and 2.3x [11].

This scan is a single-pass scan, which consequently means that no step described

has a dependency on a previous step having to finish for all blocks. Instead, only

one or more predecessor blocks have to finish. This can reduce the time waiting for

other blocks to finish.
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With this scan, there is no need for a separate output array, instead the new elements

can be placed back into the original input array [11], also known as having in-place

updates. This is useful as the choice can be made to not make a separate output

array, reducing the memory needed to perform the scan. This is not a unique

property of single-pass look-back scans, but it is a useful property.

While this is an advantage, the algorithm does violate the principle of independent

thread blocks. For example, if the GPU scheduler schedules the last thread block

first, without scheduling the previous blocks, the algorithm would get stuck in an

infinite loop while trying to get the prefix of a predecessor. This is circumvented

using a technique involving atomics. An atomic counter is kept in global memory

that is incremented once when a thread block starts. The counter at that moment is

then used to determine what the thread block index is instead of the index from the

scheduler. This prevents a thread block being scheduled before their predecessors

are scheduled.

With segmented scans, the theoretical minimal global data-movement is 3n since the

n flags have to be read as well. Current algorithms, such as reduce-then-scan, have a

data-movement of 4n for segmented versions, which is higher then the theoretical 3n.

As such, improvements can be made here, such as implementing a single-pass look-

back algorithm that works on irregular segmented scans with 3n data-movement.

There already is a version of this algorithm for multi-dimensional scans [5], but none

for segmented scans.

2.5 Accelerate

Accelerate is an embedded language in Haskell, which is used to define array com-

putations in Haskell. It is then possible to compile these array computations for

multiple architectures, such as GPUs with CUDA, or x64 CPUs. Since Accelerate is

a runtime compiler, this compilation is done on-the-fly during execution of the pro-

gram. This on-the-fly compilation has its up- and downsides. The downside is that

the compilation of the program can take some time, which is added to the run-time.

This is partly mitigated by caching the programs so that compilation only happens

once. The upside is that since compilation happens at run-time, information about

the current system is available, which could be used for optimizations [4].

Accelerate is a combinator language, a language that allows creating of a program by

combining certain parallel primitive operations. Certain operators within Accelerate

are primitives, such as themap or the scan operation. With these parallel primitives,

new parallel functions can be created. For example, a function that calculates the

dot product of two vectors can be created as follows, using the fold primitive with

the prelude function zipWith:

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
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Figure 5: The scan-then-propagate algorithm implemented in Accelerate. Original

by M. Clausen [5]

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

This function is then optimized by a system of fusion, which combines the underlying

primitives to reduce the number of computations, as well as removing intermediate

data-structures. This is done to significantly increase performance [9].

To achieve the best possible performance, it is important to make a program which

works well with techniques such as SIMD. Accelerate forces the use of flat data-

parallelism, and disallows nested, irregular data-parallelism in its type system. This

allows Accelerate to statically determine at compile-time that a program cannot be

optimized correctly, and reject it during compilation [4].

To actually compile the Accelerate code to the CPU or GPU, Accelerate first com-

piles the DSL to LLVM IR. This LLVM IR is then compiled and optimized using

the LLVM compiler to either native CPU code, or to PTX to run on GPUs. The

generation of LLVM IR is type-safe, which makes it easier to write the compilation

to LLVM in Accelerate [10].

Accelerate supports various forms of scans in its prelude, including single dimen-

sional scans and multi dimensional scans for both non-segmented as well as irregular

segmented scans. However, support for irregular segmented scan is not considered a

primitive, but instead implemented using non-segmented scans, as will be explained

in Section 2.5.3. An overview of the currently implemented primitive scans are given

in Section 2.5.1 and Section 2.5.2.

2.5.1 Single dimension scans

For single dimensions scans, a scan-then-propagate algorithm is used, shown in

Figure 5. A scan-then-propagate algorithm works by first splitting up the input into

blocks, which are then individually scanned. Then, the last element is placed into

a global array, which is then scanned over to get all the aggregates. Lastly, those
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aggregates are propagated into the blocks, resulting in a fully scanned array. This

process has a data-movement of 4n. First, a single read and write in the first scan,

and then another read and write in the subsequent incorporation of the aggregates.

2.5.2 Multi-dimensional scans

Accelerate supports multi-dimensional arrays, which are represented in memory as

flat arrays. Currently, normal and segmented scans perform a scan operation per

row in the inner-most dimension. However, this scan operation is not done using a

scan algorithm that can use multiple thread groups, such as scan-then-propagate,

but instead do all the work cooperatively within a single thread group. For example,

a scan operation over an array of dimension 2× 1.000.000 will only start two thread

groups, as a thread group is started per row in the inner dimension. This can signif-

icantly affect performance, as now both thread groups have to deal with 1.000.000

elements. Instead, splitting these 1.000.000 elements over many more thread groups

would be faster, since many GPUs can run more than 2 thread groups at the same

time. This could significantly improve performance for situations where the inner

rows of a matrix are big but there are few of them.

2.5.3 Irregular segmented scans

While the previous scans discussed were implemented in Accelerate as primitives,

irregular segmented scans in Accelerate are implemented using normal scans and

operator lifting. This makes the implementation easy, but prevents any big opti-

mizations.

As an example of such an optimization, we look at the scan-then-propagate al-

gorithm. In the case where there is a flag in one of the blocks, we only have to

incorporate the aggregate into any elements before the first flag. Depending on the

implementation, this might save a significant amount of work, for example when the

flag is in the first position, as this would allow skipping the incorporation of the

aggregate completely.
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3 Segmented Look-Back scans

With knowledge of look-back scans, as well as segmented scans, it is now possible to

look at the combination of these techniques and what advantages combining them

brings. We start out by giving a general overview of using operator lifting, and

showing where improvements can be gained with a separate irregular segmented

look-back scan. Then, we show the full irregular segmented look-back scan algo-

rithm with all these improvements. At last, we explain the implementation within

Accelerate in detail, with some example code.

3.1 Operator lifting

As discussed in Section 2.5.3, operator lifting is one way of implementing a irregular

segmented look-back scan. The big upside being that no changes have to be made

to the original algorithm, as operator lifting can turn any scan into a irregular

segmented scan. We simply lift the operator as discussed before, and every step of

the algorithm will now work for irregular segmented scans.

However, when looking at the steps as were discussed in Section 2.4, we can spot

some possible improvements versus operator lifting. The first improvement can be

spotted when looking at step 3. Assume that some block that is being processed has

a segment border anywhere. Since the exclusive and inclusive prefix values of this

block will now no longer be influenced by any previous block, we can set the status

to “inclusive prefix available” instead of “aggregate available”. This will cause other

blocks to have a more complete predecessor available sooner, which should improve

performance. This doesn’t happen in the operator lifting approach, since no changes

are made to the algorithm.

This advantage can be quantified by looking at the percentage of blocks that have

at least a segment border. If more blocks have at least one segment border, more

blocks can go to the “inclusive prefix available” status without having to look back,

increasing performance.

More improvements can be spotted if we allow changing the algorithm a bit. For

example, in step 4 the operator lifting will retrieve both the aggregate element as

well as the aggregate flag. However, with a separate implementation you could forgo

the loading of the aggregate flag, as if there was a flag the status is set to “inclusive

prefix available” as by the previous improvement. As such, any situation where

two aggregates are added even if there was a flag in between is avoided. Other

improvements include only setting the status to “inclusive prefix available” once,

by skipping step 5 if the status is already “inclusive prefix available”, and only

incorporating the prefix up until the first flag.
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3.2 General overview

Now that the improvements over operator lifting have been identified, the changes

can be incorporated into the look-back algorithm. In general, large parts of the

single-pass look-back scan algorithm stays the same as was described in Section 2.4.

For clarity we will repeat the complete algorithm here, marking all changes in bold.

1. Initialization: Initialize various fields in global memory, including the aggre-

gate, inclusive prefix, and the current status.

2. Synchronization: Make sure that each processor has a consistent view of the

global memory fields.

3. Compute the aggregate: Calculate the aggregate of the partition that is as-

signed to the respective processor. Then update the aggregate field in global

memory and set the status to “aggregate available” if there was no flag in

this partition. If there was a flag, set the status to “Inclusive prefix

available”.

4. Compute the exclusive prefix: An attempt will be made to calculate the ex-

clusive prefix. Look back at the predecessors. We now have three possible

options:

• The predecessor does not have an aggregate yet. Block until it has an

aggregate.

• There is an aggregate, but not an inclusive prefix. Then add the aggregate

to the current exclusive prefix, and repeat these steps for the predecessor.

• There is an inclusive prefix. Add the inclusive prefix to the current ex-

clusive prefix, and go to the next step

5. Save the inclusive prefix: If we have a complete exclusive prefix and no flag

in the partition, add our aggregate, save it and set the status to “Inclusive

prefix available”.

6. Integrate the exclusive prefix: Go though the elements of the partition up to

the first flag and incorporate the exclusive prefix.

The change in step 3 is not only for performance reasons, but is also required to make

the algorithm correct. If this change wasn’t made, step 4 could add two aggregates

together even though there is a segment border in between, which would cause

incorrect results. The same applies to step 5: if there was a flag in the partition

we already set the inclusive prefix to the correct value. Setting the value to the

calculated inclusive prefix is not incorrect but redundant.

The last change is in step 6: we only have to incorporate the exclusive prefix up to

the first flag. After the first flag, we reset and any values before it aren’t relevant

anymore.
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Another small optimizations can be found when a new segment starts at the begin-

ning of a block. If this is the case, we can skip the look-back process fully, as we

don’t require a previous aggregate. However, this is only the case when segments

start on the first element of a block, and as such this probably doesn’t increase

performance by a lot.

Looking at the differences between the two implementations, we hypothesize that

the direct implementation should have better performance than the operator lifting

implementation, with this performance increase being bigger when the percentage

of blocks having at least one segment border is higher. This is further discussed in

Section 4.2.1, where the performance of these implementations is discussed.

3.3 Implementation

In order to implement the segmented look-back algorithm within Accelerate, several

changes had to be made. These changes include a new primitive to be supported

by Accelerate, code generation of this primitive in several different cases, and more.

As such, these changes will be discussed in the next several subsections. The full

implementation of these changes can be found on Github1.

3.3.1 Segscan Primitive

As explained in Section 2.5, Accelerate considers several functions primitives, and

with these primitives new functions can be created. To allow specific code generation

for segmented scans, we start out by adding a datatype for this new primitive as

shown in Listing 1.

data PreOpenAcc (acc :: Type -> Type -> Type) aenv a where

-- [...]

SegScan :: IntegralType i

-> Direction

-> Fun aenv (e -> e -> e) -- combination function

-> Maybe (Exp aenv e) -- initial value

-> acc aenv (Array (sh, Int) e) -- array to scan

-> acc aenv (Segments i) -- segment descriptor

-> PreOpenAcc acc aenv (Array (sh, Int) e)

Listing 1: SegScan primitive in Accelerate

In short, to construct a segmented scan, a left-to-right or right-to-left direction is

required for the scan, a combinator function, an optional initial value for exclusive

1https://github.com/Jasonoro/accelerate-llvm/blob/b43deace9e6cfda7ad9222db96e4a54728b7f5fc/

accelerate-llvm-ptx/src/Data/Array/Accelerate/LLVM/PTX/CodeGen/Segscan.hs
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segmented scans, the actual array to scan over, and an array of segments which

should be of an integral type. With this information, we can construct a new array,

of the same shape as the input array.

After construction of this new primitive, all functions that pattern match on the

primitives within Accelerate have to be changed to support the new SegScan prim-

itive. As these are usual trivial copies with a few small additions of the already

existing Scan primitive, these have been omitted for brevity.

We now come to the actual code generation of Accelerate. Since the code generation

of Accelerate can be verbose, due to for example not supporting arrays of structs or

pairs, the following parts will be presented in C++ pseudocode. Within the pseu-

docode the type parameter T will represent the generic type of the input elements.

The full code listings can be found in the Appendix.

3.3.2 Getting the block ID

The algorithm starts out by getting a unique, atomically increasing, block ID. This

is required as we cannot use the block ID from the GPU scheduler, as there are no

guarantees that block n is scheduled before block m, if n < m. However, since the

algorithm relies on having block n available before block m can finish, this could

cause a deadlock if left untouched.

1 // arrBlockId is an integer in global memory

2 int bd = blockDim.x;

3 int tid = threadIdx.x;

4 __shared__ int blockIdShared = NULL;

5 int last = bd - 1;

6 if (tid == last) {

7 blockIdShared = atomicAdd(&arrBlockId, 1);

8 }

9 // Sync the threads, as we need the value in shared memory

10 // before we continue

11 __syncthreads();

12 int s0 = blockIdShared;

Listing 2: Getting an unique block ID. Accelerate specific code can be found in

Listing 8 in the Appendix

The code starts out on line 2 and 3, with grabbing the dimensions of the block as

well as the current thread ID. Then, a piece of shared memory is created to hold the

atomically increasing block ID. On line 7, the last thread in the block then grabs a

pointer to the global integer, and atomically increments it, which returns the value

that was in the global integer before the increment. At last, we save this block ID

to the integer in shared memory on line 7, so that all other threads can read it at

line 12. Some synchronization is required before that, as the thread needs to finish
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writing to the shared integer before reading can occur, otherwise the value might

still be ‘NULL’.

3.3.3 Loading data from global memory

To actually perform the scan, data has to be loaded from global memory. This is a

relatively straightforward process for scans that are performed left-to-right, but is a

bit harder for scans that perform their operations right-to-left. First, the algorithm

starts out by calculating the indices that have to be read as well as written to. Then,

these indices are loaded from global memory, putting them in a single array.

1 // array_size is an integer representing the length of the flattened array

2 // global_elements is the array with the elements in global memory

3 // global_segments is the array with the segments in global memory

4 const int ELEMENTS_PER_THREAD = 7;

5 int indexToStartAt = ELEMENTS_PER_THREAD * s0 * bd;

6 int index;

7 if (direction == LEFT_TO_RIGHT) {

8 index = indexToStartAt + (ELEMENTS_PER_THREAD * tid);

9 } else {

10 index = array_size - indexToStartAt - tid - 1;

11 }

12 // Check if this index is within the bounds of the array

13 if (valid(index)) {

14 T* elements = new T[ELEMENTS_PER_THREAD];

15 int* segments = new int[ELEMENTS_PER_THREAD];

16 for (int i = 0; i < ELEMENTS_PER_THREAD; i++) {

17 if (direction == LEFT_TO_RIGHT) {

18 elements[i] = global_elements[index + i];

19 segments[i] = global_segments[index + i];

20 }

21 else {

22 elements[i] = global_elements[index - i];

23 segments[i] = global_segments[index - i];

24 }

25 }

26 // Rest of algorithm continues here within the if statement...

Listing 3: Loading the data from global memory. Accelerate specific code can be

found in Listing 9 in the Appendix
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3.3.4 Block-level scan & setting global status

With this data of global memory, a block-level scan is performed using SHFL in-

structions. This block-level scan returns a pair of the scanned input elements, which

is different for each thread, but also the index of the first flag found within the scan.

This value is needed for two reasons. First, if this value is set we directly set the

status to “inclusive status available”. Second, we require this value to determine if

a certain thread has to add the previous block aggregate to its elements.
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1 // combine is the combination function that is used

2 // tmpAgg and tmpStatus are global arrays used to communicate

3 // the aggregates and statuses of the blocks

4

5 // The SegscanBlock returns the new element values, and the first flag

6 // that occurred in this block. The first flag value will be used

7 // later on to know when we have to stop adding the aggregate

8 // of the previous block to our elements.

9 std::pair <T*, int> blockResult =

10 SegscanBlock(direction, combine, elements, segments);

11 bool hadFlag = blockResult.second != INT_MAX;

12 bool isFirstBlock = s0 == 0;

13 int status;

14 // We now have done block-level scans, so now we need to

15 // incorporate previous block(s) into our application.

16 // Communication is done over global memory

17 if (hadFlag || isFirstBlock) {

18 status = INCLUSIVE_KNOWN;

19 }

20 else {

21 status = AGGREGATE_AVAILABLE;

22 }

23 // The last thread also writes its result, the aggregate for this thread block,

24 // and it's corresponding status to the temporary array. This is only

25 // necessary for full blocks in a multi-block scan; the final

26 // partially-full tile does not have a successor block.

27 if (tid == last) {

28 T lastElement = blockResult.first[ELEMENTS_PER_THREAD - 1];

29 tmpAgg[s0] = std::make_pair(lastElement, lastElement);

30 __threadfence_grid();

31 tmpStatus[s0] = status;

32 }

33 // Wait until all threads are at this point. This sync is not strictly

34 // necessary, but it forces the GPU to write to the global array first.

35 // This seemed to improve performance somewhat

36 __syncthreads();

Listing 4: Performing a block level scan and setting the global status. Accelerate

specific code can be found in Listing 10 in the Appendix
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There are a few important bits here that require some additional explanation. First,

the ‘tmpAgg’ and ‘tmpStatus’ arrays. These are arrays within global memory that

store the current aggregate as well as the status for all blocks. The status array

can have one of three values: either ‘initialized’ when the scan was started but no

aggregate is available, ‘aggregate available’ when there is an aggregate available but

the previous blocks haven’t been incorporated yet, or ‘inclusive known’ when the

full inclusive prefix is known.

Second, the aggregate arrays stores a pair of values of the element: the first element

being the aggregate without incorporation of previous blocks and the second being

the value with that incorporation. This is to preserve atomicity when changing

the status from ‘aggregate available’ to ‘inclusive known’. If this value wasn’t a

pair, it could happen that the value would be overwritten before the status is set to

‘inclusive known’, potentially causing incorrect values.

One last point is the use of the “threadfence grid” synchronization primitive. This

function makes sure that all writes before the fence are observed before any writes

after it. This prevents any other block from reading an updated status before the

aggregate is actually available.

3.3.5 Look-back

With our block-level elements scanned, and this (partial) result published in memory,

we can continue with the main part of the algorithm, which is determining what

value we have to add to our local elements. This look-back is split into two parts:

first the steps to take if a previous block isn’t available and second the complete

look-back.
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1 __global__ std::pair<T, int> WaitForAvailable(

2 int blockId, T aggregate, T(*combine)(T, T)

3 ) {

4 while (true) {

5 int status = tmpStatus[blockId];

6 if (status != SCAN_INITIALIZED) {

7 T aggregateToAdd;

8 if (status == INCLUSIVE_KNOWN) {

9 aggregateToAdd = tmpAgg[s0].second;

10 }

11 else {

12 aggregateToAdd = tmpAgg[s0].first;

13 }

14 T newAggregate;

15 if (aggregate == NULL) {

16 newAggregate = aggregateToAdd;

17 }

18 else {

19 newAggregate = combine(aggregate, aggregateToAdd)

20 }

21 return std::make_pair(newAggregate, status);

22 }

23 }

24 }

Listing 5: Waiting for a predecessor block to become available. Accelerate specific

code can be found in Listing 11 in the Appendix

The first part is a busy-wait function that waits for a specific block to become

available, either with an inclusive or exclusive status. If the status of the selected

block is still ‘initialized’, we simply check again until the status changed to either

inclusive or exclusive. Once we read that we have a inclusive or exclusive status,

we grab that aggregate, add it to the previous aggregate and return that from the

function.

There is a small difference between the segmented version of the look-back and the

non-segmented one. For the non-segmented version, we don’t need to return the

previous status from this function. This is because we can always add the inclusive

prefix and take that path, but this cannot be done for the segmented version. If we

were to do this for the segmented version, we could add an inclusive prefix of a block

with a segment, and the look-back would continue to the block before that, which

would be incorrect as a flag was passed. As such, we return the previous status so

that this info can be used in the main look-back loop.
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1 T result;

2 if (s0 == 0) {

3 result = blockResult.first;

4 }

5 else {

6 bool done = false;

7 int currentBlock = s0 - 1;

8 T currentAggregate = NULL;

9 while(!done) {

10 if (__all_sync(aggStatus[currentBlock] == INCLUSIVE_KNOWN)) {

11 done = true;

12 T agg = tmpAgg[currentBlock].second;

13 if (currentAggregate == NULL) {

14 currentAggregate = agg;

15 }

16 else {

17 currentAggregate = combine(currentAggregate, agg);

18 }

19 }

20 else {

21 std::pair<T, int> res =

22 WaitForAvailable(currentBlock, currentAggregate, combine);

23 currentAggregate = res.first;

24 currentBlock -= 1;

25 if (res.second == INCLUSIVE_KNOWN) {

26 done = true;

27 }

28 }

29 }

30 result = currentAggregate;

31 }

32 for (int i = 0; i < ELEMENTS_PER_THREAD; i++) {

33 // Only add the aggregate until the first flag in this block

34 if (blockRes.second >= i + tid * ELEMENTS_PER_THREAD) {

35 blockResult[i] = combine(result, blockResult[i]);

36 }

37 }

Listing 6: The main look-back loop. Accelerate specific code can be found in

Listing 12 in the Appendix

The second part of the look-back is the main look-back loop. We start out by reading

the previous blocks status, and if it’s inclusive we add that to our previous aggregate
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and stop the look-back. Since we initialize the scan with a ‘NULL’ value, we need

to make sure this combine function is only called if we do not have a ‘NULL’ value.

After we added that aggregate we return from the while loop, so that we can use

the found value.

If all threads didn’t have an inclusive value, we instead go into the busy-wait loop

explained above. Once this is done, we take that value and add it to the current

aggregate. Then, if this was an exclusive value, we continue with the block before.

If instead it was an inclusive value, we stop the loop by setting the ‘done’ variable

to true.

After finding the look-back value, that value has to be incorporated into our current

elements. However, this only needs to happen until our first flag. As such, we make

sure to check for this, and only combine the aggregate into our elements when there

hasn’t been a flag yet.

3.3.6 Sharing aggregate & writing to global memory

Now that all threads within the block have the correct values, we can share that

aggregate with other blocks. We start out by writing the last value of the last thread

of the block into global memory, if there was no flag in this block. If there was a flag,

we have already written our inclusive value, so writing again would not do anything

and so we skip that.

1 if (status == AGGREGATE_AVAILABLE && tid == last) {

2 tmpAgg[s0] = std::make_pair(

3 blockRes.first, blockResult[ELEMENTS_PER_THREAD - 1]

4 );

5 __threadfence_grid();

6 tmpStatus[s0] = INCLUSIVE_KNOWN;

7 }

Listing 7: Sharing the aggregate. Accelerate specific code can be found in List-

ing 13

We then write the results of the scan back into global memory, using the same

technique as in Section 3.3.3.
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4 Experiments and Results

4.1 Experiments

To accurately measure the performance of the constructed segmented scan algo-

rithm, various benchmarks were performed comparing the segmented single-pass

look-back scan with the original implementation using operator lifting with a 3-pass

scan, and with a single-pass look-back scan using operator lifting. All benchmarks

were done on a AMD Ryzen Threadripper 2950X, with an NVIDIA GeForce RTX

2080 Ti, and 64GB of RAM. The OS used was Ubuntu 20.04.2, with CUDA version

10.1 and driver version 470.129.06.

First, we measure the impact of the number of elements to scan on the running time

of the various algorithms. This is done by summing the value 1 and having a flag

every 10.000 elements. Second, we measure the impact of the number of flags on

the various algorithms. This is done with the same program, just with a constant

5.000.000 integers. The segments are then evenly spaced with a certain number of

elements between segments, which is varied over the benchmarks in powers of 10.

During the benchmarks 3 ‘cold-runs’ are first done, which constitute running the

program without measuring its results. This is done to reduce variance of the run-

ning times, for example due to caching behavior. After these cold runs have finished,

10 ‘hot-runs’ are done to measure the running time of the GPU kernel. Only the

individual kernel times are measured: copying of the data into GPU memory, or

time between kernels is not measured. This is done to try to benchmark these algo-

rithms as accurately as possible, hopefully reducing variance between runs as much

as possible. This brings with it a small advantage within the comparison for the

original 3-pass scan, as starting up a kernel takes a bit of time which is ignored in

the results.

4.1.1 Performance in relation to segment lengths

As hypothesized in Section 3.1, we expect the running time of the algorithm to

decrease if the number of blocks that have at least one segment is larger. As such,

we do additional measurement on the same test case as above, but with the segments

placed so that every nth block has a segment, where n doubles every time. There is

one exception, which is the last measurement that has no segments at all. Otherwise,

the same benchmarking techniques applies as explained above.

4.2 Results

4.2.1 Segmented scan

First, looking at the general comparison of running times between the several al-

gorithms in Figure 6, it is clear that the specialized 1-pass scan outperforms the
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Figure 6: A logarithmic comparison between the original 3-pass scan with lifted

operator, the 1-pass with lifted operator and the specialized 1-pass segmented scan,

varying the number of elements with constant segment length of 10.000

other algorithms when the number of elements is larger then 105. This can also be

seen in Figure 7, where the values are normalized taking the original 3-pass scan as

baseline.

Continuing to the results in Figure 8, we see that for each variant of segment length,

the single-pass look-back segmented scan is the best performing algorithm when

there are 5.000.000 elements, but that the running time does change. The original

3-pass scan with operator lifting performs the worst, with an running time of at

least double that of the single-pass segmented look-back when there are 5.000.000

elements.

Another interesting observation is that while the operator lifting algorithms have

a fairly constant execution time over the different segment lengths, the single-pass

segmented look-back seems to have a lower execution time with smaller segment

lengths. We show this difference in more detail in Figure 9, where it can clearly be

seen that the more blocks have a segment, the quicker the algorithm is.

This confirms our hypothesis as described in Section 3.1. There is however one

‘strange’ result, which is that a flag every block is slower then a flag every two

blocks. Why this happens is unclear and would have to be further researched.
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Figure 7: A normalized comparison between the original 3-pass scan with lifted

operator, the 1-pass with lifted operator and the specialized 1-pass segmented scan,

varying the number of elements with constant segment length of 10.000

4.2.2 Normal scan

Since a segmented look-back scan has been implemented, it was trivial to convert

this implementation to a normal look-back scan such as described in the original

paper by D. Merrill and M. Garland [11]. The implementation was benchmarked

against the 3-pass scan that was already present within Accelerate. With 5.000.000

elements, this resulted in a reduction of running time from 1222 µs to 644 µs. This

is a significant improvement for a large number of elements when compared to the

current implementation.
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1-pass with lifted operator and the specialized 1-pass segmented scan, varying the

segment lengths with a constant 5.000.000 elements
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Figure 9: A comparison of running time when varying the number of blocks with

a segment with a constant 5.000.000 elements
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5 Future work

While the results of the segmented look-back are good, several improvements can

still be made and others can be researched. Below we will discuss a couple of

improvements that could be implemented and researched, and what their possible

impact would be.

5.1 Memory coalescing

When interacting with global memory, it is important for performance to read and

write to memory coalesced to improve the performance of these operations [8, 13]. As

seen in Section 3.3.3 and Section 3.3.6, global memory reads and writes are currently

not coalesced, which probably causes decreased performance. However, since every

thread needs to have sequential elements available, some additional shuffling of the

elements over either shared memory or using SHFL instructions would be needed

to transpose the input so that all threads get their needed elements. This causes

some additional overhead, so benchmarking would be required to look whether this

decreases overall running time.

5.2 Optimal elements per thread

In the current implementation, every thread combines 7 elements locally, before

sharing this information in a block-wide scan. However, the optimal number of

elements will depend on factors such as the available registers of the GPU, the

speed of global memory, the speed of individual threads, and much more. As such,

researching what the optimal number of elements is for certain GPUs and workloads

could help improve the performance of this algorithm. Since Accelerate compiles the

CUDA kernels at run-time, it is able to use the information about the available GPU

to optimize this variable at compile time.

5.3 Fast tracking inclusive values

As discussed in Section 4.2.1, when there are more blocks with segments, the running

time of the segmented single-pass algorithm is lower. This happens when a previous

block can fast-track setting the inclusive value due to not having to look-back first.

However, it might be possible to do a pass before the actual look-back algorithm,

finding the blocks that have at least one segment and publishing those inclusive

results. After this the normal executing of the algorithm would resume.

Another fast-track option would be to see if we could detect that a block has a

segment before the full block scan is done. For example, if there is a flag 10 elements

before the end, we would only have to scan the last 10 elements and no intra-

warp communication would be needed before we could publish the inclusive prefix.
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However, this might cause additional overhead and extensive benchmarking would

be required to see whether this would improve performance.

5.4 Flag packing

Currently, flags are represented by 32-bit integers, with the smallest supported pos-

sibility being 8-bits for a simple true of false value. Instead, we could pack 8 flags

into a single 8-bit value, significantly reducing the memory footprint needed for the

flags as well as reducing the amount and size of the reads from global memory. How-

ever, packing flags will have a negative effect on performance if memory coalescing is

implemented, so this tradeoff would have to be considered. At the moment this kind

of packing is not supported within Accelerate, and the current type requirements

for arrays of segments prevent doing this. As such, to make these improvements

several changes would have to be made to Accelerate to fully support flag packing.

5.5 Fusion

Accelerate has a concept of fusion, which is a system that can combine primitives

into a single piece of code. For example, if there is a combination of primitives such

as map g . fold f z, the map operation can be fused into the fold by applying

g before the reduction in the fold is performed [9]. This is useful as it reduces the

amount of GPU kernels that have to run, as well as not needing an array to save

the result of the map.

Previously, fusion could only be performed on the input of scans, as the scan oper-

ation takes several passes which complicates fusion. However with the change into

a single-pass scan there might now be more possibilities for fusion. However, where

to fuse within the algorithm and how this can be done as efficiently as possible is

still an open problem.
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6 Conclusion

A number of contributions were made in this thesis, in relation to irregular seg-

mented scans. First and foremost, a segmented look-back scan was created based

on the original algorithm by D. Merrill and M. Garland. The created algorithm

has the necessary changes to support irregular segmented scans, which is the first

look-back scan to do so as far as the author is aware.

Secondly, an actual implementation was made within Accelerate. This implemen-

tation was used for benchmarking, and can be used by the users of Accelerate as

well. The benchmarking was explained in Section 4.2 which showed various posi-

tive results. First, the created algorithm was significantly faster when there are at

least 105 elements, and the created algorithm was faster than simply using operator

lifting on the original algorithm. The speedup was over 50% in the best-case sce-

nario. Comparisons were also made regarding the effect of segment lengths onto the

running time of the algorithm, showing that the created algorithms running time

is dependent on the number of blocks that have at least one segment. The more

blocks that have at least one segment, the lower the running time.

Combining everything, the constructed algorithm improved the running time on

large input sets significantly, with only a small impact on overhead when there are

few elements.
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Appendix

Getting the block ID
1 -- arrBlockId is an integer array in global memory with size 1

2 bd <- blockDim

3 tid <- threadIdx

4 -- Create a piece of shared memory to save the incremental block id

5 -- The reason for not just using the CUDA block id is that there are

6 -- no guarantees that block n is scheduled before m

7 -- when n < m. This could cause a deadlock since we rely on having

8 -- the value of block n before we can finish processing m

9 blockIdShared <- dynamicSharedMem (TupRsingle scalarTypeInt) TypeInt

10 (liftInt 1) (liftInt 0)

11 last <- A.sub numType bd (liftInt32 1)

12 when (A.eq singleType tid last) $ do

13 bIdPtr <- instr' $ GetElementPtr (asPtr defaultAddrSpace

14 (op integralType (irArrayData arrBlockId)))

15 [op integralType (liftInt 0)]

16 -- Increment the counter atomically using the last thread

17 bidT <- instr' $ AtomicRMW (IntegralNumType TypeInt)

18 NonVolatile RMW.Add bIdPtr

19 (op integralType (liftInt 1))

20 (CrossThread, AcquireRelease)

21 -- Save it to the shared memory so all blocks have access to it

22 writeArray TypeInt blockIdShared (liftInt 0) (ir integralType bidT)

23

24 -- Sync the threads, as we need the value in shared memory

25 -- before we continue

26 __syncthreads

27 -- Grab the block id from shared memory

28 s0 <- readArray TypeInt blockIdShared (liftInt 0)

Listing 8: Getting an unique block ID
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Loading data from global memory
1 -- Index this thread block starts at

2 inf <- A.mul numType (liftInt elementsPerThread) =<< A.mul numType s0 bd'

3

4 -- index i0 is the index this thread will read from

5 i0 <- case dir of

6 LeftToRight -> A.add numType inf =<< A.mul numType (liftInt elementsPerThread) tid'

7 RightToLeft -> do x <- A.sub numType sz inf

8 y <- A.sub numType x =<< A.mul numType (liftInt elementsPerThread) tid'

9 z <- A.sub numType y (liftInt 1)

10 return z

11

12 -- index j* is the index that we write to. Recall that for exclusive scans

13 -- the output array is one larger than the input; the initial element will

14 -- be written into this spot by thread 0 of the first thread block.

15 j0 <- case mseed of

16 Nothing -> return i0

17 Just _ -> case dir of

18 LeftToRight -> A.add numType i0 (liftInt 1)

19 RightToLeft -> return i0

20

21 -- If this thread has input, read data and participate in thread-block scan

22 let valid i = case dir of

23 LeftToRight -> A.lt singleType i sz

24 RightToLeft -> A.gte singleType i (liftInt 0)

25

26

27 when (valid i0) $ do

28 let indexFunc = \x y -> case dir of

29 LeftToRight -> A.add numType x (liftInt y)

30 RightToLeft -> A.sub numType x (liftInt y)

31 x0 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 0)

32 x1 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 1)

33 x2 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 2)

34 x3 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 3)

35 x4 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 4)

36 x5 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 5)

37 x6 <- app1 (delayedLinearIndex arrIn) =<< (indexFunc i0 6)

Listing 9: Loading the data from global memory
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Block level scan & setting global status
1 -- The segscanBlock returns the new element values, and the first flag

2 -- that occured in this block. The first flag value will be used

3 -- later on to know when we have to stop adding the aggregate

4 -- of the previous block to our elements.

5 -- The result of this is a pair of (values, firstFlag)

6 blockRes <- if ((typeToTuple tp) `TupRpair` TupRsingle scalarTypeInt32,

7 A.gte singleType n bd')

8 -- Arguments: Direction, Device properties, Type of scanned element

9 -- Typeproof that segments are integer, combine function, elements left

10 -- Elements to scan, segments to scan with

11 then segscanBlock dir dev tp intTy combine Nothing resSeeded resSegments

12 else segscanBlock dir dev tp intTy combine (Just n') resSeeded resSegments

13

14 -- We now have done block-level scans, so now we need to

15 -- incorportate previous block(s) into our application.

16 -- Communication is done over global memory

17 let hadFlag = A.neq singleType (A.snd blockRes) (liftInt32 maxBound)

18 let isFirstBlock = A.eq singleType s0 (liftInt 0)

19 status <- if (TupRsingle scalarTypeInt32, hadFlag `lor'` isFirstBlock)

20 then return (liftInt32 scan_inclusive_known)

21 else return (liftInt32 scan_exclusive_known)

22

23 -- The last thread also writes its result, the aggregate for this thread block,

24 -- and it's corresponding status---to the temporary array. This is only

25 -- necessary for full blocks in a multi-block scan; the final

26 -- partially-full tile does not have a successor block.

27 last <- A.sub numType bd (liftInt32 1)

28 when (A.eq singleType tid last) $ do

29 -- Write the final tuple element to the global memory array

30 writeArray TypeInt arrTmpAgg s0

31 (A.pair (last $ A.fst blockRes) (last $ A.fst blockRes))

32 __threadfence_grid

33 -- And write the status to another global memory array

34 writeArray TypeInt arrTmpStatus s0 status

35

36 -- Wait until all threads are at this point. This sync is not strictly

37 -- necessary, but it forces the GPU to write to the global array first.

38 -- This seemed to improve performance somewhat

39 __syncthreads

Listing 10: Performing a block-level scan and sharing this aggregate
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Look-back - Wait for available
1 -- The block we start looking back to, which would be the (blockId - 1)

2 lookAtBlock <- A.sub numType s0 (liftInt 1)

3 let waitForAvailable = while (whileTp `TupRpair` TupRsingle scalarTypeInt32)

4 (\(unPair4 -> (done, _, _, _)) -> A.eq singleType done (liftInt32 0))

5 (\(unPair4 -> (done,blockId,agg,_)) -> do

6 previousStatus <- readArray TypeInt arrTmpStatus blockId

7 let statusIsInit = A.eq singleType previousStatus (liftInt32 scan_initialized)

8 if (whileTp `TupRpair` TupRsingle scalarTypeInt32, statusIsInit)

9 then do

10 return $ pair4 done blockId agg (liftInt32 0)

11 else do

12 -- In the normal single-pass look-back scan, we do not have to check

13 -- whether or not the status is inclusive or exclusive, since we

14 -- can always just use the combine function. This is a bit different

15 -- with this segmented version: if we do not check wheter the status

16 -- is inclusive or exclusive, we might add an inclusive prefix that

17 -- actually had an flag in it, which wouldn't be good

18 previousAggs <- readArray TypeInt arrTmpAgg blockId

19 let (prevAgg, _) = A.unpair previousAggs

20 newAggregate <- if (tp, A.eq singleType blockId lookAtBlock)

21 then return prevAgg

22 else case dir of

23 LeftToRight -> app2 combine prevAgg agg

24 RightToLeft -> app2 combine agg prevAgg

25 return $ pair4 (liftInt32 1) blockId newAggregate previousStatus

26 )

Listing 11: Wait for a predecessor block to become available
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Look-back - Main loop
1 res <- if (typeToTuple tp, A.gt singleType s0 (liftInt 0))

2 then do

3 r <- while (whileTp)

4 (\(unPair3 -> (done,_,_)) -> A.eq singleType done (liftInt32 0))

5 (\(unPair3 -> (done,blockId,agg)) -> do

6 __threadfence_block

7 previousStatus <- readArray TypeInt arrTmpStatus blockId

8 statusIsInclusive <- A.eq singleType previousStatus

9 (liftInt32 scan_inclusive_known)

10 let allThreadsInclusvie = __all_sync (liftWord32 maxBound)

11 statusIsInclusive

12 if (whileTp, allThreadsInclusvie)

13 then do

14 previousAggs <- readArray TypeInt arrTmpAgg blockId

15 let (prevAgg, inclusivePrefix) = A.unpair previousAggs

16 newAggregate <- if (tp, A.eq singleType blockId lookAtBlock)

17 then return inclusivePrefix

18 else case dir of

19 LeftToRight -> app2 combine inclusivePrefix agg

20 RightToLeft -> app2 combine agg inclusivePrefix

21 return $ pair3 (liftInt32 1) blockId newAggregate

22 else do

23 if (whileTp, A.gt singleType blockId (liftInt 0))

24 then do

25 waitR <- waitForAvailable $ pair4 done blockId agg (liftInt32 0)

26 let (_, _, newAggregate, statusFound) = unPair4 waitR

27 prevBlock <- A.sub numType blockId (liftInt 1)

28 newDone <- if (TupRsingle scalarTypeInt32,

29 A.eq singleType statusFound (liftInt32 scan_inclusive_known))

30 then return $ liftInt32 1

31 else return $ liftInt32 0

32 return $ pair3 newDone prevBlock newAggregate

33 else return $ pair3 done lookAtBlock (undefT tp)

34 )

35 (pair3 (liftInt32 0) lookAtBlock (undefT tp))

36 -- We're done, so unpack the value and find out what aggregate we have to add

37 let (_, _, aggregateToAdd) = unPair3 r

38 -- Add the aggregate until we hit the first flag

39 let combine' = \x index ->

40 if (tp `TupRpair` TupRsingle scalarTypeInt,

41 flip (A.lt singleType) (A.snd blockRes) =<< A.add numType index =<<

40



42 A.mul numType tid (liftInt32 $ P.fromIntegral elementsPerThread))

43 then do

44 res <- case dir of

45 LeftToRight -> app2 combine aggregateToAdd x

46 RightToLeft -> app2 combine x aggregateToAdd

47 return $ A.pair res (liftInt 0)

48 else do

49 return $ A.pair x (liftInt 1)

50 applyToTupleZip combine' tp (A.fst blockRes) $ pairGrouped

51 (liftInt32 0, liftInt32 1, liftInt32 2, liftInt32 3,

52 liftInt32 4, liftInt32 5, liftInt32 6)

53 else return $ A.fst blockRes

Listing 12: Main look-back loop to get an inclusive prefix
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Sharing aggregate
1 -- If we only set an exclusive status, we now need to set the inclusive status.

2 when (A.eq singleType status (liftInt32 scan_exclusive_known)) $

3 when (A.eq singleType tid last) $ do

4 writeArray TypeInt arrTmpAgg s0

5 (A.pair (lastTuple $ A.fst blockRes) (lastTuple res))

6 __threadfence_grid

7 writeArray TypeInt arrTmpStatus s0 (liftInt32 scan_inclusive_known)

Listing 13: Share the computed aggregate in global memory

Writing to global memory
1 let (res1, res2, res3, res4, res5, res6, res7) = unpairGrouped res

2 let writeArray' = flip $ writeArray TypeInt arrOut

3 writeArray' res1 =<< (indexFunc j0 0)

4 writeArray' res2 =<< (indexFunc j0 1)

5 writeArray' res3 =<< (indexFunc j0 2)

6 writeArray' res4 =<< (indexFunc j0 3)

7 writeArray' res5 =<< (indexFunc j0 4)

8 writeArray' res6 =<< (indexFunc j0 5)

9 writeArray' res7 =<< (indexFunc j0 6)

Listing 14: Writing the result of the scan back to global memory
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