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Abstract

Yield prediction is crucial for optimizing apple orchards. Recent research on the application of
unmanned aerial vehicles (UAVs) remote sensing and convolutional neural networks (CNNs) object
detection techniques, demonstrated a great potential for improved yield estimations. However, several
major challenges exist in CNN-based yield estimation in orchards using UAV platforms, including
illumination variance, occlusion conditions and the small scale of the fruits — as appear in aerial scenery.
In addition, the UAVs data-acquisition ability is hampered by various factors, including exposure times,
environmental conditions and sensor-related limitations, which can introduce blurriness and other
optical distortions in the obtained images. In aim to overcome these challenges, this thesis deploys
a single image super-resolution (SISR) method based on a generative adversarial network (GAN),
for the enhancement of UAV images prior to the CNN-based detection of the fruits. In specific, the
Real-ESRGAN was applied, due to the high perceptual accuracy it offers, ease of use, and low possibility
of artifacts generation. To test the proposed method, a novel RGB UAV dataset was constructed. For the
evaluation phase, image quality metrics were used, followed by a fruit detection comparison between
two YOLOv5-based detectors — one trained on the super-resolved dataset and the other on the original.
Results showed the effectiveness of the proposed method, where the detection rates for Yolov5 trained
and employed in the super-resolved dataset, increased by 7.06% for precision, 30.77% for recall, and
18.92% for F1 score, compared to the YOLOv5 trained and employed on the original non-enhanced
dataset. Moreover, the scores on image quality metrics showed that the proposed method can effectively
reconstruct problematic UAV datasets, in comparison with other SISR methods. Concluding, enhancing
the dataset with a SISR network can result to higher detection rates.
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1
Introduction

1.1. Background
Obtaining accurate yield estimations is considered an elemental part of modern agriculture, allowing farmers to
efficiently allocate natural resources, confidently negotiate pricing, schedule labour and timely take decisions.
Currently, manual yield estimation techniques are the industry standard, typically performed based on historical
data, weather conditions, and manual counting in multi-sampling locations (Q. Wang et al., 2012). These techniques
are identified as labour intensive, inefficient and expensive (Kanwal et al., 2019). Algorithmic advances and the
availability of low-cost computational resources, enabled convolutional neural networks (CNNs) to emerge as
accurate and reliable detection systems for automatic fruit yield estimation. Compared to traditional machine
learning approaches, CNNs achieve state-of-the-art performance on the detection and localization of apple fruits
(Guo et al., 2016; Wang & He, 2021).

Thanks to the miniaturization of sensors and stimulated by the demand for inexpensive information-rich imagery,
unmanned aerial vehicles (UAVs), commonly referred as drones, have sparked the interest as preferable imaging
systems (Apolo-Apolo et al., 2020; Mital, Singh & Sharma, 2020). The major benefit of UAVs is their ability
to acquire imagery of high spatial resolution in a timely manner. Compared to ground-sensing platforms, e.g.
unmanned ground vehicles (UGVs) and human-mounted devices, UAVs not only show outstanding data-acquisition
speed, but exceptional mobility and manoeuvrability, as terrain independent units. Unlike other aerial platforms,
light-weight multi-rotor UAVs are considerably affordable and can hover over the point of interest.

However, several major challenges exist in CNN-assisted yield estimation using UAV platforms. First, the
proportion of fruits visually available for detection is often limited, largely depended on pruning practises and the
density of foliage. Even in more transparent foliage structures, apples are usually occluded by various obstacles,
such as branches, leaves and other apples (Liu et al., 2019; Apolo-Apolo et al., 2020; Gené-Mola et al., 2021).
Second, apples appear small in UAV-based scenes, frequently occupying less than 1% percent of the total image
area. Third, UAVs data acquisition ability is sensitive to various internal, i.e. sensor limitations, exposure times
etc., and external factors, i.e. wind, fog, rain etc., often introducing various distortions and artifacts. Moreover,
due to limited battery duration, the coverage of large areas in short time is requiring a flight of higher altitude.
This results to reduced spatial resolution, and thus a loss in essential information captured in the imagery. All
these issues hamper significantly the precise detection and localization of apples, challenging the exact per tree
count of fruits.

Many authors address these issues by either performing various modifications on the CNNs architectures, or using
a combination of sensors — which can be proven expensive, while few studies focus on enhacning the primary
data prior to the detection. The recent years, super-resolution (SR) techniques based on neural networks, have
gained increased attention within the field of remote sensing (González et al., 2019; Lei et al., 2020). Research on
their use, both for satellite and aerial platforms, showed excellent results on increasing the initial spatial resolution
of imaging systems (Ferdous et al., 2019; Gonzalez et al., 2019; Courtrai et al., 2020; Lei et al., 2020; Pashaei
et al., 2020). Especially in scenarios, where the datasets suffer from several distortion and the re-acquisition can be
proven challenging, expensive and/or time consuming. Recently, deep learning-based SR techniques, dominated
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other SR approaches, providing remarkable achievements on benchmark datasets (Chen et al., 2022). However,
the evaluation and exploration of deep learning SR techniques as assistance in UAV-based apple yield estimation,
is urgently needed.

In this paper, aiming to tackle the challenges of object detection on UAV apple datasets, a super-resolution
augmentation method based on generative adversarial networks (GAN) is implemented and evaluated, both in
terms of image reconstruction quality and as an aid to the CNN-based detection. Furthermore, YOLOv5-based
detectors are trained on the reconstructed super-resolved and original datasets, respectively, and tested based on
their detection performance, aiming to evaluate the success of the proposed method.

1.2. Research Questions
Based on the previous statements, the following main research question can be drawn:

• Can apple detection on UAV datasets by means of DL, benefit from SR data enhancement?

Based on the main research question, three sub-questions are constructed:

• What is the process to create SR images, to be used effectively in object detection?

• Which SR method produce images of higher quality?

• Is object detection based on the SR-enhanced dataset superior in terms of precision, recall and F1 score,
compared to the non-SR detection?

1.3. Research Goal
The goal of this thesis is to explore the capability of SR techniques in combination with a deep learning object
detection algorithm, for apple yield estimation. The demand for computational resources and time will be discussed,
to determine if and how deep learning-based image enhancement can be improve the object detection accuracy,
not only in apple orchard management but in the general field of remote sensing.



2
Related Work

2.1. Convolutional Neural Networks (CNNs) for Apple Detection
Any automatic yield estimation process begins with the precise detection and localization of fruits. Over the years,
researchers have used a variety of machine vision systems and sensors for fruit detection. Early works utilized
the binary space, i.e. black-and-white (B/W), for image processing, detecting fruits based on their shapes and
textures (Cardenas-Weber et al., 1991; Edan et al., 2000). However, the lack of colour information, one of the most
prominent characteristics of fruits, led to major disadvantages. Soon researchers started to utilize the RGB space for
implementing a variety of computer vision algorithms, including k-nearest neighbors (k-NN), Otsu’s thresholding
and support-vector machines (SVMs) (Stern et al., 2010; Linker et al., 2012). However these techniques built
upon identifying simple image features such as colours and edges, while missing essential features such as pixel
correlation and the spatial position of the fruits (Li et al., 2021). These advanced features are essential for robust
defections under the varying conditions found on apple orchards, e.g. high illumination variance, different levels
of occlusion etc..

Deep neural networks (DNNs) based learning, or commonly called deep learning (DL), became the mainstream
approach in fruit detection and localization. They utilize raw data to automatically discover patterns without human
intervention, based on a prior training process, where are asked to learn the mappings of the input to the intended
output (LeCun et al., 2015). This training process can be performed based on a supervised or unsupervised way,
where the former is considered the most common for object detection. As the name suggest, the DL model requires
direct supervision, where a set of examples by a human user, i.e. the training set, is provided to the algorithm
during the training phase. Each example contains an annotation, i.e. label, which indicates the unique features and
the location of the object of interest, in respect to the total image space. Eventually, the model learns and predicts
new annotations to previously unseen datasets. Currently, five fundamental deep learning architectures have been
proposed and implemented successfully, identified as: stacked autoencoders (SAEs), deep belief networks (DBNs),
recurrent neural networks (RNNs), convolutional neural networks (CNNs) and generative adversarial networks
(GANs) (Xia, 2019). Among them, the CNNs are recognised as the most successful for apple detection and
localization (Apolo-Apolo et al., 2020; Li et al., 2022; Yan et al., 2021).

3
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Inspired by the structure of the mammalian visual cortex, convolutional neural networks (CNNs) are the most
utilized architecture in the field of modern computer vision (Pang & Cao, 2019), achieving state-of-the-art
performances in object detection, image classification, image segmentation and enhancement (Xia, 2019). CNNs
for object detection, have been applied to a vast variety of domains, from remote sensing (L. Zhang et al., 2016), to
medical imaging (Litjens et al., 2017).

The basic structure of a typical CNN is composed by the convolutional layers, the pooling layers, and the
fully-connected layers. The convolutional layers are regarded as the core elements of CNNs, and described as the
responsible mechanism for extracting the image features. In specific, the these layers convolve the input image
with one or multiple image filters, referred as kernels, producing a new representation of the input image, i.e.
feature maps. By utilizing different types of kernels, different outputs are obtained. In most CNN architectures,
the first convolutional layers are responsible for extracting features like edges and textures. Figure 2.1, depicts
visual examples of feature maps, prior to the last pooling operation.

(a) (b) (c) (d)

Figure 2.1: Feature maps from a YOLO detector. From left to right: a) is the input image, b) a feature map which appears to capture edges, c)
a feature which appears to capture vertical gradients, and d) a feature map, which appears to capture large round-shape areas.

Following the convolutional layers, the pooling layers are summarizing the feature maps as collected by the kernels,
by reducing their spatial dimensionality, forming a collection of extracted features. After multiple consecutive
convolutional and pooling layers, the feature map of the last pooling layer, —i.e. the total collection of the extracted
features—, is fed to the fully-connected layers, that are responsible to generate a probability where and what type
of objects are present on the image. During the training phase, the fully-connected layers assign weights to the
extracted image features, i.e. —which image features are more relevant for a specific class of object, for example
round gradients and red color to apples–, and biases, that ensure even if the object of interest is not present, the
CNN can predict that no object is present.

Numerous CNN-based detectors have been proposed by the DL community, categorized to two main classes, as:
(1) two-stage method method and (2) one-stage method. The family of two-stage method detectors approach
object detection as a two-step process. In the first step, regions proposals are generated with the possible object
of interest, and then these regions are given as inputs to the trained fully-connected layers. Popular examples of
two-stage detectors include: R-CNN (Girshick et al., 2013), Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren
et al., 2015). Research on apple detection showed that two-stage detectors are capable of outstanding performance.
In specific, Bargoti and Underwood (2017) proposed a crop yield estimation pipeline for mangoes and apples,
based on a ground-based 360◦ RGB camera and a Faster R-CNN. They achieved high detection performance, with
precision scores of a range 93.3% to 95.8%. Apolo-Apolo et al. (2020), utilized an RGB orthomosaic, constructed
by UAV imagery, and implemented a fine-tuned Faster R-CNN model to detect apples with on-average precision of
93%. However, it is widely recognized that two-stage detectors show relative slow detection speed (Pang & Cao,
2019).
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Different than two-stage detectors, one-stage detectors simultaneously predict the class and location of possible
objects. Popular examples, include the single shot multibox (SSD)(W. Liu et al., 2015) and the you only look once
(YOLO) (Redmon et al., 2016) algorithms, where in comparison with R-CNN, Fast R-CNN and Faster R-CNN, are
much more simpler and fast, achieving comparable detection performance on common object detection benchmark
datasets. Their ability for high-level detection performance and speeds can be observed in a variety of research
works. Although not concerning apple detection, but UAV datasets, Benjdira et al. (2018) by comparing Faster
R-CNN and YOLOv3 for car detection on UAV dataset, demonstrated that YOLOv3 outperforms Faster R-CNN
in sensitivity and processing time, although they are comparable in the precision metric. Morevoer, Zhao et al.
(2021) in their work concerning wheat spike detection from UAV imagery, showed that an improved version of the
YOLOv5 algorithm can achieve state-of-the-art results compared to various two-stage and one-stage detectors.
In addition, Zhu et al. (2021), using a modified YOLOv5, achieved remarkable results on the VisDrone 2020, a
benchmark dataset containing UAV imagery with small objects. The evidence suggest that new generations of
one-stage detectors, such as modified versions of the YOLOv5 algorithm, can achieve state-of-the-art results in
UAV-based small objects detection. For this reason, the YOLOv5 was chosen as the method of preference for the
detection purposes of this research.

2.1.1. YOLOv5 for Apple Detection

The YOLOv5, instead of picking region proposals, splits the image in a k x k grid, thus achieving extremely fast
detection speeds–being up to 140 frames per second (Ya et al., 2021). Compared to other CNN-based detectors, e.g.
Faster R-CNN, the YOLOv5 weight file is small —around 3.7M for the smallest variation, indicating that YOLOv5
is an ideal model for deployment in embedded devices for real-time detection purposes, e.g. fruit-picking robots
and UAVs (Wang & He., 2021). In addition, the YOLOv5 models are considered very efficient in multi-scale
prediction, enabling the algorithm to handle various sizes of objects (Yang et al., 2022). As discussed previously,
apples usually vary greatly in size as seen in UAV imagery, therefore multi-scale detection ensures that the detector
model can mitigate the changes shapes and sizes. This fact, in addition with the state-of-the-art performance in
apple detection, compared with two-stage methods (Wang & He, 2021), plus the fast detection speed and the
lightweight aspect, were considered as the main reasons for the selection of YOLOv5s for this research.



2.2. Generative adversarial networks (GANs) for Super-Resolution 6

2.2. Generative adversarial networks (GANs) for Super-Resolution

2.2.1. Image Super-Resolution

The general term super-resolution (SR) describes a class of techniques aiming to reconstruct an image of lower
resolution (LR), to an improved version of higher resolution (HR). Such techniques, not only increase the number
of pixels of an image—which can be also achieved by simple resizing, but also maintain the semantic information
contained in the image or even enhance them. The following figure depicts a visual example of this basis, where
the LR input Figure 2.2a can be resized to Figure 2.2b, resulting to considerable increase in the number of pixels,
but compared to the SR reconstruction Figure 2.2c, lacks essential details, such as edges and fine-textures.

Figure 2.2: Input 72 x 72 px image (a), the ’Bird’ from Set5 (Bevilacqua et al., 2012), as 288 x 288 px output, of: resizing (b), and
super-resolution (c).

In principle, SR frameworks lie foundation on the assumption that a LR image 𝐼𝐿𝑅 is a reduced version of the HR
image 𝐼𝐻𝑅, both in terms of pixel and information quantity, modelled as Equation 2.1:

𝐼𝐿𝑅 = D (𝐼𝐻𝑅, 𝜕), (2.1)

where, 𝐷 denotes the degradation function responsible for reducing the HR image 𝐼𝐻𝑅 to the LR version 𝐼𝐿𝑅, and
𝜕 depicts the input parameters of the degradation function. Under this context, the SR operation 𝑔 is equivalent to
the inverse of degradation function 𝐷−1, modelled as Equation 2.2:

g(𝐼𝐿𝑅, 𝛿) = 𝐼𝑆𝑅 ≈ 𝐼𝐻𝑅, (2.2)

where, 𝐼𝐿𝑅 is the LR, the input parameters of SR function g, and 𝐼𝑆𝑅 an approximation of the ideal HR image 𝐼𝐻𝑅.
Nevertheless, the exact degradation function is unobtainable, since only the LR version is given, ending to infinite
possibilities of HR reconstructions and forming an extremely ill-posed problem (Bevilacqua et al. 2012; Pashaei et
al. 2020).

Existing methods for SR are categorized into single-image super-resolution (SISR) and multi-image super-resolution
(MISR), according to the different number of LR images utilized for the reconstruction of the HR,—a single
image of the scene for SISR, multiple images of the scene for MISR (Clabaut et al., 2021; Li, Pei & Zeng., 2021).
MISR methods are recognized to hold a significant advantage over SISR, on the basis of information provided
for resolving the SR problem (Salvetti el al.,2020). However, acquiring multiple LR images of the objects of
interest can be proven cost-inducing and ill-timed process, requiring extended computational resources and storage
space (Pashaei et al., 2020). Additionally, in some cases, obtaining multiple LR images of the objects-of-interest
is impossible. This research aims for high-performance but considerably timely and cost-effective automatic
yield-estimation systems, as such, SISR suits as the approach of preference.
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Recently, deep learning (DL) models dominated the field of SISR, leading to a staple of state-of-the-art results,
surpassing previous methods, e.g. bicubic interpolation and Lanczos resampling — which use predefined
mathematical formulas, especially when the up-scalling factor increases (Yang et al., 2018). As learning-based
methods, DL models adapt and learn statistical relationships between HR and LR images, making the SR task an
inference problem. Similar to object detection, supervised and unsupervised approaches exist for DL SISR training.
Since the supervised models have gained a substantial attention the recent years by the research community, in
addition to their recent state-of-the-art performance (Chen et al., 2022), are chosen as the approach aiming to be
explored in this report.

2.2.2. GANs

Based on supervised training, a variety of DL SISR architectures have been proposed. Spearheading among them,
Generative adversarial networks (GANs), is a promising class of deep learning frameworks, widely used in the
field of computer visions for tasks such as super-resolution, object detection, image generation, image-to-image
translation, image-to-text translation etc. (Alqahtani, Kavakli-Thorne & Kumar, 2019). Their basic architecture
consists of two networks: the generator model and the discriminator model. The learning process of GANs can be
thought as a two-player mini-max game, where in terms of image-generation, the generator model can be thought
of as analogous to a team of counterfeiters, trying to produce fake currency, i.e. a synthetic copy of the original
image, while the discriminative model is analogous to the police, trying to detect the counterfeit currency, i.e. to
discriminate the synthetic image from the original (Goodfellow et al., 2014). In a typical GAN, the generator tries
to create samples with similar distribution to the original data, using random noises z from a Gaussian distribution
𝑝𝑧 (z). During the learning process, the discriminator receives samples both from the original dataset and from
the generator, i.e. the reconstructed dataset, trying to predict the probability whether the sample belongs to the
original or the reconstructed dataset. In conjunction, the generator tries to produce realistic samples fooling the
discriminator. This adversarial min-max problem between the generator and the discriminator , is introduced by
Goodfellow et al. (2014), as function 𝑉 (𝐺 \ , 𝐷 \ ) (Eq. 2.3):

min
𝐺\

max
𝐷\

𝑉 (𝐺 \ , 𝐷 \ ) = E𝑥∼𝑝data (𝑥) [log 𝐷 \ (𝑥)] + E𝑧∼𝑝z (𝑧) [1 − log 𝐷 \ (𝐺 \ (𝑧))], (2.3)

where, both 𝐺 \ and 𝐷 \ are trained simultaneously, and in the state, 𝐷 \ can not recognize the real from the
synthetic data, the learning process has been achieved.

Representative examples of GANs architectures used for SISR, are the SRGAN (Ledig et al., 2016) and ESRGAN
(X. Wang et al., 2018). The SRGAN utilizes: 1) a generator, which is composed by two convolutional layers of
3×3 kernels and 64 feature maps, followed by batch-normalization layers, with ParametricReLU as the activation
function, and 2) a discriminator, which contains eight convolutional layers with an increasing number of 3 × 3
kernels, increasing by a factor of 2, starting from 64 to 512 kernels (Ledig et al., 2016). The ESRGAN improves
on the original SRGAN, by modifying the generator in two parts: (1) removing all batch-normalization layers, and
(2) introducing the concept of Residual-in-Residual Dense Blocks (RRDBs), which increases the capacity of the
network, eases the training process, and improves the quality of the generated images (Wang et al., 2018), and by
replacing standard discriminator, with the Relativistic average Discriminator (RaD), based on the discriminator
proposed by Jolicoeur-Martineau (2018).

The use of ESRGAN in the field of remote sensing have been characterized as particular successful, being one
of the most popular architectures utilized in the domain (Buddha et al., 2019; Burdziakowski, 2020; Ye et al.,
2022). Examples include, the work of Pashaei et al. (2020), where by employing an ESRGAN on a UAV
dataset, managed to construct higher-quality digital surface models (DSM) from lower-resolution images based on
Structure from Motion (SfM) photogrammetry. In a further SISR experiment, Clabaut et al. (2021), confirmed
that domain-specific ESRGANs can efficiently reconstruct satellite and aerial imagery. Furthermore, Rabi et al.,
(2020), revealed that by training an edge-enhance ESRGAN in an end-to-end manner with detector, an increase in
the detection rates of small objects in satellite imagery can be achieved. However, the majority of these work are
reporting results in artificially created lower-resolution space, and not directly in real-world source imagery. In
an effort to bring the results of ESRGAN in real-life, various researchers utilize several pre-processing steps for
the training of the models. A recent example, is the work of Velumani et al., (2021), in which they employed an
image-to-image translation network for synthesizing training pairs with realistic degradations. By using these pairs
to train an ESRGAN, managed to effectively enhance source RGB UAV datasets, and elevate the detection rates
of maize species. Yet, such pre-processing steps can be proven time-consuming and unpractical to be used for
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precision agriculture purposes. Recently, the creators of ESRGAN, improved the original architecture to handle
real-life degradations, for practical SISR restorations. The new network, by the name of Real-ESRGAN (X. Wang
et al., 2021), achieved outstanding results in blind SISR image-restoration, —where the term blind refers to a
model not trained on a given dataset, to effectively reconstruct it. Inspired by these results, the model chosen as
the DL SISR method is the Real-ESRGAN.

2.2.3. GANs Learning Process & Degradation Modelling

Training of supervised GANs requires the source images of a given dataset to be artificially degraded in a
lower-resolution counterpart, with a fixed degradation function, a process known as degradation modelling, as an
approximation to the unknown ground-truth degradation function. By using these pairs, in this case denoted as
𝐼𝑠𝑟𝑐 for the native source images and 𝐼𝐿𝑅 as the artificially reduced LR versions, the model can learn to recognize
how various image features are expressed in the lower resolution space, based on the corresponding 𝐼𝑠𝑟𝑐 samples.
Based on this learning, the model can reconstruct an unseen native input image, —where the reconstruction is
denoted as 𝐼𝑆𝑅—, as close approximations of the 𝐼𝐻𝑅 image of the ideal higher-resolution space, as modelled in
(Eq. 2.2).

Typical supervised deep learning SR frameworks, model the degradation function 𝐷 as a combination of bicubic
downsampling and Gaussian blur kernel 𝑘 , as Equation 2.4:

𝐷 = (𝐼𝑠𝑟𝑐 ⊗ 𝑘) ↓𝑠 , (2.4)

where, ⊗ is the convolution between the given higher-resolution image 𝐼𝑠𝑟𝑐 and the blur kernel 𝑘𝑔, and ↓𝑠 the
downsampling operation. This specific kind of degradation modelling, referred as classical degradation, poses
significant problems. Assumptions that the 𝐼𝐿𝑅 is a product of a convolution and bicubic downsampling, does not
correspond to real-life. To demonstrate the tremendous extent of potential degradations, known issues related with
UAVs sensors, include: blurriness introduced by the motion of the platform, various radiometric and geometric
distortions due to camera optics, chromatic aberrations, edge vignetting, artifacts introduced by JPEG compression
etc. (Whitehead & Hugenholtz, 2014; Mittal, Singh & Sharma., 2020), without excluding a combination of all the
aforementioned. Various researchers adopted more sophisticated degradation modelling processes, incorporating
JPEG distortion and additive Gaussian or Poisson noise (A. Liu et al., 2021), as Equation 2.5:

D = [(𝐼𝑠𝑟𝑐 ⊗ 𝑘) ↓𝑠 +n]𝐽 𝑃𝐸𝐺 , (2.5)

where, the additive noise n, the Gaussian blur kernel 𝑘 , and JPEG compression are the primary degradation factors.
A visual comparison between a classical degradation model and a sophisticated one, is given in Figure 2.3.
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Figure 2.3: From left to right: An apple as product of classical degradation model, and as a product of a high-order degradation model. Zoom
in the rectangles, to note the pixel-mosaic effect introduced by JPEG compression on the right image, in comparison with the smoothness of

bicubic downsampling on the left image.

2.2.4. Performance Evaluation

Performance assessment of different SISR approaches is currently performed using image quality metrics (IQMs).
In order to be considered appropriate, IQMs should stem on the fundamental definition of SR, —a process
which effectively increases the size of a given image, while maintaining or enhancing the semantic information
contained—, and evaluate the reconstructions based on: (a) the deviation in terms of image statistics in reference
with the source image, e.g. expression of colors and position of shapes, referred as reconstruction accuracy, (b) the
introduction of distortions and artifacts, as perceived by human viewers, referred as perceptual quality, and (c) the
impact on the performance for the task that are utilized, e.g. object detection.

Following this triptych, various IQMs have been proposed for SISR, which are mainly divided into subjective
methods, usually employing user studies, and objective methods, which rely solely on computation models
(Z. Wang et al., 2004). While subjective methods are considered the most accurate, can be proven expensive,
time-consuming and ineffective — as users are typically exposed to a limited number of methods and/or limited
number of images per method (Blau et al. 2018). These observations led to the adoption of objective methods
as the mainstream of SISR performance assessment. However in practice, most research works introduce visual
examples between different SISR methods, to be compared by the readers.

Various objective IQMs have been proposed for SISR assessment, categorized to full-reference (FR), reduced-
reference (RR), or no-reference (NR). Among these, FR-IQMS and NR-IQMs are mostly utilized in SISR research.
FR-IQMs compare the SR reconstruction of the LR image, with the ground-truth HR image. Prime examples of
FR-IQMs in SISR, are the mean square error (MSE), peak signal-to-noise ratio (PSNR) and structure similarity
index (SSIM). In general, FR-IQMs can predict more easily the reconstruction accuracy, compared to RR-IQMs
and NR-IQMs, since more reference information are available. However, are recognized as not optimal to predict
the perceptual quality (Blau et al., 2018). Furthermore, as ground-truth HR images are not available in real-world
scenarios, FR-IQMs are often used for dynamical monitoring the training process of DL SISR methods, assisting in
hyper-parameterization. In comparison with FR-IQMs, NR-IQMs capture more efficiently unique characteristics of
human perception, and are heavily utilized for capturing perceptual quality (Sajjadi et al., 2017; Blau et al., 2018;
Haris et al., 2018; Bai et al., 2018). Usually, such approaches are not characterized by the terms FR/RR/NR-IQMs,
thus will be presented separately

Task-based assessments utilize the SR reconstructions as image materials for a specific problem and evaluate
their performance in comparison with the non-SR images. These techniques mainly focus on whether SR
reconstructions can maintain or enhance the semantic information contained on the lower-resolution images.
In the domain of remote sensing, the tasks used for evaluation can range from, e.g. assessing the deviation of
photogrametrically-derived digital terrain models (DTM) from the ground-truth elevation via root-mean-square
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error (RMSE), to object detection performance evaluation via object detection metrics, e.g. F1 score. However,
different tasks require different needs in terms of reconstruction accuracy or perceptual quality. For example, leaves
disease classification is a task that requires high reconstruction accuracy (Wen et al., 2020), while monitoring land
change in satellite imagery by simple visual investigation, requires sufficient perceptual quality. The task-based
approach for the evaluation of this research is object detection performance.



3
Methods & Materials

3.1. Overview
This study aims to improve apple detection performance on UAV imagery. Toward this objective, the enhancement
of UAV imagery prior to detection is proposed via a single image super-resolution (SISR) generative adversarial
network (GAN). A prerequisite step for this task, is training the GAN module to match the distribution of the
higher-resolution images, by providing the corresponding examples of lower-resolution images. However, in
real-life applications, including this study, high-resolution images are unavailable. In addition, GAN methods
usually require a considerable number of HR/LR training pairs. While this can be resolved though transfer-learning,
—i.e. the technique that utilizes the knowledge gained on an older task, for the training of a new model in a new
task —, the LR counterparts should resemble products from real-world degradations to achieve adequate SR
performance.

To overcome these issues, the Real-ESRGAN model (X. Wang et al., 2021) is employed, which is capable
to synthesize training pairs based on a sophisticated degradation modelling process —similar to real-world
degradations. Furthermore, the weights from a model pre-trained on abundant high-quality natural images are used
for the fine-tuning of a new model on a limited number of carefully selected distortion-free UAV images, acquired
from the dataset. With the domain-trained Real-ESRGAN available, a part of the UAV dataset is super-resolved
and used as training material for a YOLOv5s detector. For evaluation of the proposed method, non-reference
image quality metrics (NR-IQMs) are utilized for the assessment of the reconstructions, followed by an apple
detection comparison between two YOLOv5s models, trained on super-resolved and native lower-resolution
datasets respectively (Figure 3.1). In the subsequent sections, information the datase, the architectures and the
evaluation procedures are presented.

11
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Figure 3.1: The pipeline for the object detection evaluation of the study. First, the UAV dataset is cropped to tiles and annotated. Afterwards,
the annotated images are duplicated, where the one duplicate is super-resolved, while the other is not. Final, two YOLOv5 detector are trained

on the super-resolved and the original datasets, respectivelly, where their perfomance is evaluated based on obejct detection metrcis.
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3.2. Study Site & Data Collection
The data acquisition was conducted in an apple orchard located in Randwijk, Netherlands (51°56’16.8" N,
5°42’24.5" E) (Figure 3.2a). The apple trees (Malus domestica) were planted in 2007, and belong to ‘Elstar’
variety. The orchard size is 0.47 ha, consisted of 14 rows with 55 trees per row, NW SE oriented. Each row is
separated by 3m, and each tree within row by 1.1m. Average tree height is approximately 3 m. The orchard follows
conventional farming practices. The UAV platform selected for the imagery acquisition was the quadrotor DJI
Phantom 4 Pro with an embedded Real Time Kinematic (RTK) module (DJI Technology Co., Ltd., Shenzhen,
China). The camera deployed was 1" CMOS sensor, with an effective pixel count of 20M, lens FOV of 84°,
focal length of 8.8 mm and focal ratio of f/4.5 to f/11. To test the applicability of our proposed method under a
variability of flight conditions, the UAV platform conducted various flights at different heights and camera angles.
The overlapping setting was 80% for all flights and the lighting conditions were constant. Table 1 lists the flight
parameters for each survey used in this study. The datasets acquired from each flight were mixed, forming a total of
435 RGB images of 5472 x 3648 px initial resolution, stored in JPEG format. The apples captured in the datasets,
were often occluded (Figure 3.2b), while many images exhibited blurriness and other artifacts (Figure 3.2c). All
these conditions were considered favourable for the testing of the proposed method.

Figure 3.2: The study site in Randwĳk, Netherlands (a). Examples of occluded fruits (b), by branches and leaves. Examples of blur images (c).

3.3. Implementation of Real-ESRGAN for Super-Resolution

3.3.1. Degradation Modelling

As explained in previous section (Section 2.2.3), DL SISR networks learning process is facilitated by synthesizing
training pairs, where a high-resolution source image (𝐼𝑠𝑟𝑐) is reduced to a low-resolution counterpart (𝐼𝐿𝑅). Several
state-of-the-art SISR networks, e.g. ESRGAN (X. Wang et al., 2018), EDSR (Lim et al., 2017b), RCAN (Y. Zhang
et al., 2018) etc., assume that 𝐼𝐿𝑅 are products of bicubic down-sampling. However, these approaches can lead to
the introduction of artifacts which can hamper the detection process. To better model real-world degradations, the
Real-ESRGAN used in this study, relies on synthesizing lower-resolution counterparts of the source images, by a
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sophisticated deterioration process by the name high-order degradation modelling (Eq. 3.1):

𝐼𝐿𝑅 = 𝐷𝑛 (𝐼𝑠𝑟𝑐) = (D𝑛 × · · · × D2 × D1) (𝐼𝑠𝑟𝑐), (3.1)

where, a 𝑛-order model involves 𝑛 repeated classical deterioration models 𝐷 (Eq. 2.5), where each 𝐷 model
incorporates blur kernels, added noise, random resizing and JPEG compression, but with different hyper-parameters
each time. In addition, a novel 𝑠𝑖𝑛𝑐 filter aiming to add edge overshoot and ringing artifacts, — common during
digital transmission of the images (Hu et al., 2014) —, is introduced during the blurring stage and the last step of
the process. The 𝑠𝑖𝑛𝑐 filter kernel 𝑘 is expressed as:

k(𝑖, 𝑗) =
𝜔𝑐

2𝜋
√︁
𝑖2 × 𝑗2

J1 (𝜔𝑐

√︃
𝑖2 × 𝑗2), (3.2)

where (𝑖, 𝑗) is the kernel coordinates; 𝑜𝑚𝑒𝑔𝑎𝑐 is the cutoff frequency, and 𝐽1 is the first order Bessel function.
The 𝑠𝑖𝑛𝑐 filters are employed in the blurring operation and the last step of the 𝐼𝐿𝑅 synthesis. The Real-ESRGAN
modelling process was considered ideal for the case of UAVs, as these platforms suffer from a variety of distortions,
which can degrade the acquired images in unpredicted and complicated ways.

3.3.2. Architecture

Generator: The Real-ESRGAN network employs the same generator with ESRGAN. In specific, the generator
module is composed by a network of 23 residual-in-residual dense blocks (RRDBs), without batch normalization
(BN). Each block is consisted by 5 convolutional layers, having 64 small kernels of 3 x 3 size, and Leaky ReLu
is set as the activation function. In addition, aiming to reduce the demand for computational resources, the
Real-ESRGAN network uses the pixel-unshuffle, an operation that reduces spatial size and increase channel size,
before feeding the images to the generator. This operation allows the integration of up-scalling factors x2 and x1,
in addition to x4, as found in the ESRGAN. Figure 3.3 depicts the structure of the generator network.

Figure 3.3: The architecture of the generator network, where in each convolutional layers, the k, n and s denote kernel size, number of feature
maps and stride. For scale factors of x2 and x1, the pixel unshuffle operation is employed.

Discriminator: As the discriminator network, a U-Net architecture with spectral normalization (SN) regularization
is utilized, with shortcut connections. The U-Net allows the network to be trained on LR samples with complex
real-world degradations, while adding SN regularization stabilizes the training of GANs (X. Wang et al., 2021).
The network is consisted by 10 convolutional layer, with various alternated kernel sizes, and Leaky ReLu is set as
the activation function.

Both networks are trained to solve the min-max problem, as introduced in Equation 2.3, where the generator loss is
set as:

𝐿G = `𝐿𝑝𝑒𝑟𝑐𝑒𝑝 + ^𝐿𝑔𝑎𝑛−𝐺 + 𝛾𝐿1, (3.3)

where, 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 is the perceptual loss as proposed by Johnson et al.(2016), but before the activation layers, 𝐿𝑔𝑎𝑛−𝐺
is the adversarial loss of the generator, and 𝐿1 = E𝐼𝐿𝑅

∥ 𝐺 (𝐼𝑆𝑅) − 𝐼𝑠𝑟𝑐 ∥1 is the content-loss that evaluates the 𝐿1
distance between the reconstruction 𝐼𝑆𝑅 of the synthesized 𝐼𝐿𝑅 and the source 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 image. For, further details
about the total loss function, readers can review X. Wang et al. (2018).
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3.3.3. Training

Training any GAN architecture from scratch is a timely and computational expensive process, despite the availability
of processing power in the form of graphic processor units (GPUs). For this reason, the weights of pre-trained
generator and discriminator networks on the DIV2K (Aggustsson and Timofte, 2017), Flickr2K (Lim et al., 2017a)
and OutdoorSceneTraining (X. Wang et al., 2018) datasets were used (available on: https://github.com/xinntao/Real-
ESRGAN ). For the training of the model, 50 images 5472 × 3648 px of the UAV dataset were selected, and split
to 608 x 608 px patches, resulting to a total of 2700 tiles. While various SISR networks utilize smaller sized
patches for computational efficiency, it was found that very deep convolutional networks with wider receptive field
tend to benefit from larger patches (Pashaei et al., 2020). In order to retrieve effectively high-quality examples
without blurriness introduced by the motion of the UAV or the wind, a blur detector using the variance of the
Laplacian was used (Pech-Pacheco et al., 2000). In case the variance is lower than a pre-defined threshold, then
the images are characterized as blurry. The threshold was set to 3000, and the operation was implemented using
the OpenCV built-in function. To ensure that no distortions are presented, the resulted patches were thoroughly
visually inspected (Figure 3.4). After the two procedures, the initial samples were refined to 1885 samples. The
dataset was split to 80/20 for training and validation. To increase the sample size, simple data augmentation
techniques involving rotation of 90 and 180 degrees were implemented.

Figure 3.4: A screenshot during the data selection process, using the Laplacian variance and visual inspection.

Both generator and discriminator networks were fine-tuned, with learning rate 0.0005, batch size of 6, for 100000
iterations. Adam optimization was employed, with 𝛽1=0.9 and 𝛽2=0.999. The generator was trained using the
loss function (Equation 3.3), with 𝛼=1, 𝛽=0.1 and 𝛾= 0.1. Two degradation models were employed, involving the
introduction of blurriness, random resize, noise and JPEG compression, following the parameters recommended
by the authors of the Real-ESRGAN (X. Wang et al., 2021). The process carried out on the cloud-based virtual
machine Google Colab Pro (Google LLC, Mountain View, CA, USA), which provides an Nvidia Tesla P100 GPU
(NVIDIA, Santa Clara, CA, USA), with 3584 CUDA cores, and took approximately 2 days and 4 hours.

3.4. Implementation of YOLOv5 for Apple Detection
The YOLOv5 family incorporates four main architectures: YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x.
Their only difference is the number of feature extraction modules and convolutional kernels. All four architectures
are consisted by three components: 1) the backbone network, 2) the neck network, and 3) the head module. The
backbone is a CNN which extracts the image features for each grid cell by multiple convolutions and poolings,
generating four layers of feature maps with different sizes: 152 × 152 pixels, 76 × 76 pixels, 38 × 38 pixels, and 19
× 19 pixels (Xu et al., 2021). Then the neck network, i.e. path aggregation network (PANet), aggregates these
different-sized feature maps, aiming to acquire more contextual information, producing new feature maps. Finally,
the head module detects and classifies the objects, using the feature maps produced by the neck network. For this
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research, the YOLOv5s model was used (available on: https://github.com/ultralytics/yolov5).

3.4.1. Baseline YOLOv5

Before evaluating the detection on super-resolved images, a baseline should be established based on the native
lower-resolution dataset. For that reason, images from the original 5472 × 3648 px UAV dataset, —not used for
the training and validation of the SR model, were selected and cropped to non-overlapping tiles of 608 x 608
px, aiming to reduce processing time. A data cleaning process followed, ensuring that the tiles contain mostly
apples and not scenes of solely grass or objects of non-interest. A total of 1233 tiles was gathered and annotated
using the open-source labelling tool ‘LabelImg’ (available on: https://github.com/tzutalin/labelImg, under the
YOLO format. The images were annotated using one class, i.e. apples. Hazy or blurred positive samples were
excluded. The dataset was split to 80/20 for training and validation, i.e 1001 for training, and 232 for validation.
Data augmentation techniques were applied to increase the datasets size, including rotations of 90◦ and 180◦
degrees, and gamma correction of value ± 0.5.. After the process, the training data consisted of a total 4004 tiles,
and the validation a total of 928. The testing set of the study was created manually, by the remaining tiles, selecting
images with a considerable variation in lighting conditions, size of fruits and distortions. It resulted to a total of 50
tiles of 608 x 608 px resolution.

For training the detector on the native dataset, a pre-trained model on the MS COCO dataset was used, to initialize
the weights and decrease the training time. The initial learning rate was set to 0.0001, with batch size of 32, weight
decay of 0.0001, and the stochastic gradient descent (SGD) was used as optimization strategy. The network was
trained for 300 epochs, under the PyTorch framework, on the cloud-based virtual machine Google Colab Pro
(Google LLC, Mountain View, CA, USA). The procedure lasted approximately 9 hours.

3.4.2. Super-Resolution YOLOv5

Having the baseline model ready, the exact same training, validation and testing datasets were firstly super-resolved
by up-scalling factors of x2, –as the optimal up-scalling factor for detection (Rabi et al. 2020; Velumani et al.,
2021)–, increasing the images size to 1216 x 1216 px. Furthermore, the dataset was cropped again to 608 x
608 px, preserving the annotations, using a Python script (available on: https://github.com/slanj/yolo-tiling).
Resulting to 4004 training samples. Tiles featuring no labels were discarded, to ensure that the majority of the
datasets contains images with apples, reducing the sample to 3623 annotated tiles. Figure 3.5 illustrates the
super-resolution and cropping procedures. Furthermore, the datasets were manually inspected to ensure that the
labels were corresponding to apples, and not background objects. It was found that annotated apples in the middle
of the images, were split to half during the cropping process, resulting to labels (Figure 3.6).

Figure 3.5: The cropping process after SISR, where the x2 image of 1216 x 1216 px is cropped again to 608 x 608 px, and the tiles with empty
annotations are discarded. Zoom for better view of the green bounding boxes.

https://github.com/ultralytics/yolov5
https://github.com/tzutalin/labelImg
https://github.com/slanj/yolo-tiling
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Figure 3.6: An example of an error induced by the cropping procedure. In this case, as the apple was in the center of the image, after the
cropping it resulted to two tiles, the one empty representing a false label.

Data augmentation techniques applied, in the same manner as the baseline model. For the testing dataset, no
cropping applied, and the inference was performed on the native resolution, i.e. 1216 x 1216 px, in order to
investigate the effect of large-sized high-resolution images in detection performance. For training the SR detector,
a pre-trained model on the MS COCO dataset was used. The initial learning rate was set to 0.0001, with batch size
of 32, weight decay of 0.0001, and the stochastic gradient descent (SGD) was used as optimization strategy. The
network was trained for 300 epochs, under the PyTorch framework, on the cloud-based virtual machine Google
Colab Pro (Google LLC, Mountain View, CA, USA). The procedure lasted approximately 15 hours. Table 3.1
summarizes the characteristics of the baseline and super-resolved datasets.

Model: Baseline Super-Resolved

Native Resolution 608 x 608 1216 x 1216
# of Training Images 4004 14451

# of Annotated Apples 52257 52238
Testing Resolution 608 x 608 1216 x 1216
# of Testing Images 50 50

Table 3.1: Details regarding the two object detection datasets.

3.5. Metrics

3.5.1. Super-Resolution

Assessing the reconstruction performance of the proposed method is a challenging process, as no reference ground-
truth high resolution images exist. Therefore, full-reference metrics (FR-IQMs), such as the peak signal-to-noise
ratio (PSNR) and structure similarity index (SSIM), cannot be applied. For this reason, three non-reference image
quality metrics (NR-IQMs) are adopted for the image quality evaluation: the naturalness image quality evaluator
(NIQE), the perception-based image quality evaluator (PIQE), and the perceptual index (PI). These measures are
found to strongly correlate with the human perception, and especially PI is regarded as the closest (Blau et al.,
2018).

As the NIQE and PIQE are based on complex mathematical formulations, for the sake of brevity will be
not presented in this report. Readers interested in the detailed methematical formulations can refer to Mittal,
Soundararajan and Bovik (2012) for the NIQE, Chan and Goldsmith (2000) for the PIQE. The PI is formulated as
follows (Eq. 3.4), where the Ma stands for the NR-IQM of Ma et al. (2017):

Perceptual index (PI) =
1
2

((10 - Ma) + NIQE), (3.4)
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3.5.2. Apple Detection

For the task of detection, three common measures found in apple detection research, are adopted: the precision,
recall and F1 score, formulated as Equations 3.5, 3.6 and 3.7, respectively:

Precision (P) =
𝑇𝑃

TP + FP
(3.5)

Recall (R) =
𝑇𝑃

TP + FN
(3.6)

Where, correctly detected apples are denoted as true positives (𝑇𝑃), correctly detected non-apple objects as true
negatives (𝑇𝑁), falsely detected apples as false positives (𝐹𝑃), and non-apple objects detected as apples as false
negatives (𝐹𝑁), and a F1 score as the result of:

F1 Score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
(3.7)



4
Results

In this chapter, the results of the evaluation procedure are presented. To validate the performance of the adopted
method, this thesis employs for comparison: (1) a traditional SISR method, the bicubic interpolation, (2) a
state-of-the-art GAN-based model which employs the classical degradation process, the ESRGAN (X. Wang et al.,
2018) not fine-tuned in the dataset, and, (3) a Real-ESRGAN pre-trained on DIV2K, Flickr2K and OST, but not
fine-tuned in the UAV dataset. With this comparison, it is aimed to be investigated if the domain-specific generator
of the Real-ESRGAN can enhance the distorted images present on the dataset and effectively increase detection
rates. Subsequent sections are divided accordingly, to: a) results of image quality evaluation, based on quantitative
and qualitative methods, and b) the results of object detection performance, using the object detection metrics.

4.1. Generative Adversarial networks (GANs) for super-resolution (SR)

4.1.1. No-Reference Image Quality Metrics (IQMs)

For the evaluation of the SR perfomance based on image quality, a total of 200 tiles of 608 x 608 px resolution, not
used during the training of the SR model, were selected from the UAV dataset. Table 4.1, depicts the averages of
each method on NIQE, PIQE and PI metrics.

Table 4.1: Comparative results on the NR-IQMs. Note, the lower the values the higher the quality of the reconstructions.

Method NIQE PIQE PI
Bicubic Interpolation 6.131 89.81 6.810

ESRGAN 5.916 38.37 6.451
Real-ESRGAN without fine-tuning 5.313 69.82 3.785

Real-ESRGAN with UAV fine-tuning 4.991 41.98 4.527

Among these IQMs, the two Real-ESRGAN models outerperfor bicubic interpolation and ESRGAN in PI. While,
interestingly the Real-ESRGAN not fine-tuned in the dataset achieves higher performance in the PI index, compared
the fine-tuned model. The ESRGAN model found to outerperform all the other approaches in the PIQE index.

4.1.2. Visual Comparison

Visual examples of image improvement between the different methods are presented in Figure 4.1. In comparison
with the original image, all methods increased effectively the initial resolution. However, the enhancement of
original images in terms of semantic information under visual examination, differs significantly.
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(a) (b)

(c) (d)

(e)

Figure 4.1: Example of super-resolution (SR) reconstructions of the (a) original dataset: (b) Bicubic Interpolation , (c) ESRGAN, (d)
Real-ESRGAN not fine-tuned in the dataset, and (e) the domain-specific Real-ESRGAN fine-tuned using a limited number of UAV imagery
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The visual investigation reveled that deep learning based SISR methods produce images with finer details, compared
to bicubic interpolation. Furthermore, the two Real-ESRGAN models exhibit high visual quality compared to,
both the bicubic interpolation and ESRGAN, confirming the PI scores. However, the model fine-tuned in the
UAV dataset introduces artifacts, compared to the model not fine-tuned in the dataset. This can be explained as
the training images used for fine-tuning, despite being of the highest-quality for the given dataset, still exhibit
considerable distortion compared to DIV2K images (Figure 4.2). This can lead the generator to recognize these
distortions as high-resolution features, and in result to replicate them during the inference phase.

Figure 4.2: Zoomed at 400%. On the left: Image #0001 "Starfish" from the DIV2K dataset. On the right: an image used for the fine-tuning
.

To confirm the statement that lower-quality training images can add artifacts in the reconstructions, an additional
visual examination follows, aiming to explore if fine-tuning the models in blurry images can hamper the visual
performance. In specific, three models are employed: a) a Real-ESRGAN that is not fine-tuned in the dataset,
and trained only on DIV2K, b) the Real-ESRGAN fine-tuned on high quality UAV images, a retrieved using the
Laplacian blur detector (See Section 3.3.3, and c) a Real-ESRGAN fine-tuned on a UAV dataset, that was not
investigated for blurriness or other distortions. Figure 4.3), depicts the results.

Figure 4.3: A visual example of the effect of training the model with image of adequate quality. In specific: a) the Real-ESRGAN trained only
on natural images, e.g. DIV2K, Flickr2K and OST, results to higher visual quality, compared to the b) fine-tuned model of the research,

—using the blur detector, and c) a model trained on low-quality UAV images from the dataset.

The visual examination of Figure 4.3, revealed indeed that training the GAN models on lower-quality images can
result to poor visual performance. Nevertheless, the Real-ESRGAN models demonstrate superior reconstruction
performance compared to traditional SISR methods, and GAN-based models which utilize a more simplistic
degradation process (Figure2 4.1). However, the NR-IQMs and the visual investigation method used, are not
suitable to assess the reconstruction performance. The metrics commonly utilized for assessing reconstruction
performance on the SR research, are the peak signal-to-noise ration (PSNR) and structure similarity index (SSIM).
Both metrics are full-reference IQMs. Since ground-truth higher-resolution images are not available, the PSNR
and SSIM cannot be deployed.
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4.2. YOLOv5s for Apple Detection
For the fruit detection performance, the same models used in the NR-IQMs evaluation and visual investigation
were employed for comparison purposes. In specific, the models super-resolved the training, validation and testing
dataset, with up-scalling factor of x2, following the pre-processing pipeline explained in Section 3.4.2. After, the
super-resolution and cropping procedures, three additional YOLOv5 detectors were trained following the settings
described in Section 3.4.2. For the inference of the testing dataset, the confidence threshold was set to 0.25, and
intersection over union area (IoU) threshold to 0.25. Table 4.2 depicts the results of the detection.

Table 4.2: Comparative results on Precision, Recall and F1 score. Note, the higher the values the better the results.

Method Operational Resolution Precision Recall F1
YOLOv5 Baseline 608 x 608 0.85 0.65 0.74

YOLOv5 Bicubic Interpolation 1216 x 1216 0.86 0.74 0.80
YOLOv5 ESRGAN 1216 x 1216 0.88 0.81 0.84

YOLOv5 Real-ESRGAN without fine-tuning 1216 x 1216 0.95 0.73 0.83
YOLOv5 Real-ESRGAN with UAV fine-tuning 1216 x 1216 0.91 0.85 0.88

Good performances were observed when the models are trained on the higher-resolution reconstructions. In
specific, the YOLOv5 trained and tested on the source dataset, i.e. without super-resolution scored the worst in all
metrics. In comparison, the YOLOv5s trained on the dataset provided by the fine-tuned Real-ESRGAN, achieved
the best performance. Furthermore, the YOLOv5 trained and tested on the ESRGAN dataset achieved higher
score than the Real-ESRGAN not fine-tuned in the UAV dataset. Furthermore, the YOLOv5 trained and tested on
the bicubic interpolation dataset, scored worse than the GAN-based SISR methods, but better than the source
YOLOv5. Figure 4.4 shows an example of detection between the Baseline YOLOv5, i.e. the modle with lowest
score, and the Real-ESRGAN YOLOv5 fine-tuned on the UAV dataset, i.e. the model with highest score.

Figure 4.4: On the left, the model trained on source resolution (608 x 608 px), missed one occluded target. In comparison, the model trained
on the Real-ESRGAN dataset (1216 x 1216 px), detected all targets.

Utilizing super-resolution prior to detection, shows higher detection performance, However, the testing for SISR
methods performed on their native resolution, i.e. 1216 x 1216 px, which can proven computational demanding
and decrease detection speed. To verify this statement the inference times between the models are compared.
Table 4.3, shows the average time in milliseconds (ms) per tile, for the compared methods.

As the result indicate, detecting in texture-rich higher-resolutions can be proven slow. The baseline YOLOv5,
processing tiles of 608 x 608 px, was the fastest as expected. This is an important factor in precision agriculture,
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Method Average Speed per Tile (ms)
Baseline 9.3

Bicubic Interpolation 13.6
ESRGAN 13.7

Real-ESRGAN without fine-tuning 13.7
Real-ESRGAN with UAV fine-tuning 13.3

Table 4.3: Comparative results on detection speed.

where fast and light-weight detection models are core technologies for fruit-picking robots (Yan et al., 2021)



5
Discussion

Super-resolution (SR) attracted immense interest by the scientific community, and was characterized as a powerful
image pre-processing technique. Compared to other image enhancement approaches, e.g. block-matching and 3D
filtering (BM3D) algorithms, enlarges the objects beyond the initial resolution of the given image, — a characteristic
considerably valuable for the the task of UAV-based fruit detection. Nonetheless, in SR operations two main
challenges occur: 1) the fundamental ill-possed challenge of the infinite number of potential super-resolution
reconstructions, and 2) the hardship to define and use the appropriate SR model for a given dataset. The latter is
reflected by the results of this research, where the GAN model trained under classical degradation modelling,
resulted to reconstructions of lower quality, with a substantial amount of artifacts (Figure 4.1). In contrast, the
GAN-based methods trained under more sophisticated degradation modelling. i.e. the Real-ESRGAN models,
provided superior reconstructions under visual investigation. This is can be explained by deconstructing the
high-order degradation modelling of the Real-ESRGAN models, used in this research. This degradation modelling
approach, incorporated blur, resizing, additive noise and JPEG compression. The UAV dataset used in this study,
although exhibited a variety of unknown degradations related to the imaging system, was highly affected by
blurriness introduced by the motion of the UAV and loss of information due to JPEG compression (Figure 3.2b).
Thus, the blur kernels and JPEG-compression simulation used in the training procedure, were highly beneficial for
the reconstruction of images with high perceptual quality (Section 4.1.1. This pattern, where domain-specific
degradation modelling yields superior reconstruction is also observed by Z. Zhang et al. (2022).

Moreover, the quality of the training material is also crucial. By comparing Figure 4.3, it can be seen that training
HR images of low quality result to the introduction of artifacts and chromatic abbreviations. In particular, the
Real-ESRGAN trained on abundant high-quality natural images, exhibited outstanding results compared to the
other methods, in terms of perceptual quality. Confirming that supervised GAN-based methods require sufficient
high-quality images to perform satisfactory. However, DL SISR models trained on off-domain datasets, can lead to
the effect called domain-shift, where remote sensing datasets inherit characteristics found on natural scenes. This
inheritance may lead to alterations in image statistics of the remote sensing images, and thus possible introduction
of artifacts and distortions in the reconstructions. Such alterations, were not able to be quantified, as no FR-IQMs
capable to capture the reconstruction accuracy were used, due to the absence of higher-resolution reference.

Interestingly, SR method used, i.e. bicubic interpolation, ESRGAN, Real-ESRGAN, the detection rates for the
models utilized the SR as a prepossessing step were greater, compared to the model that detected images on the
unprocessed dataset. In specific it was shown that by training the detector in super-resolved tiles of 608 x 608 px
resolution, and performing the inference on super-resolved images of 1215 x 1216 px, an increase by 7.06% in
precision, 30.77% in recall, and 18.92% on F1 score is observed (Table 4.2). This can be explained by the ability
of SR to successfully reveal partial occluded and shaded fruits. However, a further explanation is that the detectors
employed in this research were pre-trained on the MS COCO dataset, where the objects in this specific dataset
are mostly large. Thus, the YOLOv5 models that utilized SR images, and as result larger objects, were able to
perform better since they were fine-tuned based on the MS COCO weights. However, training from scratch is not
recommend in UAV-based object detection (Apolo-Apolo et al., 2020; Zhu et al., 2021).

Another interesting observation, is related to detection performance of YOLOv5 model trained and tested on
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reconstructions produced by the Real-ESRGAN model, that was trained only on natural scenes. This YOLOv5
model scored lower than the domain-specific Real-ESRGAN and the ESRGAN (Table 4.2), — which used a
classical degradation training approach. Although, reconstruction accuracy metrics are not available, it is known
that the models exhibiting high PI values, fundamentally do not score well in reconstruction accuracy metrics such
as the peak noise-to-signal ratio (PSNR) and structure similarity index (SSIM) (Blau et al., 2018). This evidence,
can contribute to the hypothesis of domain-shift, where the reconstructions of the Real-ESRGAN trained only on
natural scenes, might be altered in terms of image statistics. If true, its reconstructions show a variety of image
features, inherited both fro the UAV dataset and the natural scenes, which might be proven for the YOLOv5 model
to be captured accurately. However, as mentioned before such assumption can not be verified.

Finally, the YOLOv5s model trained and tested on the native UAV resolution, i.e. 608 x 608 px, found to
exhibit the highest average detection speed per tile, of 9.3 ms. In comparison, the detectors trained and tested on
higher-resolution SISR reconstructions, exhibited average speeds ranging from 13.3 to 13.7 ms. Suggesting that
super-resolved images require additional time to be process by the YOLOv5. Nevertheless, the range of 13.3 to
13.7 ms is considered very minimal time-wise (Wang & He, 2021). This is a extremely relevant for the evaluation
of the SISR methods in respect with their real-life application in yield-estimation, which time-efficiency is a big
matter.



6
Conclusion

In this thesis, the problems associated with the detection of fruits on unmanned aerial vehicles (UAVs) datasets,
has been approached by the utilization of single image super-resolution (SISR) methods. Results showed, that
supervised generative adversarial networks (GANs) based SISR is a capable to effectively combat occlusion,
blurriness and other optical distortions, elevating considerably the detection performance. In addition, as a
cost-effective and timely approach, it can be proven efficient in situation when acquisition of high-quality images
is expensive or infeasible. Concluding, while supervised SISR methods proven effective for the task of this thesis,
further research should be implemented to investigate the relationship of domain-shift and fruit detection on
remote sensing imagery.
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