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Abstract 

Precise estimation of sub-second event timing from visual inputs is a fundamental 

aspect of human perception, enabling complex coordinative abilities. Early visual cortex 

areas exhibit monotonically increasing responses to visual event timing, turning into timing-

tuned responses beginning in the medial temporal area (MT/V5). Here, we investigate 

whether such responses can be found in recurrent generative neural network models, 

unsupervisedly trained to efficiently encode visual event timing. Utilizing biologically 

plausible learning rules, as well as network structure, we were able to find monotonic and 

tuned responses to visual event timing in non-hierarchical- but not in hierarchical models. 

Thus, supporting the emergence of monotonic and tuned responses from inherent components 

of visual inputs. We showed that unsupervised recurrent generative neural networks can 

generally be used as models for human visual event timing. Moreover, we propose that 

advanced models could contribute explaining the response development along the visual 

hierarchy or the relationship between spatial and temporal abstraction. 

Introduction 

Quantifying sub-second sensory event timing is crucial to human perception and 

interaction with a dynamic world. Accurate estimation of timing is essential for 

discrimination of sensory stimuli (Buonomano & Karmarkar, 2002; Ivry & Spencer, 2004; 

Shannon et al., 1995) and coordination of motor responses (Medina et al., 2005), enabling 

complex activities such as speech articulation, musical execution, or sports. Two different 

hypotheses explaining timing perception have been proposed indicating either a dedicated or 

an internal model of timing perception (Gibbon, 1977; Hazeltine et al., 1997; Matell & Meck, 

2004). A dedicated model assumes one central “internal clock”, composed of a central group 

of neurons that oscillate with a constant frequency measuring timing for different sensory 
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channels. Contrary, an internal model for timing perception (Buonomano & Karmarkar, 

2002) assumes timing to be an innate property of sensory response patterns. The latter would 

imply that accurate estimation of timing is emerging independently for each sensory channel 

and could be represented in an efficient encoding of sensory inputs, thus leading to neurons in 

sensory channels with response properties tuned to timing. Supporting this hypothesis, 

investigation on neural responses in primates, carrying out timing-sensitive motor tasks, 

revealed that responses with both monotonic and tuned characteristics to event duration and 

period arise in the medial premotor cortex (Merchant et al., 2013). In humans, recent fMRI 

studies showed that responses in visual cortex areas can be described by monotonic, sub-

additive functions of event duration and frequency (Zhou et al., 2018), likely to arise from a 

summation of transient and sustained neural responses (Stigliani et al., 2017). These 

monotonous responses are – as the retinotopic organization of the visual cortex implies – 

presumably to be bound to retinotopic location but tend to gradually change towards tuned, 

retinotopically invariant responses beginning in area MT/V5 (Hendrikx et al., 2022). A 

network in subsequent cortical areas has been identified to induce tuned responses to event 

duration and frequency (Harvey et al., 2020). These areas are widely spread across visual-, 

multisensory- and action planning areas, internally topographically organized, and largely 

overlap with cortical areas that induce tuned responses to other quantities such as visual 

numerosity and visual object size (Harvey et al., 2015, 2020; Harvey & Dumoulin, 2017). 

Visual numerosity tuned responses in higher cortical areas are invariant to retinotopic 

position, therefore likely to contribute to an abstract neural representation of numerosity 

(Harvey et al., 2015). Considering the large overlap of these areas it is hypothesized that 

tuned responses to visual event timing might similarly contribute to a representation of timing 

that is invariant to retinotopic position. 
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Neural response modeling for visually driven quantities has been mostly focused on 

timing independent cognitive functions. Considering the apparent interleaved relationship 

between timing and numerosity, we want to highlight several models and techniques 

regarding numerosity representation. Early research showed that numerosity selective, tuned 

responses for both symbolic and non-symbolic stimuli emerge simultaneously in an artificial 

neural network trained to discriminate numerosity (Verguts & Fias, 2004). However, inputs 

to this network were simplified and the modeling process relied on biologically implausible 

supervised backpropagation learning rules (Cox & Dean, 2014; Zorzi et al., 2013). Recently, 

Deep Convolutional Neural Nets (DCNN) have been widely and successfully applied for 

object recognition from natural images (He et al., 2016; Krizhevsky et al., 2012) and have 

shown – even when trained to exclusively optimize object recognition performance – to be 

plausible models for the human visual stream (Yamins et al., 2014). Analogous to the human 

visual hierarchy, the size of receptive fields in DCNNs tends to increase in higher layers, 

separating responses to specific objects and features from their spatial position. This 

formation of abstract, spatially invariant feature maps is supported by lateral inhibition of 

neurons in the human visual cortex and equivalently local normalization operations of spatial 

filters in DCNNs (Krizhevsky et al., 2012). Furthermore, global normalization like Batch 

Normalization has been widely applied to weigh a unit’s activation depending on its 

activation to other elements in a training batch (Ioffe & Szegedy, 2015). Crucially, assuming 

that activation in a single batch of training data is an approximation for the entire population. 

Considering numerosity, state-of-the-art DCNNs show an emergence of an innate 

representation of numerosity without being explicitly trained to discriminate numerosity, 

peculiarly without being trained at all (Kim et al., 2021). 

Unsupervised learning in hierarchical generative models (HGM) (Hinton et al., 2006) 

seems to be a biologically plausible alternative opposing supervised learning (Zorzi et al., 



Responses to Visual Event Timing in GNN Models 5 

 

2013). HGMs estimate an efficient feature representation according to the probability 

distribution of presented data without any supervised feedback (Zorzi et al., 2013). This type 

of model is in line with neurobiological theories implying the mixing of bottom-up and top-

down interactions in the brain (Hinton & Ghahramani, 1997). Attempts to model numerosity 

representation with HGMs revealed that monotonic (Stoianov & Zorzi, 2012) and tuned 

(Zorzi & Testolin, 2018) responses to numerosity emerge spontaneously in HGMs as an 

innate property of presented stimuli and without supervised feedback on a specific task. 

Consecutive modeling suggests numerosity being a salient, emergent property of the visual 

environment (Testolin et al., 2020), or a feature that closely follows the brain’s spatial 

frequency-based representation of images (Paul et al., 2022). 

Modeling approaches investigating neural responses to sensory event timing have 

shown that an efficient encoding of timing in sensory stimuli can emerge in a biologically 

plausible fashion by adding paired-pulse facilitation and inhibitory connections between 

layers of artificial units (Buonomano & Merzenich, 1995). Modeling of top-down time 

perception recently incorporated feature representations of a DCNN as “sensory” input for 

cognitively higher reasoning mechanisms enabling the reproduction of biases in human 

timing perception (Fountas et al., 2022).  

Independent of modeling biological responses to event timing, Recurrent Neural 

Networks (RNN) emerged as a framework to efficiently approximate timing-dependent 

functions (Rumelhart et al., 1985). Recently, RNNs have been widely applied in complex, 

timing-dependent tasks such as speech recognition (Graves et al., 2013), machine translation 

(Cho et al., 2014), or image caption generation (Vinyals et al., 2015). RNNs form a special 

case of HGM by estimating a feature representation of sequential data and achieve integration 

of temporal dependencies by repeatedly combining hidden states from previous time-steps 

with novel input. Comparable to HGMs, RNNs do not utilize explicit feedback but rather 
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estimate a feature representation that is most beneficial for the realization of inherent learning 

target. As these hidden representations get passed in a feedforward fashion to higher layers, 

the content of these representations becomes more and more abstract. Consequently, – in the 

context of timing – hidden representations in higher layers should be able to contain more 

complex timing representations and increasingly encode timings with a larger temporal 

dependency. However, classical RNN architectures were largely limited by the vanishing- or 

exploding gradient problem which describes exponential decreasing or increasing of 

backpropagation gradient when dealing with long sequences of data or many hierarchical 

layers. This often leads to difficulties in learning long-term temporal dependencies 

(Hochreiter, 1998). The vanishing gradient problem can be circumvented by avoiding 

hyperbolic activation functions in favor of activation functions with a constant gradient such 

as the Rectified Linear Unit activation function (ReLu). Nevertheless, the exploding gradient 

problem might still interfere with encoding capabilities of RNNs, as ReLu is unbounded in 

the positive domain and function values possibly grow rapidly. Common approaches trying to 

solve both the vanishing and exploding gradient problem introduced either restriction in 

connectivity of recurrent connections (Li et al., 2018) or control of information flow within 

networks through gating mechanisms (Hochreiter & Schmidhuber, 1997). The most notorious 

example of the latter is known as a Long Short-Term Memory network (LSTM) (Hochreiter 

& Schmidhuber, 1997) and has been successful at capturing large temporal dependencies by 

containing relevant information about previous time-steps in a cell state. Considering the 

biological plausibility of LSTMs, however, different gating mechanisms allow dynamic 

capturing and storing of any complex temporal information, even when past activity does not 

follow a monotonic structure. Contrary, neural responses of units in early stages of the visual 

stream seem to be limited to capturing simpler monotonic patterns, whereas only neural units 

in later stages inhabit the capability to capture tuned patterns (Hendrikx et al., 2022). 



Responses to Visual Event Timing in GNN Models 7 

 

Analogous to DCNNs, RNNs often utilize normalization operations, however, 

application of Batch Normalization has often been criticized for its computational 

unfeasibility with growing sequence length and its heavy dependency on the batch size 

hyperparameter (Ba et al., 2016). As an alternative, Layer Normalization has been proposed 

(Ba et al., 2016). In Layer Normalization, a hidden unit’s value is not normalized depending 

on values in other training examples, but rather dependent on activity of other units within a 

layer during presentation of individual stimuli. As a model of biological temporal processing, 

this approach is supported by fMRI observations in humans: monotonic responses to frequent 

event timings have been shown to inhabit a stronger sub-additive suppression than responses 

to infrequent event timing (Zhou et al., 2018). This fact lets us hypothesize that neurons’ 

suppression is dependent on carried-over activation from previous time-steps. Since such 

activation is primarily dependent on induvial stimulus’s structure, a Layer Normalization 

approach only considering induvial stimulus’s activation seems most legitimate. 

In the current study, we aim to combine modeling techniques from the numerosity 

domain with established neural network architectures for temporal-dependent tasks to create 

a hierarchical recurrent generative model for human sensory processing of visual event 

timing. Such a model enables exploration of the computational foundations of timing 

prediction and overcomes limitations concerning the determination of causal relationships 

between stimuli and responses in fMRI studies. Furthermore, modeling enables maximal 

control of sensory input, neural connectivity, neural activation, and yields advanced insights 

into neural dynamics with instantaneous temporal resolution. Within the scope of this model, 

we want to investigate whether transient and sustained components of visual inputs allow a 

straightforward computation of monotonic event duration and period, whether such 

monotonic responses are obligatory for encoding of timing, whether monotonic responses of 

event duration and period allow a straightforward computation of timing-tuned responses, 
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and how monotonic timing responses turn into timing-tuned responses in such a scenario. 

Crucially, the model utilizes unsupervised, biologically plausible learning rules to encode 

timing information from sequential stimuli, necessarily not exploiting any explicit, supervised 

feedback. Moreover, the model’s hierarchically organized architecture conceptually 

resembles the human visual cortex and successive areas. 

Emerging response dynamics in a biologically plausible model for visual event timing 

allow a comparison to response dynamics in the human visual cortex. More specifically, we 

want to draw a comparison with monotonic timing response development in early visual 

areas (Hendrikx et al., 2022; Stigliani et al., 2017; Zhou et al., 2018) and timing-tuned 

responses in later visual areas (Harvey et al., 2020; Hendrikx et al., 2022). 
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Methods 

Stimuli 

The dataset used to train the GNNs consisted of stimuli used in previous fMRI studies 

(Harvey et al., 2020). Here, a stimulus consisted of a sequence of images with a width and 

height of 75 pixels. An image contained either of two contents: a centered black dot on a 

white canvas, or a blank white canvas. In the experiments, the framerate was set to 20 frames 

per second and the maximal stimulus length was set to 42 images. Therefore, an image was 

displayed for a duration of 50 ms and a stimulus was displayed for a maximal duration of 42 

* 50 ms = 2100 ms. Stimulus timings were defined by a combination of event duration and 

event period, in which the number of consecutive dot images gives event duration and the 

number of images between two dot appearances gives event period. An example: a stimulus 

of repetitive sequences consisting of a dot image followed by two no-dot images corresponds 

to a stimulus timing with duration = 1 * 50 ms = 50 ms and period = 2 * 50 ms = 100 ms 

(Figure 1).  One of these repetitive sequences corresponded to a single event. Stimuli were 

intentionally designed to be circular, meaning that the onset and the offset of a stimulus were 

equal and interchangeable. Thus, a stimulus contained exclusively identical, complete events 

of specific timing and the length of each stimulus was slightly variable (around 2100 ms) due 

to differing event lengths. Stimuli with a shorter event length contained a larger number of 

events, and therefore more information about respective event timing. In the fMRI study, this 

effect was balanced by accounting for the event frequency in the amplitude prediction 

(Harvey et al., 2020). Combinations of event duration and period were restricted to a total of 

80 combinations in four experimental conditions. Stimuli with similar timings were presented 

consecutively in a gradual changing manner (for example from low event duration to high 
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event duration), likely introducing carry-over effects of neuronal activation between similar 

timings. 

In the current study, existing stimulus space (Harvey et al., 2020) was adjusted to suit 

the context of a trainable GNN model. Stimuli for every possible combination of event 

duration and event period were generated to enhance the resolution of the stimulus space. 

Here, event duration must be smaller than event period as other configurations would result 

in an overlap of events leading to multiple dots in one image. All applicable combinations of 

event duration and event period corresponded to 210 stimulus timings. Stimuli with more 

events contained more information about respective timing and were inherently easier to 

learn. To eradicate this internal bias and to add variability to the data, the circular nature of 

the stimuli was exploited by shifting the start of the stimulus by all possible offsets, resulting 

in stimuli with the same event duration and period but in different phases of the stimulus. For 

a specific timing, the number of possible phases equals the event length, because shifting a 

cyclic stimulus further than the event period would result in a duplicate stimulus. Therefore, 

in a stimulus with an event duration of 50 ms and an event period of 100 ms, the single dot 

Figure 1. Stimulus with a duration of 50 ms and a period of 150 ms with a phase offset of 1. 
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image could be in three different positions: in the beginning, after 50 ms, or after 100 ms. All 

possible phases of stimulus timings were included in the dataset. Construction of the dataset 

following this logic has the benefit that each stimulus timing had a constant number of events 

when summed over all different variations of phases. To guarantee efficient training by 

utilizing a batched training procedure, the stimuli required a fixed length. Therefore, the 

stimulus length was increased to a fixed length of 60 images, corresponding to a 3000 ms 

time interval. In case numerous complete events did not exactly 60 frames of a stimulus, 

several images following the stimulus nature were appended, which introduced a slight 

imbalance. This effect was counterbalanced by excluding appended images in the evaluation- 

as well as in the response recording methodology. 

Even though images with a width and height of 75 pixels were used for human 

participants in fMRI studies (Harvey et al., 2020), the reduction of the models’ computational 

complexity, as well as training times, was essential. Therefore, the image size was reduced to 

a single pixel which was either black or white. This approach was only applicable because 

pixels in images were perfectly correlated and thus contained equivalent informational 

content relevant to timing. 

Generative Neural Network 

The GNN architecture was composed of several elements with a recurrent cell being 

the major building block. The following section elaborates on two different recurrent cells 

used in the GNN architecture. 

RNN Cell  

The RNN cell – as the name implies – contains a recurrent, as well as an outgoing 

connection (Figure 2). The outgoing connection feeds into succeeding layer’s RNN cell and 

is part of the higher RNN cell’s inputs. The recurrent connection feeds into the same RNN 

cell and contains the cell’s output from the previous time-step. Therefore, at a given time-step 
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t, each cell’s inputs are composed of its output at time-step t-1 as well as the output of the 

previous layer’s RNN cell at time-step t. Internally, each RNN cell has two sets of dense 

neural weights for the input- and the recurrent component. Both inputs get multiplied with 

respective weights (matrix multiplication) and both feature vectors get summed (pointwise 

summation). Resulting feature vectors are fed into an activation function, producing the 

hidden state at time-step t (Equation 1). This hidden state can be interpreted as an abstract 

representation of the input at time-step t combined with its temporal context based on 

previous hidden states (recurrent connection from t-1). 

 

Equation 1 

ℎ𝑡 = 𝑅𝑒𝐿𝑢(𝑊𝑖ℎ𝑥𝑡 + 𝑏𝑖ℎ + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎℎ) 

Where ht is the hidden state at time-step t, xt is the input at time-step t, and ht-1 is the 

hidden state at time-step t-1. Wih, bih, Whh, and bhh are weight matrices and bias vectors for 

input and hidden state respectively. 

 

Figure 2. RNN cell. 
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LSTM Cell  

The LSTM cell is a more specialized version of an RNN cell and archives increased 

performance in many tasks due to its inherent gating mechanisms (Figure 3). The core 

structure of the LSTM cell is equal to the RNN’s (recurrent connections, outgoing 

connections); however, the LSTM cell not only contains a set of weights for the input- and 

the recurrent component, but likewise additional sets of weights called forget gate, output 

gate, and cell gate (Equation 2). These gates allow the cell to extract additional information 

from the inputs and independently adjust gates following gradient descent. The forget gate, 

for example, allows certain properties of the inputs to be dynamically weighted at any given 

time-step t to improve prediction performance. Furthermore, the LSTM cell extends the RNN 

cell by having the ability to pass information about previous time-steps not only via the 

hidden state but also via a cell state. Importantly, information in the cell state can be 

contained indefinitely through time and therefore memory capacities can be achieved in a 

biologically implausible manner. Even though LSTM cells do not seem to be biologically 

plausible, GNN models with LSTM cells were used as a performance benchmark.  

 

  

Figure 3. LSTM cell. 
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Equation 2 

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) 

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) 

Where ht and ct is the hidden- and cell state at time-step t, xt is the input at time-step t, 

ht-1 is the hidden state at time-step t-1, and it, ft, gt, ot are the input, forget, cell, and output 

gates respectively. σ is the sigmoid function and ⊙ is the Hadamard product. Wi*, bi*, Wh*, 

and bh* are weight matrices and bias vectors for respective gates, inputs, and hidden states. 

Architecture 

Following the idea to induce biological plausibility by resembling the structure of the 

human visual cortex, GNNs with one to six hidden layers and a ReLu activation function 

were implemented. Networks were composed of multiple layers following the structure in 

Figure 4 (left): a recurrent cell (i.e., RNN-cell or LSTM-cell) followed by a normalization 

operator, a ReLu activation function, and a dropout operator. As inputs for a single time-step 

were naturally chosen to be a single image, the inherent task of the GNN was to predict the 

next image in the sequence. Thus, the last layer of the model feeds into a linear layer, 

constructing an image from the given hidden state (Figure 4, right). This prediction was 

evaluated by a criterion and resulting error was fed back into the network, adjusting weights 

following the gradient descent scheme. Importantly, feedback was not explicitly supervised 

as the obtained error was not determined by an external label but was rather inherent to the 
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data (self-supervised). The GNN’s predictions were not limited to integer values in which 

zero would correspond to a white pixel and one would correspond to a black pixel. Instead, 

predicted floating point values corresponded to shades of grey. 

The normalization operation was implemented before the application of the activation 

function following common practice from DCNNs with a ReLu activation function (Ioffe & 

Szegedy, 2015). Further, a dropout operator was used in intermediate layers to induce 

variability in learning of feature representations, often leading to better generalization 

performance (Srivastava et al., 2014). Consequently, networks with a single hidden layer did 

not utilize dropout. 

Figure 4. Structure of a single GNN layer (left) and architecture of a two-layer GNN (right). 
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In total, six Elman RNNs with one to six layers and two LSTM RNNs with one or 

two layers were implemented. LSTM RNNs were limited to two layers as the initial structure 

of the LSTM is designed to capture long-term relationships without many layers. Adding 

layers would introduce a vanishing gradient due to hyperbolic activation functions at different 

gates. Moreover, hidden weights of the networks were initialized using He initialization (He 

et al., 2015). This initialization method ensured that the sum of weights is equal even though 

the number of total weights differs between architectures enabling a fair comparison of the 

training process. All models were implemented in Python 3.7 using the PyTorch library. 

Hyperparameters 

The GNNs used the same set of hyperparameters to ensure comparability (Table 1). 

Here, a mean squared error (MSE) loss criterion, an Adam optimizer, a dropout probability of 

0.2, as well as a batch size of 30 was used. MSE loss for an image was calculated by 

averaging the pixel-wise loss of a predicted image, and MSE loss for a stimulus was 

calculated by averaging MSE loss for all predicted images in a stimulus. The Adam optimizer 

was initialized with PyTorchs default values (learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, 

weight decay = 0). Dropout probability was set to a moderate value of 0.2.  

Table 1. Fixed Hyperparameters of the GNN architecture. 

Loss function MSE 

Optimizer Adam 

Dropout probability 0.2 

Batch size 30 

Hidden neurons 64 

 

To ensure the hyperparameters were generally suitable for the given stimulus space, 

several models were trained on a so-called “perfect information” setup. Here, a separate 

model for each of the stimulus timings was generated and each of the models was trained 

independently on a single stimulus timing. Therefore, a total of 210 stimulus timings, as well 
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as 210 models were used. Assuming suitable hyperparameters, each of the trained models 

was expected to reach a loss value close to zero. This would mean that the hyperparameters 

were feasible to encode the temporal structure of every stimulus timing in independent 

models. Consequently, a single model with identical hyperparameters could encode the 

temporal structure of multiple stimulus timings. The number of hidden neurons was tuned by 

training the models with 256 hidden neurons and halving the size of hidden layers in case all 

independent models were able to encode respective stimulus timing under perfect 

information. This ensured that the minimal model size was used to prevent unnecessarily long 

training times. Finally, the lowest number of hidden neurons, successfully encoding every 

stimulus timing, was 64. 

Training 

The GNNs were trained for 1500 epochs using a randomized train-test split of 0.8. A 

commonly used n-fold cross-validation approach for training and validation was intentionally 

avoided, as the evaluation performance of the GNNs was not the focus of this study. Contrary 

to the original fMRI experiments (Harvey et al., 2020), the stimuli were presented in random 

order and independent of experimental conditions. As the random presentation order of the 

stimuli implies, neural carry-over effects were not considered to be relevant for GNN unit’s 

tuning, and therefore, carry-over was eliminated by resetting the GNNs hidden state before 

presentation of a new stimulus batch. To optimize the training procedure, the training was 

carried out on an Nvidia RTX 3070Ti GPU utilizing PyTorchs CUDA GPU support. 

Evaluation 

The GNNs were tested on the ability to predict successive images in a presented 

sequence of images from the holdout evaluation dataset. Contrary to the training procedure, a 

per-event loss was used as a performance measure. Per-event loss was obtained by dividing 

the summed stimulus loss by the number of stimulus events. The reason for this being that the 
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per-movie loss measure is biased to benefit stimuli with fewer total events. Considering that a 

single event contains exactly one stimulus onset and one stimulus offset, thus a single image 

in which a dot is appearing and disappearing, fewer events correspond to fewer transitions 

from no-dot images to dot images. A per-movie loss measure does not account for such a 

discrepancy in stimulus difficulty. Predicting any timing before the presentation of an entire 

event is impossible. Therefore, all images beginning from the start of a stimulus until the 

presentation of an entire event were excluded from performance measurements. Appended 

images at the end of a stimulus to match a fixed image length were equally excluded. 

Timing Response Recording 

GNN unit’s responses were recorded on the entire training dataset to obtain the most 

reliable responses and evaluate the units’ responses to all event timings. During this process, 

dropout was disabled to prevent noisy, not reproducible results. Per-event, as well as per-

movie responses to every stimulus timing, were recorded. Per-movie responses were 

expected to produce larger response amplitudes for stimulus timings which contain a larger 

number of events. Therefore, the per-event responses were of major interest. To obtain a 

comparable score to neural response model’s predictions, responses for movies with the same 

stimulus timing were averaged. Following this methodology, a single response amplitude of 

each unit for every stimulus timing was recorded. 

Neural Response Models 

As the main interest of this study was to investigate GNN unit’s response properties to 

event timing, encodings of event timing in hidden units in different layers of the trained 

GNNs were investigated. For this purpose, responses of GNN units to different stimuli were 

recorded and a parameterized neural response model was fit (Harvey et al., 2020). As the 

nature of the responses was expected to be either monotonic or tuned to event timing, two 

variants of the neural response model were used: one variant capturing monotonic responses, 
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and one variant capturing tuned responses. Both models assume a linear relationship between 

the response amplitude and the actual responses, therefore incorporating linear scaling 

parameters. 

Monotonic Response Model 

In the monotonic model, event duration and event period are assumed to influence the 

response amplitude independently and linearly. Consequently, the model incorporates the two 

predictors duration and period, each with a compressive exponent to account for sub-additive 

increases in response amplitude. Accounting for a linear relationship, each predictor is scaled 

by an independent scaling parameter, which can be combined to form a single 

“AmplitudeRatio” parameter (Equation 3). 

 

Equation 3 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∝  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑒𝑥𝑝𝐷𝑢𝑟 ∗ 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑡𝑖𝑜 +  
𝑃𝑒𝑟𝑖𝑜𝑑

𝑃𝑒𝑟𝑖𝑜𝑑𝑒𝑥𝑝𝑃𝑒𝑟
  

Where expDur and expPer are the respective compressive exponents for duration and 

period and AmplitudeRatio is the linear scaling parameter. 

 

Tuned Response Model 

In the tuned model the response amplitude is assumed to have an anisotropic two-

dimensional Gaussian tuning to event duration and period, together with a compressive 

increase in response amplitude with event rate (Harvey et al., 2020) (Equation 4). The tuned 

response model can be either tuned to event duration, event period, or both.  

 

Equation 4 

𝑋 = (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 −  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑓) ∗ cos(𝜃) − (𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑃𝑒𝑟𝑖𝑜𝑑𝑝𝑟𝑒𝑓) ∗ sin(𝜃) 

𝑌 = (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 −  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑓) ∗ sin(𝜃) − (𝑃𝑒𝑟𝑖𝑜𝑑 −  𝑃𝑒𝑟𝑖𝑜𝑑𝑝𝑟𝑒𝑓) ∗ cos(𝜃) 
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𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∝  𝑒
−0.5∗((

𝑌
𝜎𝑚𝑎𝑗

)
2

 + (
𝑋

𝜎𝑚𝑖𝑛
)

2

)
∗  

𝑃𝑒𝑟𝑖𝑜𝑑

𝑃𝑒𝑟𝑖𝑜𝑑𝑒𝑥𝑝𝑃𝑒𝑟
 

Where Θ is the preferred angulation of the Gaussian functions major axis, Durationpref 

is the preferred duration, Periodpref is the preferred period, σmaj is the standard deviation along 

the major axis, σmin is the standard deviation along the minor axis, and expPer is the 

compressive exponent for period. 

 

Fitting Procedure 

GNN unit’s responses were fit by obtaining amplitude predictions from given 

parametrized models and subsequently finding the optimal linear scaling parameter 

maximizing the explained variance (Least Squares Problem). To match the degrees of 

freedom of both models (two for the monotonic model and one for the tuned model), a two-

fold cross-validation approach was utilized. Here, both neural response models were fit on 

opposing halves of the data, the best parameters and scaling factors were obtained, and 

predicted response amplitudes for every timing were computed. Subsequently, explained 

variance for both models was measured on the complement half of the data. Importantly, both 

halves of the data were balanced, thus containing an equal number of movies of the same 

timing. Finally, the best fitting parameters of both models for each of the GNN units were 

saved. Comparing monotonic- and tuned response models was difficult as tuned response 

models allow a close approximation of monotonic response models due to their increased 

complexity. Such an approximation was explicit, whenever the peak of a tuned function was 

on the edge of investigated timing spectrum. In such a scenario, the observable part of the 

tuned function looks exactly like a monotonic function (Figure 5). To prevent this effect, 

preferred duration and period on the edges of the timing spectrum (50 ms duration and 1000 

ms period) were excluded. Arguably, this approach still allows tuned functions with a tuning 
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close to the edges of the spectrum, but the monotonic function was assumed to fit the 

responses better in such a scenario. Models were fit on both the per-event responses and the 

per-movie responses utilizing PyTorch CUDA GPU support and an Nvidia RTX 3070Ti 

GPU. 

Model Comparisons 

After obtaining the best fitting response models for each GNN unit, structural 

differences between both response models were investigated. However, collected response 

data, as well as model fits, had to be preprocessed for this purpose. Manually investigating 

average responses of GNN units revealed that many units were not responsive to any of the 

presented timings. These units were not relevant for further investigation and were excluded. 

Likewise, units in which the explained variance of both neural response models was below 

0.2 were excluded. 

Systematic differences between response model fits could occur on three different 

levels: within layers of GNNs, within GNNs, and between GNNs. To address all three levels, 

different test statistics, as well as different measurements, were used. For within-layer 

Figure 5. Tuned function with a preferred duration at 500 ms (left) and the same tuned function with a 

preferred duration at 1000ms (right) 
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comparisons, paired t-tests with monotonic- and tuned fits as the two groups were conducted. 

For within GNN comparisons, the difference between tuned and monotonic fits was 

calculated, and an n-way ANOVA analysis followed by a Tukey pairwise comparison test 

was conducted. Here, the number of GNN layers determined the degrees of freedom of 

ANOVA analysis, and each layer was compared to every other layer in Tukey pairwise 

comparisons. For between GNN comparisons, only the fit of the tuned response model was 

used as a measurement, all GNN units were pooled, and an n-way ANOVA analysis followed 

by a Tukey pairwise comparison test was conducted. Here, the number of different GNNs 

determined the degrees of freedom of ANOVA analysis, and each GNN was compared to 

every other GNN in Tukey pairwise comparisons. Systematic differences in preferred timings 

of tuned response models within GNNs were tested by measuring the Euclidean distance of 

each preferred timing to the center of presented timing range (duration = period = 500 ms) 

and conducting an n-way ANOVA analysis followed by Tukey pairwise comparison test. 

Again, the number of GNN layers determined the degrees of freedom of ANOVA analysis, 

and every layer was compared to every other layer in Tukey pairwise comparison test. The 

significance level for all statistical tests was set to 0.05. 
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Results 

GNN Prediction Performance 

Elman RNN 

Every trained Elman RNN with one to six hidden layers converged towards the 

minimal loss after 1500 epochs. Generally, models with more layers except for the six-layer 

network converged slightly faster than models with fewer layers (Figure 6). Train losses of 

Elman RNNs with two to six layers were minimally lower compared to losses of the one-

Layer Elman RNN. Evaluation of trained models revealed that all stimulus timings could be 

predicted accurately (Figure 7). Figure 8 shows a prediction of a two-layer Elman RNN for a 

stimulus with an event timing of 100 ms for duration and 800 ms for period. Here, the 

Figure 6. Average training loss per epoch of Elman RNNs with one to six layers. 
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network produces significant error until a complete event has been presented (frame 0 to 26), 

subsequent event, however, was predicted precisely (frame 27 to 44). 

Figure 8. Prediction of a two-layer Elman RNN for a timing with duration of 100 ms and period of 

800 ms. 

Figure 7. Average evaluation loss of Elman RNNs with one to six layers for different timings. 
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LSTM RNN  

As expected, both LSTM RNNs converged towards the minimal loss value quickly. 

The two-layer LSTM RNN converged slightly faster than the one-layer LSTM RNN (Figure 

9, top). Analogous to Elman RNNs, both LSTM RNNs performed well on the evaluation 

dataset (Figure 9, bottom). Overall performance of LSTMs was only minimally better than 

Elman RNNs.  

Neural Response Model Comparisons 

Elman RNN 

Figure 10 (left) shows monotonic and tuned fits for a one-layer Elman RNN. Even 

though many units show a good fit for both monotonic and tuned response models (upper 

right corner), the tuned response model often fits better than the monotonic model (dots 

towards the upper left corner). Investigation of preferred timings of the tuned response model 

Figure 9. Average training loss per epoch (top) and average evaluation loss (bottom) for different 

timings of a one-layer LSTM RNN and a two-layer LSTM RNN. 



Responses to Visual Event Timing in GNN Models 26 

 

(Figure 10, right) shows that some of the preferred timings were very close to the corners of 

investigated spectrum, thus closely approximating a monotonic function. Other preferred 

timings were located far from the corners and were therefore convincingly tuned. 

Specifically, a preferred period of 950 ms was found in many units. This indicates that tuning 

to event period tends to rather approximate a monotonic structure than tuning to event 

duration. An example of approximation of a monotonic function by the tuned response model 

can be seen in Figure 11 (top): both monotonic and tuned fits are high (0.97 and 0.95) but the 

tuned models’ prediction strongly mimics a monotonic function. Figure 11 (middle) shows a 

tuned response to event duration and period with a vertical orientation, and Figure 11 

(bottom) shows a tuned response to both event duration and period with an angulation of 

approximately 45 degrees. Consequently, in both the units with tuned response properties, the 

fit for the tuned response models is significantly better. Only units with monotonic, as well as 

two-dimensionally tuned response properties with variable angulation could be found (Figure 

12). 

Figure 10. Monotonic and tuned fits (left) and preferred timings of tuned response models where the 

tuned fits are higher than the monotonic fit (right) of a one-layer Elman RNN. 
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Figure 12. „Angle“ parameter distribution of tuned response models, where the tuned fits are higher 

than monotonic fits in a one-layer Elman RNN. 

Figure 11. Monotonic fits, responses, and tuned fits for unit 27 (top), unit 59 (middle), and unit 1 

(bottom) in a one-layer Elman RNN. 
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Response properties of units in hierarchical Elman RNNs were different. Figure 13 

shows monotonic and tuned response model fits for Elman RNNs from one to six hidden 

layers. Tuned models’ fits were worse in deeper networks compared to a one-layer Elman 

RNN. To confirm this finding, units from every layer of Elman RNNs were pooled and tuned 

fits were compared between networks. A six-way ANOVA analysis was significant with p < 

0.001, α = 0.05 and n1 = 57, n2 = 84, n3 = 93, n4 = 57, n5 = 71, n6 = 90. Pairwise Tukey 

comparison test results can be found in Table 2. Every pairwise comparison except three- 

versus two-layer, four- versus five-layer, and four- versus six-layer Elman RNNs was 

significant with α = 0.05. Here, especially non-hierarchical Elman RNNs show a large mean 

difference compared to hierarchical Elman RNNs. Therefore, it can be confirmed that tuning 

to timing is the strongest in units of the one-layer Elman RNN and gradually decreases with 

Figure 13. Per-event monotonic and tuned fits for Elman RNNs with one to six layers. 
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increasing number of layers. Starting from Elman RNNs with more than three layers, tuning 

to timing was indifferent. 

Table 2. Pairwise Tukey comparison test results of tuned response model fits between pooled 

units of different Elman RNNs. 

Network 

Type 

Network 

Type 

Mean Difference P 95% Confidence Interval 

Lower Bound Upper Bound 

1 2 -0.364 < 0.001* -0.4444 -0.2836 

1 3 -0.4544 < 0.001* -0.5332 -0.3756 

1 4 -0.5296 < 0.001* -0.6173 -0.4418 

1 5 -0.5571 < 0.001* -0.6404 -0.4738 

1 6 -0.5623 < 0.001* -0.6416 -0.483 

2 3 -0.0904 0.004* -0.1609 -0.0199 

2 4 -0.1656 < 0.001* -0.246 -0.0852 

2 5 -0.1932 < 0.001* -0.2687 -0.1176 

2 6 -0.1983 < 0.001* -0.2694 -0.1272 

3 4 -0.0752 0.071 -0.154 0.0036 

3 5 -0.1028 0.001* -0.1766 -0.0289 

3 6 -0.1079 <0.001* -0.1772 -0.0386 

4 5 -0.0276 0.9339 -0.1109 0.0557 

4 6 -0.0327 0.846 -0.112 0.0466 

5 6 -0.0051 1.0 -0.0795 0.0692 

 

Next, we were specifically interested in which layers of different Elman RNNs units 

were rather tuned to timing. This was tested by conducting a paired t-test of monotonic- and 

tuned response model fits within layers (Table 3). 

Table 3. Paired t-test results of monotonic- and tuned response model fits within layers. 

  Monotonic Tuned   

Network 

Type 

Layer 

Number 

M SD M SD N P 

1-layer 1 0.73 0.28 0.86 0.19 57 < 0.001* 

2-layer 1 0.44 0.21 0.47 0.19 43 0.008* 

2 0.5 0.22 0.53 0.22 41 < 0.001* 

3-layer 1 0.39 0.2 0.44 0.17 43 < 0.001* 

2 0.37 0.15 0.43 0.14 18 0.002* 

3 0.33 0.14 0.35 0.14 32 0.079 

4-layer 1 0.25 0.19 0.34 0.15 32 < 0.001* 

2 0.32 0.2 0.37 0.15 7 0.077 

3 0.25 0.13 0.32 0.1 6 0.024* 
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4 0.31 0.19 0.3 0.24 12 0.725 

5-layer 1 0.22 0.17 0.32 0.12 44 < 0.001* 

2 0.18 0.18 0.3 0.18 6 0.023* 

3 0.22 0.27 0.28 0.15 4 0.35 

4 0.24 0.18 0.32 0.16 3 0.026* 

5 0.23 0.1 0.27 0.1 14 0.029* 

6-layer 1 0.2 0.15 0.34 0.13 50 < 0.001* 

2 0.15 0.19 0.26 0.1 12 0.036* 

3 0.09 0.08 0.23 0.05 7 0.025* 

4 0.18 - 0.21 - 1 - 

5 0.17 0.09 0.21 0.08 5 0.522 

6 0.24 0.12 0.29 0.07 15 0.026* 

 

Tuned fits were significantly higher than monotonic fits in the first layer of all Elman 

RNNs, with α = 0.05. Furthermore, tuned fits were significantly higher in layer two of two-, 

three-, five-, and six-layer Elman RNNs, in layer three of four-, and six-layer Elman RNNs, 

in layer four and five of the five-layer Elman RNN, and in layer six of the six-layer Elman 

RNN. Note that N values differ largely throughout layers and architectures. So, especially 

units in lower layers of all Elman RNNs were rather tuned. Responses of units in higher 

layers could sometimes be equally well described by a monotonic response model. 

From Figure 13 and Table 3, it follows that monotonic and tuned fits might be 

indifferent between layers of the same Elman RNN. More specifically, it seems like there is 

no systematic change from lower to higher layers. Thus, the difference between monotonic 

and tuned response model fits was measured for each unit, differences were grouped by 

layers, and an n-way ANOVA analysis for different Elman RNNs was conducted (Table 4). 

Table 4. N-way ANOVA results for differences in tuned response model fits and monotonic 

response model fits in between layers of different Elman RNNs. 

Network Type Degrees of Freedom F P 

2-layer 1 0.052 0.820 

3-layer 2 3.245 0.044* 

4-layer 3 3.820 0.015* 

5-layer 4 0.850 0.499 

6-layer 5 1.857 0.111 
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The only significant differences could be found in the three- and the four-layer Elman 

RNN, with α = 0.05. Consecutive pairwise Tukey comparisons of differences between layers 

(Table 5), revealed that only units in layer one and layer four in a four-layer Elman RNN 

differ significantly. Every other pairwise comparison was insignificant. Thus, units in higher 

layers of different Elman RNNs did not systematically develop stronger monotonic or tuned 

response properties than units in lower layers. 

Table 5. Pairwise Tukey comparison tests for differences of monotonic and tuned fits 

between layers of Elman RNNs with different depths. 

Network 

Type 

Layer 

Number 

Layer 

Number 

Mean 

Difference 

P 95% Confidence Interval 

Lower Bound Upper Bound 

2-layer 1 2 0.0027 0.820 -0.0209 0.0263 

3-layer 1 2 0.0011 0.998 -0.0441 0.0463 

1 3 -0.0372 0.053 -0.0748 0.0004 

2 3 -0.0384 0.137 -0.0858 0.0091 

4-layer 1 2 -0.0336 0.772 -0.1262 0.059 

1 3 -0.0097 0.994 -0.1084 0.0891 

1 4 -0.0947 0.008* -0.1699 -0.0196 

2 3 0.0239 0.956 -0.0996 0.1474 

2 4 -0.0612 0.424 -0.1667 0.0444 

3 4 -0.0851 0.190 -0.1961 0.0259 

5-layer 1 2 0.0155 0.997 -0.1087 0.1397 

1 3 -0.0298 0.980 -0.1788 0.1192 

1 4 -0.0217 0.996   -0.192 0.1485 

1 5 -0.0523 0.456 -0.1399 0.0352 

2 3 -0.0453 0.958 -0.2295 0.1389 

2 4 -0.0373 0.985 -0.239 0.1645 

2 5 -0.0678 0.651 -0.2071 0.0714 

3 4 0.0081 1.0 -0.2099 0.226 

3 5 -0.0225 0.995 -0.1843 0.1393 

4 5 -0.0306 0.990 -0.2121 0.1509 

6-layer 1 2 -0.0372 0.920 -0.1469 0.0724 

1 3 -0.0001 1.0 -0.1378 0.1375 

1 4 -0.1059 0.946 -0.4505 0.2386 

1 5 -0.0979 0.481 -0.2579 0.0621 

1 6 -0.0864 0.133 -0.1869 0.014 

2 3 0.0371 0.985 -0.1251 0.1994 

2 4 -0.0687 0.993 -0.4237 0.2864 

2 5 -0.0607 0.925 -0.2423 0.1209 

2 6 -0.0492 0.886 -0.1813 0.0829 
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3 4 -0.1058 0.958 -0.4705 0.2589 

3 5 -0.0978 0.710 -0.2975 0.102 

3 6 -0.0863 0.593 -0.2425 0.0698 

4 5 0.008 1.0 -0.3657 0.3817 

4 6 0.0195 1.0 -0.3329 0.3718 

5 6 0.0115 1.0 -0.1647 0.1876 

 

Figure 14 shows the preferred timings of tuned response models where the tuned fit 

was higher than the monotonic fit for Elman RNNs from one to six layers. Again, preferred 

timings close to the corners as well as intermediate preferred timings can be found in 

networks from two to six layers. Compared to results from the one-layer Elman RNN, 

however, tuned response models of Elman RNNs with more than two layers lack preferred 

timings in the intermediate range of the right edge which corresponds to timings with variable 

preferred duration and a preferred period of 950 ms. Further, it appears, especially in Elman 

RNNs with more than two layers, that preferred timings in layer one (blue dots) are located 

Figure 14. Per-event preferred timings of tuned response models for Elman RNNs with one to six 

layers, where the tuned fit is higher than the monotonic fit. 
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closer to the center, whereas units in higher layers tend to be located closer to the corners. To 

test this, the Euclidean distance of each preferred timing to the center of the timing range 

(duration = period = 500 ms) was measured, and an ANOVA analysis between layers of 

different Elman RNNs was conducted (Table 6).  

Table 6. N-way ANOVA results of Euclidean distance of preferred timings to the center of 

the spectrum for Elman RNNs with different depths. 

Network Type Degrees of Freedom F P 

2-layer 1 0.384 0.543 

3-layer 2 0.708 0.499 

4-layer 3 2.125 0.131 

5-layer 4 1.116 0.371 

6-layer 5 2.788 0.031* 

 

Results were only significant for the six-layer Elman RNN, however, following 

pairwise Tukey comparisons were insignificant for all combinations of layers in every 

Elmann RNN (Appendix - Table 1). Therefore, the impression that preferred duration and 

periods of units in early layers of deep Elman RNNs tend to lie closer to intermediate timings 

cannot be confirmed. 

Figure 15 shows an example of a unit with monotonic response properties in layer 

three of a four-layer Elman RNN in which the tuned response model is approximating the 

monotonic model. Counterintuitively, the monotonic fit is slightly lower (0.78) than the tuned 

Figure 15. Responses of neuron 216 (layer 3) of a four-layer Elman RNN. 



Responses to Visual Event Timing in GNN Models 34 

 

fit (0.84). Contrary, Figure 16 shows examples of units with tuned response properties in an 

Elman RNNs with two layers (top) and six layers (bottom). Found tuned functions were 

neither tuned to both duration and period nor tuned to only event period. Rather, the 

angulation of tuned response models was horizontal and therefore possibly tuned to only 

event duration. Such units could only be found in the first layer of deeper Elman RNNs by 

manual investigation. Figure 17 shows the distribution of the angle parameter of a six-layer 

Elman RNN. Here, the absence of other angulations than the horizontal angulation shows that 

considered tuned response models can never be tuned to only period or both event duration 

and period. Note that angulation itself does not necessarily imply tuning to event duration as 

the corresponding model might still approximate a monotonic model or the goodness of fit 

Figure 16. Neuron 44 (layer 1) of a two-layer Elman RNN (top) and neuron 1 (layer 1) of a six-layer 

Elman RNN (bottom) 
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might be very low. A similar pattern could be found in other deeper Elman RNNs (Appendix 

- Figure 1, Appendix - Figure 2, Appendix - Figure 3). 

Figure 18 shows a special response function found in the first layer of the five-layer 

Elman RNN. Even though the monotonic and the tuned response models both show a 

mediocre fit, the units’ response could be described by a tuned response model with three 

Figure 18. Responses of neuron 27 (layer 1) of a five-layer Elman RNN. 

Figure 17. „Angle“ parameter distribution for tuned response models in a six-layer Elman RNN, 

where the tuned fit is higher than the monotonic fit. 
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preferred durations at 200 ms, 500 ms, and 900 ms and horizontal orientation. However, as 

the tuned response model can only be tuned to a single duration and period, the tuned 

response model was not able to fit the unit’s response better than the monotonic response 

model. Therefore, units in deeper networks can develop response functions more complex 

than simple monotonic and tuned profiles allow. 

Per-movie fitting of neural response models (Figure 19) showed that units in a one-

layer Elman RNN can be clustered into three populations of units: one in which both 

monotonic and tuned response models fit well (top right corner), one in which only tuned 

response models fit well (towards the top left corner), and one in which monotonic response 

models fit well (towards the bottom right corner). Compared to the per-event fitting 

methodology, overall fits were lower for both monotonic and tuned response models in every 

Elman RNNs. Confirming this impression, paired t-tests for monotonic as well as tuned fits 

were significant with p < 0.001, n = 241 and p < 0.001, n = 241. Preferred timings of tuned 

Figure 19. Per-movie monotonic and tuned fits for Elman RNNs with one to six layers. 
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response models for hierarchical Elman RNNs were mostly grouped in the upper right corner 

contrary to the lower right corner in per-event fitting, respectively corresponding to timings 

with high period and low duration and timings with high duration and high period (Figure 

20). 

LSTM RNN 

Per-event fitting of LSTM RNNs showed that in a one-layer LSTM RNN monotonic 

response models fit clearly better (Figure 21, left). In a two-layer LSTM RNN, however, both 

monotonic and tuned fits were generally lower and the difference between both models is 

very low (Figure 21, right). Figure 22 shows that preferred durations and periods of tuned 

response models are mostly located at the edges of the spectrum and that some models for the 

Figure 20. Per-movie preferred timings of tuned response models for Elman RNNs with one to six 

layers, where the tuned fit is higher than the monotonic fit. 
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one-layer LSTM RNN are tuned in the intermediate range of the right edge analogous to the 

one-layer Elman RNN. 

Again, per-movie fits of LSTM RNNs were generally lower for both monotonic and 

tuned response models (Appendix - Figure 5) but preferred timings of tuned models for the 

one-layer LSTM RNN were scattered more to the center of the spectrum (Appendix - Figure 

6).  

  

Figure 21. Per-event monotonic and tuned fits for LSTM RNNs with one layer (left) and two layers 

(right). 

Figure 22. Per-event preferred timings of tuned response models for LSTM RNNs with one layer (left) 

and two layers (right), where the tuned fit is higher than the monotonic fit. 
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Discussion 

In the current study, we aimed to model sensory responses to visual event timing in 

the human visual cortex using recurrent GNNs. We could find monotonic responses to event 

duration and period in different layers of hierarchical GNNs. However, we could not find a 

gradual change from monotonic to tuned responses, as seen in the human visual hierarchy 

(Hendrikx et al., 2022). Rather, units in hierarchical Elman RNNs only exhibited tuning to 

event duration in the first layer, and monotonic response properties in all layers. In units of 

non-hierarchical Elman RNNs, we found monotonic as well as tuned responses to both event 

duration and period. 

Non-hierarchical Elman RNNs, hierarchical Elman RNNs, and LSTM RNNs 

contained the ability to efficiently encode and accurately predict timings without supervised 

feedback. Therefore, an efficient, unsupervised transformation of visual stimuli without 

explicit feedback suffices as a basis for correct predictions and shows that information 

necessary for timing prediction is inherent to visual input. This suggests that the human 

visual cortex might similarly comprise the ability to transform visual inputs into an efficient 

encoding without supervised feedback. Diverging from the hierarchically organized structure 

of the human visual cortex, non-hierarchical Elman RNNs archived similar performance 

levels to hierarchical Elman RNNs with up to six layers. This clearly shows that in Elman 

RNNs, a hierarchical structure is not required to successfully encode temporal information 

from visual stimuli. Hierarchical Elman RNNs perform several transformations distributed 

over multiple layers. These transformations are likely to be redundant, not contributing to an 

enhanced encoding of timing, as the similar performance between non-hierarchical and 

hierarchical Elman RNNs shows. The faster training seen in deeper Elman RNNs may simply 

occur because deeper networks incorporate more weights to encode event timing. 
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Responses in human early visual cortex areas can be described by monotonic, sub-

additive functions of event duration and frequency (Zhou et al., 2018), likely to arise from a 

summation of transient and sustained neural responses (Stigliani et al., 2017). The existence 

of monotonic responses to event duration and period in hierarchical as well as non-

hierarchical Elman RNNs support these findings. Due to complex top-down and bottom-up 

interactions as well as interactions between brain areas, fMRI measurements reflect multiple 

effects on neural responses in any brain area, impeding detection of causal relations from 

stimulus to response. In GNNs, such interactions are not present and thus we could determine 

transient and sustained components of visual inputs to causally influence monotonic 

responses. 

First layers of hierarchical Elman RNNs sometimes exhibited tuning to only event 

duration. A closer investigation of such duration-tuned responses showed that tuning to 

duration is likely to be an artifact of the per-event fitting methodology. Figure 16 (top) 

showed a unit with tuning to event duration in the per-event fitting methodology, Figure 23 

shows the same unit in the per-movie fitting methodology. Evidently, the unit does not show 

tuning to event duration in the per-movie fitting methodology. This can be explained by the 

per-event fitting methodology mostly factoring out the period aspect of timing, sometimes 

resulting in approximately constant responses for stimuli with a certain event duration. 

Figure 23. Per-movie responses of neuron 44 (layer 1) in a two-layer Elman RNN. 
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Human association cortices inhabit a network of topographically organized maps 

inducing timing tuned response (Harvey et al., 2020). Early visual areas induce 

monotonically increasing responses to event timing that gradually transition into timing-tuned 

responses in higher visual areas and finally feed into timing-tuned networks in association 

cortices (Hendrikx et al., 2022). These responses become increasingly retinotopically 

invariant in higher visual areas (Hendrikx et al., 2022). In contrast to findings in the human 

visual system, we could not find tuned responses in higher layers, nor a transition from 

monotonic to timing tuned responses, in hierarchical Elman RNNs. The reason for this may 

be found in the architecture of the Elman RNN; connections within layers (recurrent 

component), as well as connections between layers (input component), are dense, allowing 

variable interaction within- and between layers. Since dense neural networks with a single 

layer (and a sufficiently large number of neurons) are universal function approximators 

(Hornik et al., 1989), both dense connections can approximate complex functions. Hence, 

already a single layer can integrate different responses to event timing (recurrent component), 

combine resulting representation with a representation of the current input (input component), 

and finally capture complex timings. Consequently, timing predictions were very accurate 

even in a non-hierarchical Elman RNN. Here, we could find monotonic, as well as duration- 

and period-tuned responses in a single layer suggesting both monotonic- and tuned responses 

being inevitable for temporal prediction. Contrary, in hierarchical Elman RNNs, additional 

layers are redundant, and functionality was spaced out over units in different layers, leading 

to simpler response patterns in individual units. Such simpler response patterns can be 

combined through complex neural dynamics across layers, yielding complex- and perhaps 

even tuned functions. Yet, we cannot capture these complex functions, as we only measured 

single units’ responses. 
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In human brains, there are two segregated transient and sustained channels from the 

retina and the lateral geniculate nucleus, feeding into neurons in V1. Through V1’s 

retinotopic organization, connectivity of neurons within layers is spatially restricted to 

neurons of identical receptive field maps. Connectivity between visual areas is equally 

restricted by receptive field map size but the spatial connectivity tends to grow along the 

visual hierarchy. Based on between-layer as well as within-layer connections, a neuron 

integrates excitatory and inhibitory polarization. Over time, a neuron’s integrated polarization 

is slowly decaying unless it is depolarized through an action potential. Considering this 

structure, a neuron is primarily dependent on its activation from the previous time step (i.e., 

state-dependent), activity of connected neurons in the predecessor visual area, as well as 

activity of nearby, spatially connected neurons (i.e., lateral inhibition). In this study, we did 

not consider a variable spatial position of visual inputs, therefore constraints regarding spatial 

connectivity between-, as well as within-layers can be disregarded. In terms of modeling 

biological neural systems, this means that interactions between layers can be complex, and 

interactions within layers are more limited and modulatory. The Elman RNN architecture 

captures complex between-layer interactions through a dense input connection; however, it 

additionally enables complex within-layer interactions through a dense, recurrent connection. 

Compared to the human visual cortex, however, we think that such dense within-layer 

interactions (recurrent component) are not biologically plausible. Such connections are 

conceptionally equivalent to global lateral synapses within layers, which cannot be observed 

in human visual cortex areas. 

Biologically implausible capabilities of Elman RNNs conflict with our aim to 

compare response development in hierarchical GNNs with response development in the 

human visual cortex. Here, responses to timing can be described by sub-additive monotonic 

functions in early visual areas, increasingly turning into tuned functions in higher visual areas 
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(Hendrikx et al., 2022). Due to the redundancy of hierarchical layers in Elman RNNs, units’ 

responses did not develop systematically in higher layers. Importantly, we want to underline 

that, conceivably, increasingly sub-additive monotonic functions might not emerge, even in 

GNNs with enhanced biological plausibility. GNNs follow optimization of a single inherent 

learning target (e.g., prediction of the next image in a sequence) and consequently, units’ 

response properties will excessively develop to benefit this singular inherent learning target. 

In the current study, inherent learning target was solitarily concerning the timing aspect of 

visual movies. Possibly, monotonic response properties do not provide any beneficial features 

for the realization of timing prediction. In such a scenario, GNN units might immediately 

approximate more complex functions, which yield a greater reduction in prediction error. 

Contrary, the human visual cortex does not follow a singular, well-defined learning target. 

Rather, its neural structure for realization of diverse cognitive capabilities was formed by 

evolution, implicitly optimizing spatial arrangement by grouping neurons with similar 

response patterns in close vicinity. Therefore, its functionality simultaneously involves 

spatially- or temporally dependent functions (i.e., numerosity and timing prediction) in 

intermediate visual areas, among other spatially and temporally dependent cognitive 

functions in higher areas (MT), such as motion detection. In particular, processing strategies 

for spatial- and temporal visual stimuli seem to be related, because both (spatial and temporal 

responses) increasingly exhibit temporal or spatial integration in early visual areas (V1 – V3) 

(Zhou et al., 2018). It remains an open question whether increasingly sub-additive, monotonic 

functions as seen in the human visual hierarchy are obligatory for solitary temporal prediction 

in hierarchical GNNs, or if these properties are emergent properties of related cognitive 

functions such as numerosity prediction. 

A possible first step toward investigation of the relation between temporal- and spatial 

abstraction in hierarchical GNNs, could be the introduction of a variable spatial position in 
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timing movies. Monotonic responses to visual event timing in early areas of the visual cortex 

are bound to retinotopic location and monotonic responses in later areas become increasingly 

invariant to retinotopic position (Hendrikx et al., 2022). Hierarchical GNNs, capable of 

accurately predicting timing from spatially variable stimuli must contain the capability to 

encode timing information independent of spatial position. Future research should focus on 

combining established techniques from image recognition domains with research focused on 

temporal processing. A possible approach to capture spatial position could be incorporation 

of convolutional filters in layers of Elman RNNs, resembling DCNN architectures. Due to 

DCNNs developing increasingly spatially invariant responses in higher layers, we would 

similarly expect some sort of temporal abstraction for temporal processing. However, such a 

model should overcome biological implausibility in recurrent components and exhibit a 

hierarchical structure which is benefitting timing prediction. 

A possible candidate for this purpose could be the IndRNN architecture (Li et al., 

2018). Here, recurrent connections are linear, inducing independence of units within layers. 

Therefore, a unit’s activation is primarily dependent on its activation of the previous time 

step as well as output activation of the predecessor layer. Specifically, it has been proven that 

IndRNNs with two layers and invertible recurrent weights are functionally equivalent to 

Elman RNNs with a single layer (Li et al., 2018). So, the IndRNN should be able to encode 

timing equally well as the non-hierarchical Elman RNN. The complexity and prediction 

capabilities of IndRNNs could be increased by adding hierarchical layers. Responses to 

visual event timing in these layers and especially the development of these responses remain 

to be further investigated. 

Another open question remains the influence of interactions between stimuli on 

response patterns of GNN units. In the current study, hidden states of GNNs were reset after 

the presentation of a single timing movie. However, weighted carry-over of previous 
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activation could also act as the input hidden state for the next timing movie. This procedure 

could simulate measurements from fMRI studies in which temporal resolution is very coarse 

and stimuli are presented in a specific order. Implementing carry-over effects could enhance 

comparisons of GNN responses to visual cortex’s responses and unwanted carry-over effects 

in fMRI studies could be estimated, possibly leading to adjustments in experimental design. 

Despite the limitations by used GNN architectures, this study was in some cases 

limited by the fitting methodology. Even though we were aware that tuned functions could 

approximate monotonic functions, we assumed that a monotonic function should fit the 

responses better in such a case. However, tuned fits were often higher than monotonic fits, 

regardless of manual inspection suggesting a monotonic response with no clear preferred 

timing peak. This behavior occurred whenever tuned functions had a preferred duration and 

period close to the edge of the spectrum and had a large standard deviation. Such tuned 

functions are in effect a monotonic function but additionally express a slight concavity in 

intermediate duration- and period range, allowing more complex monotonic relationships 

between timing and response amplitude and so leading to an improved fit. Implementing 

cross-validation ensures that complex monotonic relationships (approximated by tuned 

functions) are repeatable to out-perform simpler monotonic relationships. However, 

differentiating whether a unit with similar fits was either tuned or monotonic remains 

difficult. One possible solution to this problem would be to limit the tuned model’s major- 

and minor axis standard deviation parameter range, such that a tuned function with a 

preferred timing indeed exhibits a perceivable peak. Diverging from restricting parameter 

values, the goodness of fit of neural response models could be measured with a criterion 

incorporating the explained variance as well as a regularization term for model complexity. 

Thus, more complex response models with functionally the same properties would receive 
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lower goodness of fit compared to simpler models. However, such approaches are often 

heavily dependent on regularization terms. 

By utilizing unsupervised recurrent generative neural networks to encode timing-

dependent visual stimuli, this study showed that such artificial neural networks can suffice as 

a model for sensory visual processing in the human visual cortex. Especially, non-

hierarchical GNNs exhibited remarkably similar responses compared to responses seen in the 

human visual cortex. Thus, this study can be seen as the first step toward modeling visually 

driven responses in human visual areas in a computational way. However, biological 

implausible elements of the GNNs limited comparisons to the response development along 

the human visual hierarchy. Overcoming biological implausibility to enhance hierarchical 

GNNs explanatory power, remains the most important topic for future work. Such models 

could be a major component in the investigation of visually driven timing responses and 

likewise play an important role in examining the relationship between timing- and spatial 

abstraction in the human visual cortex. 
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Appendix: 

 

Appendix - Figure 1. „Angle“ parameter distribution for tuned response models in a two-layer Elman 

RNN, where the tuned fit is higher than the monotonic fit. 

 

Appendix - Figure 2. „Angle“ parameter distribution for tuned response models in a three-layer 

Elman RNN, where the tuned fit is higher than the monotonic fit. 
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Appendix - Figure 3.„Angle“ parameter distribution for tuned response models in a four-layer Elman 

RNN, where the tuned fit is higher than the monotonic fit.  

Appendix - Figure 4. .„Angle“ parameter distribution for tuned response models in a five-layer 

Elman RNN, where the tuned fit is higher than the monotonic fit. 
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Appendix - Figure 5. Per-movie monotonic and tuned fits for LSTM RNNs with one layer (left) and 

two layers (right). 

  

Appendix - Figure 6. Per-movie preferred timings of tuned response models for LSTM RNNs with one 

layer (left) and two layers (right), where the tuned fit is higher than the monotonic fit. 
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Appendix - Table 1. Pairwise Tukey comparison tests for the distance of preferred timings of 

the tuned response model to the center of the range. 

Network 

Type 

Layer 

Number 

Layer 

Number 

Mean 

Difference 

P 95% Confidence Interval 

Lower Bound Upper Bound 

2-layer 1 2 0.0258  0.232 -0.017 0.0686 

3-layer 1 2 0.0539   0.357 -0.0397 0.1475 

1 3 0.0331  0.591 -0.0478   0.114 

2 3 -0.0208   0.872 -0.1206 0.0791 

4-layer 1 2 0.0338  0.937 -0.1221 0.1897 

1 3 0.1036  0.236   -0.041 0.2482 

1 4 0.1039  0.153 -0.0252   0.233 

2 3 0.0698  0.769 -0.1236 0.2631 

2 4 0.0701  0.733 -0.1119 0.2521 

3 4 0.0003     1.0 -0.1721 0.1727 

5-layer 1 2 0.0155  0.997 -0.1087 0.1397 

1 3 -0.0298  0.980 -0.1788 0.1192 

1 4 -0.0217  0.996   -0.192 0.1485 

1 5 -0.0523  0.456 -0.1399 0.0352 

2 3 -0.0453  0.958 -0.2295 0.1389 

2 4 -0.0373  0.985   -0.239 0.1645 

2 5 -0.0678  0.651 -0.2071 0.0714 

3 4 0.0081     1.0 -0.2099   0.226 

3 5 -0.0225   0.995 -0.1843 0.1393 

4 5 -0.0306  0.99 -0.2121 0.1509 

6-layer 1 2 -0.0489  0.88   -0.179 0.0812 

1 3 -0.0915  0.517 -0.2463 0.0634 

1 4 0.2163  0.498 -0.1439 0.5766 

1 5 0.0579   0.942 -0.128 0.2438 

1 6 0.0336  0.963 -0.0863 0.1534 

2 3 -0.0426  0.985 -0.2304 0.1452 

2 4 0.2652  0.315 -0.1103 0.6408 

2 5 0.1068  0.69 -0.1073 0.3209 

2 6 0.0825  0.66 -0.0777 0.2426 

3 4 0.3078  0.191   -0.077 0.6926 

3 5 0.1494  0.409 -0.0806 0.3794 

3 6 0.1251  0.338 -0.0558 0.3059 

4 5 -0.1584  0.852 -0.5568 0.2399 

4 6 -0.1828  0.703 -0.5549 0.1894 

5 6 -0.0243  0.999 -0.2323 0.1837 

 


