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Abstract 
 

Electricity access in refugee settlements is limited and mostly provided by diesel generators. A solution for 

improving this is to use sustainable mini-grids running on solar energy and batteries. This research aimed to 

build a pre-feasibility planning model that can compute the mini-grid’s size for displacement settlements in 

Sub-Saharan Africa. In addition, the model must compute relevant techno-economic indicators to evaluate 

alternative configurations, based on scarce input data. To achieve this, the KALO Excel model built by Baldi 

(2021) was reproduced in Python, with a betters structure, a shorter running time and a lower sensitivity to 

human errors. Subsequently, three larger model improvements were implemented based on a literature 

review.  

The result of this research is a Python model that can compute the daily load profile, the mini-gird’s size and 

techno-economic indicators for the 288 camps in Sub-Saharan Africa. It uses simple camp-specific input data 

such as the population hosted in the camp, the average family size and the average daily peak sun hours. The 

only input required for the user is defining the scenario and whether to run the model for one or all camps. 

The computational time to run for all camps is reduced to only a few minutes. One output CSV file is created 

for each run.  

In addition, the model allows comparing technological alternatives for electricity access in refugee 

settlements. These include a fully sustainable mini-grid, a hybrid mini-grid with diesel and grid extension. It 

was found that the Levelized Costs of Electricity are lower for fully renewable mini-grids than for hybrid 

ones. It was also found that grid extension is more attractive than a mini-grid for large camps and for camps 

close to the grid. However, an important limitation is that the latter comparison is only made based on costs, 

and that grid availability and sustainability are not considered. Lastly, load profiles for water pumping and 

purification were included in the demand. This reduced the LCOE of a mini-gird. 

The model outcomes give a macro perspective of the requirement to provide electricity access in refugee 

settlements for different locations. The output is relevant for UNHCR, as they can create pipeline projects 

and implementation plans per region, based on this data.  
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1. Introduction 
 

1.1. Societal background 
The United Nations High Commission of Refugees (UNHCR) estimated that 82.4 million people were forcibly 

displaced in 2020. Of this number, 26.4 million were refugees, 48 million were internally displaced people 

(IDP), 4.1 million were asylum seekers and 2.9 million were Venezuelans displaced abroad. In addition, 86% 

of the refugees and Venezuelans were hosted in developing countries. Forcibly displaced people are forced 

to leave their homes, which can be caused by persecution, conflict, violence, human rights violations or 

events that seriously disturb public order. A person is considered a refugee when they cross a border to find 

safety. IDP have not crossed a border and are still under the protection of their government. The UNHCR is 

legally bounded to protect and assist refugees. While this is not the case for IDP, humanitarian organizations 

like UNHCR make little to no distinction and attempt to help all displaced people (Ryan & Childs, 2002). The 

continent of Africa hosted almost 6.6 million refugees by the end of 2020, which equals almost 27% of the 

global number of refugees (UNHCR, 2021). These refugees are divided over about 300 camps (Baldi, 2021). 

Sustainable development goal (SDG) 7, which is called "Affordable and Clean Energy", is about ensuring 

access to affordable, reliable, sustainable and modern energy for all in 2030 (UN, 2018). While many 

countries are moving in the right direction, conditions are worsening in others, especially in countries with 

armed conflict. They are the least likely to benefit from the global energy transition. In addition, people that 

are forcibly displaced by armed conflict are some of the most vulnerable to energy poverty (Grafham, 2020).  

Energy services provided by humanitarian agencies are generally focused on emergency and basic needs 

provisions. Examples are stove handouts, charcoal rations, solar lantern distribution and diesel generators to 

power essential camp facilities (Grafham, 2020). However, handing out free products has been found to be 

unsustainable in camps that have existed for longer. The electricity needs of refugees in camps are best met 

by formal energy services rather than by free distribution (Bellanca, 2014). Energy services are not 

recognized as a priority in humanitarian assistance, resulting in poor knowledge, low experience and a 

fragmented approach (Alonso et al., 2021). In order to address this problem, the Global Plan of Action (GPA) 

for Sustainable Energy Solutions in Situations of Displacement was launched by UNHCR in 2019, which is in 

line with SDG 7 (UNITAR, 2018). It says that all refugees and host communities should have Tier 2 electricity 

access in 2030, which means that each household has access to 50 W of power or 200 Wh of electricity per 

day. This electricity can provide lighting, air circulation, television and phone charging for four hours during 

the day and two hours in the evening (Thomas et al., 2021).  

In many countries, anti-refugee sentiments are part of the political landscape, resulting in the reluctance of 

the local government to supply infrastructure or long-term services for displacement camps. A popular 

narrative is that refugees and IDP put pressure on inflation, wages for local jobs and municipal services such 

as healthcare and waste management (Lahn et al., 2016). In addition, there is a short-term nature of 

humanitarian response, lack of funding and lack of comprehensive long-term strategies in many 

interventions (Alonso et al., 2021). This results in short-term energy delivery, which is very inefficient when 

people end up staying in the camps for longer (Lahn & Grafham, 2015). Besides, a lack of funding obstructs 

the development of sustainable energy solutions (Alonso et al., 2021). This is especially notable as Grafham 

& Lahn (2018) have shown that the average time people live in refugee camps is 18 years.  

Access to energy services increases the security and dignity of displaced people. It is essential for lighting, 

heating, cooking and powering devices, such as radios or cellphones. Energy is also essential for water and 

sanitation provisions, healthcare services and useful for education and community facilities (Grafham, 2020). 

However, Lahn & Grafham (2015) estimate that around 90% of people in displacement camps do not have 

access to electricity. Also, they estimate that around 80% of these people cook with the most basic fuel, 



 

10 
 

wood (Lahn & Grafham, 2015). Sustainable energy services would be able to reduce: indoor air pollution 

while cooking with wood, skipping meals due to a lack of cooking fuel, trading food for fuel and accidents 

due to lack of lighting (Grafham, 2020). Albadra et al. (2017) even acknowledge energy as a life or death 

issue in temporary displacement settings. In addition, energy services enable people to thrive and not just 

survive, enabling them to build their livelihood (Grafham, 2020).  

Currently, camps typically use diesel generators to provide electricity (Alonso et al., 2021). However, diesel 

generator systems are often oversized, vulnerable to fuel price volatility and create air pollution (Alonso et 

al., 2021). They are highly dependent on the fossil fuel distribution to the camps and run inefficiently, using 

10-30% more fuel. This results in higher costs. Due to poor maintenance, these generators have a lifetime of 

less than 10 years. Besides, electricity from the grid is often unreliable even when a connection to the 

network exists (To & Subedi, 2020). 

An acknowledged solution is the solar PV (Photo Voltaic) mini-grid. A mini-grid is defined by the Energy 

Sector Management Assistance Program (ESMAP) as: "Electric power generation and distribution systems 

that provide electricity to just a few customers in a remote settlement or bring power to hundreds of 

thousands of customers in a town or city" (ESMAP, 2019). Despite the higher investment cost, solar PV 

systems have lower running costs and have a lifetime of 20 years. The value of solar systems is demonstrated 

widely but has shown to be especially effective in fragile or conflict-affected contexts (To & Subedi, 2020). In 

addition, Alonso et al. (2021) acknowledge the suitability of mini-grids for displacement settings due to high 

population density, high concentration of businesses and institutions and high consuming anchor loads 

(energy consumption throughout the day).  

Many stakeholders, such as humanitarian agencies, donors and host governments, are increasingly pledging 

to use more sustainable energy sources in displaced settlements. However, there are still barriers that hinder 

this development. These include scarcity of data on energy use, lack of in-house technical expertise and 

comprehensive strategies, high upfront cost, short-term perception of protracted situations, perceived risk 

of long-term infrastructure investments and regulatory uncertainty around the status of these camps. 

Persistent favorable policy frameworks and increasing private sector engagement are necessary to finance 

and manage long-term renewable assets (Alonso et al., 2021). In addition, Thomas et al. (2021) state that 

giving host communities access to the interventions, matching interventions to the requirements of refugees 

and host communities, training on energy literacy and ensuring, and adequate maintenance of the 

installations help to maximize the uptake of sustainable interventions in camps. 

 

1.2. Scientific background 
This thesis examines electricity access solutions in refugee settlements, focusing on energy modelling and 

sustainable mini-grid systems. The literature in this field is rather scarce.  

A study from Alonso et al. (2021) looks at the potential of a solar-diesel hybrid mini-grid in the refugee camp 

of Nyabiheke in Rwanda. The authors use the open-source CLOVER (Continuous Lifetime Optimization of 

Variable Electricity Resources) simulation and optimization model, designed to support rural electrification in 

developing countries. They use this tool to compare incumbent diesel generators to sustainable mini-grid 

designs for humanitarian operations within the camp. A representative load profile is used as input in the 

CLOVER model based on monitored usage data. They found that the fully renewable system has the highest 

economic and environmental performance in the long term. However, this requires a high initial investment 

and a longer payback time. Hybrid solar-battery-diesel mini-grids show to be more cost-effective due to the 

use of the existing, flexible and reliable diesel infrastructure and the lower expenditures for PV and battery 

installations.  
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The study by Cerrada & Thomson (2017) designs a PV mini-grid system for the Bahn refugee camp in Liberia. 

The authors calculate the PV and battery capacity, electricity distribution and backup diesel generator 

capacity based on three scenarios: electricity supply for lighting and mobile phone charging of refugees, 

electricity supply for essential camp services (institutional demand) and a combination of the two. The 

electrical load profile they used is not based on field-data but on typical load profiles for each type of 

demand (i.e., households, lighting and a health clinic). The commercial HOMER (Hybrid Optimization of 

Multiple Electrical Renewables) software is used to derive and validate the technical model. This tool is 

designed to simulate and optimize hybrid mini-grid designs. They found that the system from the first 

scenario performs well and is profitable. Scenario 2 is unlikely to be viable. However, financial viability and 

attractiveness are improved when the household load is added to the institutional load (scenario 3).  

The research from Lehne et al. (2016) looks at refugees and IDP in camp and non-camp configurations. The 

authors focus on gathering and estimating the energy consumption data and corresponding fuel cost for 

cooking and lighting of households. This can then be scaled up to different sizes of camps and to a global 

scale. In addition, they mention that solar mini-grids can be used to increase the camps' Tier levels of 

electricity access. However, they only estimate the cost that this would require and do not focus on the 

modelling of this mini-grid.  

Neves et al. (2021) focus on producing typical energy demand profiles for electricity needs and cooking in 

refugee camps. The authors distinguish the daily electricity needs per household, based on different Tier 

levels of electricity access, and the daily electricity needs of infrastructure and camp facilities (institutional 

load). Consequently, they use the camps population and an average family size of 5 to compute the overall 

electricity needs of a settlement. The second part of this study focuses on modelling a mini-grid for the 

Mantapala refugee camp in Zambia using the HOMER software. They compare combinations of PV-wind-

biogas-diesel hybrid mini-grids with a baseline scenario of diesel generation. HOMER optimizes these 

different energy configurations based on Net Present Cost. They found that a hybrid renewable mini-grid 

with PV-biogas-battery systems can substantially reduce the payback period and the cost of electricity. 

 

1.3. Research gap 
Cerrada & Thomson (2017) and Neves et al. (2021) use the commercial software HOMER. This software is not 

accessible to everyone and is not designed specifically for refugee settlements. It is designed to simulate the 

mini-grid system for a given location. Alonso et al. (2021) use the open-source CLOVER software. This 

software is also not designed specifically for refugee settlements but can still be used for this purpose. The 

CLOVER model requires specific and detailed information about a camp as input. The user has to collect field-

data either on actual load profiles or on the amount and type of appliances used in a camp to estimate the 

electricity demand. Because of this, the model is used to design mini-grid configurations for one specific 

camp.  

It is difficult to estimate the electricity needs in a refugee camp, as there is often low access to electricity 

among settlements' households. This leads to informal connections and access to neighboring diesel 

generators and/or grids, which are mostly not monitored in any way (Neves et al., 2021). In the literature, it 

was seen that the estimation of a camp's electrical demand was done either based on field-data of that camp 

(Alonso et al., 2021) or based on typical load profiles that were not based on field-data of a refugee camp 

(Cerrada & Thomson, 2017) (Neves et al., 2021). In addition, it was seen that the electrical demand of camps 

was scaled up to other camps or to a global level before (Neves et al., 2021) (Lehne et al., 2016). However, 

when the mini-grid size and corresponding financial indicators are determined, all articles focus on a case 

study where they use either the CLOVER or the HOMER software.  
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Baldi (2021) designed the KALO-model in Excel, which can determine the mini-grid size and corresponding 

financial indicators for any displacement settlement in Sub-Saharan Africa (SSA). It uses field-data (collected 

in 2020) on the daily load profile of households, businesses and institutions from the Kalobeyei refugee camp 

in Kenya, where they had a pre-existing mini-grid. The KALO-model takes the load profiles found in Kalobeyei 

and uses them to create load profiles for other camps, using corrective factors. Only basic input data, such as 

the population number and the average family size, are needed from these camps to produce camp-specific 

daily load profiles (i.e., field surveys are unnecessary). With this estimated demand, the required PV and 

battery capacity are calculated. However, running the Excel model is time-consuming and prone to error, as 

many cells need to be adjusted manually. This makes it difficult to use for anyone that was not involved in 

the development of the model (and a manual is not available). Also, the input, calculations and output are 

unstructured and difficult to find in the model. Therefore, the model is not open source. Lastly, the KALO-

model only considers PV-battery configurations, while other technological options, such as hybrid 

configurations with diesel, could also have a high potential. 

 

1.4. Research aim 
Baldi (2021) started filling the gap in the literature by producing a pre-feasibility model that can estimate the 

camp-specific daily load profile, determine the PV-battery mini-grid size and compute financial indicators for 

all refugee camps in SSA. However, there are many areas of improvement for the KALO-model, on which this 

research will focus. The following research aim is set for this research, followed by two sub-aims:  

Building an open-source pre-feasibility planning model in Python to compute the mini-grid's size for 

displacement settlements in Sub-Saharan Africa and to compute relevant techno-economic indicators to 

evaluate alternative configurations, based on scarce input data. 

Sub-aim 1: Reproduce the parts of the KALO-model that produce load profiles of households, businesses and 

institutions based on field-data, compute the PV and battery capacity to meet the demand and determine the 

Upfront Cost and the Levelized Cost of Electricity, implement small improvements and validate it.  

Sub-aim 2: Implement larger improvements on the Python model, regarding different technological options 

for electricity access, such as a hybrid system with diesel and connecting the camp to the national electricity 

grid, and the inclusion of electricity demand for clean water production. 

 

1.5. Scientific relevance 
The model built in Python should be improved in terms of structure, modularity, computation time and user-

friendliness compared to the KALO-model from Baldi (2021). The latter improvement makes it easier to use 

and share the model with other researchers. Adding more technological alternatives for the mini-grid will 

enable to compare the different options in terms of required capacity and cost. Furthermore, the model can 

be used to compare technological and financial indicators of different camps and it can indicate the scale for 

providing mini-grids to all settlements. The pre-feasibility model is useful for humanitarian agencies such as 

UNHCR to see which camps have a high potential for cost-effective mini-grids. This way, they can create 

pipeline projects and programs per country, make a planning and make implementation plans. This research 

contributes to SDG 7 and the GPA for Sustainable Energy Solutions in Situations of Displacement. It can help 

identify settlements with a high potential for mini-grid implementation in terms of techno-economic 

indicators. It contributes to the field of energy modelling of sustainable mini-grids for refugee settlements in 

developing countries. 
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2. Methodologies 
 
The methodology of this research follows the sub-aims described in Section 1.4. A schematic overview of the 
methodology of this research is given in Figure 1. In the next paragraph, a short introduction to Python will 
be given. After that, the steps from Figure 1 will be explained. All the data used for this research has been 

gathered by Baldi (2021) or other researchers and was therefore reused. There were no ethical issues 
relating to data collection and handling.  

 

 
Figure 1. A schematic overview of the research method. 

 

2.1. Python introduction 
Python is an open-source programming language. It has many applications such as web and internet 

development, scientific and numeric computing, software development and business applications (PSF, n.d.-

b). It is widely used in the scientific community because of its large and expanding number of libraries, which 

is seen as an advantage compared to other programming languages such as R and Matlab (Nelli, 2015). An 

Integrated Development Environment (IDE) is needed to use Python. For this study, Spyder (Scientific Python 

Development Environment) version 5 was used, as it is suitable for scientific purposes and has been used 

before by the author at Utrecht University. Anaconda was installed to use Python 3.9, which was the most 

recent version at the time of this study. Appendix 1 elaborates on the concepts and features of Python, 

which are used in this research. Lastly, the author's experience in Python and the advantages of this program 

over others resulted in the choice to use Python. 

 

2.2. Building the model 
The first part of the research required a "deep dive" into the KALO-model produced by Baldi (2021) in Excel, 

which is called KALO 1.0, and the thesis (Baldi, 2021). The goal was to reproduce the Excel model in Python 

using the same formulas and assumptions. Therefore, all input data used and calculations made to build the 
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three modules were gathered from KALO 1.0 (Baldi, 2021). In addition, multiple emails were exchanged and 

two meetings were held with Duccio Baldi, the creator of the KALO-model, to clarify the structure and 

content of the model.  

From this "deep dive", small and large model improvements were identified. The next step was to build the 

Python model's first version, called KALO 2.0. Small improvements were incorporated in KALO 2.0 and 

entailed re-resigning the model structure and sequence of computations. Larger improvements were 

implemented later. This approach was chosen not only because of the transposition to Python but also 

because it prevented replicating a structure that was not logical. Nevertheless, keeping the same formulas 

and assumptions allowed to validate the results from KALO 2.0 with KALO 1.0. This prevented mistakes that 

would otherwise have been difficult to find and solve. Validating the results was important for each of the 

three modules and was done for every type of result. This was an interactive process, as is shown in Figure 1. 

Doing desk research on Python features and on how to implement small model improvements was also part 

of the interactive process of building the three modules. When a problem was encountered during the 

programming process, grey literature was consulted to solve these problems.  

When the model of Baldi (2021) had been reproduced in Python and the result matched, the research moved 

on to the larger model improvement part. Larger improvements were identified earlier and used at this 

research stage. The first step was doing desk research on existing models or (parts of) codes that could be 

used. When something is already available, it might be easy and fast to implement this improvement and it 

could prevent doing work that someone else has done before. The following step was implementing the 

improvements and ensuring the model ran properly. At the same time, a Python desk research was carried 

out about how these improvements could be implemented in the Python code. This is in line with Figure 1. 

A sensitivity analysis was carried out when the model improvement part was finished. The sensitivity analysis 

studied the effect of the O&M cost, the customer connection cost and the discount rate on the LCOE, just as 

was done by Baldi (2021). The analysis was expanded by looking at the effect of diesel fuel prices and the 

project lifetime on the LCOE. A sensitivity analysis was relevant to see which parameters greatly affected the 

model outcomes. It was done at this research stage to see the model improvements' effect. 

Lastly, it is important to point out that this research focused on building the model, not on data collection or 

the update of data used by Baldi (2021). The goal was to build the Python model so that it would be easy to 

add or change data in the future. 

 

2.3. The KALO-model 
This section gives a general explanation of the KALO 1.0 Excel model. The results of the "deep dive" are given 

in Section 3.2. The KALO-model was built in Excel, containing nine different sheets. However, it became clear 

from Baldi (2021) that it contains three main parts. The first part, the estimation of a camp's electricity 

demand of a camp, is described in Figure 2. The goal is to estimate the daily load profile of households, 

businesses and institutions. A load profile contains the hourly demand for electricity for one day and is, 

therefore, a 1x24 vector. Summing these three profiles results in the camp's total daily load profile. The 

inputs required are the load profiles of households, businesses and institutions gathered from field research 

in the Kalobeyei refugee camp in Kenya (Baldi, 2021). This refugee camp hosts around 36,000 people and 

consists of three zones. One of these zones had a pre-existing mini-grid.  

Five corrective factors (CFs) are used to linearly transform the Kalobeyei load profile into a camp-specific 

load profile (explanation of CFs can be found in Baldi (2021) and Appendix 2.1). The only camp-specific input 

data necessary are the Population hosted in the camp and the Average family size. If available, the number 

of households, businesses and institutions are also used as input, resulting in more accurate load profiles. 

This data was collected by Baldi (2021) for 288 refugee sites in SSA. The camps were identified by their 



 

15 
 

geographical location. The main output is a camp-specific daily load profile for households, businesses and 

institutions. The sum of these 24 hourly values gives the daily energy demand of a camp in kWh/day. This 

daily load profile is the same for every day of the starting year, year 1, not considering demand growth. 

Another daily load profile is calculated for year 6, considering 10% demand growth per year (Annual demand 

growth) for five corresponding years (Demand projection time frame). After year 6, it is assumed that the 

demand will stay constant (Baldi, 2021). 

There are multiple demand scenarios that the user can define. First, there are Baseline, Tier 2 and Tier 3 

scenarios. The Baseline scenario is the one described above. The Tier scenarios are based on the World 

Bank's multi-tier framework for households' electricity access, ranging from Tier 0 (no electricity) to Tier 5 

(8200 Wh) (Neves et al., 2021). In the Tier 2 and Tier 3 scenario, households' electricity demand is increased 

to 200 Wh and 1000 Wh, respectively. In addition, there are two electrification coverage rate (ECR) 

scenarios. The ECR defines which percentage of the total number of households, businesses or institutions in 

the camp will be connected to the mini-grid. The ECR of businesses and institutions is assumed to be 

constant at 100%, while the ECR of households can be changed to either 80% or 100% (Baldi, 2021). The ECR 

of households is not continuous because of lacking data regarding the trend adjustment factor, which is CF3, 

defined by Baldi (2021). 

 

Figure 2. Description of the demand estimation of refugee camps in the KALO-model. 

 

When the daily energy demand of a camp in year 6 is known, the solar PV and battery capacity can be scaled 

to this demand. This means that the installations are oversized in the first few years compared to the 

electricity demand. However, using this approach, the installations can still cover the demand after year 6. 

The only camp-specific input data required for these calculations are the average daily Peak sun hours.  

The demand and technical parts output is used as input for the financial part. The goal of the financial part is 

to calculate the project's upfront cost, followed by calculating the Levelized Cost of Electricity (LCOE). 

Country-specific input data is needed for this, including national electricity tariffs, exchange rates and 

national inflation rates. For the upfront cost, which are investments made at the start of the project, 

generation, distribution and other upfront costs are considered. For the LCOE calculation, multiple yearly 

costs are calculated, such as Operation and Maintenance (O&M), insurance, Value Added Tax (VAT), land 

lease, interest, tax and replacement cost. Together with the upfront cost and the yearly electricity 

generation by the system, the yearly cost are used in the LCOE calculation, returning a value in USDc/kWh. A 

discount rate of 10% and a simulation period of 20 years are used (Baldi, 2021). The resulting LCOE values 

can be compared between different camps and between different demand scenarios. 
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3. Results Part I: KALO 2.0 - model reproduction and small 

improvements 
 

The results chapter starts with Section 3.1, which gives an overview of the areas of improvement identified 

based on the “deep dive” into KALO 1.0 and the thesis (Baldi, 2021). After that, a description of the Python 

model, KALO 2.0, is given in Section 3.2 for each of the three key modules. This description includes the 

equations and assumptions used by Baldi (2021) obtained during the “deep dive”. In addition, this 

description includes how the model is built in Python, explaining which Python functions and features are 

used. Section 3.3 gives an overview of the small improvements made in KALO 2.0. This chapter ends by 

comparing the results between KALO 2.0 and KALO 1.0. 

 

3.1. Model improvements 
The three parts of the KALO-model described in Section 2.3 are not logically structured in Excel. Input data, 

calculations, output and user input requirements are not separated and defined properly. The user has to 

make manual adjustments in multiple sheets to get the results of just one camp. Formulas are hidden in cells 

and there is no clear description of the calculations. In addition, a sensitivity analysis can only be run 

manually, taking much time. In terms of small model improvements, the goal is to build KALO 2.0 in Python, 

achieving a better structure, a shorter running time and a lower sensitivity to errors.  

Seven areas of improvement were identified for the larger model improvements, based on Baldi (2021) and 

Baldi et al. (2022). These are grouped based on input data and the three parts of KALO 1.0: 

• Input data 

o The input data, such as population per camp, is from UNHCR2020 and could be updated to 

more recent data. 

• Demand module 

o The characterization of electricity demand was done in a linear and simple way. Estimating 

the electricity demand could be done more realistic, where more heterogeneity of 

households, businesses and institutions is included. 

o The existence of a mini-grid can improve clean water production in the refugee settlements, 

which would either reduce the energy demand for other uses or require the installations to 

be scaled to the increased electricity demand. This could be added to the model.  

• Technical module 

o There is no estimation in the technical module on the length of distribution cables necessary 

to connect all consumers. In addition, the upfront cost of distribution in the financial module 

can be adjusted to USD/km instead of USD/connection. 

o The model only considers mini-grids with solar PV and battery installations. Other 

technological options could be explored, such as hybrid PV-battery-diesel systems. It could 

also be an option to incorporate a scenario of connecting the camps to the national 

electricity grid when it is available, reliable and sustainable.  

• Financial module 

o Financial parameters, such as the investment costs of certain technologies, are not 

differentiated per country, while in reality, this would be the case.  

o Affordability data generated by Baldi (2021) could be incorporated. This data was never used 

in his research, but it is available and valuable.  
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3.2. Description of the Python model 
The model created in Python, KALO 2.0, has three key modules: a demand, a technical and a financial 

module. It also contains a sensitivity analysis module, which will be discussed at the end of Chapter 0.  

Each of the three key modules has the same structure: 

0. User input: to define the demand scenario (only in the demand module) 

1. Constants 

2. Input 

a. Import of libraries 

b. Import of constants and functions from other modules 

c. Import of data from CSV files 

3. Calculations for the output 

4. Functions that define how to run the code for one camp and all camps 

5. Definition of questions to ask the user: whether to run for one camp or all camps  

If the user wants to run the Python model, the first step is to define the demand scenario at the top of the 

demand module, in the Editor Pane. This is displayed by the red arrow in Figure 3. Here, the user has to 

define for which electricity access level to run (= scenario_name), which is either Baseline, Tier 2 or Tier 3, 

and for which Electrification Coverage Rate (ECR) of households (= ECR_hh), which is either 80% or 100% (see 

Section 2.3). The next step is to press the green play button, which can be found at the top of the Python 

program. It is displayed by the red circle in Figure 3. This executes the code from the Editor Pane. A question 

pops up in the Python console, which is displayed by the blue arrow in Figure 3. Here, the user must reply to 

the questions asked, followed by pressing Enter on the keyboard. The model asks the user whether the 

computations are to be done for one camp or all camps. Only when the user enters to run for one camp, two 

follow-up questions are asked, which are to enter the camp name and corresponding zone. When all 

questions are answered, the code is executed and the results are printed either to the console (run for one 

camp) or to a CSV file (Comma-separated values) (run for all camps). Note that the steps from pressing the 

green button onwards must be repeated for running each module. 

When doing calculations for one camp, the three modules can be run individually. However, it is important 

to run the demand module before running the technical module and to run the technical module before the 

financial module, when doing calculations for all camps. This is due to the fact that the technical and 

financial modules use the output CSV file created in their previous module(s) as fixed input. The following 

paragraphs explain the code written in the Editor Pane for each of the three key modules.  
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Figure 3. The Spyder environment in which Python is used. The circle and arrow specify the only places where input is required from 
the user. 

 

3.2.1. Demand module 
The user-defined input explained in Section 3.2 is followed by the definition of “constant numerical values” 

used in the demand module and by creating a dictionary with the “camp inputs”. The constant numerical 

values are reported in Table 1 and their use is explained in Baldi et al. (2022) and Appendix 2.1. 

Table 1. Constants for the demand module. 

Constant Value Unit 

Demand projection time-frame 5 Years 

Annual demand growth 10 % 

ECR businesses 100 % 

ECR institutions 100 % 

Tier 2 level 0.2 kWh/hh/day 

Tier 3 level 1.0 kWh/hh/day 

Tier 2 factor  0.9879 - (fraction) 

CF 3 factor 100% 0.80 - (fraction) 

CF 3 factor 80% 0.82 - (fraction) 

Kalobeyei assessed households [334, 120, 98] # 

Kalobeyei assessed businesses [102, 23, 28] # 

Kalobeyei assessed institutions [14, 10, 5] # 

 

As for the camp-related input data, the approach used in KALO 1.0 needs to be restructured. Therefore, a 

CSV file called “Variables.csv” is created, which contains information on the following 13 points for each 

camp: Country, Camp name, Zone of the camp (if the camp is divided into multiple zones), Population hosted 

in the camp, Number of Households, Number of Businesses, Number Institutions, Average family size per 

household, Peak sun hours, Existing PV capacity (kWp), Existing battery size (kWh), Existing diesel generators 

(kW) and Distance to the national grid (km). These data were collected via desk and field research in 2020 

(Baldi, 2021) and can now be easily accessed via the file “Variables.cvs”. 
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This CSV file is an Excel sheet converted to CSV. As of today, it contains 288 rows with on each row 

information on one camp/zone. Python reads this file using the csv library and a “for” loop is used to loop 

over all rows of the CSV file. A dictionary is created with 288 key-value pairs. The “key” is the camp name and 

its zone, and the “value” is a list of all parameters from that row of the CSV. Now the data is stored in Python 

and can be used in the rest of the code. Data in this CSV file can easily be updated and new camps can be 

added. When extra information is added to the CSV file (an extra column in the Excel file), this has to be 

defined in the “camp_input_par” function described below.  

From this input data, additional “constant numerical values” are computed to be used in estimating the 

camp’s electricity demand. These values are also referred to as corrective factors (CF) for businesses and 

institutions: the 𝐶𝐹𝑏𝑢𝑠  and 𝐶𝐹𝑖𝑛𝑠𝑡 . The code takes all available values from the “Variables.csv” file about the 

number of businesses (𝑁𝑟𝑏𝑢𝑠𝑖) and institutions (𝑁𝑟𝑖𝑛𝑠𝑡𝑖) and calculates the corrective factors. Thus, they 

change when data is deleted, changed or added. 𝐶𝐹𝑏𝑢𝑠  and 𝐶𝐹𝑖𝑛𝑠𝑡  are defined as: 

 

𝐶𝐹𝑏𝑢𝑠(𝐶𝐹𝑖𝑛𝑠𝑡) =

∑
𝑁𝑟𝑏𝑢𝑠𝑖(𝑁𝑟𝑖𝑛𝑠𝑡𝑖)

𝑁𝑟ℎℎ𝑖

𝑥
𝑖=1

𝑥
 

 

 

Eq. 1 

 
where 𝑥 is the amount of camps for which the number of businesses or institutions is known.  

The resulting values for 𝐶𝐹𝑏𝑢𝑠  and 𝐶𝐹𝑖𝑛𝑠𝑡  are 0.0507 and 0.0059, respectively. The function 

“camp_input_par” defines the input parameters of a given camp, using the dictionary that was created 

before. This dictionary serves as a look-up table. A camp is defined by its camp ‘name’ and ‘zone’ and these 

are therefore variables of the Python function. When the number of households is known from field or desk 

research, the value included in the “Variables.csv” file is used. When this value is unknown, the Population is 

divided by the Average family size. Similarly, when the number of businesses and institutions are known, 

these are used. When these are unknown, the Number of households is multiplied with 𝐶𝐹𝑏𝑢𝑠  to calculate 

the amount of businesses and with 𝐶𝐹𝑖𝑛𝑠𝑡  to calculate the number of institutions. The “camp_input_par” 

function returns a dictionary, which makes it easy to access a specific value belonging to a camp.  

After that, a CSV file “Kalobeyei.csv” is imported. This file contains the measured hourly load profile of 

Village I and the estimated hourly load profile (kW) of Village II and III of the Kalobeyei camp in Kenya (Baldi, 

2021) – actual field-data from 2020. Each hour (and row in CSV file) is added as a list into one big list, using a 

“for” loop, to store the data in Python. The data is structured as is given in Table 2. 

Table 2. Structure of the "Kalobeyei.csv" input file. Values are given in kWh. 

 Hh V1 Hh V2 Hh V3 Bus V1 Bus V2 Bus V3 Inst V1 Inst V2 Inst V3 

04:00 386.40 112.05 60.71 85.45 14.15 25.82 545.25 389.70 288.81 

05:00 253.42 112.05 83.53 38.84 14.15 17.21 213.89 263.88 161.39 

Etc.          

 

The “kalobeyei_variables” function defines that the first three values of each hour belong to households 

(orange cells from Table 2), the second three to businesses (blue cells) and the third three to institutions 

(yellow cells), again returning a dictionary. This is defined as the trend’s load profile per type of consumer, 

𝐿𝑃𝑇𝑟𝑒𝑛𝑑,𝑐𝑜𝑛𝑠(𝑡). The last part of the input is the calculation and definition of CF1 and CF4. The corrective 

factors are explained in Baldi (2021) and specified further in Appendix 2.1.  

The output part of this module calculates the load profile per type of consumer in year 1 and year 6. This is 

done using the corrective factors defined by Baldi (2021).  

The load profile per type of consumer in year 1, 𝐿𝑃𝑐𝑜𝑛𝑠,𝑦1(𝑡) (𝑘𝑊ℎ), is defined by: 
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𝐿𝑃𝑐𝑜𝑛𝑠,𝑦1(𝑡) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝑃𝑇𝑟𝑒𝑛𝑑,𝑐𝑜𝑛𝑠(𝑡)) ∗

𝐶𝐹1

1000
∗ 𝐶𝐹2 ∗ (1 − 𝐶𝐹3) ∗ 𝐶𝐹4 ∗ 𝐶𝐹5 

 

Eq. 2 

 

The load profile per type of consumer in year 6, 𝐿𝑃𝑐𝑜𝑛𝑠,𝑦6(𝑡) (𝑘𝑊ℎ), is computed as: 

 𝐿𝑃𝑐𝑜𝑛𝑠,𝑦6(𝑡) = 𝐿𝑃𝑐𝑜𝑛𝑠,𝑦1(𝑡) ∗ (1 + 𝐴𝐷𝐺)
𝐷𝑃𝑇𝐹  Eq. 3 

where ADG is the annual demand growth and DPTF is the demand projection time frame (see Table 1). 

 

In addition, the total load profile is defined for each of these two years, which is the sum of the three load 

profiles for households, businesses and institutions.   

The daily energy demand function returns two values. The first value does not consider the demand covered 

by an existing mini-grid (in case there is one), while the second one does. The daily energy demand for which 

the demand of an existing mini-grid is subtracted is called the effective demand. In addition, the module 

calculates the consumption share and the number of connections per type of consumer. These are necessary 

for the calculation in the financial module. Their equations are given in Appendix 2.1. 

After that, there are two functions of which one defines how to run the code for one camp and the other 

defines how to run the code for all camps. For one camp, the daily energy demand and effective demand in 

years 1 and 6 are printed in the Python console. For the output of all camps, the results are printed to a CSV 

file, using the Pandas library. A “for” loop is used to loop over all camps and to return corresponding results. 

Lists per output type are created that contain the output values for all camps. These lists form columns in the 

CSV file. The output indicators are: Energy demand year 1 (kWh), Effective energy demand year 1 (kWh), 

Energy demand year 6 (kWh), Effective energy demand year 6 (kWh), Total hourly load profile year 6 (kW), 

Consumption share households, Consumption share businesses and Consumption share institutions. A 

separate CSV file is created when the module is run for a different demand scenario, with the name 

“output_file_<scenario_name>_<ECR_hh>.csv”. 

The questions to ask the user when he/she presses play are defined at the bottom of the code. It starts with 

a reminder to the user if he/she defined the demand scenario (as seen in Figure 3). Then the question is 

defined whether the computations are to be done for one camp or all camps. Only when the user enters to 

run for one camp, two follow-up questions are asked, which are to enter the camp name and corresponding 

zone. This is the same piece of code in each of the three key modules.  

 

3.2.2. Technical module 
This module starts with constant numerical values at the top (see Table 3), followed by the import of several 

inputs. The function “camp_input_par” is imported from the demand module, which means it can also be 

used in this module. Furthermore, from the demand module, the scenario name and the ECR or households 

are imported. The last six constants from Table 3 are needed for calculating the emission factor later in this 

module. The emission factor is needed to calculate the avoided emissions of the sustainable mini-grid 

compared to a reference diesel generator. More information on this can be found in Appendix 2.2.  

Table 3. Constants for the technical module. 

Constant Value Unit 

System losses 25 % 

Battery efficiency 80 % 

Battery depth of discharge 90 % 

Reserve margin 30 % 

Load by battery or solar high 0.7 - (fraction) 
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Load by battery or solar low 0.3 - (fraction) 

Yday 365 Days in a year 

Diesel generator size 75 kW 

Load factor 50 % 

Conversion US gal to liter 3.785 Liter/US gal 

Diesel density 0.85 Kg/liter 

Net caloric value diesel 43 TJ/Gg (1 Gg = 1000 t) 

Emission factor diesel 74100 Kg CO2/TJ 

 

For the output, the PV system size and the battery size are calculated (Baldi, 2021). The energy demand in 

year 6 is used for this, not the demand in year 1, nor the effective demand. When there is an existing mini-

grid, the existing PV and battery size are subtracted at the end of this calculation. The demand in year 6 is 

used because the PV and battery installations are scaled to meet the demand, including 5 years of growth.  

Table 4 gives an overview of the fractions of the demand covered by solar PV and batteries during the day. 

The solar PV can only be used during the sunlight hours, which is from 09:00 to 17:00. During sunrise and 

sunset, the demand is covered by both solar PV and batteries, and during the dark hours, only the batteries 

are used, which is from 19:00 to 07:00 (Baldi, 2021). 

Table 4. The fraction of solar PV and batteries used at specified hours of the day, to cover the demand. 

Time (hour starting 
at) 

Solar PV Batteries 

7:00 30% (Load by battery or solar low 
from Table 3) 

70% (Load by battery or solar high from 
Table 3) 

8:00 70% (Load by battery or solar high 
from Table 3) 

30% (Load by battery or solar low from 
Table 3) 

9:00-16:00 100% 0% 

17:00 70% 30% 

18:00 30% 70% 

19:00-6:00 0% 100% 

 

The PV system size (kWp) is defined by: 

 

 
𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 =

𝑆𝑈𝑀([𝐿𝑃𝑡𝑜𝑡(𝑡)]) ∗ (1 + 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑠𝑠𝑒𝑠) ∗ (1 + 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑚𝑎𝑟𝑔𝑖𝑛)

𝑃𝑆𝐻
−𝑘𝑊𝑝 𝑃𝑉 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑔𝑟𝑖𝑑 

 

 

Eq. 4 

 

where the total load profile, 𝐿𝑃𝑡𝑜𝑡(𝑡), defines the demand of households, businesses and institutions 

together at hour t (in kWh) and 𝑃𝑆𝐻 are the Peak sun hours (in kWh/m3). [𝐿𝑃𝑡𝑜𝑡(𝑡)] is a vector of 1x24 

defining the daily load profile.  

The Battery size (kWh) is defined by:  

 
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒 =

𝑆𝑈𝑀([𝐵(𝑡)])(1 + 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑠𝑠𝑒𝑠) ∗ (1 + 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑚𝑎𝑟𝑔𝑖𝑛)

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

∗ (1 + (1 − 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)) −  𝑘𝑊ℎ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑔𝑟𝑖𝑑 
 

Eq. 5 

 

 

and the demand to be satisfied by batteries at hour t, 𝐵(𝑡) (𝑘𝑊ℎ), is defined by: 
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𝐵(𝑡) =

{
 
 

 
 𝐿𝑃𝑡𝑜𝑡(𝑡),         𝑖𝑓 7: 00 > 𝑡 > 19: 00

  𝐿𝑃𝑡𝑜𝑡(𝑡) ∗ 0.7,         𝑖𝑓 𝑡 =  7: 00 𝑎𝑛𝑑 𝑡 = 19: 00

𝐿𝑃𝑡𝑜𝑡(𝑡) ∗ 0.3,          𝑖𝑓 𝑡 = 8: 00 𝑎𝑛𝑑 𝑡 = 18: 00

0,          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 

 

Eq. 6 

 

 

[𝐵(𝑡)] is a vector of 1x24 defining the demand to be satisfied by batteries at every hour of the day. 

The peak sun hours used in the calculation for the PV capacity define the average daily solar irradiation in 

kWh/m3 (averaged over a year). They are used as fixed input from Baldi (2021) for each camp. More 

information on the peak sun hours calculation can be found either in Baldi (2021) or Appendix 2.2. The 

reserve margin increases the capacity of both solar PV and batteries, allowing for extra electricity generation 

that can be used in case of system failures or other issues. The reserve margin can be a percentage higher 

than 100%, which means that the system can produce electricity to cover the demand for an extra day or 

more.  

In addition, the yearly avoided emissions are calculated. The emission factor is 0.93 tCO2/MWh and it is 

assumed that the emissions of the solar-battery system are zero (Baldi, 2021). 

The yearly avoided emissions, 𝐴𝑣𝑜𝑖𝑑𝑒𝑑𝑒𝑚(𝑦𝑒𝑎𝑟)(𝑡 𝐶𝑂2), are computed by: 

 
𝐴𝑣𝑜𝑖𝑑𝑒𝑑𝑒𝑚(𝑦𝑒𝑎𝑟) = 𝐸𝐹 ∗

𝑒𝑓𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟

1000
∗ 𝑌𝑑𝑎𝑦 

Eq. 7 

where EF is the emission factor, 𝑒𝑓𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟  is the effective demand in years 1 or 6 and Yday are the 

amount of days in a year.  

At the end of the code, the functions to run the module for one camp and all camps are given. To run for one 

camp, the PV capacity, battery capacity and avoided emissions in year 6 are printed to the console. To do 

this, the functions that compute the daily energy demand in years 1 and 6 and the daily load profile in year 6 

are imported from the demand module. This is done because their outcomes are needed in the calculation of 

the PV and battery capacity and the avoided emissions.  

To run the code for all camps, the output of the demand module is used as fixed input in the technical 

module. For this, Python opens and reads the CSV file that has been produced in the demand module. A 

dictionary is created in which each row (and thus each camp) is represented by a key-value pair, using a “for” 

loop. The function “demand_input_par” defines the input parameters belonging to the camp called in the 

function, returning a dictionary. This is done because using the functions directly from the demand module 

(as is done to run for one camp) results in a long computational running time. The output indicators of the 

technical module are: PV size (kWp), Battery size (kWh) and Avoided emissions year 6 (t CO2). The output for 

all camps is added to the output file of the demand module.  

 

3.2.3. Financial module 
The module starts with the constants numerical values from Table 5. An explanation on these constants and 

how they are used is given in Baldi (2021), Baldi et al. (2022) and Appendix 2.3. In addition, several inputs are 

imported. The functions “camp_input_par” and “nr_connections” are imported from the demand module, 

together with constants such as the ECR of businesses and institutions, the demand projection time frame, 

the annual demand growth, the scenario name and the ECR of households. 
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Table 5. Constants for the financial module. 

Constant Values used in KALO 1.0 (Baldi, 
2021) 

Unit 

 
For upfront cost calculation 

Inverter to PV ratio 1.2 - 

Project cost existing mini-grid projects 6200 USD/kWh 

Start substation 2000 Nr households 

 
For LCOE calculation 

Simulation period 20 Years  

Replacement time batteries and PV inverter 10 Years  

Replacement time PV modules and other assets 20 Years  

VAT rate 14 % 

TAX rate 25 % 

Insurance rate 1 % 

Interest rate debt 8 % 

    Project cost financing - debt 2 % 

    Debt repayment period 11 Years  

Land lease cost 0 USD/year 

Connection fee consumer 5.4 USD/connection 

Yearly cost reduction PV modules 3 % 

Yearly cost reduction PV inverter 3 % 

Yearly cost reduction batteries 4 % 

Yearly cost reduction other assets 0 % 

Conversion inflation to devaluation 0.5 - 

Built connections households year 1 40 % 

Built connections households year 2 70 % 

Generation hours per day 95 % 

 

A CSV file is created to restructure the semi-fixed input from KALO 1.0. It is called “Semi-fixed_input.csv” and 

contains the following semi-fixed parameters for each country: national electricity tariffs for households, 

businesses and institutions (national currency/kWh), inflation rates of 4 years (%), the exchange rate 

(national currency/USD), mini-grid project cost (USD) and the weighted average cost of capital (WACC) (%). 

These values are the same for all camps in the same country. Each country occupies one row in the CSV file. 

A dictionary is created with the country name as “key” and the corresponding row of the CSV file in a list as 

“value”. The country-specific WACC was computed by Baldi (2021) based on the equity rate of return and 

debt interest rate in that country. This WACC is used later as a discount rate in the LCOE calculation. As of 

today, only for Kenya there is a value known for the mini-grid project cost. This value is used in calculating 

the Other upfront cost (see Table 6). For the countries where this value is unknown, the Project cost of 

existing mini-grid projects of 6200 USD/kWh is used (see Table 5) (Baldi, 2021).  

The first part of the financial model is to calculate the upfront cost, which are investments that must be 

made to build the mini-grid. They are divided into generation, substation, distribution and other upfront 

costs. The distribution of these costs is displayed in Table 6. The values used for the upfront cost calculation 

are specified at the top of the code, together with the constant numerical values mentioned in Table 5. The 

number of connections belonging to the existing mini-grid (EMG), in case there is one, is needed in the 

calculation of distribution upfront cost and is given in Appendix 2.3.  
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Table 6. Upfront cost that occur as investments at the start of the project.  

Input Value Unit Equation 

 
Generation Upfront cost (USD) 
 

PV modules 320 USD/kWp = 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒  Eq. 8 

Panel frames 140 USD/kWp = 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒  Eq. 9 

PV inverter 110 USD/kWp 
= 𝑣𝑎𝑙𝑢𝑒 ∗

𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑡𝑜 𝑃𝑉 𝑟𝑎𝑡𝑖𝑜
  

Eq. 10 

 

Solar 
monitoring 
system 

600 USD/ 
System 

= 𝑣𝑎𝑙𝑢𝑒 ∗ 1  Eq. 11 

Batteries 230 USD/kWh 
(nominal) 

= 𝑣𝑎𝑙𝑢𝑒 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒  Eq. 12 

Accessories 50 USD/kWh 
(nominal) 

= 𝑣𝑎𝑙𝑢𝑒 ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒  Eq. 13 

Security & 
civil works 

80 USD/kWp = 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒  Eq. 14 

 
Substation Upfront cost (USD) 
 

Substation 1000 USD/kWp = 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒  
Only if 𝑁𝑟ℎℎ > 𝑆𝑡𝑎𝑟𝑡 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Eq. 15 

 
Distribution Upfront cost (USD) 
 

Customer 
connection 

80 USD/ 
connection 

= 𝑣𝑎𝑙𝑢𝑒 ∗ (
ℎℎ ∗ 𝐸𝐶𝑅ℎℎ + 𝑏𝑢𝑠 ∗ 𝐸𝐶𝑅𝑏𝑢𝑠

+𝑖𝑛𝑠𝑡 ∗ 𝐸𝐶𝑅𝑖𝑛𝑠𝑡 −𝑁𝑟𝑐𝑜𝑛  𝐸𝑀𝐺
)  

Eq. 16 

Low voltage 
distribution 

145 USD/ 
connection 

= 𝑣𝑎𝑙𝑢𝑒 ∗ (
ℎℎ ∗ 𝐸𝐶𝑅ℎℎ + 𝑏𝑢𝑠 ∗ 𝐸𝐶𝑅𝑏𝑢𝑠

+𝑖𝑛𝑠𝑡 ∗ 𝐸𝐶𝑅𝑖𝑛𝑠𝑡 −𝑁𝑟𝑐𝑜𝑛  𝐸𝑀𝐺
)  

Eq. 17 

 
Other Upfront cost (USD) 
 

Logistics and 
project 
management 

10 % of 
investment 
cost 

= 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑖𝑛𝑖 𝑔𝑟𝑖𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 

Eq. 18 

Contingency 5 % of 
investment 
cost 

= 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑖𝑛𝑖 𝑔𝑟𝑖𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
∗ 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 

Eq. 19 

 

After the upfront cost calculation, the module continues with the calculation of the LCOE (Eq. 20). The LCOE 

formula in Python contains a “for” loop that calculates the yearly cost for every year in the simulation period 

and discounts this value to the present. For a standard run of the financial module, a discount rate of 10%, 

O&M cost of 1% (of total upfront cost) and customer connection cost of 80 USD/connection are used. These 

parameters are variables (and thus remain undefined until the end of the code) in the financial module, 

which makes it possible to adjust them easily for sensitivity analysis later on.  

Two types of LCOE can be generated as output: LCOE-all and LCOE-GenOnly. The LCOE-all takes all upfront 

cost into account, while the LCOE-GenOnly takes only generation and other upfront cost into account, 



 

25 
 

excluding distribution and substation cost (Baldi, 2021). This approach makes it easier to compare LCOE 

values with existing literature, as they often focus on the generation part of the LCOE. 

The LCOE (USDc/kWh) is defined by: 

 

𝐿𝐶𝑂𝐸 =
𝑈𝑝𝑓𝑟𝑜𝑛𝑡0 + ∑

𝑅𝑧 +𝑂&𝑀𝑖 + 𝐹𝑖
(1 + 𝑟𝑛)

𝑡
𝑡
𝑖=1

∑
𝐸𝑔𝑖

(1 + 𝑟𝑛)
𝑡

𝑡
𝑖=1

∗ 100 

 

Eq. 20 

 

where 𝑈𝑝𝑓𝑟𝑜𝑛𝑡0 includes the Upfront Cost for generation, substation, distribution and other cost (USD); 

𝑅𝑧  is the replacement cost of PV inverters, batteries and PV modules at year z (USD); 

𝑂&𝑀𝑖  represents the operation and maintenance cost (USD); 

𝐹𝑖  are the financial expenditures, including insurance, Value Added Tax, interest for debt, tax and land lease 

(USD); 

𝑟𝑛 is the discount rate (%); 

𝐸𝑔𝑖  represents the electricity generated by the PV system per year (kWh). 

The equations that are used to calculate the replacement cost, yearly cost and electricity generation 

mentioned above are given in Appendix 2.3.  

 

At the end of the code, the functions and commands to run the code for one camp and all camps are given, 

just as in the other modules. To run for one camp, multiple functions are imported from the demand and 

technical module, such as the daily energy demand in year 1, the consumption share per type of consumer 

and the functions to compute the PV and battery size. The results are printed to the console. To run for all 

camps, the CSV file created at the end of the technical module is used as fixed input in this module and is 

handled the same as in the previous module.  

The output indicators are: Upfront cost (USD), LCOE-all (USDc/kWh), LCOE-GenOnly (USDc/kWh) and LCOE-

WACC (USDc/kWh). For the calculation of the LCOE-WACC, the country-specific WACC is used instead of the 

general discount rate of 10%. This is done to make the LCOE value more specific for the camp’s location. 

These output indicators are added to the CSV file of the demand and technical module. The result is a CSV 

file with the output indicators of the three modules on one row for each camp. 

There is also an option in the financial module to include an increase in the electricity tariff that the 

consumers have to pay. This percentage can be specified for each consumer separately. Also, the user can 

specify after how many years the tariff is increased, with a minimum of 5 years (Baldi, 2021). In addition, 

there is an option to include an increase in the O&M cost, with a user-specified percentage per year (Baldi, 

2021). At this moment, they are both set at zero.  

 

3.3. Small improvements compared to KALO 
The previous paragraphs have described the Python model. While programming, small improvements were 

made in terms of content, structure and user-friendliness, which will be discussed below.  
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3.3.1. Content improvements  
The first content improvement discussed below relates to the demand module, while the others relate to 

improvements in the financial module.  

The KALO-model 2.0 was adjusted so that it works for any value of the ECRhh, ECRbus and ECRinst. In KALO 1.0 it 

was only possible to use an ECR of 80 or 100%. To solve this, it was decided to make CF3 fixed at 82%, 

instead of varying it between 80 and 82% for an ECR of 100 and 80% respectively. This corrective factor 

adjusts for the fact that the Kalobeyei refugee camp (from which field-data on load profiles is collected) was 

already partly connected to a mini-grid at the time of the field-data collection. Because of this, it is expected 

that the initial demand of consumers in other camps will be lower, as demand is expected to increase in the 

first years after access. For an ECR of 40%, it was found in KALO 1.0 that CF3 corresponds to 86%. Because 

the percentages corresponding to CF3 were based on assumptions made by Baldi (2021), the middle value of 

82% was chosen for all values of the ECRs.  

KALO 1.0 contained a minor error relating to the calculation of depreciation in the financial module. When 

an asset has a replacement time of 10 years, it is fully depreciated at the end of year 10. In year 10, a new 

investment is necessary to replace the asset. This asset is again fully depreciated after 10 years, which is at 

the end of year 20. However, in KALO 1.0 the replacement asset was depreciated faster than 10 years, 

because a wrong value for depreciation was used. This was corrected in KALO 2.0. 

The solar monitoring system cost of 600 USD was missing in the LCOE calculation in KALO 1.0. This cost was 

recognized in the upfront cost calculation, but was forgotten in the Excel sheet used for the LCOE calculation. 

This was corrected in the Python model.  

KALO 1.0 used multiple costs and prices relating to the connection of consumers to the mini-grid: 

• A customer connection cost of 80 USD/connection in the upfront cost,  

• A cost of connection of 5.4 USD/connection in year 1 

• A connection fee of 5.4 USD/connection (as revenue) in year 1 

In consultation with Baldi (2021), it was decided to remove the cost of connection of 5.4 USD/connection 

(the italic bullet from above) from the model. The investor pays once to connect the consumer, which is 

included in the upfront cost. Afterward, the consumer has to pay a fee for this connection, which is 5.4 

USD/connection, received as revenue for the project.  

Another small error was found. The financial module of KALO 1.0 used the daily energy demand in years 1 

and 6 from the demand module as fixed input. This energy demand is specified for the defined ECR of 

households. In the calculation of the yearly demand in the financial part of the model, another multiplication 

was done with the ECR of households. This was seen to be double. Therefore, the latter multiplication was 

left out in KALO 2.0.  

KALO 1.0 defined that a substation is included when the number of households is higher than 2000. This 

definition is correct for an ECRhh of 100%, as the number of households connected equals the number of 

connections for households. However, for an ECRhh of 80, the number of households is not equal to the 

number of connected households. Therefore, the Python model assumes that a substation is included when 

the number of connections for households is higher than 2000.  

Lastly, KALO 2.0 gives the option to include land lease cost either as an upfront or a yearly cost. At this 

moment, the yearly land lease cost are assumed to be zero (Baldi, 2021). However, additional data collection 

could lead to the inclusion of these costs in the model.  
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3.3.2. Structure and user friendliness 
The Python model uses a clear structure with three main modules. There is one place where the scenario has 

to be defined and no other manual changes need to be made. The user only has to press play, after which 

the model asks the user some questions. Then the model runs automatically either for one camp or all 

camps. Every module has a clear structure: constants, input, calculations and output. The model uses three 

input CSV files and produces one output CSV file where output on all camps is stored. In addition, the Python 

code allows following the calculations as they are written down in the Python Editor. 

The main advantage of the Python model is the time it takes to run the model for all camps. For any 

scenario, it takes only a few clicks to achieve this: running the demand module, the technical module and the 

financial module, together with typing “all” in the Python console for every module. The total computational 

time to do this is a few minutes. As there is only one place where input is required from the user, the model 

is less prone to human mistakes, such as forgetting to adjust certain parameters. 

In terms of modularity, all constant numerical values could be adjusted when more data is collected in the 

future and the model would still work properly. This includes changing the demand projection time frame of 

5 years and the annual demand growth of 10 years in the demand module, but also the simulation period of 

20 years in the financial module, the replacement time of assets, prices of assets and many other constants 

in each module.  

 

3.4. Comparison of results 
Comparing the results of KALO 1.0 and KALO 2.0 had some complications. As there were small adjustments 

made in KALO 2.0, the results are not the same as the ones reported in the database of Baldi (2021). 

Therefore, the adjustments were made to KALO 1.0 as well, to be able to make a comparison. However, as 

KALO 1.0 has to be run manually for each camp, adjusting several parameters, it was not sensible to 

generate new results for all camps. Therefore, a few camps were chosen to compare the two models. In 

addition, only a few indicators are discussed here (the LCOE-all), using certain assumptions (Baseline 80%, 

Tier 2 100% and Tier 3 80% scenarios), although all output indicators and the other scenarios were also 

compared. 

The chosen camps are the following: Moyo is a camp with only the population number known, where a 

substation is included for both ECRhh scenarios; Ali Addeh has an existing mini-grid; Hol-Hol has data on the 

number of households, businesses and institutions and does only include a substation for the ECRhh 100% 

scenario and Abu Matarig is a small camp where no substation will be necessary. These camps give a short 

but complete representation of the cases encountered. Only the LCOE-all is shown because this indicator 

depends on all output indicators. When this value corresponds, the others do too. The results are shown in 

Table 7. It can be seen that there is only a small deviation in values. This is because Python reads the CSV 

files with a maximum of 9 decimals, while the average family size and the peak sun hour values have more 

than nine decimals in KALO 1.0.  

Table 7. Results on the LCOE-All for four camps and three scenarios. 

Camp Scenario KALO 1.0 LCOE-all KALO 2.0 LCOE-all 

Moyo Baseline 80% 62.550 62.554 

Tier 2 100% 48.501 48.505 

Tier 3 80% 37.452 37.456 

Ali Addeh Baseline 80% 63.236 63.240 

Tier 2 100% 48.816 48.819 

Tier 3 80% 37.335 37.338 

Hol-Hol Baseline 80% 59.452 59.456 
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Tier 2 100% 48.512 48.516 

Tier 3 80% 30.341 30.344 

Abu Matarig Baseline 80% 53.961 53.965 

Tier 2 100% 39.816 39.819 

Tier 3 80% 28.709 28.711 

 

With this table, the first part of this research is concluded and the first objective is met. The KALO Excel 

model was successfully reproduced in Python, where a demand module, a technical module and a financial 

module were built. Small improvements in terms of structure, content and user-friendliness were 

implemented and the results of the Python model matched with the results of the KALO Excel model. Now 

the research moves on to the second objective, which is about the larger model improvements.  
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4. Results Part II: KALO 2.1 - Larger model improvements 
 

This chapter gives the results of the larger model improvements that are implemented. Three of the larger 

model improvements identified in Section 3.1 are implemented in the Python model, creating the KALO-

model 2.1. The first improvement is the option to use a diesel generator in hybrid form with the PV-battery 

mini-grid, where the diesel generator covers the peak demand. The second improvement is comparing 

another technological option for electricity access in refugee camps, which is grid extension, with a mini-grid. 

The third and last improvement is the inclusion of the electricity demand for clean water production, 

including water pumping and purification. These three improvements were chosen, because sufficient 

literature was found on these topics during desk research. The other areas of improvement identified earlier 

in Section 3.1 required more data collection, which would have been difficult due to data scarcity in the field 

of refugee settlements. The three improvements match with the focus of this study, which is on modelling 

rather than on data collection. 

 

4.1. Diesel  
This section describes the addition of a diesel generator in the Python model. It starts with giving motivation 

for the strategy used by presenting a small literature review. The section continues with a general 

description of the diesel part of the model, followed by a description of the adjustments made in each 

module. Lastly, the results of these improvements are presented and compared with existing literature.  

In refugee settlements, electricity is mainly provided by off-grid diesel generators (Neves et al., 2021) 

(Alonso et al., 2021). Hybrid renewable energy systems (HRES) can reduce the dependency of a camp on 

diesel fuel, which is often imported over large distances and sensitive to sudden rises in the diesel price 

(IRENA, 2016) (Neves et al., 2021). In addition, HRES can overcome the fluctuating nature of renewable 

electricity generation and reduce the generation cost compared to diesel generators (Zebra et al., 2021) 

(IRENA, 2016) (Neves et al., 2021). However, hybrid or fully sustainable systems have higher upfront costs 

than diesel systems. The goal of the diesel improvement is to see the financial (dis)advantages of a hybrid 

mini-grid with diesel compared to a fully renewable mini-grid and to compare different levels of 

hybridization. 

It is important to point out again that the KALO-model is a sizing model, not a simulation model. There is a 

fixed daily energy demand and load profile for every day of the year, which makes it possible to scale the PV 

and battery size to meet this demand in a straightforward manner (there is no randomness in the demand). 

Therefore it was chosen to model a diesel generator, starting from a user-defined percentage of the demand 

covered by the diesel generator (more details below). Hence, including a diesel generator results in a lower 

load profile for the PV-battery system.  

Diesel generators can be modelled using a load following or a cycle charging strategy. According to the 

literature (Micangeli et al., 2020), the load following strategy entails that renewable energy sources are used 

first, followed batteries. Diesel generators are used as a final option. The generator is used to cover the 

demand that is not met by the solar-battery system. Note that, in this case, the diesel generator does not 

charge the batteries. The cycle charging strategy follows the same merit-order criterion as the load following 

strategy, only the diesel generator is used to meet demand and to charge the battery. This latter strategy is 

used in this research. As better explained below, a constraint is added, so that the diesel generator must 

operate at a given minimum power when it is turned on. When the diesel output at any point in time is 

larger than the demand that has to be met, the electricity is used also to charge the battery.  
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The open-source CLOVER model, used by Alonso et al. (2021), is used as the main guidance to build this new 

part of the model. It uses the same programming language, which makes it easier to understand its 

approach, and the scripts behind the model are publicly available (Sandwell, n.d.). The KALO-model from 

Baldi (2021) also contained some information about diesel, but it was never used in his research. Therefore 

the diesel part of KALO 1.0 was not fully developed.  

 

4.1.1. General description 
The goal of the technical module, including a diesel generator, is to calculate the diesel generator size and 

the reduced PV and battery capacity. Figure 4 gives a qualitative description of the flow of the model, which 

will be explained here.  

1. The daily load profile of the demand, 𝐿𝑃𝑡𝑜𝑡(𝑡), in year 6 is used as input data. This is a 1x24 vector 

that gives the demand for every hour of the day.  

2. The user defines a diesel peak percentage. This percentage defines which fraction of the daily peak 

demand will be covered by the diesel generator and can have any value between 0 and 100%. 

Examples of three diesel peak percentages are indicated as “threshold” in Figure 5. When the peak 

percentage is 30%, the generator will switch on when the demand is at 70% of its daily peak value, 

which is at 102 kWh for the Moyo refugee camp.  

3. Two new load profiles are generated. 𝐿𝑃𝑆𝐵(𝑡) gives the demand for the solar-battery system and 

𝐿𝑃𝐷(𝑡) for the diesel system, for every hour of the day. Both are 1x24 vectors. 

4. The strategy used in this research is the cycle charging strategy, which was explained earlier in 

Section 4.1. This implies that the generator operates at a given minimum power when it is turned on. 

In this research, the generator has to run at at least 35% of its maximum capacity (Alonso et al., 

2021). This is defined as the minimum generator load factor, 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛 .  

Hence, a loop starts that goes over every hour of one day. Starting from 𝐿𝑃𝐷(𝑡), which defines for 

which hours of the day the generator is turned on, the first step is to calculate the generator load 

factor, 𝐿𝐹𝑔𝑒𝑛(𝑡), during these hours. If this load factor is smaller than 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛, the generation is 

increased to 35% of its maximum capacity. This is called the actual generation from diesel, 𝐿𝑃𝐷,𝑁(𝑡). 

5. The difference between the actual generation from diesel, 𝐿𝑃𝐷,𝑁(𝑡), and the generation required to 

meet the demand, 𝐿𝑃𝑡𝑜𝑡(𝑡), is computed and called the excess diesel energy, 𝐸𝑥𝐷(𝑡).  

6. When 𝐸𝑥𝐷(𝑡) is smaller than zero, the solar-battery system covers the demand (now equal to 

−𝐸𝑥𝐷(𝑡)). During sunlight hours, this demand is covered by the solar PV system, 𝑆𝑑𝑖𝑟𝑒𝑐𝑡(𝑡), and 

during dark hours this is covered by the battery system, 𝐷𝑖𝑠𝐶𝐻𝐵(𝑡). 

7. When 𝐸𝑥𝐷(𝑡) is larger than zero, this means that there is enough electricity generation from diesel 

to cover the demand at hour t and the excess diesel energy is used to charge the battery 

𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡).  

8. When 24 hours are finished, the sum of the battery discharge over 24 hours, 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]), is 

compared to the sum of the battery charging from diesel over 24 hours, 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)]). 

When the former is smaller than the latter, there is enough diesel energy to charge the battery fully. 

When the former is larger than the latter, extra solar energy is required to charge the battery, 𝑆𝑒𝑥𝑡𝑟𝑎 . 

9. The final step is to scale the PV and battery capacity to the total demand for solar PV, 

𝑆𝑈𝑀([𝑆𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)]) + 𝑆𝑒𝑥𝑡𝑟𝑎 , and batteries, 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]).  
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Figure 4. A flowchart describing the diesel part of the Python model. 
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Figure 5. The load profile of the Moyo refugee camp located in Chad, in year 6 for a Tier 2 scenario and an ECR of households of 100%. 
The horizontal lines show the thresholds for different percentages of the peak demand. The demand above these lines corresponds to 
the demand covered by the diesel generator.  

 

4.1.2. Adjustments demand module 
The diesel peak percentage (= diesel_for_peak in Python) is added to the user input part at the top of the 

demand module.  

The function “peak_shaving” defines the threshold value (see Eq. 21) for which the generator switches on. 

This function returns the load profiles of the PV-battery system (Eq. 22) and the diesel generator system (Eq. 

23) for years 1 and 6. It is the only function regarding diesel included in the demand module.  

The Threshold (kWh) is computed as: 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑀𝐴𝑋([𝐿𝑃𝑡𝑜𝑡(𝑡)]) ∗ (1 − 𝑑𝑖𝑒𝑠𝑒𝑙 𝑝𝑒𝑎𝑘 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)  Eq. 21 

 

Where [𝐿𝑃𝑡𝑜𝑡,𝑦5(𝑡)] is a vector of 1X24 defining the daily load profile in year 6 (in kWh). 

The load profile of the solar-battery system, 𝐿𝑃𝑆𝐵(𝑡) (𝑘𝑊ℎ), is defined by: 

 
𝐿𝑃𝑆𝐵(𝑡) = {

𝐿𝑃𝑡𝑜𝑡(𝑡), 𝑖𝑓 𝐿𝑃𝑡𝑜𝑡(𝑡) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑖𝑓 𝐿𝑃𝑡𝑜𝑡(𝑡) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

Eq. 22 

 

and the load profile of the diesel system, 𝐿𝑃𝐷(𝑡) (𝑘𝑊ℎ), is computed by:  

 

 
𝐿𝑃𝐷(𝑡) = {

0, 𝑖𝑓 𝐿𝑃𝑡𝑜𝑡(𝑡) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐿𝑃𝑡𝑜𝑡(𝑡) − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑖𝑓 𝐿𝑃𝑡𝑜𝑡(𝑡) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

Eq. 23 

 

These functions give the demand for the solar-battery and diesel systems at hour t. A 1x24 vector can be 

created when all hours of the day are filled in for t. Such a vector is given in square brackets.  
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The load profiles of both the solar-battery and the diesel system in both years 1 and 6 are added to the 

output CSV file, as they are needed in the technical module. The name of the output CSV file is adjusted to 

“output_file_<scenario_name>_<ECR_hh>_<diesel_for_peak>.csv”. 

 

4.1.3. Adjustments technical module 
Table 8 gives an overview of the constant numerical values added to the technical module. Their use will be 

explained throughout this paragraph. 

Table 8. Constants that are added to the technical module.  

Constant Value Unit Source 

Power factor  0.8 - (fraction) (Niwas et al., 2015) 

Diesel minimum load 0.35 - (fraction) CLOVER model (Alonso et al., 
2021) 

Battery charging trend 9:00 – 6.1% 
10:00 – 10.2% 
11:00 – 11.2% 
12:00 – 15.6% 
13:00 – 16.0% 
14:00 – 14.3% 
15:00 – 12.2% 
16:00 – 8.2% 
17:00 – 6.1% 

Hour of the day 
starting at x - % 

(Baldi, 2021) 

 

The function “diesel_generator_size” determines the required capacity of the diesel generator, which is 

equal to the maximum hourly value of the diesel generator load profile, 𝐿𝑃𝐷(𝑡) (Phillip Sandwell, n.d.). The 

capacity is scaled to the demand in year 6, which was also done by Baldi (2021) for solar PV and batteries.  

The generator size (kW) is computed by: 

 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑒𝑥𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑀𝐴𝑋([𝐿𝑃𝐷(𝑡)] Eq. 24 

 

For the financial module, the generator capacity must be a value in kVA. Therefore, a power factor of 0.8 is 

used to convert kW to kVA (Niwas et al., 2015). No generator efficiency is included in this function, as it is 

included in the diesel consumption rate of 0.4 l/kWh that is used from the CLOVER model (Alonso et al., 

2021). The use of this consumption rate will be discussed later on in Section 4.1.4.  

Another function added to the technical module is the “demand_PV_batteries” function, which returns the 

total demand that needs to be covered by solar PV and batteries in year 6. The function has an hourly 

timestep and uses a “for” loop to loop over the 24 hours of the day. 

This function starts with defining the load factor of the generator (Eq. 25). When this load factor is smaller 

than the minimum load factor of 35%, the generation increases until the generator reaches a load factor of 

35% (Alonso et al., 2021). A new load profile for diesel results from this (Eq. 26). Note that this constraint is 

only valid when the generator is turned on, which is when the demand for diesel, 𝐿𝑃𝐷, is greater than zero. 

The load factor of the diesel generator, 𝐿𝐹𝑔𝑒𝑛(𝑡) (%), is defined by: 

 𝐿𝐹𝑔𝑒𝑛(𝑡) = 𝐿𝑃𝐷(𝑡)/𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑒𝑥𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠  Eq. 25 
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and the new load profile of diesel, 𝐿𝑃𝐷,𝑁(𝑡) (𝑘𝑊ℎ), considering a minimum generator load factor of 35%, 

𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛, is computed as: 

 𝐿𝑃𝐷,𝑁(𝑡)

= {

𝐷𝑖𝑒𝑠𝑒𝑙_𝑚𝑖𝑛_𝑙𝑜𝑎𝑑 ∗ 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑒𝑥𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠 , 𝑖𝑓 𝐿𝐹𝑔𝑒𝑛(𝑡) < 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛 𝑎𝑛𝑑 𝑖𝑓 𝐿𝑃𝐷 > 0

𝐿𝑃𝐷(𝑡), 𝑖𝑓 𝐿𝐹𝑔𝑒𝑛(𝑡) ≥ 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛 𝑎𝑛𝑑 𝑖𝑓 𝐿𝑃𝐷 > 0

0, 𝑖𝑓 𝐿𝑃𝐷 = 0

 

 

Eq. 26 

 

The minimum load factor of 35% is the “leading” constraint. Therefore, the total load profile, 𝐿𝑃𝑡𝑜𝑡(𝑡), is 

subtracted from the new load profile of diesel, 𝐿𝑃𝐷,𝑁(𝑡). This is defined as the excess diesel energy, 

𝐸𝑥𝐷(𝑡) (𝑘𝑊ℎ), which is computed by:  

 𝐸𝑥𝐷(𝑡) = 𝐿𝑃𝐷,𝑁(𝑡) − 𝐿𝑃𝑡𝑜𝑡(𝑡) Eq. 27 

 

Now the demand for the solar-battery system is defined. The same assumptions as described in Table 4, 

about the fractions of the demand covered by solar PV and batteries during the day, are used here again. 

The direct demand for the solar PV system, 𝑆(𝑡)𝑑𝑖𝑟𝑒𝑐𝑡  (𝑘𝑊ℎ), is defined by: 

 

𝑆(𝑡)𝑑𝑖𝑟𝑒𝑐𝑡 =

{
 

 
−𝐸𝑥𝐷(𝑡),         𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 9: 00 ≤ 𝑡 ≤ 17: 00

−𝐸𝑥𝐷(𝑡) ∗ 0.3,         𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 𝑡 = 7: 00 𝑎𝑛𝑑 𝑡 = 19: 00

−𝐸𝑥𝐷(𝑡) ∗ 0.7, 𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 𝑡 = 8: 00 𝑎𝑛𝑑 𝑡 = 18: 00
0,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

 

 

Eq. 28 

 

and the hourly discharge of the batteries, 𝐷𝑖𝑠𝐶𝐻𝐵(𝑡) (𝑘𝑊ℎ), is defined by: 

 

𝐷𝑖𝑠𝐶𝐻𝐵(𝑡) =

{
 
 

 
 −𝐸𝑥𝐷(𝑡),         𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 7: 00 > 𝑡 > 19: 00   

−𝐸𝑥𝐷(𝑡) ∗ 0.7,         𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 𝑡 =  7: 00 𝑎𝑛𝑑 𝑡 = 19: 00

−𝐸𝑥𝐷(𝑡) ∗ 0.3,         𝑖𝑓 𝐸𝑥𝐷(𝑡) < 0 𝑎𝑛𝑑 𝑡 = 8: 00 𝑎𝑛𝑑 𝑡 = 18: 00 

0,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

 

 

Eq. 29 

 

Then the initial charging of the battery is defined. When the electricity generation from diesel, 𝐿𝑃𝐷,𝑁(𝑡), is 

large enough to cover the demand at hour t, 𝐿𝑃𝑡𝑜𝑡(𝑡), the excess of diesel energy is used to charge the 

battery. The initial battery charging, 𝐶𝐻𝐵,𝑖𝑛𝑖𝑡  (𝑘𝑊ℎ), is defined as: 

 
𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙 = {

𝐸𝑥𝐷(𝑡), 𝑖𝑓 𝐸𝑥𝐷(𝑡) > 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
Eq. 30 

 

At this point, it is necessary to check whether the battery is sufficiently charged. This is done by subtracting 

the daily amount of battery charging by diesel, 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)]), from the daily battery discharge 

needed to cover the demand, 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]). When this value is smaller than zero, there is enough 

battery charging from diesel to cover the daily demand. When this value exceeds zero, additional solar 

energy is needed to charge the battery. This is defined by 𝑆𝑒𝑥𝑡𝑟𝑎  (𝑘𝑊ℎ), which is computed as: 

𝑆𝑒𝑥𝑡𝑟𝑎

= {
0, 𝑖𝑓 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]) ≤ 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])

𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]) − 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)], 𝑖𝑓 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]) > 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])
 

 

Eq. 31 
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This additional amount of solar energy has to be generated during the sunlight hours. Baldi (2021) assumed 

that the battery charging from solar energy happens at hour starting at 9:00 to the hour starting at 17:00. He 

used a battery charging trend for this (see Table 8), which was found during field research in the Kalobeyei 

refugee camp in Kenya. This trend defines how the battery charges from empty to full during the day. Each 

percentage defines which fraction of its total capacity the battery charges per hour of the day. The charging 

trend is stored in a dictionary in Python.  

The charging of the battery by solar energy, 𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟(𝑡) (𝑘𝑊ℎ), is computed by: 

 𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟(𝑡) = {
𝐶𝐻𝑡𝑟𝑒𝑛𝑑(𝑡) ∗ 𝑆𝑒𝑥𝑡𝑟𝑎 , 𝑖𝑓 9: 00 ≤ 𝑡 ≤ 17: 00

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Eq. 32 

 

Where 𝐶𝐻𝑡𝑟𝑒𝑛𝑑(𝑡) is the charging trend from Kalobeyei at hour t.  

The demand for solar PV, 𝑆(𝑡), has two elements, namely the direct demand for solar energy, 𝑆(𝑡)𝑑𝑖𝑟𝑒𝑐𝑡 , and 

the solar energy needed to charge the battery, 𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟 . This is given by Eq. 33. 

 𝑆(𝑡) = 𝑆(𝑡)𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟 Eq. 33 

 

Figure 6 and Figure 7 give a visual representation of the daily load profile (LP_tot) of the Moyo refugee camp 

in Chad for a Tier 2 scenario, with an ECR of households of 100%. In the first figure, a diesel peak percentage 

of 30% is displayed. It can be seen that the generator (LP_dn) is only turned on from the hour starting at 

19:00 to the hour starting at 21:00. During the sunlight hours, solar energy is used to both charge the battery 

(CH_b,s) and cover the demand (S_direct). While during the dark hours, the battery is used to cover the 

demand (DisCH_b) that is not covered by the diesel generator. The second figure shows a diesel peak 

percentage of 90%. The diesel generator (LP_dn) is switched on from the hour starting at 09:00 to the hour 

starting at 23:00. From the hour starting at 09:00 to the hour starting at 16:00 and at 23:00, there is an 

excess of diesel generation. This results from the minimum generator load factor of 35%, which equals a 

minimum generation of 46 kWh. This excess is used to charge the battery (CH_b,d) and is enough to charge it 

fully. Solar energy is only used to cover the demand directly (S_direct) and the battery is used to discharge at 

night (DisCH_b).  
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Figure 6. A visual representation of how the daily load profile is covered, with a diesel peak percentage of 30%. 

 

 

Figure 7. A visual representation of how the daily load profile is covered, with a diesel peak percentage of 90%. 

 

Example calculations using real values for the equations described above are given in Appendix 3, where a 

diesel peak percentage of 30% and 90% are used. Now that the demand for solar PV and batteries are 
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known, the PV and battery size can be calculated. The same approach as used by Baldi (2021) was taken, also 

described in Section 3.2.2, where only the demand for solar PV and batteries are changed.  

The PV system size (kWp) is computed by: 

 
𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 =

𝑆𝑈𝑀([𝑆(𝑡)]) ∗ (1 + 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑠𝑠𝑒𝑠) ∗ (1 + 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑚𝑎𝑟𝑔𝑖𝑛)

𝑃𝑆𝐻
−𝑘𝑊𝑝 𝑃𝑉 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑔𝑟𝑖𝑑 

 

 

Eq. 34 

and the battery size (kWh) is defined as: 

 
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒 =

𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)])(1 + 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑠𝑠𝑒𝑠) ∗ (1 + 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑚𝑎𝑟𝑔𝑖𝑛)

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

∗ (1 + (1 − 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)) −  𝑘𝑊ℎ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑔𝑟𝑖𝑑
 

 

Eq. 35 

 

Finally, the generator size including losses, 𝐺𝑒𝑛𝑠𝑖𝑧𝑒𝑖𝑛𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠(𝑘𝑊), can be calculated by: 

 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑖𝑛𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑀𝐴𝑋([𝐿𝑃𝐷(𝑡)] ∗ (1 + 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑠𝑠𝑒𝑠) − 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝐺𝑒𝑛_𝑠𝑖𝑧𝑒 Eq. 36 

 
The system losses are included in the calculation of the generator capacity, just as Baldi (2021) did for the PV 

and battery capacity. In addition, in case there is an existing generator present in the camp (which is at this 

moment only the case for Kalobeyei Village 1), this amount is subtracted from the required generator 

capacity, just as was done by Baldi (2021) for the PV and battery capacity. It could be the case that the 

returned value is negative. When this is the case, the existing generator is big enough to cover the 

corresponding demand. There is no need to install extra generator capacity. Therefore, the model calculates 

with zero generator capacity.  

The PV and battery capacity are unchanged for a diesel peak demand percentage of 0%, even though the 

Python code was adjusted. When the diesel peak percentage is 100%, there is no demand for solar PV and 

batteries anymore and the diesel generator covers all demand. 

Another adjustment made in the technical module is the inclusion of the “generation_from_diesel” function. 

This function calculates the daily electricity generation in year 1 and year 6, which are necessary for 

calculating the avoided emissions . The same approach was used in the CLOVER model, where they 

multiplied the load factor with the generator capacity to compute the total amount of electricity generated 

at hour t in kWh (Phillip Sandwell, n.d.). 

The electricity generation from diesel (kWh) is computed as: 

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)

= {

𝐷𝑖𝑒𝑠𝑒𝑙_𝑚𝑖𝑛_𝑙𝑜𝑎𝑑 ∗ 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑖𝑛𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠   𝑖𝑓 𝐿𝐹𝑔𝑒𝑛(𝑡) < 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛 𝑎𝑛𝑑 𝑖𝑓 𝐿𝑃𝐷 > 0

𝐿𝐹𝑔𝑒𝑛(𝑡) ∗ 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑖𝑛𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠 , 𝑖𝑓 𝐿𝐹𝑔𝑒𝑛(𝑡) ≥ 𝐿𝐹𝑔𝑒𝑛,𝑚𝑖𝑛 𝑎𝑛𝑑 𝑖𝑓 𝐿𝑃𝐷 > 0

0, 𝑖𝑓 𝐿𝑃𝐷 = 0

 

 

 

Eq. 37 

 

The avoided emissions in years 1 or 6 (in CO2) are defined by: 

 

𝐴𝑣𝑜𝑖𝑑𝑒𝑑𝑒𝑚(𝑦𝑒𝑎𝑟) = 𝐸𝐹 ∗
(𝑒𝑓𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟 − 𝑆𝑈𝑀([𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])𝑦𝑒𝑎𝑟)

1000
∗ 𝑌𝑑𝑎𝑦 

 

Eq. 38 
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where EF is the emission factor in tCO2/MWh, 𝑒𝑓𝑓𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟  is the effective demand in years 1 or 6, 

[𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)] is a vector of 1x24 describing the daily profile of electricity generation from diesel and 

Yday are the amount of days in a year. 

Eq. 38 was used from Baldi (2021), where the only adjustment was subtracting the daily generation from 

diesel from the effective demand. Lastly, the output of the module has changed. When running the code for 

all camps, the Diesel generator size (kVA), Daily generation from diesel in year 1 (kWh) and Daily generation 

from diesel in year 6 (kWh) are added to the CSV output file. This is done because they are needed in the 

financial module. Furthermore, the diesel generator size is added as output in the function to run for one 

camp. 

 

4.1.4. Adjustments financial module 
Table 9 gives an overview of the constant numerical values added to the financial module. The use of the 

first three constants is explained throughout this paragraph, while the use of the last two is explained in 

Table A. 4.  

Table 9. Constants that are added to the financial module.  

Constant Value Unit Source 

Diesel consumption rate 0.4 Liters per kW 
capacity per hour 

CLOVER model 
(Alonso et al., 2021) 

Price diesel generator 200 USD/kVA (Baldi, 2021) 

Price fuel tank 700 USD (Baldi, 2021) 

Replacement time generator 20 Years Assumption 

Yearly cost reduction generator 0 % Assumption 

 

The “fuel_cost” function is added to the financial module, which calculates the yearly cost of diesel fuel. The 

first step to doing this is to calculate the fuel usage. The same calculation as was seen in the CLOVER model is 

used to do this, which is multiplying the generation from diesel (kWh) with the diesel consumption rate (0.4 

l/kWh) (Phillip Sandwell, n.d.). The generation from diesel in year 1 and year 6 are known from the technical 

module. Linear interpolation is used for the years in between.  

Diesel prices per country (USD/l) are used from Baldi et al. (2022) and are added to the 

“semi_fixed_input.csv” file that Python uses as input. These national prices are corrected for inflation and 

devaluation over the project's lifetime. More information on that can be found in Appendix 2.3. 

The yearly cost of diesel fuel (USD) is defined by: 

 𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡𝑑𝑖𝑒𝑠𝑒𝑙(𝑦𝑒𝑎𝑟)
= 𝑆𝑈𝑀([𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])𝑦𝑒𝑎𝑟 ∗ 𝑑𝑖𝑒𝑠𝑒𝑙𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ∗ 𝑌𝑑𝑎𝑦

∗ 𝑑𝑖𝑒𝑠𝑒𝑙 𝑝𝑟𝑖𝑐𝑒 
 

 

Eq. 39 

 

Multiple calculations in the financial module of KALO 2.0 include a multiplication with the 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒. 

These calculations are: 

• Substation upfront costs 

• Other upfront costs: logistics & project management cost 

• Other upfront costs: contingency cost 

• Connections belonging to an existing mini-grid 
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The 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 is replaced by (𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 + 𝐺𝑒𝑛_𝑠𝑖𝑧𝑒𝑖𝑛𝑐𝑙 𝑙𝑜𝑠𝑠𝑒𝑠 ) in the four cases mentioned 

above. These calculations would be zero for a system running fully on diesel, while they are still valid. 

The generator upfront cost and yearly fuel cost are used in the LCOE calculation. The final adjustment to the 

financial module is to add diesel electricity generation in year 6 to the electricity generation function used 

for the LCOE. 

The yearly electricity generation (kWh) is defined as: 

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑒𝑙𝑒𝑐𝑡𝑟 = (𝑃𝑉𝑠𝑖𝑧𝑒 ∗ 𝑃𝑆𝐻 + 𝑆𝑈𝑀([𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])𝑦𝑒𝑎𝑟6) ∗ 94.5% ∗ 𝑌𝑑𝑎𝑦 

 

Eq. 40 

where 94.5% are the generation hours per day (Baldi, 2021). This value corrects for system failures or other 

issues, reducing the electricity generation over the year. As Baldi (2021) used the PV capacity in this function 

(which is scaled to the demand in year 6), the electricity generation from diesel in year 6 is used in this 

calculation.  

 

4.1.5. Results of diesel adjustments 
The financial results of adding a diesel generator to the system are given in Figure 8. This figure shows the 

diesel peak percentages from 0% to 100% on the x-axis, with a step of 10%. On the y-axis, the corresponding 

values for the LCOE-all are displayed. The three colors of bars that are displayed are results for three 

different camps. The trend seen in most camps is displayed by the Moyo refugee camp in Chad, with a diesel 

price of 0.85 USD/liter. There is a slight increase in the LCOE when the diesel peak percentage increases, until 

a certain point that is 80% for this scenario. For a diesel peak percentage of 80 and 90%, the LCOE is much 

higher than for lower diesel peak percentages. This can be explained by the fact that there is unused energy 

in the system for these percentages.  

The daily amount of unused energy (kWh) is defined as: 

𝑈𝑛𝑢𝑠𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦

= {
0, 𝑖𝑓 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]) ≥ 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])

𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)] − 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]), 𝑖𝑓 𝑆𝑈𝑀([𝐷𝑖𝑠𝐶𝐻𝐵(𝑡)]) < 𝑆𝑈𝑀([𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)])
 

 

Eq. 41 

 

From Figure 7 in Section 4.1.3, it can be derived that for a diesel peak percentage of 90%, the diesel 

generator is switched on already at 9:00, creating an excess of diesel energy from hours starting at 9:00-

16:00 and at 23:00. The daily battery charging from diesel is higher than the daily battery discharging. The 

unused energy, in this case, is 33.6 kWh per day in year 6 and onwards, over a lifetime of 20 years. It is 

electricity production that is paid for but which is unused. In addition, the upfront cost of solar PV and 

batteries still exists when the diesel peak percentage is 80% or 90%. For a diesel peak percentage of 100%, 

there are no upfront costs for solar PV and batteries anymore. 
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Figure 8. Results of the KALO 2.1 model, for different diesel peak percentages, for different selected camps. Results are given for the 
Tier 2 scenario and an ECRhh of 100%. 

 

When the diesel price is high, such as in DRC (1.2 USD/liter), a steeper increase in LCOE is seen for diesel 

peak percentages until 70%. The increasing fuel costs are higher than the decreasing upfront costs for solar 

PV and batteries. The same peaks in the LCOE as for the Moyo camp are seen at diesel peak percentages of 

80% and 90%, which can be explained by the same reason. However, the price of diesel is higher, resulting in 

more expensive unused energy and a higher LCOE. Countries with a low diesel price, such as South Sudan 

(0.28 USD/liter), show a flatter increase in LCOE for diesel peak percentages until 70%. Also, the increase in 

LCOE at diesel peak percentages of 80% and 90% is lower.  

There are also differences between camps within one country that have the same diesel price. This is shown 

in Figure 9, where two camps in Djibouti are presented. The diesel price in Djibouti is 0.98 USD/l. Markazi has 

a population of 2,150 people and Hol-Hol of 6,359. It can be derived from this figure that the lower the 

population, the lower the LCOE for all diesel peak percentages. This is because the upfront costs of building 

the mini-grid are lower for smaller camps, as less PV and battery capacity need to be installed.  
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Figure 9. Results of the KALO 2.1 model, for different diesel peak percentages, for the three camps in Djibouti. Results are given for the 
Tier 2 scenario and an ECRhh of 100%. 

The results presented in this section focus on one scenario, which is the Tier 2 demand scenario with an 

ECRhh of 100%. This is because the trend stays the same for the other demand scenarios, only the height of 

the LCOE changes. For higher demand scenarios, the LCOE becomes lower. 

 

4.1.6. Comparison with the literature  
The results presented in the previous section are now compared to the existing literature. Table 10 gives an 

overview of the comparison.  

Table 10. Mini-grid cost found in literature for fully diesel, solar-diesel hybrid and fully solar mini-grid systems, compared to the 
results of KALO 2.1 for a Tier 2 demand scenario and an ECR of households of 100%. 

 Indicator  Fully diesel Hybrid solar-
diesel 

Fully solar Context 

KALO 2.1  
Tier 2 - 100% 

LCOE-all 
(USD/kWh) 

0.598 0.492 0.456 Average of 288 
refugee settlements 

KALO 2.1 
Tier 2 - 100% 

LCOE-GenOnly 
(USD/kWh) 

0.449 0.288 0.264 Average of 288 
refugee settlements 

Alonso et al. 
(2021) 

LCUE 
(USD/kWh) 

0.557 0.409 0.353 Nyabiheke refugee 
camp 

Neves et al. 
(2021) 

COE 
(USD/kWh) 

0.459 0.279 - Nyabiheke refugee 
camp 

Comello et al. 
(2017) 

LCOE 
(USD/kWh) 

0.569 0.546 0.380 Rural areas in India 

Zebra et al. 
(2021) 

LCOE 
(USD/kWh) 

0.92-1.30 0.54-0.77 0.40-0.61 Rural communities 

 

In this research, the average LCOE-all of a fully renewable mini-grid is 0.456 USD/kWh, while the LCOE-all of 

a mini-grid running fully on diesel is 0.598 USD/kWh. A hybrid system with a diesel peak percentage of, for 
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example, 30% has an LCOE-all of 0.492 USD/kWh. Also, the LCOE-GenOnly is computed, resulting in LCOE 

values of 0.449, 0.288 and 0.264 USD/kWh for diesel, hybrid and fully renewable mini-grids, respectively. 

This trend was also seen by Alonso et al. (2021) and Neves et al. (2021), even though they computed the 

Levelized Cost of Used Electricity (LCUE) and the Cost of Electricity (COE) instead of the LCOE. Alonso et al. 

(2021) computed the LCUE for mini-grid configurations in the Nyabiheke refugee camp in Rwanda. They 

found LCUE values of 0.557, 0.409 and 0.353 USD/kWh for a diesel, a hybrid and a fully renewable mini-grid, 

respectively. Neves et al. (2021) computed the COE for mini-grid configurations in the Mantapala refugee 

camp in Zambia. They compared different systems to a reference diesel system with a COE of 0.459 

USD/kWh. They found that a hybrid mini-grid with PV, batteries and diesel has a COE of 0.279 USD/kWh. 

Other studies focusing on mini-grid configurations in rural areas are also used for comparison. The study of 

Comello et al. (2017) focused on mini-grid configurations in rural India. They report LCOE values of 0.569 

USD/kWh for a diesel system, 0.546 USD/kWh for diesel-solar systems and 0.380 USD/kWh for solar-battery 

systems. Zebra et al. (2021) also report on LCOE values of mini-grid in rural communities, with a range of 

0.92-1.30 USD/kWh for diesel systems, 0.54-0.77 USD/kWh for hybrid PV-diesel systems and 0.40-0.61 

USD/kWh for fully renewable PV systems. 

The trend that is found in this research complies with the trends found in other studies, which is that the 

electricity costs of a mini-grid decrease when diesel is replaced by solar PV and batteries. Still, the electricity 

costs of mini-grids found in the literature differ from each other and from KALO 2.1. Input data such as the 

discount rate, project lifetime and the diesel price influence this, which will be discussed in the sensitivity 

analysis (Section 0).  

 

4.2. Grid extension 
The second larger improvement implemented in the Python model is to compare the technological 

alternative of grid extension with a mini-grid. The literature identifies grid extension as an option to improve 

rural electrification, together with mini-grids and decentralized stand-alone systems (Safdar, 2017) (Zebra et 

al., 2021). Grid extension might work in some cases. However, due to low population densities and dispersed 

houses, grid extension costs for remote areas are often high (Zebra et al., 2021). In addition, remoteness and 

difficult terrain are reasons why grid extension is not always the most economical solution (Safdar, 2017). 

However, in the context of refugee settlements, the population density is higher than in rural areas and 

there is a high concentration of businesses and institutions (Alonso et al., 2021). Therefore, this 

improvement aims to compare the upfront and yearly cost of grid extension to these costs for a mini-grid.  

To include a grid extension scenario, a new module called ‘Grid_extension.py’ is created. To run this module, 

the user only has to press the green play button and answer the questions in the Python console, just as in 

the other modules. The results are produced automatically. This section starts with a general description of 

the new module, followed by a presentation of and a discussion on the results. 

 

4.2.1. Description new module 
The grid extension module has two goals: 

- To compare the Upfront cost of transmission lines for grid extension with the Generation Upfront 

cost of the solar-battery mini-grid. 

- To compare the LCOE-all of a fully sustainable mini-grid with the electricity tariffs for households, 

businesses and institutions collected by Baldi (2021). 

The upfront costs of transmission lines are compared to the generation upfront cost of the mini-grid, 

because it is assumed that the projects’ distribution, substation and other upfront costs are the same. A 
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substation, low voltage distribution cables and connections for all consumers within the camp are still 

necessary. Other upfront costs, including logistics & project management and contingency, are also assumed 

to be still valid. More information on these costs can be found in Section 3.2.3, Table 6. The LCOE-all of a 

mini-grid is compared to electricity tariffs because, generally, tariffs include costs of building, financing, 

maintaining and operating the electricity-generating power plants and the electricity grid, including 

transmission and distribution lines (EIA, 2022).  

The grid extension module has the same structure as the other modules, starting with constants, import of 

inputs from other modules and import of libraries, followed by calculations for the output. It is important to 

point out that the demand scenario defined in the demand module is still valid in the grid extension module 

as it defines which percentage of the households is connected (ECRhh) and the height of the demand 

(Baseline, Tier 2 or Tier 3). Also, the diesel peak percentage defined at the top of the demand module is still 

valid in the grid extension module, as a comparison is made with the LCOE-all of the mini-grid.  

The camps distances to the grid are used from Baldi (2021) and are added to the “Variables.csv” input file. 

The capital cost for grid extension of 8000 USD/km is used from Raji & Luta (2019). It is used for illustrative 

purposes as this study is about grid extension and building a mini-grid for a rural area in South-Africa.  

The grid extension upfront cost (in USD) are calculated by: 

𝐺𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑢𝑝𝑓𝑟𝑜𝑛𝑡 𝑐𝑜𝑠𝑡 = 8000 𝑈𝑆𝐷/𝑘𝑚 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑔𝑟𝑖𝑑 (𝑘𝑚) 

 

The function to run the module for one camp compares the Upfront cost of grid extension with the 

Generation Upfront cost of the solar-battery mini-grid, by printing both values to the Python console. In 

addition, the LCOE-all of the solar-battery mini-grid and the national electricity tariffs for households, 

businesses and institutions (both in USDc/kWh) are printed to the console. The function to run for all camps 

adds five columns to the output CSV file of the corresponding demand scenario. The first column contains 

the generation upfront cost of the mini-grid for all camps, the second column contains values of the grid 

extension upfront cost for all camps and the third, fourth and fifth columns contain the national electricity 

tariffs for households, businesses and institutions (in USDc/kWh) for all camps. The LCOE-all column for the 

mini-grid already exists in the CSV file.  

 

4.2.2. Results of grid extension compared to sustainable/hybrid mini-grids 
First, the results of the comparison between the generation (GEN) upfront cost of the mini-grid (MG) and the 

upfront cost of grid extension (GE) are discussed. These are displayed in Figure 10 and Figure 11. The upfront 

costs of GE are subtracted from the generation upfront cost of the mini-grid. This results in both positive and 

negative values. Positive values correspond to camps where the upfront costs of grid extension are lower 

than the generation upfront costs of the mini-grid. In these cases, grid extension would be a more favorable 

option in terms of upfront cost. When values are negative, a mini-grid would be a more favorable option in 

terms of upfront cost.  
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Figure 10. The difference between the Generation (GEN) upfront cost of the mini-grid (MG) and the upfront cost of grid extension (GE) 
for all camps in the dataset, plotted against the camps distances to the national electricity grid. The results are given for a Tier 2 
demand scenario with an ECRhh of 100%. The LCOE-all is computed for a fully renewable system. 

 

 

Figure 11. The difference between the Generation (GEN) upfront cost of the mini-grid (MG) and the upfront cost of grid extension (GE) 
for all camps in the dataset, plotted against the camps population numbers. The results are given for a Tier 2 demand scenario with 
an ECRhh of 100%. The LCOE-all is computed for a fully renewable system. 

 

From the figures, it can be derived that 78% of the values are positive and 22% are negative. In Figure 10, it is 

shown that the closer the camp is located to the grid, the lower the upfront costs of grid extension are 

compared to the generation upfront cost of a mini-grid (resulting in high positive numbers). It can also be 

derived that for camps located far from the grid, the upfront costs of grid extension are much higher than 

the generation upfront costs of a mini-grid. This trend is expected as the grid extension upfront costs are 

calculated in USD/km. All camps, except for one, for which the upfront costs of grid extension are lower than 

the generation upfront costs of a mini-grid (positive values), are located within 118 km of the grid. The 
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exception is the Kario refugee camp in Sudan, a large camp with over 32,000 inhabitants, located 179 km 

from the grid.  

Some camps have higher grid extension upfront costs than generation upfront costs of a mini-grid (negative 

values) while they are located close to the grid. An example of such a camp is Adjuman Maaji I in Uganda. 

This camp is located only 3.1 km from the grid and has a population of 549.  

These two observations can be explained by another trend that was found, which is displayed in Figure 11. 

For large camps, it is generally more attractive to connect to the national grid than to invest in a mini-grid, in 

terms of upfront cost. This is because the generation upfront costs for a mini-grid in large camps are high, as 

high capacities of solar PV and batteries are required. For small camps, these generation upfront costs are 

low. Therefore, a mini-grid is generally more attractive than grid extension, in terms of upfront costs.  

For the Nyarugusu refugee camp in Tanzania, the generation upfront costs of grid extension are very high 

compared to the upfront costs of grid extension (positive value of almost 10 million USD). This camp has a 

population of almost 130,000 and is the largest camp in the database. Generating electricity with solar PV 

and batteries has high upfront costs if it has to produce for this large amount of people. The camp is only 

located 9.6 km from the grid and therefore it is more attractive to connect to the grid than to invest in a 

mini-grid, in terms of upfront costs. As the camp is only located 9.6 km from the grid, it is more attractive to 

connect to the grid than to invest in a mini-grid, in terms of upfront costs.  The negative values from Figure 

11 that still have a relatively large population number (around 20,000 and higher) are camps that are located 

far from the grid (>500 km).  

The second goal of this module is to compare the LCOE-all of the sustainable mini-grid with the national 

electricity tariffs belonging to a camp. It was found that for all camps in the database, the corresponding 

electricity tariffs were lower than the LCOE-all. Some examples are given in Table 11. In countries like South 

Sudan and Chad, where the electricity tariffs are relatively high, the difference between the LCOE-all and the 

electricity tariffs are the lowest. While in countries where the electricity tariff is low, such in Sudan, the 

difference is high and the LCOE-all of the mini-grid is much larger than electricity tariffs. For all camps, the 

costs of electricity are lower for grid extension than for a sustainable mini-grid.  

Table 11. A comparison between the LCOE-all of a sustainable mini-grid with the national electricity tariffs of households (hh), 
businesses (bus) and institutions (inst) for three different camps in three different countries.  

 LCOE-all (USDc/kWh) Tariff hh (USDc/kWh) Tariff bus and inst 
(USDc/kWh) 

Gorom camp in South Sudan 43.72 41.99 41.99 

Vom camp in Chad 42.33 32.42 32.42 

Abuda camp in Sudan 39.99 0.2712 0.3255 

 

In the research of Raji & Luta (2019), the total Net Present Costs (NPC) of a community mini-grid are lower 

than those of grid extension for distances larger than 130.84 km from the national grid. They used the 

HOMER software to calculate this, with O&M costs of 160 USD/year/km and a grid energy price of 0.1 

USD/kWh. The study from Moretti et al. (2019) mentions that the electricity prices from the national grid are 

lower than installing and operating a mini-grid system. However, there are upfront costs involved relating to 

new transmission lines that have to be constructed. Both these findings are in line with the result of the grid 

extension module of this research.  
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4.3. Clean water production 
Besides energy, clean water is acknowledged as one of the most essential needs in emergency situations. In 

these situations, clean water is essential for survival, but also for hygienic practices and cooking. Disasters 

(natural or man-made) may lead to the destruction of water pipelines and water pumps, and saltwater 

intrusion may occur in shallow wells. When clean and portable water becomes scarce, it can increase the risk 

of waterborne diseases. In humanitarian relief settings, clean water is often supplied in water bottles, even 

in protracted/chronic situations. This results in high costs and security issues (Fuso Nerini et al., 2015). Loo et 

al. (2012) mention that it is more practical to install onsite water technology than to deliver water to the 

camp in the form of water bottles or water tanks. Still, water treatment within the camp can be challenging 

due to bad and changing water quality and limited access to resources and infrastructure. Limited access to 

the national electricity grid can prevent using energy-dependent technologies (Loo et al., 2012). However, 

the presence of a mini-grid in refugee settlements could allow for electricity-based clean water production.  

Neves et al. (2021) assume that the water supply in a refugee camp would be 20 liters/person/day. 

Implementing clean water production requires installations for water pumping and water purification (Neves 

et al., 2021). A typical installation for water pumping has a capacity of 37 kW, running for 7 hours a day 

during sun peak hours (from 9:00 to 16:00), resulting in a production of 240,000 l of water per day (Neves et 

al., 2021). This corresponds to a water pumping capacity of 1.08 Wh/l. A typical installation for water 

purification has a capacity of 2.5 kW. It could be run for either 13 or 24 hours a day, resulting in either 5000 

or 9231 l of purified water per day (Neves et al., 2021). This corresponds to a water purification capacity of 

5.85 Wh/l. An overview of the constant numerical values added to the demand module can be found in Table 

12. Neves et al. (2021) point out that water purification can also be done with chlorination, which would not 

require electricity. 

Table 12. Constants added to the demand module for the inclusion of clean water production. 

Constant Value Unit 

Water usage per person per day 20 l/person/day 

Water pumping size 37 kW 

Water pumping production 240000 l/day 

Hour of start water pumping 9:00 - 

Hour of end water pumping 16:00 - 

Water purification size 2.25 kW 

Water purification 13 hours 5000 l/day 

Water purification 24 hours 9231 l/day 

Hour of start water purification 0:00 or 8:00 - 

Hour of end water purification 24:00 or 21:00 - 

 

A new function is added to the demand module, called “load_profile_clean_water_prod”, containing the 

equations described below. The function returns the daily load profile of water pumping and water 

purification. 

The total amount of liters that is needed in a camp per day is calculated by: 

 𝑙𝑖𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑎𝑔𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑒𝑟 𝑑𝑎𝑦 Eq. 42 

The daily energy demand of water pumping (kWh/day) is computed by: 

 𝐷𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑢𝑚𝑝𝑖𝑛𝑔

= 𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 𝑠𝑖𝑧𝑒(𝑘𝑊) ∗
(ℎ𝑜𝑢𝑟 𝑜𝑓 𝑒𝑛𝑑 − ℎ𝑜𝑢𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡 𝑝𝑢𝑚𝑝)

𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (
𝑙
𝑑𝑎𝑦)

∗ 𝑙𝑖𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 

 

Eq. 43 
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and the daily energy demand of water purification (kWh/day) is defined as: 

 𝐷𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

= 𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑟. 𝑠𝑖𝑧𝑒(𝑘𝑊) ∗
(ℎ𝑜𝑢𝑟 𝑜𝑓 𝑒𝑛𝑑 − ℎ𝑜𝑢𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡 𝑝𝑢𝑟. )

𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑟. 13 𝑜𝑟 24 ℎ𝑜𝑢𝑟𝑠 (
𝑙
𝑑𝑎𝑦

)

∗ 𝑙𝑖𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 

 

Eq. 44 

 

The daily energy demand for water pumping and purification will be divided by the hours of the day that the 

installations run. The shorter the running period of the installation, the higher the hourly demand. The daily 

load profile of water pumping, 𝐿𝑃𝑊,𝑝𝑢𝑚𝑝(𝑡) (𝑘𝑊ℎ), is computed as: 

 𝐿𝑃𝑊,𝑝𝑢𝑚𝑝(𝑡)

= {

𝐷𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑢𝑚𝑝𝑖𝑛𝑔

ℎ𝑜𝑢𝑟 𝑜𝑓 𝑒𝑛𝑑 − ℎ𝑜𝑢𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡 𝑝𝑢𝑚𝑝𝑖𝑛𝑔
, 𝑖𝑓 ℎ𝑜𝑢𝑟 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < ℎ𝑜𝑢𝑟 𝑒𝑛𝑑 𝑝𝑢𝑚𝑝𝑖𝑛𝑔

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Eq. 45 

 

and the daily load profile of water purification, 𝐿𝑃𝑊,𝑝𝑢𝑟(𝑡) (𝑖𝑛 𝑘𝑊ℎ), is defined as: 

 𝐿𝑃𝑊,𝑝𝑢𝑟(𝑡)

= {

𝐷𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

ℎ𝑜𝑢𝑟 𝑜𝑓 𝑒𝑛𝑑 − ℎ𝑜𝑢𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡 𝑝𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
, 𝑖𝑓 ℎ𝑜𝑢𝑟 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < ℎ𝑜𝑢𝑟 𝑒𝑛𝑑 𝑝𝑢𝑟

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Eq. 46 

 

These load profiles are added to the daily load profile computed for the demand, defined in Section 3.2.1. 

The resulting daily load profile is given in Figure 12, where the Moyo refugee camp in Chad is used as an 

example.  
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Figure 12. The daily load profile of the demand and clean water production. The results are given for the Moyo refugee camp in Chad, 
for a Tier 2 demand scenario and an ECRhh of 100%. 

The load profile of the demand in year 6 (LP_tot_y6) is plotted in blue, the load profile of water pumping 

(LP_pump) in grey and the load profile of water purification (LP_pur) in orange, using a stacked area 

diagram. It can be derived that the water purification is constant over 24 hours and that the water pumping 

is performed during peak sun hours. The daily energy demand is increases by 20% if only water pumping is 

considered. When both water pumping and purification are considered, the daily energy demand increase by 

128%. It is important to point out that these percentages are true for the Tier 2 demand scenario with an 

ECRhh of 100%. Increasing the demand scenario from Tier 2 to Tier 3 results in an increased energy demand 

of just 4% for water pumping and 29% for both water pumping and purification. This is shown in Figure 13. 

The increase in energy demand is lower because the amount of liters needed in the camp stays constant (as 

it only depends on the population).  
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Figure 13. The daily load profile of the demand and of clean water production. The results are given for Moyo refugee camp in Chad, 
for a Tier 3 demand scenario and an ECRhh of 100%. 

 

Lastly, the effect of clean water production on the LCOE is assessed. The results are given in Table 13 for a 

Tier 2 and Tier 3 demand scenario. Three LCOE values are given for the Moyo refugee camp in Chad: the 

LCOE-all excluding clean water production, the LCOE-all including water pumping and the LCOE-all including 

both water pumping and purification. It can be seen that including both water pumping and purification 

results in lower values for the LCOE. It can also be derived that in the Tier 3 scenario, the effect of including 

water pumping and purification on the LCOE is smaller, as the demand excluding clean water production is 

already higher.  

Table 13. The LCOE of the Moyo refugee camp for a fully renewable system, including and excluding clean water production, for a Tier 
2 and Tier 3 demand scenario. 

 Tier 2 Tier 3 

LCOE-all excluding clean water production (USDc/kWh) 48.43 37.49 

LCOE-all with pump (USDc/kWh) 43.08 36.59 

LCOE-all with pump and pur (USDc/kWh) 36.96 35.37 
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4.4. Sensitivity analysis 
The sensitivity analysis aims to assess the effect of changing certain input parameters on the output, in this 

case, on the LCOE values of the camps. A new module is created in Python called “Sensitivity_analysis.py”. To 

run this module, the user only has to press the green play button and answer the questions in the Python 

console. This section starts with an overview of the adjusted parameters for the analysis. After that, a 

description of the Python module is given, followed by the results of the sensitivity analysis.  

 

4.4.1. Adjusted parameters 
Five different input parameters are adjusted in the sensitivity analysis, which are summed below. The first 

three parameters were also changed by Baldi (2021) in KALO 1.0. Argumentation on why these were used 

can be found in Baldi (2021).  

The last two parameters were added to the sensitivity analysis. They were chosen because the literature 

showed varying values for these two parameters. The range in diesel prices found for countries of the 288 

camps in the database is 0.28 - 1.4 USD/l (Baldi, 2021). A diesel price of 2.0 USD/l is considered because the 

prices found by Baldi (2021) did not consider transportation costs to the camps, which could be remote 

locations. Therefore, actual diesel prices can turn out to be higher (Baldi, 2021) (Alonso et al., 2021). In 

addition, diesel prices varying between 0.4 USD/l and 1.6 USD/l were found in the literature (Alonso et al., 

2021) (Cerrada & Thomson, 2017) (Moretti et al., 2019) (Neves et al., 2021). Therefore, a broad range in 

diesel prices of 0.2 USD/l to 2.0 USD/l was chosen. Lastly, a simulation period of 15 years was chosen 

because this value was used by Alonso et al. (2021). 

1. Discount rate:  

• Original value: 10% 

• Original value -20%: 8% 

• Original value +20%: 12% 

2. OM cost:  

• Original value: 1% of total upfront cost 

• Original value +100%: 2%  

• Original value +200%: 3%  

3. Price customer connection:  

• Original value: 80 USD/connection 

• Original value -25%: 60 USD/connection  

• Original value -50%: 40 USD/connection  

• Original value -75%: 20 USD/connection  

• Original value -100%: 0 USD/connection  

4. Diesel price 

• Original value: differs per country 

• Low value: 0.2 USD/l 

• High value 2.0 USD/l 

5. Simulation period 

• Original value: 20 years 

• Low value: 15 years 
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4.4.2. Description Python module 
The Python module for sensitivity analysis has the same structure as the other modules, starting with 

constants and import of inputs, followed by calculations for the output. The ECR_hh, scenario_name and 

diesel_for_peak are imported from the demand module and the LCOE function is imported from the financial 

module. New objects are created that define the values of the input parameters (points 1-5 from above). 

Consequently, these objects are used to calculate new values for the LCOE, using one non-original parameter 

at a time. This results in 11 new LCOE values per camp, which can be compared to the original LCOE of that 

camp.  

To run for all camps, the CSV output file from the demand, technical and financial module is used as fixed 

input. The results of the sensitivity analysis are printed to a new CSV file, copying the results from the 

corresponding financial output file. To run for one camp, the results are printed to the Python console. Note: 

the sensitivity analysis can be run for any demand scenario defined in the demand module and for any diesel 

peak percentage. Every type of scenario creates a different CSV file called 

“output_file_sensitivity_analysis_<scenario_name>_<ECR_hh>_<diesel_for_peak>.csv”. For now, the 

sensitivity analysis is only carried out for the LCOE-all.  

 

4.4.3. Results of the sensitivity analysis 
The results for the first three parameters, which are the discount rate, O&M cost and customer connection 

price, are given in Figure 14. The Moyo refugee camp in Chad is used as an example.  

 

 

Figure 14. A spider diagram to show the effect of the discount rate, the O&M cost and the subsidy for the customer connection on the 
LCOE-all, for a Tier 2 demand scenario, an ECRhh of 100% and a diesel peak percentage of 50%. 

It can be derived that the discount rate has the highest effect on the LCOE. To make the discount rate fit 

better with a specific camp’s location, the model makes it possible to calculate the LCOE based on national 

discount rates (LCOE-WACC discussed in Section 3.2.3).  
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The results of changing the diesel price are given in Figure 15. Again, the Moyo refugee camp is used as an 

example, for which all parameters are kept constant and only the diesel price is adjusted. The original diesel 

price used for the Moyo refugee camp is 0.85 USD/l.  

 

 

Figure 15. The LCOE-all for different diesel peak percentages and different diesel prices for the Moyo refugee camp in Chad. 

It can be derived that a diesel price of 2.0 USD/l results in an increasing LCOE for higher diesel peak 

percentages, while a diesel price of 0.2 USD/l results in a slightly decreasing LCOE for higher diesel peak 

percentages. The increase in LCOE around diesel peak percentages of 80% and 90% disappears for a diesel 

price of 0.2 USD/l.  

Lastly, the results of changing the simulation period are given in Figure 16. Initially, the simulation period is 

set at 20 years (Baldi, 2021). This was adjusted to 15 years to see the effect on the LCOE for different diesel 

peak percentages.  
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Figure 16. The LCOE-all for different diesel peak percentages and a simulation period of 15 and 20 years for Moyo refugee camp in 
Chad. 

It can be derived that changing the simulation period has only a small effect on the LCOE. For a fully 

renewable system, the LCOE for the Moyo refugee camp increases by 4.7% when the lifetime is shortened to 

15 years, while for a full diesel system, the LCOE stays the same.  

With this sensitivity analysis, the second part of this research is concluded and the second objective is met. 

KALO 2.0 was improved to KALO 2.1. Two additional options for electricity access in the camps were 

included, namely to use a diesel generator in the system and to connect the camp to the national electricity 

grid. Lastly, electricity demand for clean water production, including water pumping and purification, was 

added to the demand module and a sensitivity analysis was carried out. The next chapter will discuss the 

results that were presented. 

 

  

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

LC
O

E 
(U

SD
c/

kW
h

)

Diesel peak %

Moyo lifetime 20
years

Moyo lifetime 15
years



 

54 
 

5. Discussion 
 

This section gives a discussion on the results that were presented in the previous chapters. It is divided based 

on the two sub-aims defined in Section 1.4. Section 5.1 discusses KALO 2.0, which is mainly about 

programming-related limitations. Section 5.2 follows with a discussion on KALO 2.1, where the larger model 

improvements will be discussed. Section 5.3 gives some more general limitations of KALO 2.1 and the 

chapter finishes with research-related limitations. Each section gives the limitations together with 

recommendations for future research.  

 

5.1. KALO 2.0 – Programming-related limitations and future research  
Each Python module has to be run individually and the three parameters that define the scenario 

(corresponding to the scenario_name, ECR_hh and diesel_for_peak) must be defined at the top of the 

demand module. This is needed because every module creates an output CSV file that depends on these 

three parameters. This CSV file is needed as fixed input in the next module if the model is run for all camps. 

It would improve the model if an additional module were created, where all modules can be run at once and 

where the scenario parameters can be defined. To do this, the three scenario parameters would have to 

remain undefined until the end, meaning they would be variables of all functions. This would make it easier 

to generate results for different diesel peak percentages and ECRs of households, as they have to be 

redefined manually now.  

The Python model uses the csv library to import the input data from CSV files into lists and dictionaries. Each 

column of the CSV file has to be defined in the Python code. A more professional way to import and use data 

from CSV files is to use the Pandas library, where the data is copied to a Pandas Dataframe. In this data 

frame, the values are accessed by calling the column title and the row name (index). This prevents having to 

define each column of the CSV file in the Python code. It would also make it easier to change, add or remove 

columns from the input files, as the code would not have to be adjusted for this. However, the csv library 

approach was still found to be efficient.  

Despite these limitations, the model works properly and is still a large improvement compared to KALO 1.0. 

The running time for all camps has been reduced to a few minutes per scenario and the model would be 

easy to use for external users. The improvements described above are passed on to future research.  

 

5.2. KALO 2.1 – Improvement-related limitations and future research 
This section discusses the limitations of the larger model improvements implemented, starting with diesel, 

followed by grid extension and ending with clean water production.  

 

5.2.1. Diesel  
The results of the diesel part of the model, described in Section 4.1.5, showed a spike in LCOE values for 

diesel peak percentages of 80% and 90% because of unused energy in the system. In reality, unused energy 

can be stored in the battery for use the next day or even later. However, as KALO 2.1 is a scaling model and 

not a simulation model, this was outside this research's scope. 

A solution to remove the amount of unused energy from the system is to create a loop that reduces the solar 

PV and battery capacity needed in case there is unused energy. However, it can be debated whether it would 

make sense to consider the same strategy as in Section 4.1 when the diesel generator covers 80% or 90% of 

the peak demand. This strategy entails using renewable energy first and fossil fuels last. It is the other way 
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around for diesel peak percentages of 80% or 90%, where diesel is used first and only a small fraction of solar 

energy is used. 

Figure 17 shows that a diesel peak percentage of 70% would still make sense, as the diesel generator only 

covers the “peak” in the demand. This horizontal line would shift downwards for higher diesel peak 

percentages, and the diesel generator would also cover the baseload. Because of these arguments, it is 

recommended to use the KALO 2.1 model for diesel peak percentages up until 70%.  

 

 

Figure 17. The daily load profile of the Moyo refugee camp in Chad, for a Tier 2 demand scenario and an ECR of households of 100%. 
The orange horizontal line shows the threshold for which the diesel generator switches on, for a diesel peak percentage of 70%. The 
demand above this line corresponds to the demand covered by the diesel generator.  

 

The sensitivity analysis shows that the diesel price greatly affects the LCOE. As the diesel prices used from 

Baldi et al. (2022) did not consider transportation to remote locations, more data on diesel prices that 

include these transportation costs is needed. In addition, an update of data is needed for financial 

parameters relating to the diesel generator, such as the replacement time and yearly cost reduction of the 

generator (assumptions) and the prices of the diesel generator and the fuel tank (Baldi, 2021). 

Other useful data that could be collected on all camps would be the capacity and age of the diesel 

generators that exist in the camps. As of today, Baldi (2021) only reported a generator size of 80 kW in 

Kalobeyei Village I, in combination with a pre-existing mini-grid. Considering existing diesel generators' 

capacity would result in a better approximation of the mini-grid's required PV, battery and generator size. As 

seen in Section 4.1.3, the existing generator capacity is already included in the calculation of the mini-grids 

generator capacity. The age of the existing generator could affect the generator fuel consumption and load 

factor. A revision of the technical module would be needed to include this.  

Another part of KALO 2.1 that needs to be revised is the calculation of the avoided CO2 emissions. A 

reference diesel generator is used to calculate the emission factor of the diesel system in tCO2/MWh, while 

an actual diesel generator is modelled as well. More research is needed on how to improve this part of the 

model.  
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5.2.2. Grid extension 
In the estimation of the upfront cost of transmission lines for grid extension, a general value of 8,000 

USD/km was used for all camps. It would improve the model if country-specific costs for transmission lines 

could be used. Another important limitation of the grid extension module is that grid availability is not 

considered. To include this, data is needed on grid availability of every country and maybe even on regions 

within countries, as was seen in the CLOVER model (Philip Sandwell, 2020). Besides the availability of the 

grid, the sustainability of the electricity from the grid can also be an important factor to consider in the 

choice between grid extension and a sustainable mini-grid. Data would need to be collected on this topic, as 

it was not considered in KALO 2.1. From these limitations, it can be concluded that the grid extension module 

gives only a basic comparison based on costs. However, it gives a nice starting point for further 

improvements, as described above.  

 

5.2.3. Clean water production 
Section 0 shows that the LCOE decreases when water pumping and/or purification is included in the 

demand. This finding, together with the fact that the access to clean water for refugees is improved, results 

in the recommendation to include clean water production in combination with a sustainable mini-grid. 

However, it is important to include the demand for clean water production in the sizing process of the mini-

grid. When this is not done, implementing water pumping and/or purification reduces the amount of 

electricity available for other consumers. Lastly, it is important to point out that the costs of the equipment 

(and its installation and maintenance) for water pumping and purification are not considered in the model. 

Additional investments would be necessary to cover these costs.  

 

5.3. KALO 2.1 - General limitations and future research 
The KALO-model is a pre-feasibility model. It only gives an estimate of the size of the required installations. 

There is high uncertainty in the demand because people come and go in refugee camps. This uncertainty is 

lower in studies addressing rural areas.  

The first step to better include this uncertainty in the model is to include more heterogeneity between 

households, businesses and institutions within one camp. Firstly, not every household is the same. The 

consumption of different households could depend on geographical location, but also on the number of 

people in one household. Secondly, different types of businesses and institutions can be distinguished. For 

businesses, examples are restaurants, fruit and vegetable stalls, kiosks, electronics stores, clothes and shoe 

halls, barbers, grocery stores, phone charging stations and tailors. For institutions, examples are healthcare 

centers, schools and agency offices (Baldi, 2021). Each of these examples would have its own ‘typical’ load 

profile.  

It would be interesting to collect field-data on the distribution of family sizes within one camp and the 

difference in their daily load profiles. In addition, collecting field-data in refugee camps should focus on the 

number of the above-mentioned types of businesses and institutions, and their typical daily load profile. This 

data can be extended to other camps using a new corrective factor. When this data cannot be collected, a 

first step would be to include a randomness factor for every consumer type, which distinguishes different 

types of each consumer. This would create differences between camps with the same number of consumers. 

This could also be added to the model as an additional corrective factor.  

The KALO-model is only a scaling model. It creates settlement-specific daily load profiles, which are copied to 

all other days of the year. The PV, battery and generator capacity are scaled to meet this daily load profile. At 

this moment, the model is not suitable for simulation, despite the scaling being based on an hourly timestep 

for one day. The financial module has a yearly timestep. A model improvement would be to include seasonal 
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variation. Location-specific solar irradiation on an hourly basis could be used, as is done in the CLOVER model 

(Phillip Sandwell, n.d.). The model could be adjusted to perform simulation and optimization instead of just 

scaling. However, this would require additional research and substantial changes to the model.  

More reflection on the LCOE calculation is needed in the future. The LCOE can be calculated using two 

perspectives, which are a company and a project point of view. If a project perspective is taken on, all agents 

involved with the project should be included, including banks. The interest on a loan would then be a benefit 

to the project. However, when a company perspective is used, this interest is a cost. At this moment, the 

approach is mixed between these two perspectives. It is important to understand who the investor of the 

project would be, as different investors have different opportunity costs. This affects the discount rates that 

would be used.    

Despite the limitations and recommendations for further research mentioned above, the KALO-model gives 

useful information about the potential of a mini-grid in different camps. It allows for comparing different 

locations based on capacity requirements and costs.  

 

5.4. Research-related limitations and future research  
This research focused on building the model in Python. The focus was not on the update of data. However, it 

is acknowledged that multiple data have to be updated, as mentioned in the previous paragraphs. In 

addition, the input data on all camps used from UNHCR2020 needs to be updated.  

Lastly, multiple improvements defined at the beginning of this study (Section 3.1) were not incorporated and 

are passed on to further improvements. The first one is to estimate the length of distribution cables 

necessary to connect all consumers. Currently, this is not included in the technical part of the model. Only 

the costs of low voltage distribution cables are included in the financial module and are calculated in 

USD/connection. It would be better to calculate the costs in USD/km. 

The second is to differentiate more financial parameters per country. As was seen in Section 3.2.3, only the 

electricity tariffs, exchange rates, discount rates and diesel prices are distinguished per country. Other values 

reported in Table 5 and Table 6 of that section are assumed to be constant for all camps. However, 

investment costs of technological elements, VAT, Tax and interest rates, and yearly cost reduction of assets 

must also be distinguished per country. This would improve the outcomes of the model.  

Lastly, affordability data generated by (Baldi, 2021) was not used or incorporated into the KALO-model. As 

this data is recognized to be valuable, more research is needed on how to incorporate this data properly.  
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6. Conclusion 
 

The aim of this research was: ‘Building an open-source pre-feasibility planning model in Python to compute 

the mini-grid's size in displacement settlements in Sub-Saharan Africa and to compute relevant techno-

economic indicators to evaluate alternative configurations, based on scarce input data.’  

The KALO-model is designed specifically to be used for refugee settlements, unlike the HOMER and CLOVER 

software (see Section 1.3). In contrast to the existing literature, the KALO-model allows performing pre-

feasibility studies for multiple camps instead of focusing on one camp. Currently, the model can be run for all 

288 camps in the database. The model uses basis camp-specific input data, such as population size and 

average family size, to approximate the daily load profile of a camp. Extending the load profile of the 

Kalobeyei refugee camp, which is based on field-data of a pre-existing mini-grid, to other camps was done in 

the KALO-model and not seen before. In contrast to the literature, KALO allows combining the estimation of 

the demand, sizing the mini-grid and computing financial indicators in one model.  

This research reproduced and improved KALO 1.0 to KALO 2.1 in Python. The computational time per 

scenario was lowered to only a few seconds for one camp and a few minutes for all camps. The Python 

model is also less prone to error, as the only manual adjustment the user has to make is defining the 

scenario. It has a clear structure with five modules, where each module has a structure following input, 

calculations and output. Three input CSV files are used and one output CSV file is produced per scenario. A 

sensitivity analysis can be run by simply pressing the play button in that Python module.  

In addition, KALO 2.1 allows comparing alternative configurations for electricity access in refugee 

settlements. It can compare a fully renewable PV-battery mini-grid with levels of hybridization with diesel. 

These technological alternatives can be compared based on the required capacities of solar PV, batteries and 

the diesel generator, but also on avoided CO2 emissions, upfront costs and LCOE. The LCOE has multiple 

variants, including the LCOE-GenOnly, which only considers generation upfront costs, and the LCOE-WACC, 

which uses country-specific discount rates. Another technological alternative that can be compared to the 

mini-grid is grid extension. For this comparison, the generation upfront costs of the mini-grid can be 

compared to the upfront costs of transmission lines for grid extension. In addition, the LCOE of the mini-grid 

can be compared to the national electricity tariff. 

There are some model outcomes that contribute to knowledge. The LCOE increases for all camps when 

diesel is used in hybrid form with the sustainable mini-grid. It was also found that for more than ¾ of the 

camps, grid extension would be a more favorable option than a sustainable mini-grid, in terms of costs. Grid 

extension was found to be more attractive than a mini-grid for large camps and for camps close to the grid. 

However, grid availability and sustainability were not considered. Lastly, including the demand for water 

pumping and purification in refugee camps decreases the LCOE.  

The technological alternatives can be compared for all camps in the database. The output of the model gives 

a scale of the technological effort and the costs needed for different locations. It shows where most (or least) 

investments are needed and how many people benefit from it. The output is relevant for UNHCR, as they can 

create pipeline projects and implementation plans per region, based on this data. Lastly, the characteristics 

required for the model to be open-source are there, but steps of actually sharing it are not taken yet. 

Eventually, the goal is to make the model open-source.   
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Appendices 
 

1. Python concepts 
 

First of all, it is important to explain some important concepts in the Python programming language. A piece 

of code is written into a Python file. When this file is saved, this file is called a Python module. The 

functionalities that are in the module can be used in any other Python file. These functionalities can include 

functions and objects, which will be explained later. The use of modules keeps the original code structured 

and short. Python offers a Standard Library that includes a wide range of facilities. These include built-in 

modules, which can be called directly, or modules that must be imported from the library first (PSF, n.d.-d). 

The latter can be done using code 1 from Table A. 1. A list of Python modules can be retrieved from the 

official website of Python (PSF, n.d.-c). There are also third-party modules that are not included in the 

Standard Library but are written by the big Python community. These can be imported using code 2 from 

Table A. 1. 

The Python Software Foundation describes objects as: “Objects are Python’s abstraction for data. All data in 

a Python program is represented by objects or by relations between objects” (PSF, n.d.-a). Every object has 

an identity, a type and a value. Only the value is changeable. Also, objects are given a name that corresponds 

to what it represents. The most important built-in data types described by Romano (2018) are: 

• A string represents textual data and is an immutable object. It is given using quotation marks (see 

code 3 from Table A. 1).  

• A list is a mutable sequence that can store a collection of objects. Lists are given using brackets, 

where the objects are separated by a comma (see code 4 from Table A. 1).  

• Like a string and a list, a dictionary is a built-in data type in Python. A dictionary is a mutable object 

that maps keys to values, as shown in code 5 from Table A. 1.  

Table A. 1. Examples of pieces of code for Python, including examples. 

Piece of code Explanation 

1) from <module_name> import <function_name> When you want to use a function from a module 
from the Standard Library or from your own files, 
where module_name is the name of that specific 
module and function_name is the name of the 
function that you want to call from the module. 

2) pip install <module_name> When you want to use a module that is not in the 
standard library or in your own files.  

3) String1 = ‘Hello World’ An example of a string. 

4) List1 = [1, 2, 3] An example of a list. 

5) Dict1 = {‘A’ : 1, ‘Z’ : -1} An example of a dictionary. 

6) def my_function(input): 
       … 
       return output 

An example of a function. 

7) camp_name = input(‘Enter the name of the 
camp: ‘) 
       scenario_name = input(“Enter a scenario: “) 
 

This is how you can demand input from the user.  

 

A function stores a piece of code that can be reused anywhere in the code and performs a specific task 

(Romano, 2018). This is shown with code 6 from Table A. 1. 



 

62 
 

One of the main tools in Python is the if statement. It evaluates an expression and executes the part of the 

code corresponding to the result. This can be a True or False case (called Boolean), or multiple alternatives 

for the false result can be given using as many elif statements as you want. In addition, there are “for” loops 

and “while” loops. For loops are used to repeat an action for every element in a sequence. This can be a list 

or a collection of objects. While loops repeat an action as long as a specified condition is satisfied. It does not 

loop over a sequence like the “for” loop. These loops can be included in functions, which can be called later 

in the code.  

Lastly, there is the input function, which demands input from the user. This could be useful to let the user 

choose for which camp Python should generate the results. The code would look like code 7 from Table A. 1. 

This camp_name and scenario_name can then be used in the rest of the code.  
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2. Additional information KALO-model 
 

2.1. Demand module 
Table A. 2 gives information on the corrective factors used by Baldi (2021) and Baldi et al. (2022).  

Table A. 2. The corrective factors used by Baldi (2021) to estimate a camps electricity demand, based on field-data from Kalobeyei 
refugee camp. 

Corrective factor Value Description 

CF1 Data collection factor Differs per camp It linearly extrapolates the fixed daily load profiles 
from Kalobeyei to any other camp size, for every 
type of consumer. 

CF2 Captive generation factor 0.9879 It prevents oversizing the system, as some refugees 
already have other energy supply systems and will 
not use the mini-grid. 

CF3 Trend adjuster factor ECR 80%: 18% 
ECR 100%: 20% 

It accounts for the fact Kalobeyei refugee camp 
(from which field-data is collected) is already partly 
connected to a mini-grid. 

CF4 Tier 2 factor 2.1490 
 

It increases the energy demand of households in the 
Tier 2 scenarios to 200 Wh/day. In the Baseline 
scenarios, this factor equals 1. 

CF4 Tier 3 factor 10.7452 It increases the energy demand of households in the 
Tier 3 scenarios to 1000 Wh/day. In the Baseline 
scenarios, this factor equals 1. 

CFbus Business number factor 0.0507 It estimates the number of businesses present per 
camp as a fraction of the number of households. It is 
based on data from 9 camps. 

CFinst Institutions number factor 0.0059 It estimates the number of institutions present per 
camp as a fraction of the number of households. It is 
based on data from 9 camps. 

 

Corrective factor 1, 𝐶𝐹1𝑐𝑜𝑛𝑠 , is computed as: 

 
𝐶𝐹1𝑐𝑜𝑛𝑠 =

#𝑐𝑜𝑛𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑁𝐶𝑜𝑛𝑠,𝑇𝑟𝑒𝑛𝑑)
∗ 𝐸𝐶𝑅𝑐𝑜𝑛𝑠 

Eq. 47 

 

where 𝑁𝐶𝑜𝑛𝑠,𝑇𝑟𝑒𝑛𝑑  is the number of households, businesses or institutions per village that were registered 

during the Kalobeyei data gathering by Baldi (2021) (Kalobeyei assessed households, businesses or 

institutions reported in Table 1). The average of these three values per type of consumer is used in the 

calculation of CF1. #𝑐𝑜𝑛𝑠 is the amount of households, businesses or institutions that belong to the camp for 

which the calculations are done. 

Corrective factor 4, 𝐶𝐹4, is defined as: 

 
𝐶𝐹4 =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐷𝑙𝑜𝑎𝑑𝑇𝑖𝑒𝑟2 𝑜𝑟 𝑇𝑖𝑒𝑟3(𝑘𝑊ℎ) ∗ 𝑁ℎℎ,𝑇𝑟𝑒𝑛𝑑) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝑃𝑇𝑟𝑒𝑛𝑑,ℎℎ(𝑡))
 

Eq. 48 

 

where 𝐷𝑙𝑜𝑎𝑑𝑇𝑖𝑒𝑟2 corresponds to the daily load of 0.2 kWh for Tier 2 electricity access and 𝐷𝑙𝑜𝑎𝑑𝑇𝑖𝑒𝑟3 

corresponds to the daily load of 1.0 kWh for Tier 3 electricity access. 𝐷𝑙𝑜𝑎𝑑𝑇𝑖𝑒𝑟 ∗ 𝑁ℎℎ,𝑇𝑟𝑒𝑛𝑑  should be 

calculated for each of the three villages, after which the average value is taken in CF4. Note that CF4 takes on 

a different value for a Tier 2 and Tier 3 demand scenario. 
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The consumption share per type of consumer, 𝐶𝑆𝑐𝑜𝑛𝑠  (%), is computed as: 

 
𝐶𝑆𝑐𝑜𝑛𝑠 =

𝑆𝑈𝑀([𝐿𝑃𝑐𝑜𝑛𝑠(𝑡)])

𝑆𝑈𝑀([𝐿𝑃𝑡𝑜𝑡(𝑡)])
 

Eq. 49 

 

Where 𝑆𝑈𝑀([𝐿𝑃𝑐𝑜𝑛𝑠(𝑡)]) is the daily energy demand of the consumer and 𝑆𝑈𝑀([𝐿𝑃𝑡𝑜𝑡(𝑡)]) is the daily 

energy demand of households, businesses and institutions together.  

The number of connections per type of consumer is defined as: 

 𝑁𝑟 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑛𝑠 = 𝑁𝑟𝑐𝑜𝑛𝑠 ∗ 𝐸𝐶𝑅𝑐𝑜𝑛𝑠  Eq. 50 

 

2.2. Technical module 
Table A. 3 gives an overview of the fuel consumption of the reference diesel generator for different 

generator sizes and load factors. For this study, a generator size of 75 kW and a load factor of 50% were 

chosen (Baldi, 2021). 

Table A. 3. The fuel consumption of the reference diesel generator for different generator sizes and load factors.  

 Fuel consumption of generator at different load factors (%) in US gal/h 

Generator size (kW) 25% 50% 75% 

75 2.4 3.4 4.6 

100 2.6 4.1 5.8 

500 11 18.5 26.4 

 

The following calculations are needed to calculate the emissions factor and the avoided emissions.  

 
𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑙

ℎ
) =

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑈𝑆 𝑔𝑎𝑙 𝑡𝑜 𝑙𝑖𝑡𝑒𝑟 ∗ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(
𝑈𝑆𝑔𝑎𝑙

ℎ
) 

 

 

Eq. 51 

 

 
𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑘𝑔

ℎ
) = 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑙

ℎ𝑟
) ∗ 𝑑𝑖𝑒𝑠𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (

𝑘𝑔

𝑙
)  

Eq. 52 

 

 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑀𝑊ℎ) =

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑖𝑧𝑒(𝑘𝑊) ∗ 𝑙𝑜𝑎𝑑%

1000
 

Eq. 53 

 

 𝐿𝑜𝑎𝑑(𝑘𝑊) = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑖𝑧𝑒(𝑘𝑊) ∗ 𝑙𝑜𝑎𝑑%  Eq. 54 

 

 

𝑅𝑎𝑡𝑖𝑜 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (
𝑘𝑔

𝑘𝑊ℎ
) =

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑘𝑔
ℎ )

𝑙𝑜𝑎𝑑(𝑘𝑊)
 

Eq. 55 

 

 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑡𝑜𝑛)

= 𝑟𝑎𝑡𝑖𝑜 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (
𝑘𝑔

𝑘𝑊ℎ
) ∗ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (𝑀𝑊ℎ) 

Eq. 56 
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𝐸𝑛𝑒𝑟𝑔𝑦(𝑇𝐽) =
𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑡𝑜𝑛) ∗ 𝑛𝑒𝑡 𝑐𝑎𝑙𝑜𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 𝑑𝑖𝑒𝑠𝑒𝑙 (

𝑇𝐽
𝐺𝑔
)

1000
 

 
Eq. 57 

 

 
𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 1ℎ(𝑘𝑔) = 𝑒𝑛𝑒𝑟𝑔𝑦(𝑇𝐽) ∗ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑖𝑒𝑠𝑒𝑙 (

𝑘𝑔 𝐶𝑂2

𝑇𝐽
) 

Eq. 58 

 

The emission factor of the reference diesel generator is computed as: 

 
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (

𝑡𝑜𝑛 𝐶𝑂2

𝑀𝑊ℎ
) =

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 1ℎ(𝑘𝑔)

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑀𝑊ℎ) ∗ 1000
  

Eq. 59 

 

The daily peak sun hours, specified for one month, are defined by: 

 
𝐷𝑎𝑖𝑙𝑦 𝑝𝑒𝑎𝑘 𝑠𝑢𝑛 ℎ𝑜𝑢𝑟𝑠𝑚𝑜𝑛𝑡ℎ = 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (

𝑘𝑊ℎ

𝑚2
)/
365

12
  

Eq. 60 

 

Data on the monthly irradiation (in kWh/m2) for all 12 months of a year was collected by Baldi (2021) for 

each camp's location. The monthly irradiation of a camp was divided by the average amount of days in a year 

(365/12) to derive the daily sun peak hours belonging to that month (see Eq. 60). This was done for every 

month of the year. The average of these 12 monthly values was taken to derive the average peak sun hours 

of a camp, used as fixed input for the Python model. This was done for all 288 camps in the database.  

 

2.3. Financial module 
Table A. 4 gives an overview of the calculations carried out in KALO 1.0 to compute the LCOE (Baldi, 2021). 

The functions and concepts used in these calculations are explained below. The constant numerical values 

were already summed in Section 3.2.3. The generation hours per day of 94.5% corrects for system failures or 

other issues, reducing the electricity generation over the year (Baldi, 2021). 

Table A. 4. Calculations that are necessary to compute the LCOE. 

Parameter Formula   

𝑅𝑧  = 𝑢𝑝𝑓𝑟𝑜𝑛𝑡 𝑐𝑜𝑠𝑡𝑎𝑠𝑠𝑒𝑡
∗ (1 − 𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟𝑎𝑠𝑠𝑒𝑡 ∗ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑎𝑠𝑠𝑒𝑡) 

 

Eq. 61 

𝑂&𝑀𝑖  = 𝑂&𝑀 𝑟𝑎𝑡𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑈𝑝𝑓𝑟𝑜𝑛𝑡 𝑐𝑜𝑠𝑡
∗ (1 + 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑛𝑓𝑙&𝑑𝑒𝑣𝑎𝑙 𝑦𝑒𝑎𝑟 𝑜𝑛 𝑦𝑒𝑎𝑟(𝑦)) 

 

Eq. 62 

𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖  = 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 ∗ 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑙𝑙 𝑎𝑠𝑠𝑒𝑡𝑠(𝑦)
∗ 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑛𝑓𝑙&𝑑𝑒𝑓𝑙 𝑦𝑒𝑎𝑟 𝑜𝑛 𝑦𝑒𝑎𝑟(𝑦) 

 

Eq. 63 

𝑉𝐴𝑇𝑖  = 𝑉𝐴𝑇 𝑟𝑎𝑡𝑒 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑜𝑡(𝑦) 
 

Eq. 64 

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖  = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑑𝑒𝑏𝑡 ∗ 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑒𝑏𝑡(𝑦) 
 

Eq. 65 

𝑇𝐴𝑋𝑖  = 𝑡𝑎𝑥 𝑟𝑎𝑡𝑒 ∗ 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥(𝑦) 
 

Eq. 66 

𝐿𝑎𝑛𝑑 𝑙𝑒𝑎𝑠𝑒𝑖 = 𝑙𝑎𝑛𝑑 𝑙𝑒𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 ∗ 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑛𝑓&𝑑𝑒𝑣𝑎𝑙 𝑦𝑒𝑎𝑟 𝑜𝑛 𝑦𝑒𝑎𝑟(𝑦) 
 

Eq. 67 
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𝐸𝑔𝑖  = 𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 ∗ 𝑃𝑆𝐻 ∗ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 ∗ 𝑌𝑑𝑎𝑦 Eq. 68 

 

Number of connections existing mini-grid 

Needed for: Distribution Upfront cost  

The number of connections belonging to an existing mini-grid, 𝑁𝑟𝑐𝑜𝑛 𝐸𝑀𝐺, is computed as: 

𝑁𝑟𝑐𝑜𝑛  𝐸𝑀𝐺 =                                                                                                                                                        

(1 −
𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒

𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 + 𝑘𝑊𝑝 𝐸𝑀𝐺
) ∗ (𝑁𝑟ℎℎ ∗ 𝐸𝐶𝑅ℎℎ + 𝑁𝑟𝑏𝑢𝑠 ∗ 𝐸𝐶𝑅𝑏𝑢𝑠 +𝑁𝑟𝑖𝑛𝑠𝑡 ∗ 𝐸𝐶𝑅𝑖𝑛𝑠𝑡) 

 

 

Eq. 69 

 
 

Yearly demand 

Needed for: Energy revenue 

The total yearly demand at the start of the project, which entails the demand of households, businesses and 

institutions (kWh), is computed by: 

 𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑡𝑜𝑡,𝑠𝑡𝑎𝑟𝑡 = 𝑒𝑓𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑦1 ∗ 𝑌𝑑𝑎𝑦
 

 
Eq. 70 

where 𝑒𝑓𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑦1 is the effective demand in year 1 and 𝑌𝑑𝑎𝑦 are the number of days in a year.  

The total yearly demand at any year y during the lifetime of the project (kWh) is defined by: 

 

𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑡𝑜𝑡(𝑦) = {

𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑡𝑎𝑟𝑡 , 𝑖𝑓 𝑦 = 1

𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑡𝑎𝑟𝑡(𝑦 − 1) ∗ 𝐴𝐷𝐺, 𝑖𝑓 1 < 𝑦 ≤ 6

     𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑡𝑎𝑟𝑡(𝑦 − 1),         𝑖𝑓 𝑦 > 6
 

Eq. 71 

where ADG is the annual demand growth. 

 

The yearly demand per type of consumer (kWh) is defined as: 

 𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑐𝑜𝑛𝑠(𝑦)

= {

𝐶𝑆𝑐𝑜𝑛𝑠 ∗ 𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑(𝑦) ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑢𝑖𝑙𝑡 𝑦1, 𝑖𝑓 𝑦 = 1 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠 = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠

𝐶𝑆𝑐𝑜𝑛𝑠 ∗ 𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑(𝑦) ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑢𝑖𝑙𝑡 𝑦2, 𝑖𝑓 𝑦 = 2 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠 = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠

    𝐶𝑆𝑐𝑜𝑛𝑠 ∗ 𝑌𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑(𝑦),        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Eq. 
72 

where 𝐶𝑆𝑐𝑜𝑛𝑠  is the consumption share per type of consumer computed in the demand module. The number 

of connections built in year 1 and 2 model the fact that it takes time for all the households to connect to the 

mini-grid. It is assumed that only from year 3 onwards, all households are connected (Baldi, 2021). 

 

Inflation 

Needed for: O&M cost and Insurance cost 

The local inflation index in year y is defined as: 

 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦) = 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦 − 1) ∗ (1 + 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑡) Eq. 73 

and the local devaluation index in year y is computed as: 

 𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦)
= 𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦 − 1) ∗ (1 − 𝑑𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑡) 

Eq. 74 
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For each country, the inflation rates of the first four years are known and are used as input in the Python 

model (see Section 3.2.3). The inflation rate of the fourth year is copied to the other years of the lifetime (= 

year 5 to year 20). Baldi (2021) did not find devaluation rates and therefore assumed that a devaluation rate 

would be half the value of an inflation rate. This means that the inflation rate in year t is multiplied by a 

factor of 0.5 to get the devaluation rate in year t (see also Table 5 in Section 3.2.3). The local inflation and 

devaluation indexes in year 1 are equal to 1.  

The index including inflation and devaluation year on year, in year y, is computed as: 

 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑛𝑓𝑙&𝑑𝑒𝑣𝑎𝑙 𝑦𝑒𝑎𝑟 𝑜𝑛 𝑦𝑒𝑎𝑟(𝑦)

=
𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦) ∗ 𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦)

𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦 − 1) ∗ 𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥(𝑦 − 1)
 

Eq. 75 

 

Closing balance and depreciation assets 

Needed for: Insurance cost (closing balances) and Tax cost (depreciation) 

The yearly depreciation (USD) of an asset is defined as: 

 
𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑠𝑠𝑒𝑡(𝑦) =

𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑦,𝑎𝑠𝑠𝑒𝑡

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑎𝑠𝑠𝑒𝑡
 

Eq. 76 

 

The investment costs of the asset are equal to the upfront cost made at the start of the simulation period. 

When the asset is replaced, the investment costs are decreased because the cost of the asset decrease by a 

specified percentage per year (see Table 5 in Section 3.2.3). The new investment costs are equal to 𝑅𝑧  (Eq. 

61) and the yearly depreciation is decreased.  

The closing balance of an asset in year y (USD) is defined by: 

 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑠𝑠𝑒𝑡(𝑦) = 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑠𝑠𝑒𝑡(𝑦) + 𝑅𝑧,𝑎𝑠𝑠𝑒𝑡 − 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑠𝑠𝑒𝑡(𝑦) Eq. 77 

 

And the opening balance of an asset in year y (USD) is computed as: 

 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑠𝑠𝑒𝑡(𝑦) = 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑠𝑠𝑒𝑡(𝑦 − 1) Eq. 78 

 

Note that the replacement of an asset, 𝑅𝑧,𝑎𝑠𝑠𝑒𝑡, only happens in the year at which the asset is replaced.  

The total closing balance in year y (USD) is computed by: 

 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑎𝑙𝑙 𝑎𝑠𝑠𝑒𝑡𝑠(𝑦)
= 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒𝑠(𝑦) + 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑃𝑉 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑦)
+ 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠(𝑦) + 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑜𝑡ℎ𝑒𝑟 𝑎𝑠𝑠𝑒𝑡𝑠(𝑦) 

Eq. 79 

 

The residual value for the closing balance in year 1 is subtracted from the yearly cost in year 20, as it is 

assumed that the assets can be sold for their residual value.  

 

Revenue 

Needed for: VAT cost (only energy revenue) and Tax cost (both energy and connection charge revenue) 
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The connection fee revenue (USD) is computed as: 

 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑒𝑣𝑒𝑛𝑢𝑒
= 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 ∗ (𝑁𝑟𝑐𝑜𝑛,ℎℎ +𝑁𝑟𝑐𝑜𝑛,𝑏𝑢𝑠 +𝑁𝑟𝑐𝑜𝑛,𝑖𝑛𝑠𝑡) 

Eq. 80 

 

and only happens at year 1. This is the fee the consumers have to pay for their connection (see Table 5 in 

Section 3.2.3 for the value). 

Besides the connection fee in year 1, the consumers must pay a price per kWh electricity that they consume. 

National electricity prices collected by Baldi (2021) are used and have to be adjusted to a value in USD. Baldi 

(2021) also collected exchange rates per country, which are used to do this. National electricity prices were 

distinguished for households, businesses and institutions. These country-depended values are imported into 

Python as described in Section 3.2.3. 

The electricity tariff per consumer (USD/kWh) is defined as: 

 
𝑡𝑎𝑟𝑖𝑓𝑓𝑐𝑜𝑛𝑠 =

𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑝𝑒𝑟 𝑘𝑊ℎ)

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 (𝑐𝑢𝑟𝑒𝑛𝑐𝑦 𝑝𝑒𝑟 𝑈𝑆𝐷)
 

Eq. 81 

 

Consequently, the yearly energy revenue per consumer (USD) is defined as: 

 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑐𝑜𝑛𝑠(𝑦) = 𝑡𝑎𝑟𝑖𝑓𝑓𝑐𝑜𝑛𝑠 ∗ 𝑦𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑𝑐𝑜𝑛𝑠(𝑦) Eq. 82 

 

The total yearly energy revenue, for households, businesses and institutions together (USD), is computed by: 

 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑜𝑡(𝑦)
= 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒ℎℎ(𝑦) + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑏𝑢𝑠(𝑦)
+ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑛𝑠𝑡(𝑦) 

Eq. 83 

 

Debt 

Needed for: Interest cost 

The project is financed with 2% depth, which means that 2% of the upfront cost will be covered by a loan 

that has to be paid back. The debt repayment period is 11 years. Besides the repayment, interest has to be 

paid, which is 8% of the residual amount of the loan that still exists in year y (Baldi, 2021).  

The initial debt drawdown (in USD) is computed by: 

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑏𝑡 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑 𝑤𝑖𝑡ℎ 𝑑𝑒𝑏𝑡 (%) ∗ 𝑢𝑝𝑓𝑟𝑜𝑛𝑡 𝑐𝑜𝑠𝑡 Eq. 84 

 

The yearly debt repayment is defined by: 

 
𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑑𝑒𝑏𝑡(𝑦) =

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑏𝑡 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛

𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑𝑑𝑒𝑏𝑡
 

Eq. 85 

 

Finally, the closing balance in year y, on which the interest cost are calculated, is computed by: 

 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑒𝑏𝑡(𝑦) = 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑒𝑏𝑡(𝑦) − 𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡(𝑦) Eq. 86 
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and the opening balance in year y is defined as: 

 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑒𝑏𝑡(𝑦) = 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑒𝑏𝑡(𝑦 − 1) Eq. 87 

 

Earnings before tax 

Needed for: Tax cost 

The earnings before tax (USD) in year t are computed as: 

 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑎𝑥(𝑦)
= 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑜𝑡(𝑦) + 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑡1 − 𝑂&𝑀(𝑦)
− 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒(𝑦) − 𝑙𝑎𝑛𝑑 𝑙𝑒𝑎𝑠𝑒(𝑦) − 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑒𝑥𝑝𝑒𝑛𝑠𝑒(𝑦)
− 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑦) 

Eq. 88 

 

The connection charge revenue is only added in Eq. 88 in year 1. Tax is only paid when the earnings before 

tax are larger than zero (Baldi, 2021).  
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3. The demand for solar PV and Batteries in a hybrid system with diesel 
 

The sum of the two yellow cells, 𝑆𝑖𝑛𝑖𝑡,𝑡𝑜𝑡 and 𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟,𝑡𝑜𝑡, is the demand to which the solar PV installation is 

scaled. The blue cell, 𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡, is the demand to which the battery capacity is scaled. Only when the blue 

cell, 𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡, is larger than the orange cell, 𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙.𝑡𝑜𝑡, the battery needs to be charged with solar energy,  

𝐶𝐻𝐵,𝑠𝑜𝑙𝑎𝑟. That is the case for a diesel peak percentage of 30%, but not for a diesel peak percentage of 90%.  

 

Table A. 5.The values behind Figure 6 from Section 4.1.3. The numbers are given for the Moyo refugee camp in Chad, for a Tier 2 
demand scenario, an ECR of households of 100% and a diesel peak percentage of 30%. 

Vector 𝑳𝑷𝒕𝒐𝒕 𝑳𝑷𝑺𝑩 𝑳𝑷𝑫 𝑳𝑷𝑫,𝑵 𝑬𝒙𝑫 𝑪𝑯𝑩,𝒅𝒊𝒆𝒔𝒆𝒍 𝑺𝒊𝒏𝒊𝒕 𝑫𝒊𝒔𝑪𝑯𝑩 𝑪𝑯𝑩,𝒔𝒐𝒍𝒂𝒓 

Eq. 
    

𝐿𝑃𝐷,𝑁
− 𝐿𝑃𝑡𝑜𝑡 

𝐸𝑥𝐷 𝑖𝑓 𝐸𝑥𝐷
> 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

−𝐸𝑥𝐷  𝑖𝑓 𝐸𝑥𝐷
< 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

−𝐸𝑥𝐷  𝑖𝑓 𝐸𝑥𝐷
< 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐶𝐻𝑇𝑟𝑒𝑛𝑑,𝑡
∗ (𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡
−𝐸𝑥𝐷,𝑡𝑜𝑡) 

Notes 
 

10% of 
peak 

90% of 
peak 

Minimum 
35% 
load 

 
 Only during 

the day 
Only at night Only if 

𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡 >
𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙,𝑡𝑜𝑡 

Hour          

4 9.64 9.64 0 0 -9.64 0 0 9.64 0 

5 7.48 7.48 0 0 -7.48 0 0 7.48 0 

6 2.49 2.49 0 0 -2.49 0 0 2.49 0 

7 6.04 6.04 0 0 -6.04 0 1.81 4.23 0 

8 10.38 10.38 0 0 -10.38 0 7.27 3.11 0 

9 14.71 14.71 0 0 -14.71 0 14.71 0 27.65 

10 29.54 29.54 0 0 -29.54 0 29.54 0 46.09 
11 30.23 30.23 0 0 -30.23 0 30.23 0 50.69 

12 32.10 32.10 0 0 -32.10 0 32.10 0 70.51 

13 31.36 31.36 0 0 -31.36 0 31.36 0 72.35 

14 30.61 30.61 0 0 -30.61 0 30.61 0 64.52 

15 32.79 32.79 0 0 -32.79 0 32.79 0 55.30 
16 34.61 34.61 0 0 -34.61 0 34.61 0 36.87 

17 44.67 44.67 0 0 -44.67 0 44.67 0 27.65 

18 76.95 76.95 0 0 -76.95 0 53.86 23.08 0 

19 146.13 102.29 43.84 43.84 -102.29 0 30.69 71.60 0 

20 142.67 102.29 40.38 40.38 -102.29 0 0 102.29 0 

21 117.62 102.29 15.33 15.40 -102.22 0 0 102.22 0 

22 63.11 63.11 0 0 -63.11 0 0 63.11 0 
23 23.71 23.71 0 0 -23.71 0 0 23.71 0 

24 13.25 13.25 0 0 -13.25 0 0 13.25 0 

1 9.62 9.62 0 0 -9.62 0 0 9.62 0 

2 7.48 7.48 0 0 -7.48 0 0 7.48 0 

3 8.31 8.31 0 0 -8.31 0 0 8.31 0 
Total 925.49 825.95 99.54 99.62 -825.88 0 374.25 451.63 451.63 
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Table A. 6. The values behind Figure 7 from Section 4.1.3. The numbers are given for the Moyo refugee camp in Chad, for a Tier 2 
demand scenario, an ECR of households of 100% and a diesel peak percentage of 90%. 

Vector 𝑳𝑷𝒕𝒐𝒕 𝑳𝑷𝑺𝑩 𝑳𝑷𝑫 𝑳𝑷𝑫,𝑵 𝑬𝒙𝑫 𝑪𝑯𝑩,𝒅𝒊𝒆𝒔𝒆𝒍 𝑺𝒊𝒏𝒊𝒕 𝑫𝒊𝒔𝑪𝑯𝑩 𝑪𝑯𝑩,𝒔𝒐𝒍𝒂𝒓 

Eq. 
    

𝐿𝑃𝐷,𝑁
− 𝐿𝑃𝑡𝑜𝑡 

𝐸𝑥𝐷  𝑖𝑓 𝐸𝑥𝐷
> 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

−𝐸𝑥𝐷  𝑖𝑓 𝐸𝑥𝐷
< 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

−𝐸𝑥𝐷  𝑖𝑓 𝐸𝑥𝐷
< 0 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐶𝐻𝑇𝑟𝑒𝑛𝑑,𝑡
∗ (𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡
−𝐸𝑥𝐷,𝑡𝑜𝑡) 

Notes 
 

10% of 
peak 

90% of 
peak 

Minimu

m 35% 
load 

 
 Only during 

the day 
Only at night Only if 

𝐷𝑖𝑠𝐶𝐻𝐵,𝑡𝑜𝑡 >
𝐶𝐻𝐵,𝑑𝑖𝑒𝑠𝑒𝑙,𝑡𝑜𝑡 

Hour          

4 9.64 9.64 0 0 -9.64 0 0 9.64 0 

5 7.48 7.48 0 0 -7.48 0 0 7.48 0 

6 2.49 2.49 0 0 -2.49 0 0 2.49 0 

7 6.04 6.04 0 0 -6.04 0 1.81 4.23 0 

8 10.38 10.38 0 0 -10.38 0 7.27 3.11 0 

9 14.71 14.61 0.09 46.20 31.49 31.49 0 0 0 

10 29.54 14.61 14.93 46.20 16.66 16.66 0 0 0 

11 30.23 14.61 15.61 46.20 15.97 15.97 0 0 0 

12 32.10 14.61 17.49 46.20 14.10 14.10 0 0 0 

13 31.36 14.61 16.75 46.20 14.84 14.84 0 0 0 

14 30.61 14.61 15.99 46.20 15.59 15.59 0 0 0 

15 32.79 14.61 18.18 46.20 13.41 13.41 0 0 0 

16 34.61 14.61 20.00 46.20 11.59 11.59 0 0 0 

17 44.67 14.61 30.06 46.20 1.53 1.53 0 0 0 

18 76.95 14.61 62.33 62.33 -14.61 0 10.23 4.38 0 

19 146.13 14.61 131.52 131.52 -14.61 0 4.38 10.23 0 

20 142.67 14.61 128.05 128.05 -14.61 0 0 14.61 0 

21 117.62 14.61 103.00 103.00 -14.61 0 0 14.61 0 

22 63.11 14.61 48.49 48.49 -14.61 0 0 14.61 0 

23 23.71 14.61 9.10 46.20 22.49 22.49 0 0 0 

24 13.25 13.25 0 0 -13.25 0 0 13.25 0 

1 9.62 9.62 0 0 -9.62 0 0 9.62 0 

2 7.48 7.48 0 0 -7.48 0 0 7.48 0 

3 8.31 8.31 0 0 -8.31 0 0 8.31 0 

Total 922.39 293.22 629.22 888.66 9.91 157.67 23.69 124.07 0 

 

 


