
Can a Python package do what
mice can?

Elviss Dvinskis 2459302

Supervisors:

Hanne Oberman

Gerko Vink

Valentijn de Jong

ADS Master’s Thesis

Department of Methodology and Statistics

Utrecht University

Netherlands

July 2022

Abstract

Missing data frequently complicate data analysis. Multiple imputation is a
well known and robust technique for addressing missing data. In R, multiple
imputation is commonly implemented through the mice package which uti-
lizes the multiple imputation by chained equations (MICE) algorithm. How-
ever, such a standard choice is not yet established for Python. This study
addresses four imputation methods that are implemented in Python to as-
sess if they can yield unbiased and confidence valid estimates. A model-based
simulation study is carried out to evaluate the performance of KNNImputer,
IterativeImputer, miceforest and MIDASpy. The obtained results demon-
strate that while under certain conditions IterativeImputer can show com-
parable performance to the conventional R imputation method mice, the
other methods (KNNImputer, miceforest and MIDASpy) underperform un-
der most conditions specified in this simulation study. This study suggests
that it would be unwise to recommend these Python approaches as a gen-
eral imputation strategy without a detailed comprehension of each of the
method’s proper application settings and fine-tuning.

1

Contents

1 Introduction . 3
1.1 Motivation and context 3
1.2 Literature overview . 3
1.3 Research question . 7

2 Data and Methods . 7
2.1 Data generation and amputation 9
2.2 Imputation methods 9
2.3 Estimation and performance evaluation 11
2.4 Ethical and legal considerations 12

3 Results . 12
3.1 Selected analysis results 13

4 Conclusion and Discussion . 16
4.1 Limitations . 17
4.2 Research question answer 18
4.3 Implications . 18

Appendices . 24
Appendix A . 24
Appendix B . 29
Appendix C . 32
Appendix D . 33

2

1 Introduction

1.1 Motivation and context

Most real world datasets contain at least some missing values. This may
be due to various circumstances and situations, with varying patterns and
complexities, but missing values significantly affect the outcome of data anal-
ysis [1]. Missing data occurs across different fields and studies. For example,
in the medical field it is not uncommon for a person to discontinue a clinical
trial [2]. Another typical example is when people occasionally do not answer
all the questions of a survey in which they participate [3].

Researchers frequently disregard the significance of missing data in their
studies [1]. Historically, addressing missing data in research has received
little attention. Common practices have relied on quick fixes or dismissing
the problem as a whole, producing and presenting findings that might be
misleading [1, 3]. Underestimating the importance of missing data leads
to systematic biases and uncertainty of estimates. Moreover, it can lead
to completely invalid conclusions even in otherwise well-conducted research
[1, 4]. Therefore, proper treatment of missing data should be an essential
part to any data related study.

1.2 Literature overview

Missingness mechanisms

Conceptualized more than four decades ago by Rubin, missing data can
be categorized in three types of mechanisms in accordance to assumptions of
why missing data occurs [1, 5].

When missing data occurs unrelated to the observed and unobserved data,
the missingness mechanism is missing completely at random (MCAR). The
propensity of data being missing is completely random [2]. An example of this
would be, if participants of a survey would have either fully or incompletely
responded to that survey, but some of the survey results got lost. In this
example one could draw a random sample from the data and the missing data
would not introduce bias, but it would have an overall reduced population
sample. MCAR is frequently used as a reference mechanism in simulation
studies, but is rarely applicable in practice [1, 6, 7].

When data is missing because of the observed data, but missingness is

3

not related to the unobserved data, the missingness mechanism is missing
at random (MAR) [8]. One could think that the missingness pattern is
MAR if, for example, in a study a given age group is less likely to answer
certain questions, meaning that completion of the survey is dependent on the
respondents age (and the age is always completely observed). MAR is the
most frequently used assumption in practice [2, 9].

If missingness depends both on the observed and unobserved values, the
missingness mechanism is missing not at random (MNAR). Usually the miss-
ing data is MNAR if both MCAR or MAR mechanisms are not met [4, 6].
MNAR analyses are problematic because missingness is related to factors
unknown. The same example in the case of a survey here would be if a re-
spondent fails to finish it for undisclosed reasons. The only way to address
MNAR is to approach missingness with modelling [1, 4].

To obtain valid statistical conclusions, the possible missingness mecha-
nisms should be accounted for and discerned which type of missing data one
has in a given analysable dataset [1].

Handling missing data

Ideally, one would want to have a dataset with complete data, but the
reality is that even within a carefully planned and executed real life study
missing data often occurs [4]. One solution is to use data analysis tech-
niques that are robust towards missing data, however that cannot always be
implemented, or might not even be applicable [10].

There are several ad-hoc methods developed for dealing with missing
data. The most common approach is just omitting cases with missing data
and analyzing the complete cases. This method is therefore referred to as
complete-case analysis or also listwise deletion [1]. Under MCAR, complete-
case analysis may produce unbiased results. When data is MAR or MNAR
the estimates will be biased and the results will have a high standard error
[3]. This might be a reasonable approach to handle missing data if indeed
MCAR is met and the sample size is large enough that statistical power is
not an issue [4].

Another approach is available-case analysis, also known as pairwise dele-
tion. This method removes information only when specific data points are
required for testing and are missing. The other existing values in the dataset
that have missing data are included in statistical analysis [3, 8]. This method
quite understandably preserves more information than complete-case analy-

4

sis, and available-case analysis is unbiased under MCAR, but again is biased
under MAR and MNAR. Applying pairwise deletion means that individual
parameters will be estimated on other data that have different standard errors
and sample size, leading to complicated further analysis, which ultimately
defeats the purpose of its use [8].

Mean substitution (or mean imputation) is an easy way of handling miss-
ing data. It simply takes the mean of a variable for a missing value [1]. Re-
gardless of its simplicity and popularity, it contributes no new information,
disrupts relationships between variables whilst completely misrepresenting
the variance and biasing every estimate except for the mean (and even the
mean if data are MAR or MNAR). It should be avoided almost at all times
[1, 8].

More sophisticated methods implement imputation by replacing missing
data with estimated values based on the additional information available [1].
Regression imputation utilizes the available variables to estimate coefficients
and fit predictions on the missing values [11]. It maintains more informa-
tion than complete-case and available-case analysis and does not consider-
ably modify the standard deviations [8]. In theory, it can produce unbiased
estimates of the mean and regression weights under MAR [1]. Seemingly
adequate imputations are in fact unrealistic because standard errors are un-
derestimated, correlations are overestimated and sample size is artificially
increased [3].

Stochastic regression imputation adds a noise term to the predictions.
Noise is generated randomly from non-missing cases and is included in the
estimates [8]. Compared to a simple regression imputation, it can also have
unbiased correlations under MAR [3]. It is considered a better method than
those described previously, but also has its disadvantages. It underestimates
the standard error and can produce estimates outside a logical allowed range
[1, 8]. These and other single imputation methods are generally not recom-
mended, but the underlying idea of single imputation is an important concept
for multiple imputation. Multiple imputation addresses all the limitations
that single imputation has, while at the same time utilizing its strengths
[3, 8].

Maximum likelihood methods (expectation-maximization method) and
accounting for different scenarios of uncertainty (sensitivity analysis) have
their use cases for missing data [3, 6, 12]. However, they will not be discussed
further due to the scope of this study.

5

Multiple imputation

Rather than imputing a single value for each missing data point, multiple
imputation repeats the process m times. The possible values are drawn
from a distribution that is specific for each missing data value [1]. Each
time a different imputed value is assigned to the missing value and a set of
plausible values are formed [8]. The parameters are estimated for each of
the m imputations as if one would be working with complete data and then
the estimates are pooled across the m imputations to get the final estimate
(see Figure 1) [1, 3]. In most situations, when multiple imputation is used,
it is implemented under the MAR assumption, but can also be applied for
MCAR and MNAR [4].

Multiple imputation separates and addresses the missing data problem
before the analysis of scientific interest is conducted [13]. It accounts for un-
certainty and solves estimation problems of variability in the missing values,
resulting in valid statistical inference [1, 3]. Multiple imputation is considered
a conventional method across many study fields and is becoming increasingly
more popular (e.g. due to its availability in different programming languages)
[4].

Figure 1: Multiple imputation procedure (m = 4). Adapted from Van Buuren
(2018) [1].

6

Implementation of multiple imputation and approaches available
in Python

The most widely recognized and practically implemented use of multiple
imputation is through the mice package developed for use with R, employing
the multiple imputation by chained equations (MICE) algorithm [14, 15].
The mice package handles the three essential stages of multiple imputa-
tion (imputing, analysing and then pooling data) with the functions mice(),
with() and pool() (see Figure 1). It is considered an obvious and standard
choice for handling missing data with R and can be used for a broad range
of situations [14, 16].

However, such a default package has not yet been established for Python
[17]. Since many data scientists prefer to use Python over R [18], it is of rel-
evance to investigate whether the currently available options in Python can
produce unbiased and confidence valid estimates, comparable to what mice
can. There are several options available for handling missing data in Python,
such as using KNNImputer from sklearn.impute, IterativeImputer from
the fancyimpute library, ImputationKernel from miceforest and the pack-
age MIDASpy [19–23].

1.3 Research question

The goal of this study is to determine whether the Python approaches
KNNImputer, IterativeImputer, miceforest and MIDASpy for handling miss-
ing data can produce valid inferences. The R package mice will serve as a
benchmark method in a model-based simulation study.

2 Data and Methods

Simulation studies are an empirical way of evaluating statistical research
and methodology. Since there is no single standardised way of performing
and evaluating a simulation study, the approach in this model-based study
follows the recommendations outlined in Morris et al. (2019) and Oberman
and Vink (n.d.) [24, 25].

This simulation study consists of four sequential repeated main steps: 1)
generating complete data; 2) inducing missingness (amputation procedure);
3) imputation procedures with different methods; 4) estimating regression

7

coefficients. The simulation is repeated a thousand times (nsim = 1000).
Performance is evaluated by bias, confidence interval width and coverage
rate. The simulation setup is shown in Figure 2.

Figure 2: Simulation study design schema.

8

2.1 Data generation and amputation

Data were drawn from a multivariate normal distribution N (µ, Σ) using
rmvnorm() from package mvtnorm [26], with four predictor variables (X1, X2,
X3, X4), one outcome variable (Y) and 200 observations per dataset (nobs =
200). The predictor space can be notated

X1

X2

X3

X4

 ∼ N

0
0
0
0

 ,

1 0.3 0.3 0.3
0.3 1 0.3 0.3
0.3 0.3 1 0.3
0.3 0.3 0.3 1

and the outcome variable Y for each simulation run is

Y = −0.5X1 − 0.1X2 + 0.1X3 + 0.5X4 + ϵ

where ϵ ∼ N (0, 1).
Missingness in the complete data was generated through the ampute()

function from the mice package, introducing two types of missingness mech-
anisms (right tailed MAR and MCAR) and three missingness proportions
(10%, 25% and 50%). MCAR is considered as a reference missingness mech-
anism because any imputation method should be able to produce valid in-
ferences under MCAR, otherwise the method itself is not justifiable. MAR
is considered as it is the most broadly and frequently assumed missingness
mechanism in empirical studies [1, 25]. The three chosen missingness propor-
tions impact the severity of the missing data problem, where more drastic
differentiation between the methods should occur with increased missing-
ness proportion. One could consider these three missingness proportions to
be approximate to real life missingness percentage, ranging from realistic to
moderate (but still realistic), to extreme [25].

2.2 Imputation methods

Six methods of handling missing data are implemented in this simula-
tion study — complete-case analysis (CCA), mice, miceRanger, KNNImputer,
IterativeImputer and rMIDAS. CCA and mice are used as benchmarks for
this study.

Any other method should outperform CCA under the MAR assumption
and have at least equal performance under the MCAR assumption [1, 8].
Furthermore, CCA is chosen to see if the data were indeed generated and

9

amputed correctly, knowing that the method will be unbiased under MCAR
and is not expected to produce sound results under MAR. If any of the other
methods produce worse results than CCA, it either can be an indication
that something was wrong within the simulation study setup, or that a given
imputation method has a fundamental problem. Imputations from mice are
expected to yield valid inferences, and it is an ubiquitous method for multiple
imputation in R [1]. If any of the Python methods would show an equal (or
better) performance than mice, that would suggest it being a feasible Python
alternative to mice.

Imputation with mice

For mice imputation, default settings were used - the number of imputa-
tions to perform (m) and the number of iterations (maxit) were set to five.
For other imputation methods to be comparable to mice, where applicable,
these settings were adjusted accordingly.

Imputation with miceRanger

The miceforest package in Python utilizes the MICE algorithm using
random forests. With speed and memory efficiency in mind, miceforest was
developed as an alternative to the conventional mice package. Originally,
miceforest was developed for Python, but it has also been translated to an
R package called miceRanger [22]. Essentially, both packages are the same,
and in this simulation study miceRanger was used due to ease of syntax.
Imputations were performed using the miceRanger() function (in Python

this would be equivalent to using ImputationKernel) with m and maxit set
to five.

Imputation with KNNImputer and with IterativeImputer

Both KNNImputer and IterativeImputer were implemented through the
package reticulate() [27], which allows Python syntax usage in R.

KNNImputer fills in the missing values using the k-nearest neighbours
approach. It maps the non-missing values in an n-dimensional coordinate
space and groups them, then computes the closest points to a missing value.
The mean of those closest points is the imputed value [28]. Within this
simulation study the default settings for KNNImputer were used (n neighbors

10

= 5), and the data were imputed with the KNNImputer.fit transform()

function.
IterativeImputer uses each missing value as a feature in a function

to regress on the other features in a dataset, then it replaces the missing
values with the obtained predictions. It was also inspired by the MICE
algorithm, but generally is used to return a single imputation. Multiple im-
putations can be achieved when sample posterior is set to True [19, 20].
For this study imputations from IterativeImputer were obtained with
IterativeImputer.fit transform(), where max iter was changed from
the default 10 to five, and sample posterior was set to True. The imputa-
tion process was repeated five times (m = 5).

Imputation with rMIDAS

Lastly, multiple imputation with denoising autoencoders (MIDAS) was
employed, which is a deep learning approach that uses unsupervised neural
networks for multiple imputation. The idea behind this approach is to use
the denoising autoencoders to corrupt and reconstruct data. Missing values
are treated as a corrupt data subset and imputations are generated from a
trained model used for reconstruction [23]. It can be implemented through
the MIDASpy class for Python and is also partially translated to R (rMIDAS).
In R the rMIDAS package still uses the underlying Python functions through
reticulate(). For syntax simplicity rMIDAS was used in this study. The
rMIDAS train() function was left at its default tuning as described in the
package documentation and Lall et al. (2022) [23]. As in the other simulation
methods, m was set to five.

2.3 Estimation and performance evaluation

For each method of handling missing data, a linear regression model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ϵ

was used to obtain regression estimates. For CCA the regression model was
fit on the list-wise deleted data and estimates were obtained for performance
evaluation. Estimates for KNNImputer were acquired from a single impu-
tation, and then used for performance evaluation. For mice, miceRanger,
IterativeImputer and rMIDAS the linear regression model was fit on each

11

imputation using the with() function and the estimates were pooled by ap-
plying Rubin’s rules [29] with the pool() function (for rMIDAS the with()

and pool() functions are performed with its own package function combine()).
The pooled estimates were then used for performance evaluation.

Performance of the different methods was evaluated by bias, coverage
rate and confidence interval width, as supported by recommendations from
literature [1, 24, 25]. Since the true parameters are known, the raw bias is
calculated as the estimates divergence from the actual truth, and it should
be as close to zero as possible. The confidence interval width is assessed as
the difference between the upper and lower 95% confidence interval bounds.
Coverage for an estimate is quantified as the proportion of confidence inter-
vals that contain the true estimand. Instead of the typical cut-off at 0.95, in
this simulation study a coverage rate from 0.94 to 0.96 is approximate for an
estimate being confidence-valid, in accordance with the Markov chain Monte
Carlo standard error of the metric [24].

2.4 Ethical and legal considerations

Since the data used in this study is simulated and only open-source soft-
ware was used, no ethical or legal considerations arise. The complete code for
the simulation study is available at github.com/edvinskis/python_mice .

3 Results

The results section covers selected simulation results. Full simulation re-
sults can be found in the repository github.com/edvinskis/python_mice .
The average raw bias, coverage rate and confidence interval width for each
predictor variable under each missingness mechanism and missingness pro-
portion are summarized in Appendix A. Plots for bias, coverage rate and
confidence interval width for each predictor variable under each missing-
ness mechanism and missingness proportion can be found in appendices B
through D. Note that method abbreviations for figures are used throughout
for readability - IterativeImputer, KNNImputer, miceRanger and rMIDAS

are referred to as ITIMP, KNN, MICER and MIDAS, respectively.

12

3.1 Selected analysis results

Performance of the studied methods for handling missing data varies
across predictor variables, missingness mechanisms and missingness propor-
tions. To highlight the differences in performance between the different meth-
ods, the predictor variable X1 under both MAR and MCAR missingness
mechanisms with a 50% missingness proportion is examined in detail.

Figure 3 shows the bias in the estimated regression coefficients across
simulation repetitions of the studied methods for handling missing data. One
could consider that IterativeImputer, mice and rMIDAS are unbiased under
both MAR and MCAR, but miceRanger and KNNImputer display bias. As
expected, CCA is biased under the MAR assumption, but is unbiased under
the MCAR missingness mechanism.

Figure 3: Bias in the estimated effect of X1 for different imputation methods
under MAR and MCAR missingness mechanisms with a missingness propor-
tion of 50%.

13

The coverage rate is shown in Figure 4. One can observe that rMIDAS

presents under-coverage, and more so, KNNImputer and miceRanger exhibit
strong under-coverage for both missingness mechanisms. Slight under-coverage
can also be observed for IterativeImputer under the MCAR missingness
mechanism. As anticipated, CCA for MCAR, and mice under both MAR
and MCAR are confidence valid.

Figure 4: Coverage rate in the estimated effect of X1 for different imputation
methods under MAR and MCAR missingness mechanisms with a missingness
proportion of 50%.

14

The confidence interval width for the different methods can be seen in Fig-
ure 5. CCA, IterativeImputer and mice have relatively wide confidence in-
terval widths, but they are narrow for KNNImputer, miceRanger and rMIDAS.

Figure 5: Confidence interval width in the estimated effect of X1 for different
imputation methods under MAR and MCAR missingness mechanisms with
a missingness proportion of 50%.

15

Together, Figures 3-5 reveal that for the predictor variable X1, both
miceRanger and KNNImputer are biased, they present with considerable
under-coverage and their confidence interval widths are narrow. Although
rMIDAS is unbiased on average, it is not confidence valid. Consequently, Fig-
ure 5 shows that it has a very narrow confidence interval width. Lastly,
mice is unbiased, has proper coverage rate and a relatively large confidence
interval width.

When examining the other predictor variables in the same manner (under
50% missingness), similar findings occur with subtle differences and will not
be discussed further (see Appendix B-D). However, it should be noted that
for IterativeImputer, predictor variables X2 and X3 are confidence valid
under both MAR and MCAR (Appendix C).

Generally, the possibility for handling missing data should improve with
decreasing missingness proportion for all methods (Appendix B-D), how-
ever KNNImputer, miceRanger and rMIDAS show an overall poor performance
across different missingness proportions and missingness mechanisms for al-
most every predictor variable (Appendix B-D). These methods are not con-
fidence valid for any predictor variable under both missingness mechanisms
with a missingness proportion of 25% (Appendix C). Furthermore, even when
the missingness proportion is 10%, confidence validity varies considerably be-
tween the predictor variables and missingness mechanisms (Appendix C).

4 Conclusion and Discussion

The most significant findings of this study can be summarized as follows:

1. mice generally performs well under different missingness mechanisms
and proportions, and CCA produces valid results under the MCAR
missingness mechanism.

2. IterativeImputer varies in performance across missingness mecha-
nisms, missingness proportions and for different predictor variables,
but can yield valid inferences under certain conditions.

3. KNNImputer, miceRanger and rMIDAS reveal poor performance for al-
most every defined condition in this simulation study.

Biased estimates will cause a method to under-perform and not produce
sound results. Having unsuitable confidence intervals is attributed to ei-

16

ther under-coverage or over-coverage, thus resulting in invalid inferences
[24]. Therefore, a reason why KNNImputer, miceRanger and rMIDAS were
not confidence valid can be explained by them having too narrow confidence
interval widths. On the other hand, confidence interval widths should not
be too large as it leads to more uncertainty. Narrower confidence interval
widths that still have a proper coverage result in better inferences [25]. In
that regard, for those conditions where IterativeImputer was unbiased and
confidence valid, the confidence interval widths were similar to mice.

4.1 Limitations

The poor performance of the imputation methods in Python may be
explained by how they were implemented in this simulation study, and each
of these methods may have been affected by different limitations.

Although KNNImputer is a multivariate single imputation method, its
performance could be improved by selecting a more appropriate number of
neighbours as it is the most important hyperparameter for KNNImputer. In
this simulation study the default of five was used. By testing and cross-
validating a different number of neighbours, the imputation method could
provide more accurate estimates [30]. Moreover, the choice of the distance
metric for KNNImputer can notably impact the imputation results, especially
with increasing missingness proportion. In this simulation study Euclidean
distance was used, and this choice could be evaluated as well [31].

The performance of IterativeImputer differed across missingness mech-
anisms, missingness proportions and predictor variables, but was unbiased
and confidence valid under most scenarios in this simulation study. Possi-
bly, better performance could be achieved by setting its number of iterations
per imputation to the default ten. It was changed to five in order to be
more directly comparable to mice. It is possible that due to this change,
IterativeImputer could not fully converge and therefore provided such per-
formance [32].

Non-convergence should not have been a problem for miceRanger as it
essentially uses the same MICE algorithm, and in comparison mice did pro-
vide valid results with the same number of iterations per imputation. The
dire performance of miceRanger could be explained by not controlling trees
and their growth in the random forest part of the method [33].

The overall poor performance of rMIDAS can be attributed to the fact that
the model was trained in a way that it could not generalize on unseen data.

17

Adjusting the layer structure and nodes of the network, together with the
dropout rate, could make it less prone to overfitting. Another possibility for
improvement would be changing the default activation function (by default
it is an exponential linear unit). Additionally, the authors of this package
acknowledge and warn about the possibility of poor performance for smaller
datasets, due to the learning nature of neural networks [23].

Nevertheless, fine-tuning every method to each specific dataset is a task
of its own. Obviously, better results can be obtained when a method is fine-
tuned to each specific scenario, but in this simulation study, comparisons
were made of the method’s ability being as close to the default settings that
of mice.

Furthermore, additional limitations of this simulation study exist. First,
the performance of a certain method on real world data may reveal a com-
pletely different performance. Empirical data rarely hold a theoretical distri-
bution and the simulation results therefore might not be attributable, there-
fore distributional characteristics should also be studied [24, 25]. Second,
only MAR and MCAR missingness mechanisms were considered and MNAR
was not included. Lastly, the performance was evaluated in terms of bias,
coverage rate and confidence interval width. Additionally, convergence for
multiple imputation methods and the fit of the imputation models should be
taken into consideration [25].

4.2 Research question answer

The goal of this study was to determine if the investigated Python ap-
proaches could produce valid inferences. Neither KNNImputer, miceforest
(miceRanger) or MIDASpy (rMIDAS) yielded valid inferences. The perfor-
mance of IterativeImputer varied, but it could provide valid results under
most of the studied conditions.

4.3 Implications

These findings entail certain considerations for real world use. If the
missingness mechanism is indeed MCAR, it is justifiable to apply a simple
method such as CCA for handling missing data. Under other missingness
mechanisms the method will fail [1]. However, if the data are not MCAR
then mice is a fine choice for handling missing data. Considering the perfo-
mance of KNNImputer, miceRanger and rMIDAS in this simulation study, it

18

is hard to recommend them for general use without a detailed understand-
ing about their fine-tuning, and further evaluation should be considered.
More importantly, further research is required for IterativeImputer as it
produced sound results under most conditions in this simulation study and
therefore, with certain limitations, it might be a viable alternative to mice.

19

References

[1] Stef Van Buuren. Flexible imputation of missing data. CRC press, 2018.

[2] Roderick JA Little and Donald B Rubin. Statistical analysis with missing
data, volume 793. John Wiley & Sons, 2019.

[3] Daniel A Newman. Missing data: Five practical guidelines. Organiza-
tional Research Methods, 17(4):372–411, 2014.

[4] Alma B Pedersen, Ellen M Mikkelsen, Deirdre Cronin-Fenton, Nicko-
laj R Kristensen, Tra My Pham, Lars Pedersen, and Irene Petersen.
Missing data and multiple imputation in clinical epidemiological re-
search. Clinical epidemiology, 9:157, 2017.

[5] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–
592, 1976.

[6] John W Graham et al. Missing data analysis: Making it work in the
real world. Annual review of psychology, 60(1):549–576, 2009.

[7] Paul Madley-Dowd, Rachael Hughes, Kate Tilling, and Jon Heron. The
proportion of missing data should not be used to guide decisions on
multiple imputation. Journal of Clinical Epidemiology, 110:63–73, 2019.

[8] John W Graham. Missing data: Analysis and design. Springer Science
& Business Media, 2012.

[9] Yiran Dong and Chao-Ying Joanne Peng. Principled missing data meth-
ods for researchers. SpringerPlus, 2(1):1–17, 2013.

[10] Adam Kapelner and Justin Bleich. Prediction with missing data via
bayesian additive regression trees. Canadian Journal of Statistics, 43
(2):224–239, 2015.

20

[11] Zhongheng Zhang. Missing data imputation: focusing on single impu-
tation. Annals of translational medicine, 4(1), 2016.

[12] James R Carpenter and Melanie Smuk. Missing data: A statistical
framework for practice. Biometrical Journal, 63(5):915–947, 2021.

[13] Gerko Vink and Stef van Buuren. Pooling multiple imputations when the
sample happens to be the population. arXiv preprint arXiv:1409.8542,
2014.

[14] Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate
imputation by chained equations in r. Journal of Statistical Software,
45:1–67, 2011.

[15] R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2021.
URL https://www.R-project.org/.

[16] Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J
Leaf. Multiple imputation by chained equations: what is it and how does
it work? International journal of methods in psychiatric research, 20
(1):40–49, 2011.

[17] Guido Van Rossum and Fred L Drake Jr. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[18] Joel Grus. Data science from scratch: first principles with python.
O’Reilly Media, 2019.

[19] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. The Journal of Machine Learning Research, 12:
2825–2830, 2011.

[20] Alex Rubinsteyn and Sergey Feldman. fancyim-
pute: An Imputation Library for Python, 2016. URL
https://github.com/iskandr/fancyimpute.

[21] Samuel Wilson. miceforest: Fast, Memory Ef-
ficient Imputation with lightgbm, 2020. URL
https://github.com/AnotherSamWilson/miceforest.

21

[22] Samuel Wilson. miceRanger: Multiple Imputation by
Chained Equations with Random Forests, 2020. URL
https://github.com/FarrellDay/miceRanger.

[23] Ranjit Lall and Thomas Robinson. The midas touch: Accurate and
scalable missing-data imputation with deep learning. Political Analysis,
30(2):179–196, 2022.

[24] Tim P Morris, Ian R White, and Michael J Crowther. Using simulation
studies to evaluate statistical methods. Statistics in medicine, 38(11):
2074–2102, 2019.

[25] Hanne Oberman and Gerko Vink. Towards a stan-
dardized evaluation of imputation methodology. URL
https://www.gerkovink.com/evaluation/. Date accessed 11-
05-2022.

[26] Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi,
Friedrich Leisch, Fabian Scheipl, and Torsten Hothorn. mvt-
norm: Multivariate Normal and t Distributions, 2021. URL
https://CRAN.R-project.org/package=mvtnorm.

[27] JJ Allaire, Kevin Ushey, Yuan Tang, and Dirk Eddel-
buettel. reticulate: R Interface to Python, 2017. URL
https://github.com/rstudio/reticulate.

[28] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor
Hastie, Robert Tibshirani, David Botstein, and Russ B Altman. Missing
value estimation methods for dna microarrays. Bioinformatics, 17(6):
520–525, 2001.

[29] Donald B Rubin. Multiple imputation for nonresponse in surveys. John
Wiley & Sons, 1987.

[30] Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric
missing value imputation for mixed-type data. Bioinformatics, 28(1):
112–118, 2012.

[31] Miriam Seoane Santos, Pedro Henriques Abreu, Szymon Wilk, and João
Santos. How distance metrics influence missing data imputation with
k-nearest neighbours. Pattern Recognition Letters, 136:111–119, 2020.

22

[32] Xiaofeng Zhu, Shichao Zhang, Zhi Jin, Zili Zhang, and Zhuoming Xu.
Missing value estimation for mixed-attribute data sets. IEEE Transac-
tions on Knowledge and Data Engineering, 23(1):110–121, 2010.

[33] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R
König. Overview of random forest methodology and practical guidance
with emphasis on computational biology and bioinformatics. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):
493–507, 2012.

23

Appendices

Appendix A

Table 1: Simulation study results (summarized across simulation runs).

Method
Missingness
Mechanism

Missingness
Proportion

Term Bias
Coverage

Rate

Confidence
Interval
Width

CCA MAR 0.10 (Intercept) 2.89e-02 0.938 0.297
CCA MAR 0.10 X1 1.97e-03 0.955 0.326
CCA MAR 0.10 X2 2.38e-03 0.939 0.327
CCA MAR 0.10 X3 9.43e-03 0.945 0.327
CCA MAR 0.10 X4 1.24e-02 0.940 0.327
CCA MAR 0.25 (Intercept) 6.83e-02 0.880 0.331
CCA MAR 0.25 X1 4.44e-03 0.954 0.359
CCA MAR 0.25 X2 8.25e-03 0.949 0.361
CCA MAR 0.25 X3 1.55e-02 0.943 0.360
CCA MAR 0.25 X4 2.24e-02 0.944 0.362
CCA MAR 0.50 (Intercept) 1.35e-01 0.767 0.432
CCA MAR 0.50 X1 1.22e-02 0.940 0.446
CCA MAR 0.50 X2 9.31e-03 0.963 0.448
CCA MAR 0.50 X3 2.28e-02 0.946 0.449
CCA MAR 0.50 X4 2.87e-02 0.949 0.450
CCA MCAR 0.10 (Intercept) 2.29e-03 0.954 0.297
CCA MCAR 0.10 X1 -1.35e-03 0.949 0.327
CCA MCAR 0.10 X2 -4.45e-03 0.943 0.327
CCA MCAR 0.10 X3 1.52e-03 0.948 0.327
CCA MCAR 0.10 X4 5.60e-03 0.944 0.326
CCA MCAR 0.25 (Intercept) 5.94e-04 0.941 0.327
CCA MCAR 0.25 X1 -6.60e-04 0.954 0.360
CCA MCAR 0.25 X2 -3.56e-03 0.937 0.361
CCA MCAR 0.25 X3 1.20e-03 0.949 0.360
CCA MCAR 0.25 X4 5.20e-03 0.945 0.361
CCA MCAR 0.50 (Intercept) 1.63e-03 0.953 0.406
CCA MCAR 0.50 X1 -1.85e-03 0.959 0.450
CCA MCAR 0.50 X2 -3.60e-03 0.943 0.450
CCA MCAR 0.50 X3 -3.22e-03 0.959 0.448
CCA MCAR 0.50 X4 9.06e-03 0.940 0.447

24

IterativeImputer MAR 0.10 (Intercept) 2.08e-03 0.947 0.286
IterativeImputer MAR 0.10 X1 -2.32e-03 0.953 0.318
IterativeImputer MAR 0.10 X2 -4.49e-03 0.947 0.320
IterativeImputer MAR 0.10 X3 2.31e-03 0.947 0.320
IterativeImputer MAR 0.10 X4 5.88e-03 0.939 0.318
IterativeImputer MAR 0.25 (Intercept) 2.45e-03 0.950 0.295
IterativeImputer MAR 0.25 X1 -4.88e-03 0.944 0.332
IterativeImputer MAR 0.25 X2 -3.42e-03 0.946 0.338
IterativeImputer MAR 0.25 X3 1.76e-03 0.948 0.338
IterativeImputer MAR 0.25 X4 7.49e-03 0.944 0.333
IterativeImputer MAR 0.50 (Intercept) 1.24e-03 0.948 0.311
IterativeImputer MAR 0.50 X1 -7.73e-03 0.949 0.359
IterativeImputer MAR 0.50 X2 -7.50e-03 0.951 0.370
IterativeImputer MAR 0.50 X3 4.79e-03 0.961 0.372
IterativeImputer MAR 0.50 X4 1.09e-02 0.946 0.360
IterativeImputer MCAR 0.10 (Intercept) 2.04e-03 0.950 0.287
IterativeImputer MCAR 0.10 X1 -2.53e-03 0.949 0.318
IterativeImputer MCAR 0.10 X2 -4.50e-03 0.946 0.320
IterativeImputer MCAR 0.10 X3 1.93e-03 0.952 0.319
IterativeImputer MCAR 0.10 X4 6.88e-03 0.944 0.318
IterativeImputer MCAR 0.25 (Intercept) 2.77e-03 0.944 0.295
IterativeImputer MCAR 0.25 X1 -3.86e-03 0.945 0.332
IterativeImputer MCAR 0.25 X2 -4.91e-03 0.951 0.337
IterativeImputer MCAR 0.25 X3 3.07e-03 0.945 0.336
IterativeImputer MCAR 0.25 X4 7.48e-03 0.929 0.331
IterativeImputer MCAR 0.50 (Intercept) 1.78e-03 0.938 0.309
IterativeImputer MCAR 0.50 X1 -6.04e-03 0.936 0.361
IterativeImputer MCAR 0.50 X2 -6.44e-03 0.943 0.370
IterativeImputer MCAR 0.50 X3 1.65e-03 0.964 0.371
IterativeImputer MCAR 0.50 X4 1.33e-02 0.938 0.360
KNNImputer MAR 0.10 (Intercept) 4.60e-04 0.932 0.279
KNNImputer MAR 0.10 X1 -1.36e-03 0.942 0.310
KNNImputer MAR 0.10 X2 -4.39e-03 0.934 0.310
KNNImputer MAR 0.10 X3 6.46e-04 0.935 0.310
KNNImputer MAR 0.10 X4 3.83e-03 0.926 0.309
KNNImputer MAR 0.25 (Intercept) -3.19e-03 0.932 0.277
KNNImputer MAR 0.25 X1 -5.31e-03 0.933 0.311
KNNImputer MAR 0.25 X2 -3.93e-03 0.920 0.311
KNNImputer MAR 0.25 X3 -8.89e-05 0.933 0.311
KNNImputer MAR 0.25 X4 5.23e-03 0.918 0.310
KNNImputer MAR 0.50 (Intercept) -8.76e-03 0.913 0.273
KNNImputer MAR 0.50 X1 -1.66e-02 0.920 0.313
KNNImputer MAR 0.50 X2 -9.82e-03 0.912 0.314
KNNImputer MAR 0.50 X3 5.55e-03 0.917 0.314
KNNImputer MAR 0.50 X4 1.64e-02 0.895 0.313

25

KNNImputer MCAR 0.10 (Intercept) 2.02e-03 0.947 0.279
KNNImputer MCAR 0.10 X1 3.35e-04 0.942 0.310
KNNImputer MCAR 0.10 X2 -3.48e-03 0.935 0.310
KNNImputer MCAR 0.10 X3 7.87e-04 0.939 0.310
KNNImputer MCAR 0.10 X4 4.23e-03 0.939 0.309
KNNImputer MCAR 0.25 (Intercept) 3.72e-03 0.929 0.276
KNNImputer MCAR 0.25 X1 -1.68e-03 0.925 0.310
KNNImputer MCAR 0.25 X2 -4.82e-03 0.918 0.311
KNNImputer MCAR 0.25 X3 2.50e-03 0.927 0.311
KNNImputer MCAR 0.25 X4 4.94e-03 0.916 0.310
KNNImputer MCAR 0.50 (Intercept) 1.28e-03 0.899 0.272
KNNImputer MCAR 0.50 X1 -1.35e-02 0.900 0.312
KNNImputer MCAR 0.50 X2 -5.91e-03 0.889 0.313
KNNImputer MCAR 0.50 X3 4.27e-03 0.914 0.313
KNNImputer MCAR 0.50 X4 1.73e-02 0.894 0.312
mice MAR 0.10 (Intercept) 2.39e-03 0.948 0.287
mice MAR 0.10 X1 -7.43e-04 0.954 0.319
mice MAR 0.10 X2 -3.54e-03 0.937 0.321
mice MAR 0.10 X3 1.46e-03 0.947 0.321
mice MAR 0.10 X4 4.13e-03 0.936 0.318
mice MAR 0.25 (Intercept) 2.50e-03 0.949 0.295
mice MAR 0.25 X1 -1.50e-03 0.945 0.333
mice MAR 0.25 X2 -2.68e-03 0.939 0.340
mice MAR 0.25 X3 3.16e-04 0.948 0.338
mice MAR 0.25 X4 4.54e-03 0.939 0.333
mice MAR 0.50 (Intercept) 1.06e-03 0.947 0.315
mice MAR 0.50 X1 -1.43e-03 0.958 0.368
mice MAR 0.50 X2 -5.77e-03 0.954 0.381
mice MAR 0.50 X3 2.66e-03 0.962 0.381
mice MAR 0.50 X4 3.87e-03 0.945 0.366
mice MCAR 0.10 (Intercept) 2.55e-03 0.949 0.287
mice MCAR 0.10 X1 -1.70e-03 0.948 0.318
mice MCAR 0.10 X2 -3.79e-03 0.946 0.320
mice MCAR 0.10 X3 1.17e-03 0.950 0.320
mice MCAR 0.10 X4 5.59e-03 0.942 0.318
mice MCAR 0.25 (Intercept) 3.27e-03 0.950 0.295
mice MCAR 0.25 X1 -7.52e-04 0.944 0.335
mice MCAR 0.25 X2 -3.66e-03 0.937 0.339
mice MCAR 0.25 X3 1.20e-03 0.949 0.338
mice MCAR 0.25 X4 4.12e-03 0.935 0.334
mice MCAR 0.50 (Intercept) 9.25e-04 0.947 0.313
mice MCAR 0.50 X1 -2.18e-05 0.943 0.366
mice MCAR 0.50 X2 -2.35e-03 0.941 0.378
mice MCAR 0.50 X3 -2.29e-03 0.953 0.376
mice MCAR 0.50 X4 6.92e-03 0.939 0.362

26

miceRanger MAR 0.10 (Intercept) 2.48e-03 0.942 0.280
miceRanger MAR 0.10 X1 6.03e-03 0.940 0.310
miceRanger MAR 0.10 X2 -3.03e-03 0.928 0.311
miceRanger MAR 0.10 X3 2.05e-04 0.937 0.311
miceRanger MAR 0.10 X4 -2.62e-03 0.935 0.310
miceRanger MAR 0.25 (Intercept) 2.27e-03 0.933 0.278
miceRanger MAR 0.25 X1 1.68e-02 0.927 0.312
miceRanger MAR 0.25 X2 1.07e-03 0.912 0.314
miceRanger MAR 0.25 X3 -3.68e-03 0.922 0.313
miceRanger MAR 0.25 X4 -1.40e-02 0.917 0.311
miceRanger MAR 0.50 (Intercept) 2.86e-03 0.908 0.274
miceRanger MAR 0.50 X1 4.02e-02 0.879 0.314
miceRanger MAR 0.50 X2 2.46e-03 0.876 0.320
miceRanger MAR 0.50 X3 -4.90e-03 0.879 0.319
miceRanger MAR 0.50 X4 -3.62e-02 0.856 0.314
miceRanger MCAR 0.10 (Intercept) 2.09e-03 0.944 0.280
miceRanger MCAR 0.10 X1 5.92e-03 0.939 0.310
miceRanger MCAR 0.10 X2 -2.35e-03 0.936 0.311
miceRanger MCAR 0.10 X3 -1.17e-04 0.937 0.311
miceRanger MCAR 0.10 X4 -1.87e-03 0.931 0.310
miceRanger MCAR 0.25 (Intercept) 3.22e-03 0.928 0.277
miceRanger MCAR 0.25 X1 1.93e-02 0.916 0.311
miceRanger MCAR 0.25 X2 -1.83e-03 0.911 0.313
miceRanger MCAR 0.25 X3 -1.49e-03 0.928 0.313
miceRanger MCAR 0.25 X4 -1.52e-02 0.901 0.311
miceRanger MCAR 0.50 (Intercept) 9.83e-04 0.906 0.273
miceRanger MCAR 0.50 X1 4.23e-02 0.867 0.314
miceRanger MCAR 0.50 X2 3.08e-03 0.863 0.319
miceRanger MCAR 0.50 X3 -6.74e-03 0.887 0.318
miceRanger MCAR 0.50 X4 -3.48e-02 0.875 0.312
rMIDAS MAR 0.10 (Intercept) 4.76e-04 0.942 0.278
rMIDAS MAR 0.10 X1 -1.63e-03 0.946 0.309
rMIDAS MAR 0.10 X2 -5.14e-03 0.933 0.309
rMIDAS MAR 0.10 X3 -1.98e-03 0.936 0.309
rMIDAS MAR 0.10 X4 9.50e-03 0.923 0.308
rMIDAS MAR 0.25 (Intercept) -4.14e-04 0.946 0.275
rMIDAS MAR 0.25 X1 -2.27e-03 0.941 0.311
rMIDAS MAR 0.25 X2 -4.55e-03 0.928 0.311
rMIDAS MAR 0.25 X3 -7.16e-03 0.928 0.311
rMIDAS MAR 0.25 X4 1.56e-02 0.922 0.310
rMIDAS MAR 0.50 (Intercept) -3.21e-03 0.949 0.270
rMIDAS MAR 0.50 X1 -5.59e-04 0.939 0.314
rMIDAS MAR 0.50 X2 -1.00e-02 0.916 0.314
rMIDAS MAR 0.50 X3 -1.51e-02 0.924 0.315
rMIDAS MAR 0.50 X4 2.46e-02 0.907 0.313

27

rMIDAS MCAR 0.10 (Intercept) 2.21e-03 0.948 0.278
rMIDAS MCAR 0.10 X1 -9.96e-04 0.945 0.309
rMIDAS MCAR 0.10 X2 -4.46e-03 0.939 0.309
rMIDAS MCAR 0.10 X3 -1.72e-03 0.946 0.309
rMIDAS MCAR 0.10 X4 8.84e-03 0.934 0.308
rMIDAS MCAR 0.25 (Intercept) 3.32e-03 0.941 0.275
rMIDAS MCAR 0.25 X1 6.11e-04 0.942 0.311
rMIDAS MCAR 0.25 X2 -6.45e-03 0.932 0.310
rMIDAS MCAR 0.25 X3 -5.85e-03 0.935 0.311
rMIDAS MCAR 0.25 X4 1.30e-02 0.922 0.310
rMIDAS MCAR 0.50 (Intercept) 1.36e-03 0.932 0.269
rMIDAS MCAR 0.50 X1 1.47e-03 0.926 0.314
rMIDAS MCAR 0.50 X2 -9.64e-03 0.900 0.314
rMIDAS MCAR 0.50 X3 -1.66e-02 0.924 0.314
rMIDAS MCAR 0.50 X4 2.49e-02 0.911 0.312

28

Appendix B

Figure 6: Bias in the estimated effects of X1, X2, X3, X4 for different im-
putation methods under MAR and MCAR missingness mechanisms with a
missingness proportion of 10%.

29

Figure 7: Bias in the estimated effects of X1, X2, X3, X4 for different im-
putation methods under MAR and MCAR missingness mechanisms with a
missingness proportion of 25%.

30

Figure 8: Bias in the estimated effects of X1, X2, X3, X4 for different im-
putation methods under MAR and MCAR missingness mechanisms with a
missingness proportion of 50%.

31

Appendix C

Figure 9: Coverage rate in the estimated effects of X1, X2, X3, X4 for different
imputation methods - under MAR and MCAR missingness mechanisms with
three missingness proportions (10 %, 25% and 50%).

32

Appendix D

Figure 10: Confidence interval width in the estimated effects of X1, X2, X3,
X4 for different imputation methods under MAR and MCAR missingness
mechanisms with three missingness proportions.

33

