
Utrecht University

Fraudulent financial activity: graph analysis for fraud

detection

Master Thesis

Piotr Stachyra

4889509

Under the supervision of Prof. Ioana Karnstedt-Hulpus and Vahid Shahrivari

Project’s repository: https://github.com/p-stachyra/fraud detection

Utrecht, July 2022



Abstract

This thesis aims to answer the question if graph-based methods can be employed

on available financial datasets with the purpose of detecting illicit financial activi-

ties. The data was gathered from three separate data sets – one being a synthetic

PaySim dataset, the second one provided by Vesta in cooperation with the Insti-

tute of Electrical and Electronics Engineers (IEEE) and the third one related to

Bitcoin transactions. In all cases, exploratory analysis is applied to attempt to

gain an initial overview of the data sets and presumably to identify certain charac-

teristics which can serve to find additional methods for fraud detection. The data

are analyzed using graph-based approaches which allows for retrieving centrality

metrics for different classes of nodes indicating if they are involved in fraudulent

activity or not. The outcomes were examined using goodness of fit analysis and

descriptive statistics measures to determine if there are differences between groups

of observations. At a general level of metrics distribution in different observa-

tion classes, Mann-Whitney U test was employed. Finally, Louvain modularity

was used to gather information regarding dense communities which can constitute

fraud rings. The results of this study suggest that some of the methods presented

in this paper can be useful, however, precise, non-anonymized data must be pro-

vided to prove their efficacy. In all our experiments, the centrality metrics did not

perform well for predicting fraud. Without additional information on the entity

making a transaction it is not possible to flag potentially suspicious nodes accu-

rately.

Keywords: financial network, fraud detection, graph properties, centrality, graph

theory.
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1 Introduction

Financial fraud is a wide-spread problem which generates costs of approximately

6% of GDP for countries such as Great Britain [1]. Novel techniques for fraud de-

tection are needed, not only to improve performance of the flagging mechanisms,

but also due to the fact that perpetrators attempt to evade detection using increas-

ingly sophisticated methods. One possible solution is to use graphs which can be a

reasonable alternative for a tabular data format. Graphs can tackle the problem of

numerous relationships and interconnections between financial accounts and can

lead to discovering patterns that are difficult to spot using other approaches. They

can help identify fraud rings and other graph-related structures which are involved

in fraudulent activities [2].

Such innovations and further exploration are necessary, as many anti-fraud sys-

tems are still based on thresholds and more sophisticated methods are needed to

detect illicit financial activities effectively [3]. Considering these new possibili-

ties, it is important to emphasize that a graph-based inferential study can provide

useful insights about the significance of graph metrics, however, their further use

in applications for fraud detection must be evaluated based on some appropri-

ate performance measure. For instance, despite obtaining a relatively good recall

score, the precision might be unsatisfactory, leading to flagging many legitimate

transactions and generating additional expenses of a detailed evaluation [4]. These

issues must be studied in further stages of developing the novel techniques based

on additional graph metrics and among various models.

This research aims to answer the question if fraudulent transactions’ characteris-

tics differ from non-fraudulent transactions in terms of graph metrics. The analysis

presented in this paper is de facto an exploratory process which is focused on in-

ference.
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2 Data

One of the biggest challenges for this thesis project was the lack of non-anonymized

real-world datasets. Due to privacy issues, such datasets cannot be shared publicly.

This led to conducting an analysis of datasets which are freely available on Kaggle,

but each of them had its own limitations. Finally, three data sets were analyzed

in this project.

PaySim data set

The first one is PaySim data set, which aims to address the issue of a limited

number of publicly available financial transactions’ data sets. It is a synthetic data

set which was generated using PaySim data simulator of mobile transactions using

agent-based modeling. The generative process was implemented using a sample

of real-world transaction logs produced by assets from a particular region, which

precise location was not disclosed [3]. Due to inconsistencies and synthetic nature

of the data set it serves as a starting point of the analysis, mostly to determine

what are the characteristics of an artificial data set.

IEEE-CIS Fraud Detection data set

The second one is the IEEE-CIS Fraud Detection data set, and it was published by

IEEE Computational Intelligence Society (IEEE-CIS) on Kaggle, in cooperation

with Vesta – a company which provided the data set. At the time of writing this

thesis, it is used for a competition which aims to improve the current techniques

for fraud detection [5]. It is suitable for tabular analysis, as it is record-oriented,

providing various details on the transactions. The data were anonymized so that

the identity of the entities cannot be restored. This is the biggest obstacle for the
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process of extracting nodes, however, it can be overcome using another approach.

The analysis was performed on the training set, due to obvious reason of the

presence of labels for each transaction. The training set was split into two files:

one named train identity.csv and the other train transaction.csv.

Elliptic data set

The last one is the Elliptic data set. It maps Bitcoin transactions to entities be-

longing to licit categories characterized by activity such as exchanges, providing

wallets, mining, licit services, etc. and those which belong to illicit ones involved

in an activity such as scams, malware propagation, terrorist organizations, ran-

somware groups, Ponzi schemes, etc. Elliptic data set represents a transactions’

graph, and the data were collected from a Bitcoin blockchain [6].

2.1 Data exploration

As the data sets were provided in comma-separated values format (CSV), the data

exploration process was performed using relational approaches. Characteristics

such as the number of nodes, number of edges, the number of missing values,

the range of time steps, the number of values in each of the transaction categories

related to fraud and other details were studied prior to data preparation. Obtaining

this information allows for proposing a coherent plan for creating a graph database

and focuses the analysis on meaningful attributes.
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2.1.1 Exploratory analysis of the PaySim data set

PaySim simulator was used to generate a relatively big data set and it consists of

transaction-oriented records. The data set is available on Kaggle [7]. It contains

6,362,620 rows and 11 attributes. These 11 features correspond to: the time step

(step), the type of financial activity (type), the amount (amount), the source ac-

count’s signature (nameOrig), the balance for the source account before the trans-

action (oldbalanceOrg), the balance for the source account after the transaction

(newbalanceOrg), the destination account’s signature (nameDest), the balance for

the destination account before the transaction (oldbalanceDest), the balance for

the destination account after the transaction (newbalanceDest), an attribute for

indicating if the transaction was fraudulent (isFraud) and if it was flagged as fraud-

ulent one (isFlaggedFraud). The records correspond to the transactions recorded

for a time period of 744 hours, or approximately 31 days [7]. As it is a synthetic

data set, the records were populated with the data in such a way that there are

no missing values in any of the attributes.

The graph structure of the PaySim dataset

One of the most important aspects of further graph analysis are vertices. In case

of this data set no entity signatures for the nodes’ IDs had to be extracted, as

the CSV file contained an edge-list. Although, despite availability of the data on

nodes and relationships between them, it did not ensure efficiency and suitability

of a graph analysis for financial flow among nodes in a financial network.

Suppose that the records are unique transactions, made by unique entities which do

not appear more than one time for the recorded time period. If that was the case,

the data set contained 2n nodes, where n represents the number of rows. That

would be 12,725,240 unique nodes in total, constituting a bipartite graph with
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source accounts set and destination accounts set both of a cardinality 6,362,620.

From the perspective of graph analysis for fraudulent activity, if the financial flow

was recorded only between pairs of nodes from two separate, homogeneous sets

and the directed graph contained 6,362,620 weakly connected components, that

would be a highly unwanted case. It would make nearly all of graph’s properties

meaningless from the perspective of this research, as they would be record-specific

and they would show no general pattern across the entire network. Fortunately, in

the case of the PaySim data set, the records contain duplicates for entities which

interacted with the others, which allows for examining the financial flow and for

obtaining meaningful properties of groups of nodes actively managing their funds.

The actual number of nodes is 9,073,900 and the number of edges is equal to the

number of records in the CSV file paysim dataset.csv : 6,362,620. There are two

categories of transactions encoded in a binary format – 1 for fraudulent transac-

tions and 0 for non-fraudulent transactions. There are 6,354,407 non-fraudulent

ones and 8213 fraudulent ones, constituting approximately 0.0013 of the number

of all records in the data set.

One of the interesting aspects to focus on could be the amounts transferred. The

maximum value for amounts is 92,445,516.64, the recorded minimum is 0, the

mean and median are 179,861.9 and 74,871.9 respectively, the standard deviation

is 603,858.23. Therefore, we can conclude that the distribution of the amounts in

the data set is positively skewed, with quite a considerable spread of the values.

These measures are listed in Table 1.
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Table 1: Descriptive statistics for the PaySim data set amounts’ distribution.

measure value
minimum 0.0
maximum 92,445,516.64

mean 179,861.9
median 74,871.9

standard deviation 603,858.23

Considering these characteristics, the data set was split on the threshold of 5,000,000,

which resulted in more than 6,300,000 records below that amount and just 11,515

records above or equal to it. Based on this finding, we can plot a histogram for the

group below that threshold, so that we can see a general shape of the distribution

for the majority group, constituting more than 99% of the records. Obviously, if

we plotted the histogram including the high-amounts group, it would have a long

tail reaching up to 92,445,516.64 with very low frequencies for these observations.

Such a focus at the majority group stands as an alternative to a log-log plot which

may lead to an incorrect interpretation of the pattern. The histogram is shown in

Figure 1.
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Figure 1: The distribution of the PaySim data set amount below
5,000,000.

A histogram showing the distribution of amounts for a group of observations which trans-
ferred less than 5,000,000. Such a stochastic approach can lead to filtering a majority
group, tacking the problem of a highly-skewed distribution and a long tail of the outliers.
In this plot, it is quite evident that most entities manage funds of less than 1 million in
this financial network.

Another interesting aspect of this data set is to study the amount characteristics in

different financial activity categories (payments, transfers, cash-outs, debits, cash-

in). PAYMENT and DEBIT categories contain observations with the smallest

interquartile ranges (IQR) compared to other activity types. There are similar

distributions of amounts for CASH OUT and CASH IN categories and the biggest

spread of values was noted for observations from TRANSFER category. Boxplots

for these categories are shown in Figure 2.
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Figure 2: Boxplots for amounts in different categories.

The boxplots show the details for the distributions among different financial activity cate-
gories. It is quite evident that whereas PAYMENT and DEBIT observations are character-
ized by small amounts, TRANSFER records have a wide range of amounts with the upper
boundary of more than 2 million. CASH IN and CASH OUT have similar distributions for
the amounts which seem quite consistent.

Fraudulent transactions and amounts transferred

When boxplots are created for the amounts of fraudulent and non-fraudulent ac-

tivities, the distributions seem unalike when the outliers exceeding the boxplot’s

upper boundary value are not plotted. This is shown in Figure 3.
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Figure 3: The distributions of amounts in non-fraud versus fraud
categories.

Not plotting fliers in boxplots can lead to a wrong assumption on significantly different
distributions for fraud and non-fraud categories.

Such a visualization indicates that non-fraudulent transactions have a much smaller

range of amounts and that values exceeding the limit of 500,000 can be flagged

as fraud. Nota bene, according to the obtained boxplots, it is approximately the

median of the amounts related to fraudulent activity. Plotting fliers, however, it

is quite evident that whereas fraudulent activity contains outliers exceeding the

upper boundary of the IQR, they are located within a range of around 3,500,000

to 10,000,000. A plot which includes the fliers is presented in Figure 4.
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Figure 4: The distributions of amounts in non-fraud versus fraud
categories with outliers.

The fliers plotted for these boxplots show that practically, it would be almost impossible to
flag potential fraudulent transactions based on a simple mechanism relying on an amount-
based filter.

As seen in Figure 4, the non-fraudulent activity is characterized by many more

outliers with a much greater spread for their values. In order to obtain the exact

number of records which can be considered outliers, an interquartile range can be

used again. It is because normalization such as Z-score normalization and labeling

values located 3 standard deviations from the mean as anomalies is an established

technique in case of normally distributed values, when 68%, 95%, 99.7% of the

data lay respectively within a range of 1, 2 and 3 standard deviations from the

mean [8]. In case of this attribute’s values, such a pattern would not be found,

therefore a method which does not require these assumptions is needed. Just as

with the visualizations presented before, one possible solution is to use a boxplot

technique proposed by Tukey in 1977, which can be applied to data of skewed

distributions. It utilizes the concept of interquartile range (IQR) and fences or
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upper and lower boundaries which reach the distance of 1.5 IQR below the first

quartile (Q1) and 1.5 IQR above the third quartile (Q3) [8]. The interquartile

range (IQR) can be computed using the following formula (Equation 1).

IQR = Q3 – Q1 (1)

Where Q3 is the third quartile and Q1 is the first quartile. The lower boundary

(L) can be obtained subtracting the IQR value multiplied by 1.5 from the Q1 value

(Equation 2) and the upper boundary (U) by adding the IQR value multiplied by

1.5 to the Q3 value (Equation 3).

L = Q1 – 1.5 × IQR (2)

U = Q3 + 1.5 × IQR (3)

In the context of the entire data set, there are 338,078 observations which are

anomalies located above the upper boundary and 0 observations laying below the

lower boundary. For the fraudulent activity this is 998 observations and for non-

fraudulent activity: 335,347 observations. Fraudulent activity was recorded for

TRANSFER and CASH OUT types of transactions, with 4097 and 4116 observa-

tions of illicit characteristic respectively. The other categories did not contain any

fraudulent actions. These findings are presented in Table 2.
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Table 2: Fraudulent and non-fraudulent transactions in each financial activity
category.

type isFraud count
CASH IN 0 1399284
CASH OUT 0 2233384
CASH OUT 1 4116
DEBIT 0 41432
PAYMENT 0 2151495
TRANSFER 0 528812
TRANSFER 1 4097

An interesting facet would be to discover that fraudulent activity is character-

ized by some temporal pattern. Unfortunately, the analysis of fraudulent activity

throughout time cannot confirm the existence of any particular pattern which

could lead to conclusions that in the context of the entire data set, the temporal

component is significant factor in terms of further analysis. It is shown in Figure

5.
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Figure 5: The number of fraudulent activities in each time step.

The visualization of the number of fraudulent activities in each time step does not prove that
any temporal pattern exist for the illicit activity. Mean and median number of fraudulent
activity are plotted as red and dashed blue vertical lines respectively.

The key findings of the exploratory analysis are that it is possible to create a graph

which can show financial flow among different vertices and which would contain

over 9 million nodes and 6 million relationships. The data set is imbalanced and

contains less than 1% of observations classified as an illicit financial activity. The

amounts managed by entities constitute a highly positively skewed distribution

of observations and at a statistical level it is possible to distinguish certain pat-

terns among fraudulent and non-fraudulent distributions. The median amount for

fraudulent transactions was 441,423.44 and for non-fraudulent activity: 74,684.72.

Nevertheless, the number of outliers makes it quite difficult to detect fraud from a

practical perspective, as among 338,078 anomalies, 998 were fraudulent. An illicit
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activity was detected in TRANSFER and CASH-OUT categories, whereas other

categories contained observations of lawful activities only.

Limitations

The further data analysis of the PaySim data set was focused on a limited number

of records, due to issues related to the amount of random-access memory (RAM)

required to perform computations on the entire graph which would include all

timesteps. Therefore, the graph creation was based on a sample of the data set for

time steps from 1 to 3 inclusively. Based on the results obtained in the exploratory

analysis, the sample can be considered representative for the whole data set. The

fraction of fraudulent transactions in the original data set was 0.0013, in case of

the sample of time steps 1-3 it is 0.0066. The distributions of the amounts for

financial activity are highly positively skewed for both data sets. It is shown in

Figure 6 and can be compared for the sample distributions in Figure 7.
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Figure 6: The distribution of amounts for the entire data set in non-fraudulent
and fraudulent class.

(a) Amounts: non-fraudulent class (b) Amounts: fraudulent class

Both classes are characterized by positively-skewed distributions. The fraudulent class distribution contains an
anomaly at the end of the distribution’s tail with more than 300 activities for amounts greater than 10 million.
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Figure 7: The distribution of amounts for the sample of time steps from 1 to 3 in
non-fraudulent and fraudulent class.

(a) Amounts: non-fraudulent class (b) Amounts: fraudulent class

Just as in Figure 6, both classes are characterized by positively-skewed distributions. Again, for the fraudulent
class of observations, the end of the distribution’s tail contains higher number of activities for the amounts of
more than 1 million.

Moreover, the fraudulent activity was related to the same activity categories in

both time periods. This can be seen comparing the entries in Table 3 for the

entire data set with the records of Table 4.
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Table 3: Illicit and lawful financial activity in each category - the entire data set.

type isFraud count

CASH IN 0 1399284
CASH OUT 0 2233384
CASH OUT 1 4116
DEBIT 0 41432
PAYMENT 0 2151495
TRANSFER 0 528812
TRANSFER 1 4097

Fraud was present only in CASH OUT and TRANSFER categories. For the CASH OUT it constituted less than
0.2% of operations and for the transfers, less than 0.8%.

Table 4: Illicit and lawful financial activity in each category - the sample of time
steps from 1 to 3.

type isFraud count

CASH IN 0 854
CASH OUT 0 529
CASH OUT 1 15
DEBIT 0 244
PAYMENT 0 2240
TRANSFER 0 379
TRANSFER 1 13

Similarly to Table 3, fraud was detected only in CASH OUT and TRANSFER categories. For the CASH OUT
it constituted less than 3% of operations and for the transfers, about 3.3%.

Considering these aspects, it is acceptable to study PaySim data set from the

perspective of the selected sample. The graph of that sample consists of 6876

nodes and 4274 arcs.
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2.1.2 Exploratory analysis of the IEEE-CIS data set

Just as mentioned before, the data set is split into two files. One corresponds to

the records related to transactions features – such as transaction ID, information

about the device used for making a transaction and numerous other attributes

for which no description was provided and which were anonymized. The data

frame of that CSV file contains 144,233 records and 41 columns. The other CSV

file contains data on the transactions themselves such as the amount, label - if the

transaction is fraudulent or not, the time step, card information, asset information

and payment service type. Obviously, sensitive information such as card details or

addresses were anonymized. It contains 590,540 rows and 394 columns. Most of

the attributes in the data set had to be discarded, as no descriptions were provided

for most of them. The dataset contained many missing values, especially for the

transaction identity data frame. It is shown in Figure 8.
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Figure 8: The percentages of missing values in attributes of trans-
action identities CSV file.

The plot shown that data missingness in transaction identities data set can be a potential
problem for including some of the identity attributes. For nine of them, the missingness
achieves the level of more than 90% and for ten of them - more than 40%.

In the case of another data frame related to the transaction data, there were fewer

missing values, however, among attributes which constitute a considerable part of

the data set. In result, potential problems for entity reconstruction in the process

of graph preparation may occur. This is shown in Figure 9.
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Figure 9: The number of missing values in attributes of transac-
tion data CSV file.

Again, some attributes contain more than 60% of missing values, however, despite the
concerning missingness among three variables, in case of this data frame, the quality of the
data set in terms of missing values, can be considered somehow better than for the data
frame referred in Figure 8.

Considering the issue of missingness presented in Figures 8 and 9, a solution avoid-

ing imputation was chosen. It is because the most important factor of this data

set’s analysis is retrieving nodes’ signatures in order to construct the financial

graph. Moreover, most attributes do not contain descriptions which could lead to

meaningful inferential analysis results. The data set was narrowed to the follow-

ing attributes, with all records containing missing values being dropped. For the

transaction data these were: TransactionID, isFraud, TransactionDT, Transac-

tionAmt, ProductCD, card1, card2, card3, card4, card5, card6, addr1, addr2, dist1,

dist2, P emaildomain, R emaildomain and for transaction identities the selected
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columns were: TransactionID, DeviceType, DeviceInfo.

Table 5 presents fraudulent and non-fraudulent transactions distributions in Pro-

ductCD attribute. It represents financial service types. Table 6 shows the same

determinants, but for the DeviceType attribute.

Table 5: Fraudulent and non-fraudulent financial activity for different financial
service types.

ProductCD isFraud count

C 0 54552
C 1 7640
H 0 31337
H 1 1571
R 0 36125
R 1 1423
S 0 10901
S 1 684

The data set contains 4 categories of products (C, H, R, S) which can refer to a financial service and not to a
purchased product or service. More specifics were not disclosed. As seen in this table, the product category C was
characterized by the biggest ratio of fraudulent transactions which constituted more than 12% of all transactions
for this service type. Further conclusions could be formed if more details were available on these categories.

Table 6: Fraudulent and non-fraudulent financial activity for desktop and mobile
devices.

DeviceType isFraud count

desktop 0 79611
desktop 1 5554
mobile 0 49988
mobile 1 5657

For the transactions made via desktop devices the fraudulent ones constituted 6.52% of them, whereas in the case
of mobile devices this was more than 10% of transactions.
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The distribution of amounts for fraudulent and non-fraudulent transactions were

the same, thus no assumptions about thresholds could be made. This is shown in

Figure 10.

Figure 10: The distribution of amount for licit and illicit financial
activities.

No amount-threshold can be set to differentiate between potential fraudulent and non-
fraudulent transactions.

2.1.3 Exploratory analysis of the Elliptic data set

The data set contains 203,769 nodes and 234,355 edges. It was recorded in the

range of 49 time steps and between each evenly spaced time step there is an interval

of around 2 weeks. The whole data set is split into three files: one for an edge list,

one for classes of each transaction, and one for transactions and the time step they

belong. Additionally, in the last file, there are 162 numeric attributes, however, due

to intellectual property issues, their descriptions could not be provided, therefore

there is little use for them in the further inferential analysis [6]. It is worth noting

that in fact the data set holds 49 directed graphs. This is because, if initially
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a network is constructed from the transaction of all the time steps, there are 49

weakly connected components – each corresponding to its time step. In such a

context, the giant component consists of the transactions from the first time step

and it contains 7880 nodes. The smallest one is from the time step 27 and contains

1089 nodes. The graph sizes for each time step are shown in Figure 11.

Figure 11: The sizes of the financial network in different time
steps.

The graph contained the most nodes and therefore, the activity was the greatest in the
first time step.
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There are three transaction classes: unknown, licit and illicit. Their shares in the

data set are 77.2%, 20.6%, 2.2% respectively. They are presented in Figure 12.

Figure 12: The distribution of transaction classes.

The majority group for transaction classes is the unknown class, which can lead to potential
problems due to lack of interpretability for these records.

The biggest number of fraudulent transactions was recorded at the 32nd timestep

with 342 illicit transactions which constituted approximately 7.5% of all transac-

tions for that time step. Considering that the component, or rather the graph,

contained 3306 nodes at that time step, fraudulent transactions constituted ap-
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proximately 10% of all transactions during that period. The ratio of fraudulent

transactions to all transactions for each time period is shown in Figure 13.

Figure 13: The ratio of the number of fraudulent transactions to
the number of all transactions throughout time.

As seen in the figure, the biggest ratio of fraudulent transactions to all transactions was
recorded for the time step number 32.

From the standard perspective of data set cleanness, it could be considered clean.

There are no empty records, containing N/A or NaN values. Although, the issue

is quite subtle and for the purpose of further analysis – mostly not to interfere
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with the graph creation process – it will be neglected. That issue is the presence

of transaction entities labeled as unknown, which as mentioned before, constitute

approximately 80% of the data set. The other attributes do not contain missing

or undefined values.

2.2 Financial graph preparation

The data were prepared in such a way to be suitable for further steps of the

analysis – employing usage of graphs for each of the data sets considered in this

study. The data stored in tabular format in CSV files were preprocessed and stored

in Neo4j graph databases. Neo4j is a NoSQL database which stores the data of

nodes and edges. It was written in Java and Scala and provides ACID-compliant,

transactional standard of the database [9]. Before creating a graph database, the

data had to be prepared in such a way that the nodes and their properties are

organized within one CSV file and the edges and their attributes in another one.

Following points present the data preparation process for splitting values related

to nodes and edges before populating the database with them:

1. Extract unique nodes from the data set and assign attributes to them

2. Prepare an edge list and attributes which will be assigned to the edges

3. Save the data on nodes to a CSV file: node ID, node label and its other

attributes.

4. Save the data on edges and their attributes to a CSV file: the source node

ID, other edge attributes, the destination node ID, the type of relationship.

5. Save headers for these data sets in separate CSV files.
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A correct format for the nodes header CSV file are the following attributes: id:ID,

other attributes, label:LABEL. A correct format for edges header CSV file is as

follows: :START ID, other attributes, :END ID, :TYPE. Each attribute name in

the header file is separated from its declared data type with a colon, thus if cost

attribute is provided for a relationship, it can be represented as cost:int if it is of

integer type.

The resulting CSV files can then be used to create a graph in Neo4j using admin

import – a tool which can be used for loading large amounts of data from CSV files

into an unused non-existing database [10]. Upon successful import, the database

can be used to perform computation on the graph as soon as it is started. The

DBMS uses bolt protocol, a lightweight protocol used for databases, which by

default operates on the port number 7687 [11].

Further analysis is based on the graph analysis methods and it is supported by the

relational approach using the original CSV data sets’ files. Moreover, as a form of

an alternative, for some computations, not only Neo4j graphs, but also Networkx

graphs were used. Networkx is a Python library for creation, manipulation, and

study of graphs [12].

2.2.1 The PaySim data set graph

As it was described before, the data set is suitable for graph analysis, however, only

a sample of the entire data set could be considered. A class attribute indicating

if a node was involved in fraudulent activity had to be assigned to each vertex,

as the analysis of centrality metrics employed studying the characteristics of two

distinctive sets of nodes: fraudulent versus non-fraudulent ones. Figures presented

below show the organization of CSV files which were used to import the data to

Neo4j database. After successful import of the data, the graph consisted of 6876
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nodes and 4274 relationships. A visualization of 1000 nodes for this network is

shown in Figure 14.

Figure 14: A visualization of 1000 nodes and their edges of the
PaySim graph.

As seen in the figure, the graph for PaySim data set is relatively sparse. There are numerous
individual interactions between two nodes and a few structures of nodes having high in-
degree score with their neighbours having just one out-going edge.
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2.2.2 The IEEE-CIS data set graph

Reconstructing nodes

The IEEE-CIS data set was prepared in such a way to allow for a tabular analysis,

however, it is not straightforwardly suitable for a graph analysis. The key issue

was that there were no data allowing for recreation of an edge list representing

transaction flow in the financial network. Each row contains data on entities

making transactions and on features related to the transactions themselves. The

first step of data preparation so that it can be analyzed from a financial graph’s

perspective, was to attempt to reconstruct unique entities, so that source nodes

can be obtained. It was performed using customer’s card attributes placed in the

data set’s columns card1, card2, card3, card4, card5, card6. These are features

which correspond to the customer’s details on their payment cards. They can

be considered to be precise enough to reconstruct particular entities, at the same

time keeping an anonymous format. Values from these six attributes allowed for

retrieving 8404 unique account signatures. They were treated as nodes representing

entities making transactions.

Representing the data as customer-product bipartite graph

Another fundamental issue not allowing for an unchallenging shift from tabular

data analysis to graph analysis was the lack of destination nodes for the trans-

actions. One of the possible ideas was to use a bipartite graph, containing two

disjoint, but internally homogeneous node set, as usually represented in customer-

merchant financial networks [13]. In this case, the customers would constitute the

nodes, whose signatures were obtained in the previous step, and the merchants,

due to a lack of destination account characteristics, would be replaced with a type

of product or service which was purchased by the customer. This approach allows
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for identifying odd transactions, which edges lead to completely different products

or services’ category and can be flagged immediately. However, later it became

clear that the products in the data refer to financial services, and not to goods or

services that were paid for through the corresponding transactions. Having just

five transaction categories as a service feature did not introduce relevant depen-

dencies among vertices for the purpose of graph creation.

Representing the data as customer-device bipartite graph

An alternative idea was to map individual accounts to devices they use. Such

a solution mimics a technique which could be implemented if sensitive details

were provided – such as physical device addresses (MAC) or Internet Protocol

(IP) addresses related to the activity of the customers. In this case the feature

of interest was an attribute DeviceInfo which provided certain details regarding

the system which was used to make a transaction. This way, a bipartite graph

represents customer-device relationship. If a customer uses a device frequently,

it can be considered a trusted device, however, in case some transactions are

performed from a rarely used device, from which only one or few transactions were

made, the activity can be flagged as suspicious – indicating a potential fraud. A

similar method regarding the devices was introduced by Google a few years ago

to protect its users. Google services’ authentication mechanism requires an extra

step constituting a two-factor authentication mechanism upon a logon from a new

device. It is expected from the user to accept a notification on their mobile in

case a user logs in from an unknown device in order to prevent the attackers from

performing a successful account hijacking [14].

The Figure 15 represents two relationships of a user and the devices they used

for making transactions. One relationship has a weight assigned of a value 10

indicating a strong relationship – most probably that would be their primary
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device. The second edge has a weight of 1, indicating a weak relationship and

possibly fraudulent activity from a system controlled by criminals.

Figure 15: A conceptual interaction of a user and the devices they
use for financial transactions.

An example graph consisting of three heterogeneous nodes among which two belong to
devices set of nodes and one represents a user node type. The edges are interactions
between the user and the devices. Potentially, a suspicious interaction would constitute an
outlier with a low weight indicating an infrequent use of a device.

This approach assumes an illicit activity originating from devices of different char-

acteristics, thus it does not address the issue of a full compromise of a trusted

device and transferring the money from the hijacked node. Although, from the

customer’s perspective such a scenario is quite unlikely, as using a banking appli-

cation or accessing banking services through a browser usually requires a graphical

user interface (GUI) session with the attacked device. Such a functionality can be

granted by tools allowing to establish a connection to the hijacked device using

remote desktop protocol (RDP) or other protocols offering GUI connection. De-

spite being quite unchallenging to use, logging using RDP requires obtaining user

credentials to the system first and it logs out a user which actively operates on
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the system during the attack, thus it may lead to suspicions [15]. Moreover, the

attackers usually use spoofing or impersonation techniques stealing user’s banking

credentials and attempting to log in using a device already controlled by them.

Extorting sensitive data is based on social engineering attacks and can be consid-

ered less challenging than jailbreaking the device and gaining an administrative

access to it. Nota bene, many banking apps do not detect jailbreaking leaving

the users exposed to possible interference with the app’s functionality – especially

when the device is easy to root due to availability of exploits allowing for privilege

escalation [16].

Limitations of the IEEE-CIS data set

Despite many existing possibilities for anomaly detection mechanisms, the data

set does not provide meaningful features allowing for practical reconstruction of

individual devices, therefore the database instance created for this particular anal-

ysis simulates a general situation in which it is possible to map customers to the

devices they use for financial transactions. An attempt to reconstruct nodes us-

ing other features of df train identity.csv dataset (id 01 to id 38 ) produces too

distinctive values, indicating two possibilities. The first one is that the features

assigned to each device involved in the transaction are very detailed and do not

allow for narrowing the size of the set to a significantly smaller number of devices

which could allow for spotting a pattern among users and devices. The second

one is that the time range was too short and just few devices in the dataset are

duplicates. Therefore, it is a problem of too distinctive device signature which in

practice leads to a conclusion that in fact most of the devices in the data set are

unique. In such a case, further analysis would be senseless, as barely any trusted

devices could be discovered. In result, only the attribute DeviceInfo is considered.

It is worth noting that its values are in fact quite noisy, containing agent informa-
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tion scraped from User-Agent headers. An example of such a header can look as

follows: Mozilla/5.0 (iPhone; CPU iPhone OS 13 5 1 like Mac OS X) AppleWe-

bKit/605.1.15 (KHTML, like Gecko) Version/13.1.1 Mobile/15E148 Safari/604.1

[17]. If the generation of the data set implemented some String pattern matching,

noisy values are inevitable. In fact, additional information on device connection

allows for retrieving a more precise device identity, thus noise can be considered

helpful in this situation – for instance combining information on the operating sys-

tem used with the version of the browser. Still, it only provides general overview of

the software characteristics and does not allow for extracting unique device iden-

tity in a reliable way.

Building a graph database for the IEEE-CIS data set

Four CSV file were prepared to load the data into Neo4j database, similarly as

in case of PaySim database two CSV header files for nodes and edges data and

two CSV files containing the data for nodes and edges. A visualization of 100

relationships in the constructed graph is shown in Figure 16.
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Figure 16: A visualization of IEEE-CIS graph structure for a sam-
ple of 100 relationships.

The nodes shown in blue are device nodes – upper one being Windows OS, bottom one
representing a categorical data related to one of Android builds. The pink nodes are
financial account nodes and they are connected to devices by weighted arcs.

2.2.3 The Elliptic data set graph

Considering that the data set is very clean, the only operations at the initial phase

of data preparation were to discard all of the uninterpretable attributes and to

replace unknown values in the transaction class attribute with numeric 3. There-

after, the data set contained three classes with the following values: 1, 2 and 3,

representing illicit, licit, and unknown transaction entities respectively. Following
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that operation, the data type for the class value was optimized, converting the

data type of the array’s elements to 8-bit unsigned integers. The data set con-

tained initially three files: one containing data of nodes and their features, another

with an edge list and the third one with classes of nodes in the graph. A module

responsible for preparing new CSV files which will be used to populate the graph

database with data, was written in such a way to allow for extracting nodes, edges

and their properties only for a specified time step. Such an approach allows for

quick creation of a new database containing a weakly connected graph from a par-

ticular time step. This functionality was merged with the ability to quickly build

a base for constructing a disconnected graph, however, one that contains the data

from all the recorded time steps. A sample considered in the further parts of the

analysis was the data from the first time step. A visualization of 1000 nodes for

this graph is shown in Figure 17.
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Figure 17: A visualization of Elliptic graph structure for a sample
of 1000 nodes.

Compared to the PaySim data set graph, this network is denser. The financial flow is
characterized by many interconnections between various graph’s partitions.

3 Methods

3.1 Graph’s large-scale structure

The methods employed in this research are mostly graph-oriented. The large-scale

structure of the network is studied in terms of the following characteristics: the

type of the graph – if it is a directed or undirected one, a number of nodes, a number
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of edges, node’s mean degree, a fraction of the size of the largest component to the

size of the entire graph, a mean of the shortest paths, an exponent of a power law

for its degree distribution, and a mean clustering coefficient. Having the number of

nodes and the number of edges, a mean degree of nodes can be computed (Equation

4).

c =
2m

n
(4)

Where m is the number of edges and n is the number of nodes. Moreover, it is

possible to compute the density, also known as connectance (Equation 5).

ρ =
m(
n
2

) =
2m

n (n− 1)
=

c

n− 1
(5)

Where m is the number of edges, n is the number of nodes and c is the mean

degree. The maximum number of possible edges in a graph is 1
2
n(n − 1), so the

density of a graph indicates a fraction of existing edges to all possible edges. A

graph in which ρ −→ 0 is sparse [18].

Directed graphs have strongly and weakly connected components. A strongly

connected component is a part of a directed graph in which for each pair of vertices

u and v, there is a path from u to v and from v to u [19]. In case of a directed graph,

a weakly connected component is a concept close to weakly connected components

in a undirected graphs. It is such a part of a graph in which a set of nodes is

considered connected when for each pair of nodes u and v, there is a directed

path either from u to v or from v to u. Usually, in directed networks, the largest

component corresponds to a relatively big weakly connected component [18].

A fraction of the number nodes in the largest component to the number of nodes in
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the entire graph will serve as a metric for assessing how well connected its structure

is.

The clustering coefficient quantifies the number of triangles in a network and can

be especially important when studying a social network. The mean clustering

coefficient is a probability that two neighbor of a certain node are also neighbors

themselves. In social networks, such a situation is called a closed triad and to

compute the clustering coefficient, the number of closed paths of length of 2 is

divided by the number of all paths of length of 2 [18]. In the Equation 6, ncp

corresponds to the number of closed paths of length 2 and nap to all paths of

length 2.

C =
ncp

nap

(6)

In the context of this study, that would mean that for instance a payee v of an

entity u interacts with another payee w of the same entity u. In case one of

them is involved in illicit activity, the whole triad can be flagged as suspicious. In

Neo4j it is not possible to compute clustering coefficient for a directed network,

thus the assumption is that entities, when interacting in a directional way, have

an undirected relationship related for instance to their common interests which

cannot be expressed in a form of directed paths in a financial graph. The global

clustering coefficient is estimated from local clustering coefficient scores for nodes

using mean, a graph has to be projected to an undirected structure upon the start

of computations [20].

These properties allow for gaining an overview of the large-scale structure of the

graph analyzed and can lead to certain conclusions on similarities between cases

analyzed and specific cases of graphs studied in other research projects. It is ad-
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ditional information which can help making general assumptions about the char-

acteristics of a graph. They can be compared based on a summary of the char-

acteristics of different networks: biological, social, information and technological

ones [18]. Perhaps financial networks can be found to have common values of some

metrics with specific instances of these graphs.

3.2 Centrality

Nodes’ centrality metrics used in this analysis include degree, PageRank, closeness,

betweenness and HITS. Each of them produces a centrality metric emphasizing dif-

ferent aspects of the position of a vertex in the graph.

The degree is the simplest centrality metric which is the number of edges connected

to a vertex. In case of a directed network, there is an in-degree and out-degree

for each node. In case of financial networks, the in-degree corresponds to financial

interactions of other nodes with a node u and the out-degree to financial interac-

tions of a node u with other entities.

3.2.1 PageRank

PageRank was invented by a group of employees of Google as a metric allowing for

estimating an importance of web pages. In general, PageRank algorithm uses a

concept of a random surfer who follows the links embedded in web pages. Each web

page is assigned a real number and the higher it is, the more important a page is. A

random surfer traverses the graph visiting the pages at out-going links from pages

it visited. By applying an iterative approach to this problem, it visits certain pages

more frequently than others due to how the out-going links guide it, incrementing

the assigned real number score for the pages visited. The problem of disconnected
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components was solved by introducing a parameter for switching position in the

network at random, which allows the random surfer to be located in disconnected

components despite the lack of out-going links leading to these components [21].

For a financial graph, a high PageRank score for a certain node suggests, that it

is an important asset from a perspective of financial flow, as interactions among

nodes at some point of making transactions or performing other activity related

to finances, lead to that specific node.

3.2.2 Closeness

Closeness is a measure of centrality which tells what the mean distance from a

node to other nodes is. For financial transactions, it can tell how far from most

entities vertices which are known to be involved in the illicit activity are located.

3.2.3 Betweeness

Betweenness is another centrality measure which captures the extent to which a

node lies on paths between other vertices [18]. It can help detecting bridges which

connect parts of graphs and are important for instance in some of technological

networks, such as the Internet, in which connectivity must be maintained at all

times.

3.2.4 HITS

HITS centrality metric has its name derived from hyperlink-induced topic search

centrality algorithm. It assigns two scores for a node – hub and authority cen-

trality scores. The former one indicates to how many nodes with high authority
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centrality a node points to, whereas the latter one to how many nodes with high

hub centrality a node is related to [18]. HITS has a recursive definition for un-

derstanding the centrality of a node in which one can conclude that an entity is

an apparent hub if it points to apparent authorities and it is clearly an authority

if it points to apparent hubs [21]. In case of financial networks, such a centrality

metric can be helpful in terms of understanding the hierarchy of entities and to

search for fraudulent nodes for the perspective of that hierarchy.

The results of centrality metrics computation, which are listed in section 4. Ex-

plorative Analysis of the Financial Networks, are evaluated using a goodness of fit

analysis by plotting the distributions for licit versus illicit vertices classes.

Mann-Whitney U test

For the centrality scores, a non-parametric method for comparing samples’ popula-

tions is used. Since the distributions are highly skewed for all metrics, parametric

methods such as t-test, Z-test or F-test could not be implemented. The remedy to

this problem is use of Mann-Whitney U test which allows for comparing skewed

distributions. The assumptions for performing Mann-Whitney U test are that the

independent variable is continuous or ordinal, the dependent variable is categorical

and contains two independent groups, there is no dependence among observations

in each groups and between groups and that the distribution is not binomial [22].

We can assume the following hypotheses for a two-sided Mann-Whitney U test:

H0 : the two populations have equal distributions

H1: the two populations have unequal distributions
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For ordered observations x and y from populations defined by continuous cumu-

lative distribution functions f and g, we can compute a U statistic for the ranks

of x and y, so that the hypothesis f = g can be validated [23].

U = mn +
m(m+ 1)

2
− T (7)

The U test is used for the statistic’s computation (Equation 7), where m is the

number of observations y, n is the number of observations x and T is Wilcoxon

statistic which constitutes the sum of y ’s ranks in the ordered sequence of x ’s and

y ’s. U quantifies how many times y precedes an x [23].

Point biserial correlation

In the case of the IEEE-CIS model a bipartite graph represents account nodes and

devices nodes among which higher in-degree from a certain user indicated that the

device is trusted. Therefore, a point biserial correlation (Equation 8) was used

to determine if there is a correlation between the degree and fraud. It is used to

compute a correlation between a Boolean variable and continuous variable.

rpb =
Ȳ1 − Ȳ2

s̄y

√
N1N0

N(N − 1)
(8)

In the formula above (Equation 8), Ȳ0 and Ȳ1 are the means of the continuous

values of the observations and N0 and N1 are the numbers of Boolean observations

(encoded 0 and 1), N is the total number of observations, sy is the standard

deviation of the continuous observations [24].
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3.3 Louvain modularity

Louvain method is a hierarchical optimization technique, which is used to extract

graph communities. It is iteratively partitioning the graph into communities of

densely connected nodes. Nodes belonging to other communities are sparely con-

nected. The optimization is done based on the modularity scores. The modularity

of a partition is a measure of the density of the links inside communities, as com-

pared to links leading to outside structures. Its value ranges from -1 to 1 [25].

It can be used for evaluating the structure of social networks on platforms such

as Twitter or Facebook. Moreover, it can be applied to financial graphs for the

purpose of fraud detection, as there may be fraud rings which are characterized by

greater modularity scores [2]. For the purpose of this analysis, its functionality was

used to monitor financial flow in the detected communities to discover behaviors

among nodes in communities where fraudulent activity was detected.

4 Explorative Analysis of the Financial Networks

In this section, the results of an exploratory analysis of the financial networks

will be presented. For each data set, large-scale structure was studied, similarly

as in the summaries presented by Newman, 2019. For the PaySim and Elliptic

graphs, centrality metrics were computed, and Louvain communities were studied

in terms of transactions’ financial flow. In the case of IEEE-CIS graph, the result

of examining the point biserial correlation between transaction class and degree

of financial accounts is presented, as well as the ratio of the number of illicit

transactions to licit ones in each weight category. The weight corresponds to the

number of interactions with a certain device category by a financial account node.
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4.1 Large-scale structure of the graphs

Table 7: Large-scale properties of the analyzed graphs.

Name Type n m c S l C

PaySim Directed 6876 4274 1.243165 0.006254 1.0 0.0
IEEE-CIS Directed 9526 117386 24.64539 0.988873 1.0 N/A
Elliptic Directed 203769 234355 1.150101 0.038671 125.2837 0.013762

The table summarized metrics for large-scale structure of the graphs. n corresponds to the number of nodes; m
to the number of edges, c to the mean degree; S to the ratio of the number of nodes in the largest component to
the number of all nodes; l to the mean distance between connected nodes pairs; C to the average local clustering
coefficient.

The PaySim data set’s graph

In terms of large-scale structure, PaySim data set turned out to be quite dissim-

ilar from the graphs analyzed by Newman, 2019. The mean degree (c) varies for

different networks and in this case, was closest to results obtained for software

packages, email messages, peer-to-peer or student dating networks [18]. The frac-

tion of nodes in the largest component (S) was incomparable with for instance

social or technological networks, as it is significantly lower than scores of 0.5-1.0

[18]. The mean distance between nodes (l) is 1.0, which is also non-existent in

the mentioned networks. The average clustering coefficient is zero (C), which also

does not appear in the study conducted by Newman, 2019. Additional metrics

such as graph density suggested that it is in fact very sparse, with the connectance

of approximately 0.0002, the graph did not have any strongly connected compo-

nents, it had 2602 weakly connected components and its diameter was 1. It can be

considered reliable outcome, considering the visualization of the structure related

to the first 1000 nodes in the PaySim graph from Figure 14.
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The IEEE-CIS data set’s graph

In case of the IEEE-CIS fraud detection data set, the mean degree (c) score is

located between co-authorship networks and film actors networks for social graphs.

It is higher than in PaySim and Elliptic, as IEEE-CIS graph is a specific, bipartite

graph with big partitions constituted by popular operating systems and browser

versions. They are characterized by high degrees of the device nodes. User nodes

however, have fewer relationships, just as the less popular systems or systems with

not popular browser versions. For the fraction of the size of the largest component

to the size of the entire graph (S), a value of nearly 1.0 was found. This is mostly

due to the popularity of Windows OS which constitutes the largest components of

the graph. The mean distance (l) is 1.0 again, which is quite logical in this case,

as it is a bipartite graph. Due to this reason, the mean clustering coefficient (C)

cannot be included in the metrics for this case.

When it comes to additional scores, the graph is slightly denser than PaySim graph

with connectance of around 0.003. It contains 50 weakly connected components

and the diameter, similarly to PaySim, of 1.0.

The Elliptic data set’s graph

Similarly to the PaySim data set’s graph, the Elliptic data set is also characterized

by the mean degree (c) scores similar to the software packages, email messages,

peer-to-peer or student dating networks. As it is a network with many partitions

for different entities, the fraction of the size of the largest component to the size

of the entire graph (S) is relatively low, however, not as small as in case of the

PaySim data set. Based on these two metrics and on the fidnings presented for the

PaySim data set, we can conclude that standard structure of financial networks

is characterized by relatively low mean degree scores (just above 1.0) and small

number of nodes belonging to the largest component. The mean distance between
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connected node pairs (l) is evidently higher than more the other analyzed networks

- above 125. This leads to a conclusion that most likely there are many intercon-

nections between entities in this network and the sparsity is somehow avoided -

contrary to the PaySim graph. The clustering coefficient (C) is also higher than

for the PaySim graph.

4.2 Centrality

4.2.1 The PaySim data set graph

PaySim graph is characterized by positively skewed distributions for nearly all

metrics of centrality with certain exceptions.

Degree

In the case of the simplest centrality measure, the in-degree is characterized by

positive distributions for both fraudulent and non-fraudulent nodes (Figure 18).

The fraudulent class distribution constitutes a partition of the non-fraudulent class

distribution. The non-fraudulent class distribution has a long tail, so it is not

possible to set a threshold of suspicious number of in-going links of individual

nodes.
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Figure 18: The distribution of in-degree for non-fraudulent and fraudulent class of
transactions.

(a) Non-fraudulent class (b) Fraudulent class

Both classes are characterized by positively-skewed distributions.

The out-degree distributions for fraudulent and non-fraudulent class of nodes differ.

The former class is characterized by uniform, while the latter by negatively-skewed

distribution. This is shown in Figure 19. Nevertheless, there are relatively few

observations of the fraudulent nodes, therefore, again, the sample of fraudulent

nodes’ metrics melts into the non-fraudulent class at a transactions’ population

level.
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Figure 19: The distribution of out-degree for non-fraudulent and fraudulent class
of transactions.

(a) Non-fraudulent class (b) Fraudulent class

The out-degree distribution is negatively skewed in the case of non-fraudulent nodes and uniform for the fraudulent
ones. Unfortunately, this is insufficient differentiation, as it occurs at a general, statistical level.

PageRank

Similarly as in the case of in-degree, PageRank centrality scores also form a

positively-skewed distributions for the fraudulent, as well as for the non-fraudulent

class of nodes. It is shown in Figure 20. No significant differences at an individual

level of observations - such as many outliers of fraudulent-class nodes could be

found.
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Figure 20: The distribution of PageRank centrality for non-fraudulent and fraud-
ulent class of transactions.

(a) Non-fraudulent class (b) Fraudulent class

Both classes are characterized by positively-skewed distributions of the PageRank centrality scores.

Closeness

Closeness distributions differ between fraudulent and non-fraudulent class of nodes

- the former being characterized by a uniform distribution and the latter by a

positively-skewed distribution. This can be seen in Figure 26.

49



Figure 21: The distribution of closeness centrality for non-fraudulent and fraudu-
lent class of transactions.

(a) Non-fraudulent class (b) Fraudulent class

Similarly as for the out-degree distribution, the fraudulent nodes have a uniform distribution of closeness scores.
Contrary to that example, the non-fraudulent nodes have a positively-skewed distribution.

Betweeness

For the betweenness scores, all of the observations obtained 0.0. Therefore, this

metric emerged as meaningless. This is due to the structure of the network, which

is not characterized by many interconnections among different partitions of the

graph.

HITS

HITS centrality again did not provide interesting insights, as the fraudulent nodes’

scores were contained within the range of non-fraudulent nodes and their distri-

butions did not provide meaningful insights on the differences between these two

groups of nodes. The authority centrality for fraudulent nodes as well as the hub

centrality was 0.0 in all cases. As can be seen in Table 8 and Table 9 which show

the authority and hub score distributions respectively, the fraudulent nodes would

belong to the majority group of value 0.0 for both metrics.
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Table 8: Authority score for the non-fraudulent nodes.

authority score count

0 6814
0.001 3
0.046 1
0.026 1
0.999 1

The fraudulent nodes, having the authority score of 0.0 belong to the majority group for these scores.

Table 9: Hub score for the non-fraudulent nodes.

hub score count

0 6763
0.154 42
0.007 36
0.004 35

Similarly as in the Table 8, the fraudulent nodes would belong to the majority group and are not easily distin-
guishable from the population of all nodes.

Mann-Whitney U tests

In the case of PaySim data set graph, the two-sided Mann-Whitney U tests proved

that differences exist between the non-fraudulent and fraudulent classes of nodes

for the distributions of in-degree, PageRank and closeness centrality. The null

hypothesis assuming equality between these distributions was rejected due to sta-

tistically significant U test statistic values indicated by the p-value (assuming

significance if p-value < 0.05). The tests’ results are shown in Table 13.
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Table 10: Two-sided Mann-Whitney U tests for centrality metrics of fraudulent
and non-fraudulent class distributions.

Centrality U test statistic p-value

in-degree 226452.000 0.005
out-degree 167552.000 0.06
PageRank 380387.000 0.00
closeness 309848.000 0.00

The U test statistic was statistically significant for in-degree, PageRank and closeness centralities, thus the
null hypothesis assuming equality between the distributions of the fraudulent and non-fraudulent class could be
rejected.

4.2.2 The Elliptic data set graph

Degree

As in the case of PaySim data set graph, the in-degree is characterized by positive

distributions for both fraudulent and non-fraudulent nodes (Figure 22). Again,

the fraudulent class distribution constitutes a partition of the non-fraudulent class

distribution.

Figure 22: The distribution of in-degree for licit and illicit class of transactions.

(a) Licit class (b) Illicit class

Both classes are characterized by positively-skewed distributions.
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The out-degree distributions for illicit and licit class of nodes differ, again similarly

to the case of PaySim data set. The licit class is characterized by slightly positively-

skewed and the illicit by negatively-skewed distribution. This is shown in Figure

23. Just as before, there are relatively few observations of the illicit nodes, so the

illicit transactions out-degree scores melt into the licit class of observations.

Figure 23: The distribution of out-degree for licit and illicit class of transactions.

(a) Licit class (b) Illicit class

The licit class distribution is slightly positively-skewed and the illicit class - negatively skewed.

PageRank

Similarly as in the case of PaySim data set, PageRank centrality scores also form a

positively-skewed distributions for the illicit, as well as for the licit class of nodes.

It is shown in Figure 24. Again, the illicit observations belong to the range of licit

observations’ values.
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Figure 24: The distribution of PageRank centrality for licit and illicit class of
transactions.

(a) Licit class (b) Illicit class

The licit class of transactions is strongly positively-skewed and the observations belonging to the illicit class
constitute a part of the licit class centrality scores’ range.

Closeness

Closeness distributions differ between fraudulent and non-fraudulent class of nodes

- the former being characterized by a uniform distribution and the latter by a

positively-skewed distribution. This can be seen in Figure 25.

54



Figure 25: The distribution of closeness centrality for licit and illicit class of trans-
actions.

(a) Licit class (b) Illicit class

Similarly as for the out-degree distribution, the fraudulent nodes have a uniform distribution of closeness scores.
Contrary to that example, the non-fraudulent nodes have a positively-skewed distribution.

Betweeness

Contrary to the PaySim data set’s example, there were different values of the

betweenness scores for the nodes of Elliptic data set. The illicit nodes are char-

acterized by low betweenness scores, thus they cannot be considered important

bridges of that network. It is quite apparent that the structure of Elliptic data

set’s graph is more interesting than the one of the PaySim data set in terms of the

financial flow and interconnections among accounts of that network.
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Figure 26: The distribution of betweenness centrality for licit and illicit class of
transactions.

(a) Licit class (b) Illicit class

The illicit observations’ scores tend to be low values, whereas the entire population is characterized by positively-
skewed distribution with a long tail.

HITS

Similarly as in the case of the PaySim data set, HITS centrality did not provide

interesting insights. The scores were within the range of the licit nodes belonging

to the largest groups, thus the group of illicit transactions cannot be differentiated

based on this metric. The authority centrality for illicit transaction nodes was 0.0

in all cases and 0.0 or 0.004 for the hub score. As can be seen in Table 11 and

Table 12 which show the authority and hub score distributions respectively, the

fraudulent nodes would belong to the majority groups.

56



Table 11: Authority score for the licit nodes.

authority score count

0.000 1861
0.059 228
0.001 22
0.061 6
0.060 6
0.002 2
0.063 2
0.064 1
0.004 1
0.062 1

The illicit transactions, having the authority score of 0.0 belong to the majority group for these scores.

Table 12: Hub score for the illicit nodes.

hub score count

0.000 7526
0.004 248
0.003 97
0.007 6
0.008 1
0.997 1
0.019 1

Similarly as in the Table 11, the fraudulent nodes would belong to the majority groups and cannot be flagged
based on some anomalous value.

Mann-Whitney U tests

In the case of Elliptic data set graph, the two-sided Mann-Whitney U tests proved

that differences exist between the licit and illicit classes of transaction nodes for

the distributions of in-degree, closenes and betweenness centrality metrics. The

null hypothesis assuming equality between these distributions was rejected due to

statistically significant U test statistic values indicated by the p-value (assuming
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significance if p-value < 0.05). The tests’ results for this data set are shown in

Table 13.

Table 13: Two-sided Mann-Whitney U tests for centrality metrics of fraudulent
and non-fraudulent class distributions.

Centrality U test statistic p-value

in-degree 7807.000 0.00
out-degree 16454.000 0.479
PageRank 14590.500 0.164
closeness 11803.000 0.012
betweenness 10071.000 0.001

The U test statistic was statistically significant for in-degree, closeness and betweenness centralities, so the null
hypothesis assuming equality between the distributions of the illicit and licit classes could be rejected.

4.3 Louvain communities

Louvain modularity allowed for obtaining dense communities and they were filtered

in such a way to find communities with nodes which are involved in fraudulent

activity. In these suspicious communities, a financial flow was studied, expecting

that the general tendency will be to pass the amount from fraudulent nodes in

such a way to eventually launder the money. At the structural level this means

that one could expect a chain of several transactions of class fraudulent which ends

with a non-fraudulent transaction. Interestingly, in case of PaySim graph, it was

an opposite situation, and at the end of time step 3, all of the interactions between

nodes became illicit.
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Figure 27: The financial flow in Louvain communities for the
PaySim data set.

In the case of PaySim data set, quite an illogical flow of the transactions was found. The
nodes which are known to be involved in illicit activity do not launder the money, instead
at the end of the final time step, there are more fraudulent activities (encoded as 1) than
at the beginning. This may be due to sampling, however, it is a synthetic data set, thus
the inconsistencies are expected.

For Elliptic Bitcoin transactions data set, this tendency was more logical, as it is

quite evident that the funds coming from illicit transactions were laundered and

at the end of the time step, more transactions were labeled as licit for these com-

munities. Therefore, in short, one can expect that within these dense communities

characterized by illegal activities, the number of illicit transactions will decrease,

whereas the number of licit ones will increase. This is shown in Figure 28.
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Figure 28: The financial flow in Louvain communities for the El-
liptic data set.

In the case of Elliptic data set, there was a tendency to launder the money, as the number
of illicit transactions decreased at the end of the time step, while the number of licit ones
increased.

4.4 Fraud detection for suspicious devices - IEEE-CIS data

set

The point biserial correlation was applied to check if higher degree scores for nodes

are related to fraud. This method was used for IEEE-CIS graph, to determine if

accounts which are connected to more devices are more likely to be affected by

fraud. The result of this test is that could not confirm this hypothesis. The score

obtained was 0.01599 and it can be considered statistically significant, due to the

p-value which was approximately 0.00.
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5 Conclusion and discussion

The real-world data sets were found to have certain similarities with large-scale

networks analyzed by Newman, 2019, mostly in terms of the mean degree and the

fraction of the number of nodes in the giant component to the total number of

nodes in a graph. This means that Elliptic and IEEE-CIS graphs can be another

interesting cases for further study of financial, large-scale networks. At the same

time, a graph created from the data of an artificial data set - PaySim had little

similarity to the large-scale real-world networks’ properties. For all of the cen-

trality metrics’ distributions, no distinctive pattern can be found using goodness

of fit analysis. All of the values in the ranges of fraudulent nodes occur also in

the ranges of non-fraudulent nodes and cannot be considered anomalies neither

in terms of their values, nor in terms of frequencies. The Mann-Whitney U tests

allowed for stating general conclusions regarding the existence of differences be-

tween distributions of different metrics for fraudulent and non-fraudulent nodes

classes, however, the results do not allow for telling precisely which nodes are

fraudulent based on their properties. The obtained outputs only specify general

characteristics of the differences between populations’ distributions. Louvain mod-

ularity which was used to retrieve dense communities did not allow for automatic

detection of fraud rings and it only provided some general characteristics of the

financial flow between nodes. Interestingly, whereas in the real-world data set –

Elliptic data set, the nodes seemingly aimed to manipulate the transactions in

such a way that eventually the transferred funds will be flagged as licit activity,

in PaySim data set, it was an opposite phenomenon. Perhaps some amount was

removed from the financial graph after the money had been withdrawn by fraud-

sters, however, a few records indicated that the amounts were transferred further

to some other illicit nodes.
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The IEEE-CIS graph could not be analyzed using the same methods as PaySim

and Elliptic graphs due to the characteristics of that data set. The nodes could

not be labeled according to if they were involved in fraud or not, as some operating

systems would have to be flagged as fraudulent in general. For instance, due to the

fact that Windows had the most in-going relationships, among which some were

fraudulent, it would automatically mean that presumably the most important node

in the data set must be categorized as fraudulent, even though, most transactions

performed using the devices with Windows OS installed, were licit. As mentioned

before, construction of such a graph was intended to have experimental purpose,

however, without sensitive information regarding the system or network used by

each customer, it is impossible to determine which activity is normal and which is

abnormal and should be flagged.

Apart from the need of sensitive information related to devices used by customers,

other confidential data could be used to implement an efficient mechanism for

flagging potentially suspicious account nodes. One of methods which could be

applied to more precise data set is the use of Jaccard set similarities for sets of

personally identifiable information (PII) such as phone number, social security

numbers, e-mail addresses of account holders. Having the pair-wise scores for

each pair of records, the highest Jaccard similarity scores can be examined, as

duplication of records may indicate the existence of synthetic identities. Overall,

the major problem for these analyses was access to sensitive information allowing

for retrieving unique identities of accounts, devices and other entities. If such

data could be obtained, some of the proposed methods could in fact be at least

moderately effective.
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