
 
 

 

 

 

 

 

Master Thesis 

 

 

Comparing deep learning methods for 

concept recognition in geo-analytic 

questions 

 

 
Aristoteles Kandylas, 7723822 

Supervisors: Simon Scheider, Haiqi Xu 

Utrecht University 

Applied Data Science 

 

 

 

 

Utrecht, July 1, 2022 



 ADS Master Thesis / Aristoteles Kandylas 
 

1 
 

Contents 

Abstract ..................................................................................................................................... 2 

1. Introduction ........................................................................................................................... 2 

2. Background and Related Research ........................................................................................ 5 

2.1 Core concepts of spatial information .............................................................................. 5 

2.2 Measurement levels in the GIS domain .......................................................................... 6 

2.3 Core concepts in geo-analytical question-answering systems ........................................ 6 

2.4 NER and Deep Learning models ...................................................................................... 7 

2.5 NLP and NER in the Geoscience domain ......................................................................... 7 

3. Data ....................................................................................................................................... 9 

3.1. Geo-analytical question corpus ...................................................................................... 9 

3.2 Core concept dictionary ................................................................................................ 10 

3.3 Data Preprocessing ........................................................................................................ 10 

3.3.1 Tokenization and Part of Speech (POS) .................................................................. 10 

3.3.2 IOB2 Tagging ........................................................................................................... 11 

3.3.3 Training and Test dataset ....................................................................................... 13 

4. Methods .............................................................................................................................. 13 

4.1 BERT ............................................................................................................................... 13 

4.1.1 Introduction ............................................................................................................ 13 

4.1.2 BERT Fine-Tuning .................................................................................................... 14 

4.1.3 BERT Hyperparameter Tuning ................................................................................ 15 

4.2 Bi-LSTM .......................................................................................................................... 15 

4.2.1 Introduction ............................................................................................................ 15 

4.2.2 Bi-LSTM Architecture .............................................................................................. 16 

4.2.3 Bi-LSTM Hyperparameter Tuning ........................................................................... 17 

4.3 Evaluation ...................................................................................................................... 18 

5. Results ................................................................................................................................. 19 

6. Discussion ............................................................................................................................ 23 

7. Conclusion ........................................................................................................................... 25 

8. Acknowledgements ............................................................................................................. 25 

9. References ........................................................................................................................... 26 

 

 

 



 ADS Master Thesis / Aristoteles Kandylas 
 

2 
 

Abstract 

Named Entity Recognition (NER) is an important process of NLP systems for relation 
extraction, information retrieval and machine translation. Although various NER systems 
researched and improved for many decades, more accurate and advanced NER systems, which 
exploit deep learning techniques have emerged in the NLP domain, only the last few years. 
These newly emerged NER systems, due to the word embeddings and the non-linear 
transformations of data, lead to significantly improved performance. They are capable of 
tagging and classifying semantic entities such as person, location, organization, time, 
quantities, etc. more easily and accurately. For interpretation of geo-analytical questions, 
these NER systems should detect GIS-related semantics such as geographic phenomena, place 
names and temporal information. The last two pieces of information can be recognized by the 
current NER models, but none of them can identify and categorize geographic phenomena. 
To this end, this study presents two deep learning-based NER systems to extract geographic 
phenomena from geo-analytical questions and classify them into core concepts of spatial 
information that conceptually model and distinguish spatial information. The NER systems are 
trained by BERT and Bi-LSTM models on 278 geo-analytical questions and tested on 31 
validation questions, from a corpus that contains 309 questions in total. The evaluation and 
comparison results showed that the BERT model had higher accuracy, precision, recall and F1-
score on recognizing core concepts in geo-analytical questions, compared to Bi-LSTM. 

 
Keywords: Geo-analytical questions, Natural language processing (NLP), Named Entity 
Recognition (NER), deep learning, GIS, core concepts of spatial information, geo-computation 

 

1. Introduction 
During the last decade, the research about question answering systems has gained a 

lot of attention among enterprises and scientific institutions. Most question-answering 

systems which can be found today on Web Search Machines are focused on answering simple 

questions such as “Where is Utrecht?” and not questions such as “What houses are for sale 

within 1km from the nearest school in Utrecht?”.  The reason for this is that questions such as 

the latter one, do not have an a-priori answer, but instead the answer needs to be estimated 

using geo-spatial analysis (Xu et al., 2022; Xu et al., 2020). These questions are known as geo-

analytical questions, a kind of more sophisticated questions that can be answered with the 

use of Geographic Information Systems (GIS) tools after generating analytic workflows. To 

achieve that, firstly the geo-analytical questions should be translated into core concept 

transformations from which useful information can be retrieved. With this information, it is 

possible to extract pertinent data and choose appropriate GIS tools, to generate the 

corresponding answer to geo-analytical questions (Xu et al., 2022). 

To this end, the core concepts are very important, for the geo-analytical question 

answering systems, as words and phrases of a question can be annotated as core concepts. In 

general, the core concepts are concepts needed to understand and interpret the spatial 

information included in GIS-related text. Every core concept has specific properties (e.g., 

‘Events’ happen in time in specific location, ‘Networks’ are relations between objects) to 

which, particular GIS operations can be applied. Through these operations, the answer to a 

geo-analytical question can be generated and visualized in GIS software (Xu et al., 2022; 

Scheider et al., 2020). For example, in a geo-analytical question answering system, the core 

concepts of a geo-analytical question can be recognized and annotated in the following way: 
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Figure 1. Annotation of core concepts in a geo-analytical question 
 

The answer to this geo-analytical question can be visualized in GIS software via a 

analytic GIS workflow as shown in Figure 2: 

 

 
Figure 2. Shortest network-based paths to a police station for specific PC4 areas  

 

In this direction, the development of a Named Entity Recognition (NER) system is the 

first step toward the automatic recognition of GIS-related text for information extraction and 

retrieval (Dai et al., 2018), text clustering (Chen et al., 2018) and automatic text summarization 

(Enríquez et al., 2017). GIS named entity recognition (NER) (can also be referred to as spatial 

core concept and element identification from GIS texts) can be an important process in GIS-

related language processing that will involve the use of pertinent terms (single words and 

multiword phrases) to identify and annotate information into predetermined categories-core 

concepts (e.g., object, field, event, network, etc.).  

Consequently, it is necessary to develop innovative and scalable models and methods 

that can automatically recognize core concepts related to various GIS phenomena. Once these 

newly developed models achieve satisfactory results in core concept recognition tasks, they 

could be implemented, for question answering (QA) with GIS and in extent for GIS tasks. 

However, up until now, the pre-existing techniques and models for automatic interpretation 

of core concepts from GIS-related text were limited, regarding their capabilities, in 

comparison to recent NER models for the following reasons. Firstly, in comparison to general 

narrative text, GIS-related texts have the issue that they need to be interpreted on a 

conceptual level, which is not immediately obvious from the words used in the text. Thus, 

there is an interpretation step needed to relate words/tokens in a text with the concepts 

relevant to geographic information. Secondly, each noun-core concept is interpreted 

differently in different geo-analytical questions. For instance, the noun “areas” have disparate 

meaning when it is presented in a question, isolated (a region or part of the world) and 

following the word e.g. urban (a town, a city, or the suburbs of a city) or catchment (an area 
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which attracts people based on its services and human activities located in it). Thirdly, the pre-

existing NER techniques (rule-based or supervised learning-based) necessitate in many cases 

a considerable amount of manual labor to create a comprehensive and cohesive dataset of 

representative core concepts for each word/token or to annotate the text which will be used 

for the training of a model and dealing with the high variability in new text patterns. The major 

restriction in the training process of a supervised learning model is that it necessitates undue 

human workload to label manually the training dataset. Howbeit, there is limited availability 

of such labeled datasets in the GIS domain. The annotation of a dataset is an arduous and 

time-consuming process, as annotators need not only specific domain expertise (e.g., 

geoscience), but also a natural language processing (NLP) background (Liu et al., 2022; Qiu et 

al.,2019).   

Nowadays, the recent development of deep learning (DL), expanded the capabilities 

of the NLP field with the inclusion of more advanced neural network models. With these 

models, DL has become extremely popular among researchers, due to their ability to learn 

representations from data without requiring sophisticated feature engineering and their 

state-of-the-art performance in most tasks (Gao et al., 2019). More specifically, for the NER 

tasks, the deep learning techniques intend to empower the model to an autonomously feature 

learning process from numerous annotated data (Liu et al., 2022). One popular neural network 

model which integrates this deep learning process is the Bidirectional-Long Short-Term 

Memory (Bi-LSTM). This model uses attention mechanisms to detect the correct context in 

sentences, but it demands a substantial amount of manually annotated datasets for its 

training (Gao et al., 2019; Liu et al., 2022). Another model which has emerged recently and is 

widely used for NLP tasks is the Bidirectional Encoder Representations from Transformers 

(BERT). This model utilizes the transformers-based architecture, and it is a pretrained 

language model. This means that compared to the Bi-LSTM model, BERT has been trained 

previously on extensive unlabeled text corpora (which is computationally expensive), so the 

user can only fine-tune the model with fewer resources to optimize its performance on 

particular NER tasks (Ezen-Can, 2020; Devlin et al., 2019).  

To tackle the aforementioned challenges of the older NLP methods on GIS NER tasks, 

in this paper, the performance of these two deep learning models (BERT and Bi-LSTM) is tested 

and evaluated in classifying and tagging spatial core concepts in GIS-related text. Through the 

evaluation of these models, useful conclusions are drawn regarding their strengths and 

limitations in capturing GIS phenomena in geo-analytical questions. The present work aims to 

answer the following questions:  

1. Which DL methods/approaches are suitable for detecting core concepts in geo-

analytical questions? 

2. What is the performance quality of NER classifiers based on such methods? 

3. What are their weaknesses and how could they be improved? 

The rest of this paper is organized as follows: Section 2 details the related work from 

the NER domain and the two models (BERT and LSTM) background. Section 3 presents the 

used data and its pre-processing steps. In Section 4 the proposed deep learning models-

algorithms are introduced. Section 5 reports and analyzes the two models’ performance 

results. Then, in Section 6 the experimental results are discussed and directions for future 

research are provided. Finally, Section 7, is the conclusion of my study. 
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2. Background and Related Research 

2.1 Core concepts of spatial information 
The core concepts of spatial information were firstly described by Kuhn (2012), as 

specific concepts through which a GIS environment can be studied (Scheider et al., 2020). In 

the recent version of Kuhn’s research (Kuhn and Ballatore, 2015), five core concepts that 

generalize the geographical information in terms of fundamental GIS phenomena, are 

included: 

▪ Locations are used to answer questions such as, where spatial phenomena are located 

and to calculate the geometric properties (e.g., size, height). 

▪ Objects answer questions regarding the properties and relations of objects. Objects 

correspond to spatially constrained regions that have their own identities and spatial, 

temporal, and thematic properties (qualities). For instance, the different 

municipalities in the Netherlands are considered objects, as each one of them has its 

bounded spatial region, a distinct identity (e.g., Utrecht is the 4th largest city in the 

Netherlands) and a population as quality. 

▪ Fields answer questions regarding the value of a phenomenon in space. Fields are 

certain functions whose domain are locations for which the distance can be measured 

and do not have a predefined range. For example, the air temperature of a country, 

the slope and the elevation of an area are considered fields. 

▪ Events are entities that happen in a specific time (they have a particular duration) and 

have locations, fields, objects, and networks as participants. For instance, a hurricane 

and a rainfall are considered events as both take place in a location and have a 

particular duration.  

▪ Networks are considered quantified relationships between objects. In this way, 

networks provide information on whether two objects in space are linked or not. The 

walking distance from the Utrecht University campus to the city center or the driving 

time from a residence to the work are two examples of networks (Xu et al., 2022; 

Scheider et al., 2020; Kuhn and Ballatore, 2015; Kuhn, 2012). 

However, the five aforementioned core concepts cannot cover all the core concept 

transformations in the GIS domain. Due to this limitation, the use of two further concepts, 

namely proportion and amount is necessary (Xu et al., 2022). 

▪ Proportion is a quantity ratio derived from amounts. Different proportions are 

generated by different combinations of amount categories. For example, the crime 

rate is a ratio of two content amounts, the crime and the population count. In contrast 

to the amount, the proportion is measured as intense ratio scale (IRA).  

▪ Amount quantifies core concepts or their properties and can be distinguished into 

two categories-types the content amounts (the aggregated outcomes of core 

concepts and their properties in space) and the coverage amounts (quantify the 

‘coverage’ of core concepts in space). An example of content amount is the household 

income (object content amount) while the total area of a park is an example of 

coverage amount. Although the object and event content amounts are measured on 

count level, the field and concept content amounts are measured on extensive ratio 

level (ERA) (Xu et al., 2022). 
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2.2 Measurement levels in the GIS domain 
The different core concepts can be classified with particular measurement levels-

scales. The measurement level of a core concept affects the type of analytical tools that may 

be used in GIS analysis (Chrisman, 1998). There are 4 measurement scales: 

▪ Nominal: On a nominal measurement scale, numbers are employed to establish 

identity. Examples of Nominal scales are the zip codes or the telephone numbers. Any 

mathematical operations on the nominal scale will not produce a meaningful result. 

Adding two zip codes will lead to a meaningless number. 

▪ Ordinal: The number in this scale establishes order. The ordinal scale can be used to 

classify the most popular restaurants in a city based on the number of people visiting 

them every day. Any mathematical operations on the ordinal scale will also produce 

a meaningless result. 

▪ Interval: The difference between the values-numbers is meaningful but the scale lacks 

a real origin. The average summer temperature, measured in degrees of Celsius is an 

example. The interval scale can have also negative values.  

▪ Ratio: On this scale, the difference between the values is important and the 

measurements can have an absolute zero value. The water level is a graspable 

example. Water level can take negative value and information about the data 

relations is known, for instance, an area that is located 20m above the water level has 

a higher altitude than an area located -10m beneath the water level. 

In addition, count can be considered as a special case of the Ratio measurement scale, 

where integer numbers represent count of a core concept. For instance, the number of votes 

during elections will be counted. Since the individual objects are counted, this scale can take 

values equal to zero or positive (Chrisman, 1998). 

 

2.3 Core concepts in geo-analytical question-answering systems 
As it has been mentioned previously, core concepts are crucial for the formation and 

interpretation of questions. In the following example questions (Fig. 3), I recognize and 

annotate core concepts of geo-analytical questions, to make it easily observable how the core 

concepts can be identified in a question: 

 

 

 

 
Figure 3. Recognized and annotated core concepts in 3 geo-analytical question 

 

The above example questions show that nouns or noun phrases in a geo-analytical 

question can be interpreted as core concepts and their corresponding measurement levels. 

For each core concept category, there are relevant GIS processes, which are used to study it. 

These processes, receive as inputs and produce as outputs similar annotations (core 

concepts). For example, as it is illustrated in Figure 4, in GIS, the Euclidean distance tool 

receives an object input and outputs a distance field. In the same manner, the Zonal statistics 

tool receives an object input and converts it into an object content amount (Xu et al., 2022).  
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a.  

b.  

Figure 4. GIS tools with their corresponding inputs and outputs. a. Euclidean Distance tool, 
b. Zonal Statistics (modified image from Xu et al., 2022) 

 

Based on this commonality between the question components and the GIS processes, 

it is possible to feed the components of a question as inputs in GIS workflows (multiple GIS 

processes).  These inputs will be analyzed with the appropriate GIS workflows and the outputs 

from this analysis will be the answers to the geo-analytical questions (Xu et al., 2022). 

 

2.4 NER and Deep Learning models  
Automatic named entity recognition (NER) has been a widely researched topic 

nowadays, with a large number of researches, devoted to the development and improvement 
of NER methods and tools (Liu et al., 2022; Li et al., 2022; Van et al., 2021; Jin et al., 2019; Qiu 
et al., 2019). The term NER refers to an NLP task, used to locate and classify accurately and 
correctly named entities in a text (Li et al., 2022; Van et al., 2021; Martins et al., 2008). The 
first official NER system was introduced by Grishman and Sundheim (1996) at the Sixth 
Message Understanding Conference (Yadav & Bethard, 2019; Marrero et al., 2013; Grishman 
& Sundheim, 1996). Grishman and Sundheim (1996) proposed a NER system that recognized 
PER (person), ORG (organization) and LOC (location) (Grishman & Sundheim, 1996). Since 
then, many studies on different scientific domains such as medicine (Wen et al., 2021; Bose 
et al., 2021; Wang et al., 2018; Finkel et al., 2004), geology (Qiu et al., 2019;) and geography 
(Zhao et al., 2018; Ortega et al., 2009) have focused on developing methods and tools for NER 
tasks.  

Rule-based, statistical and deep learning (DL) are the three well-known methods for 
NER tasks (Li et al., 2022; Van et al., 2021). However, the most popular one today, among 
these methods, are the deep learning methods, as they do not require extensive human labor 
for feature engineering and extensive additional resources (Li et al., 2022; Jin et al., 2019). 
Deep learning has gained a lot of research attention in recent years because it has presented 
new techniques for solving NLP challenges. Due to the drawbacks of feature engineering, DL 
has been recommended as a valuable methodology, for automatic learning, deep feature 
mining and allocated representation of words. Deep neural networks are employed in DL, to 
substitute classical machine learning's feature engineering (Li et al., 2022; Jin et al., 2019). 
Their major privilege is their capacity for end-to-end learning. It signifies that the network can 
learn sequence labeling rules from a pre-labeled dataset without the need for human 
interference (Van et al., 2021). 

 

2.5 NLP and NER in the Geoscience domain 
Many studies have presented the benefits of the NLP methods implementation and 

tools in the geoscience domain and more specifically in the GIS domain (Perea-Ortega et al., 
2013; Lampoltshammer & Heistracher, 2012; Calì et al., 2011). According to the work of Calì 
et al., (2011), an NLP-based GIS interface has multiple advantages compared to a traditional 
GIS interface, as it can make GIS more approachable and usable to people with no previous 
knowledge about the domain. In the same direction, Lampoltshammer & Heistracher, (2012) 
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analyzed the impact of the NLP exploitation on three selected research domains from GIS 
literature, human-computer interaction, geographic information retrieval (GIR) and location-
based services (LBS). In addition, several NLP query reformulation methods linked to the 
alteration and enlargement of both thematic and geospatial aspects which are often identified 
in a geographical query have been presented by Perea-Ortega et al. (2013). 

Moreover, previous research has shown that NER techniques can be implemented for 
the recognition of geographical, geological, and spatial entities. Perea-Ortega et al., (2009) 
presented a system called Geo-NER, which was used for the detection and recognition of 
geographic name entities. Geo-NER was built on a generic entity tagger, which has been 
supplemented with Wikipedia-generated geographic resources. However, the ability to 
consider geographic data from other sources to help in the recognition of places from text 
was lacking (Perea-Ortega et al., 2009). In other work, NER systems have been also utilized to 
detect spatial relationships between places and to identify location properties (Lima & Davis, 
2017). 

In addition to this, NER systems have been implemented to improve the pre-existing 
techniques in the GIR (geographic information retrieval) domain (Acheson & Purves, 2021; 
Buscaldi & Rosso, 2009). In the research of Buscaldi and Rosso (2009), a NER system was 
employed to find location names (toponyms). After the toponym was found, the 
corresponding coordinates were added by their system (Buscaldi & Rosso, 2009). Similarly, 
Acheson and Purves (2021) exploited a NER system to extract location names from scientific 
articles and represent spatially these locations by geocoding them (Acheson & Purves, 2021). 
Nevertheless, these studies have focused on the use of NER systems for the recognition of 
geographic places (toponyms), while the present research’s focus is on geographic entity 
types (names for geographic categories, e.g., distance networks, temperature fields, etc.) 

 Nowadays, the implementation of deep learning algorithms in geoscience has 
gradually revealed the advantages of this technology for the domain. Newly proposed NER 
systems exploited the benefits of deep learning methods, for the recognition of geological 
name entities. Qui et al., (2019) addressed the GNER (Geological NER) issue in the geoscience 
domain and presented a detailed framework of how the GNER which incorporates DL methods 
can be extended through the fine-tuning process in other scientific domains (Qui et al., 2019). 
Moreover, some researchers went a step further and applied particular deep learning 
techniques (BERT and LSTM) for the extraction of geographic information. Specifically, Shin et 
al., (2020) introduced a BERT-based spatial information extraction model for spatial 
information extraction and an R-BERT model for the extraction of spatial relationships. 
Correspondingly, the LSTM model has been proved a useful tool for the recognition of 
geographical information and the identification of spatio-temporal relations between 
different Points-of-Interest (POI) (Zhao et al., 2018). 

Recently, the importance of spatial core concept recognition for the interpretation of 
geo-analytical questions was evaluated in the research of Xu et al., (2022). In this study, the 
authors proposed a question parsing method to convert geo-analytical questions to core 
concept expressions, which conform to GIS workflows. Beyond that, the authors suggested in 
their work, that deep learning approaches such as the Bi-LSTM and BERT could be used to 
train NER models which recognize automatically, different and complex core concepts in 
questions (Xu et al., 2022). 

However, none of the aforementioned studies have applied explicitly deep learning 
methods and tools for the automatic recognition of core concepts of spatial information in 
GIS-related texts. Following the suggestion of Xu et al., (2022), this study attempts to evaluate 
and compare the performance of the two deep learning algorithms (BERT and Bi-LSTM) for 
NLP tasks in the geoscience domain, in this direction. 
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3. Data 
In this section, the source, format and the pre-processing of the data used in this 

research are described. The data of this research consisted of two datasets: a geo-analytical 
question corpus and a core concept dictionary.  
 

3.1. Geo-analytical question corpus 
The geo-analytical question corpus (GeoAnQu) is a question corpus created by Xu et 

al., (2020). The corpus initially included 429 questions in the English language, which had been 

generated from various sources such as GIS literature, scholarly papers and coursebooks (Xu 

et al., 2020). More specifically, a large number of scholarly papers was gathered during a 

Master's Thesis at Utrecht University using Scopus. The papers were selected based on three 

criteria: 1) they were in the discipline of Human Geography, 2) they contained GIS analysis, 

and 3) they had been published between 2009 and 2018. Additionally, GIS literature and 

coursebooks were searched for questions that were included in GIS tutorials and exercises. All 

the questions found in the GIS literature and coursebooks were included in the corpus, 

although some questions were reformulated as they had ambiguous meaning (Xu et al., 2020). 

Nevertheless, for the purpose of this study, a reformulated version of this corpus (429 

questions) was used and contains 309 distinctive and explicit GIS questions (Xu et al., 2022). 

Of these, 196 questions are from the GIS literature, 76 are from scholarly papers, and the 

others are from GIS coursebooks (Xu et al., 2022).  A percentage (90%) of these questions will 

be used as the training dataset for the BERT and Bi-LSTM models, presented in this study. 

 

ID Source Authors Year Title Page Question 

1 
Competency 

questions 
Haiqi, 

Nyamsuren 
2019 

IAOA Summer 
Institute on Places 

and Things 

Which houses are for sale in 
Utrecht 

227 

Journal of Urban 
Planning and 
Development 

144(4),04018047 

Romanillos, 
GarcÃƒÂa-
Palomares 

2018 

Accessibility to 
schools: Spatial and 

social imbalances 
and the impact of 
population density 
in four European 

cities 

What is the network distance 
to primary schools for 

children aged between 4 and 
12 in Multifunctional Urban 

Area of Rotterdam 

483 GI Minor Simon 2019 GI Minor course 
What is the proportion of 

people over 65 for each PC4 
area in Amsterdam 

499 GIS textbook Allen 2013 

GIS 
tutorial 2: 

spatial 
analysis 

workbook 

P38 

What is the number of 
Hispanics for each census 
block in Tarrant County in 

Texas 

520 ArcGIS Pro/Tools esri  

ArcGIS Pro Multi-
Distance Spatial 
Cluster Analysis 

(Ripley's K Function) 

What is the degree of 
clustering of 911 calls for 

each distance band from 300 
to 900 meters by 60 meter 

increments in Portland 

542 Master thesis Romay 2020  
What is the percentage of 

population between 16 and 
24 years to the total 
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population per neighborhood 
in Amsterdam 

563 

Proceedings - 
2011 19th 

International 
Conference on 

Geoinformatics, 
Geoinformatics 
2011 59801000 

Wang, Wu & 
Yu 

2011 

Analyzing spatio-
temporal 

distribution of crime 
hot-spots and their 
related factors in 
Shanghai, China 

Where are the hot spots and 
cold spots of thefts in 

Shanghai in December 2009 

Table 1.  Geo-analytical question corpus structure 

 

3.2 Core concept dictionary 
The core concept dictionary (CCD) is a dataset proposed by Xu et al. (2022) and 

consists of keywords- core concepts that are related to spatial phenomena. The CCD was 
generated by analyzing the corpus (GeoAnQu) nouns and noun phrases and manually 
annotating such nouns and noun phrases with core concept types (CCT) and measurement 
levels (MSRLV). The CCD contains 11 different core concept types (e.g., ‘object’, ‘field’, ‘event’, 
‘network’, ‘proportion’, ‘amount’, ‘location’ etc.) and 9 measurement levels (e.g., ‘interval’, 
‘nominal’, ‘count’, ‘ratio’, ‘boolean’, ‘ordinal’ etc.), which have been used to create the core 
concept IOB tags for the training of the BERT and Bi-LSTM model. 
 

Tokens CCT MSRLV 

house object  

urban areas field nominal 

construction year object quality interval 

population conamount count 

traffic flow network quality ratio 

accidents event  

percentage proportion ira 

network based path network   

Table 2. Example tokens with their corresponding core 
concept type and measurement levels from the CCD 

 

3.3 Data Preprocessing 

3.3.1 Tokenization and Part of Speech (POS) 
A basic preprocessing step was the tokenization of the 309 questions from the 

GeoAnQu corpus. Tokenization is the process of dividing a raw text into individual words, 

called tokens. This process is important for the meaning interpretation of the text through 

analysis of the sequence of the words in the text (Webster & Kit, 1992). In this study, 

tokenization allowed the easier comparison between the tokens of each question and the 

keywords-nouns included in the CCD and in extend the generation of the appropriate IOB tag 

for each token. In addition, the tokens of each question along with their corresponding IOB 

tags were used as the train dataset for the training process of both DL models. Figure 5 shows 

an example question before and after the tokenization step. The final total number of tokens 

was 4096. 
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Figure 5. Example question before and after tokenization 

 

Additionally, to the tokenization, the Part of Speech (POS) tags of the tokens was 

generated. In general, the POS tags, facilitate the comprehension of human language for the 

NLP tasks (Chiche & Yitagesu, 2022). In this study, POS tags are used to distinguish the 

different meanings of the same words in several questions. For example, the word “sale” can 

be a noun or a verb in a sentence, according to its location. By knowing the syntactic structure 

around each word (e.g., determiners and adjectives come before nouns and verbs after nouns) 

the NER models can detect named entities in texts (Schmid, 1994; Cutting et al., 1992). Figure 

6 presents the tokens of a question along with their generated POS tags. The final total 

number of POS tags was also 4096. 

 

 
Figure 6. Example question before and after POS tags generation 

 

3.3.2 IOB2 Tagging 
For every Named entity recognition (NER) task the use of a particular annotation 

scheme at the word level is important (Alshammari & Alanazi, 2021). Among various 

annotation schemes (e.g., IOB, IOE, BIIE, BIES, BILOU), the one which is commonly used with 

natural language processing (NLP) models such as BERT or Bi-LSTM, is the IOB-tagging scheme 

(Alshammari & Alanazi, 2021; Hwang et al., 2021; Luoma & Pyysalo, 2020; Hakkani-Tür et al., 

2016). The name of the scheme (IOB) denotes whether the corresponding word-token is 

located, Inside(I), Outside(O), or at the Beginning(B) of a particular name entity (Alshammari 

& Alanazi, 2021). 

The IOB tags of the nouns or noun phrases (tokens) of the GeoAnQu corpus were 

constructed by combining the core concept type and measurement level of each noun or noun 

phrase from the CCD in a unified form (core concept type + measurement level) (Table 3). For 

example, if a noun has as core concept type ‘field’ and measurement level ‘nominal’ the 

unified tag has generated as ‘FLDN’.  
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Tokens U_Tag Core Concept Type Measurement Level 

house OBJ Object  

construction year OBJQI Object Quality Interval 

land use FLDN Field Nominal 

hurricane EVE Event  

driving time NETQR Network Quality Ratio 

population CNAC Content Amount Count 

ozone concentration FLDR Field Ratio 

temperature FLDI Field Interval 

shortest path NET Network  

mean direction CVAL Coverage Amount Location 

severity EVEQO Event Quality Ordinal 

total area CVAER Coverage Amount Extensive Ration Level (ERA) 

income CNAER Content Amount Extensive Ration Level (ERA) 

crime rate PROPIR Proportion Intense Ratio Level(IRA) 

noise level FLDO Field Ordinal 

walkability OBJQR Object Quality Ratio 

wind speed EVEQR Event Quality Ratio 

political leaning OBJQN Object Quality Nominal 

locations LOC Location  

for sale OBJQB Object Quality Boolean 

rating OBJQO Object Quality Ordinal 

Table 3. Examples of unified tags, core concept types, measurement levels and their respective 
tokens 

 

Afterward, for the automatic generation of the appropriate IOB2 tagging format (i.e. 

B-tag or I-tag), a python script was written. This script compares each token from the 

GeoAnQu corpus with the tokens in the CCD. If the tokens are the same (e.g. houses-houses) 

then the algorithm puts the corresponding U_Tag in the noun or noun phrase. However, 

according to the IOB2 tagging scheme, for the single nouns-tokens the tag has the following 

format ‘B-U_Tag’ while for the noun phrases’, the first token’s tag is formatted as ‘B-U_Tag’ 

and the rest tokens’ tags of the phrase, are formatted as ‘I-U_Tag’, regardless of its length, 

i.e., a noun phrase consisted of two, three, four or even more words-tokens (Table 4). 

ID question token pos tag 

1 
What is crime density within buffer 
area of shortest path from home to 

workplace in PlaceName0 

What PRON O 

is AUX O 

crime NOUN B-PROPIR 

density NOUN I-PROPIR 

within ADP O 

buffer NOUN O 

area NOUN O 

of ADP O 

shortest ADJ B-NET 

path NOUN I-NET 

from ADP O 

home NOUN B-OBJ 

to ADP O 

workplace NOUN B-OBJ 

in ADP O 



 ADS Master Thesis / Aristoteles Kandylas 
 

13 
 

Amsterdam PROPN O 

Table 4. Example question of the training dataset after the completion of preprocessing 

 

The final number of name entities with generated IOB tags, based on the above 

format (B-tag, I-tag excepting ‘O’) was 1228. The code and methods implemented for the data 

preprocessing (tokenization, POS tags and IOB tags generation) can be found on GitHub: 

https://github.com/AristotleKandylas/GIS-NER-ADS-Thesis-Code  

 

3.3.3 Training and Test dataset 
For the comparison of BERT’s and Bi-LSTM’s performance, the models were trained 

on the same percentage of training set and evaluated on the same percentage of 

validation/test set. Since the training dataset (corpus) contains a limited number of questions, 

the dataset was randomly split into train and test sets by using 90% of the corpus (278 

questions) as the train set and 10% (31 questions) as the test set for the two models.  

4. Methods 
4.1 BERT  

4.1.1 Introduction 
The BERT (Bidirectional Encoder Representations from Transformers) model was 

chosen in this study, for the name entity recognition task of geographical core concepts, 

mainly due to its satisfactory results and state-of-the-art performance in NER tasks. It is a 

recently developed and advanced deep learning model, compared to RNNs and CNNs, which 

is based on transformers machine learning techniques. BERT has been designed for the 

pretraining of deep bidirectional representations from unlabeled data, by learning both left 

and right context simultaneously across all layers. This model’s architecture is ideal for token 

classification tasks and allows to make predictions at the token or sequence level. One 

important advantage of BERT is the use of pre-trained word embeddings as inputs, which can 

be further fine-tuned or kept fixed during the training process of a NER model (Li et al. 2020; 

Devlin et al., 2019). 

Here, the BERT model is applied on token level, to predict the IOB tags of the core 

concepts included in geo-analytical questions. The implementation of BERT includes two 

steps: pre-training and fine-tuning (Fig. 7) (Devlin et al., 2019). 

 

 
Figure 7. The two steps of BERT model implementation (Devlin et al., 2019). 

 

https://github.com/AristotleKandylas/GIS-NER-ADS-Thesis-Code
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However, for the implementation of BERT in this study, the model was not pretrained 

but was fine-tuned only. Instead, the ‘bert-base-cased’ pre-trained model was used, to fine-

tune the model on the NER training dataset (corpus). The ‘cased’ version was chosen, in order 

the model to be case-sensitive to the text of every question, previously to the tokenization 

step e.g., ‘Houses’ ≠ ‘houses’. In this manner, the existence of different cases in the text was 

taken into consideration.  

The ‘BERT-base’ model was already pretrained in an unsupervised way on larger 

corpora (Wikipedia and BooksCorpus), based on the process presented by Devlin et al., (2019), 

on 2 tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). During 

the first task, a [MASK] token was used to replace ~15% of the words in each sequence, 

previously to word sequences feeding into the model. Then, based on the context supplied by 

the rest of, the non-masked words in the sequence, the model tried to predict the original 

value of the masked token. In the second task, the model was trained, by receiving pairs of 

sentences as input, to predict whether the second sentence in a pair is the next in the original 

document. In the training step, 50% of the inputs were in pairs for which, each second 

sentence was the next sentence in the original document, while the other 50% was a random 

sentence from the corpus. It was assumed that the random sentence would be detached from 

the first sentence. Before feeding the model, the input was treated in the following manner 

(Fig. 8) to assist the model in differentiating between every two sentences. Firstly, at the start 

of the first sentence, a [CLS] token was inserted, and at the end of each sentence, a [SEP] 

token was placed. Then, each token-word had a sentence embedding which indicates whether 

it was Sentence A or Sentence B. Sentence embeddings are similar to token embeddings in 

concept, but with a vocabulary of two (Sentence A and B). Finally, each token was given a 

positional embedding to denote its location in the sequence (Devlin et al., 2019). 

 

 
Figure 8. BERT input representation (Devlin et al., 2019) 

 

4.1.2 BERT Fine-Tuning 
In the scope of the presented experiments, the ‘bert-base-cased’ model was fine-

tuned (supervised learning step) for the required core concept recognition task, using a NER 

training dataset that contains labeled data (i.e., IOB tags) (Devlin et al., 2019).  The training 

dataset was split into sentences and tokenized at word level. These were the inputs for the 

fine-tuning process. 

For computational reasons, a maximum sequence length of 128 was used to 

incorporate maximum cross-sentence context and the simple version of the Adam optimizer 

with a learning rate (5e-05) was employed during the model’s tests. For the training and 

validation, a batch size of 2 was chosen, as the tests showed that smaller numbers of batch 

sizes, improved the performance of the model. The maximum gradient normalization value 

was set at 10, to prevent the "exploding gradients" problem and no warmup was used over 
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the first training epoch. The model was trained for 4 epochs and evaluated after every epoch 

on the validation set using entity-level precision, recall and F1-scores. The best-performing 

checkpoint is used as the final prediction model. 

 

4.1.3 BERT Hyperparameter Tuning 
The best hyperparameters values for the fine-tuning process of our BERT model were 

selected, by using as a reference, the grid search presented in the study of Devlin et al., (2019). 

Specifically, the learning rate, batch size and epochs values in section 4.1.2, were selected 

after tuning manually the hyperparameters of the BERT model, using the following values 

presented in Table 5:  

 

Hyperparameters Fine- Tuning Values Optimal Values  

Learning rate 5e-5, 3e-5, 2e-5 5e-5 

Batch size 2, 4, 8, 16, 32 2 

Epochs 2, 3, 4, 6, 8, 10 4 

Table 5. Optimized parameters of BERT model 

 

A total number of 90 trials were run, one for each combination of hyperparameters. 

The best hyperparameter values were chosen, based on the validation accuracy, F1-score, 

recall and precision of the model after each trial, which was assessed with a python script 

from the seqeval metrics evaluation package. Afterwards, these optimal values were used for 

the fine-tuning of the presented model in this study. 

 

4.2 Bi-LSTM 

4.2.1 Introduction 
  In comparison to the BERT model, the Bi-LSTM is an earlier developed model, based 

on a recurrent neural network. According to previous research, it has proven its capability on 

NLP and more specifically on NER tasks. Bi-LSTM can achieve high accuracy on POS, chunking, 

and NER datasets without relying much on word embedding like other RNN models (Le et al., 

2018; Qin & Zeng, 2018; Huang et al., 2015). Furthermore, recent research has presented that, 

for a small dataset, Bi-LSTM models outperform BERT models substantially and can be trained 

in considerably less time than fine-tuning a pre-trained model (Ezen-Can, 2020). 

  Although the Bidirectional Long-Short Term Memory (Bi-LSTM) is used in this paper 

for the same recognition and classification task of core concepts like BERT, it presents some 

differences in its architecture from the latter. The Bi-LSTM is a model architecture in which 

the previous (backward) and future (forward) sequence information is used in the output layer 

(Fig. 9) (Sun et al., 2018; Shahid et al., 2020).   
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Figure 9.  Bi-LSTM network architecture (Xiang et al., 2020) 

 

In the Bi-LSTM the input information moves in two directions, differentiating it from 

the original LSTM. In the original LSTM, the input can move in one direction, either forwards 

or backwards (Fig. 10). This difference makes the Bi-LSTM model’s implementation, ideal for 

sequence-to-sequence tasks, such as speech recognition, text classification and forecasts 

(Shahid et al., 2020; Sun et al., 2018).  

 

 

Figure 10. Single LSTM cell architecture (Shahid et al., 2020) 
 

4.2.2 Bi-LSTM Architecture 
In the present study, the Bi-LSTM is applied for text classification- NER task. The 

implementation of Bi-LSTM as with any other neural network requires the design of the 

network architecture and the definition of the input and output dimensions for every layer. 

For our recognition and classification task, the many-to-many architecture was chosen as 

there are multiple inputs and outputs in our model. In this architecture, three layers (the 

Embedding, Bi-LSTM, and LSTM layer) are considered and the final (4th) layer is a 

TimeDistributed Dense layer, which is used to output the final predicted tags. In Figure 11, the 

input and output dimensions of each layer can be seen.  
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Figure 11.  Input and output dimensions of each layer of Bi-LSTM model 

 

The first layer in our neural network is the embedding layer (Fig. 11). In this layer, the 

maximum length (30) of the padded sequences is specified. It is important to mention that 

the first dimension (None) in the plots represents the batch size. In our case the batch size is 

not specified, that’s why the plot shows None in the first dimension. After the network’s 

training, the embedding layer converted each token into an n-dimensional (n=256 in our case) 

vector. Then in the second layer (Bidirectional LSTM), a recurrent layer (e.g., the 1st LSTM 

layer) was used as a parameter in the Bi-LSTM. The output from the preceding embedding 

layer was employed in this layer (30, 256). Provided that, this was a Bi-LSTM, it had both 

forward and backward outputs. There are several ways (multiplication, summation, 

concatenation and average) to amalgamate these outputs before feeding them to the next 

layer. In this network, the outputs were concatenated, which doubled (512) the outputs to 

the next layer. Afterwards, the 3rd layer, which is the LSTM layer, receives the output 

dimension (None, 30, 512) and outputs (None, 30, 256) from the preceding Bi-LSTM layer. To 

avoid a single final output in our network, the TimeDistributed layer was added. This layer 

guaranteed that the Dense (fully connected) operation, will be implemented on each output 

on each time step. This layer received the preceding LSTM layer's output dimension (None, 

30, 256) and outputs the maximum sequence length (30) and the total number of tags (37). 

Following the definition of the neural network’s architecture, the model was trained 

on the train set and its performance was evaluated on the corresponding test set. The 

experiments were run for a different number of epochs and batch sizes. The model which 

combined high performance and fewer iterations were chosen, as the ideal one for our 

purpose. According to the experiments, training the model for 4 epochs with batch size 2 

resulted in the best performance.  

 

4.2.3 Bi-LSTM Hyperparameter Tuning 
In order to select the best parameter values for our Bi-LSTM neural network, the 

hyperparameters of our model were tuned, using the Bayesian optimization technique. This 

technique selects optimal hyperparameters by learning from previous trials-evaluations. 

Being an informed learning method means that, it utilizes mostly, values from the parameter 

space which can lead to a better (accuracy, loss, etc.) model in the next trials (Aslam et al., 

2021; Frazier, 2018). The following table (Table 6) presents the values of the hyperparameters 
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which were optimized for the proposed Bi-LSTM model. Five parameters have been tuned 

using the Bayesian optimization method. The table also displays the optimal hyperparameter 

values, after the tuning process. 

 

Hyperparameters Tuning Values Optimal Values 

Activation relu, softmax softmax 

Dropout 0.0, 0.1, 0.2, 0.4 0.4 

Learning rate 1e-2, 1e-3, 1e-4 1e-2 

Recurrent dropout 0.0, 0.1, 0.2, 0.4, 0.5 0.0 

Units Min:32, Max: 512 256 

Table 6. Optimized parameters of the Bi-LSTM model 

 

A total number of 10 trials were run for 20 epochs each one of them. The best 

hyperparameter values were chosen, based on the validation loss of the model after each 

trial. Afterwards, the optimal values were used for the construction of the presented model 

in this study. 

 

4.3 Evaluation 
After the training step, the two models’ performance is evaluated on their predictions 

on 31 randomly selected questions, which are included in the test set. The evaluation of the 

prediction-recognition performance of both models was based on the precision, recall, F1-

score and validation accuracy metrics. According to Grishman and Sundheim (1996), for each 

NER category, the precision was defined as the number of accurately predicted entities divided 

by the number of predicted entities by the system. 

 

Precision =
TP

TP + FP
 (1) 

 

The recall was defined as the number of entities accurately predicted by the system divided 

by the number correctly recognized by humans. 

 

Recall =
TP

TP + FN
 (2) 

 

The F1-score was defined as the harmonic mean of the model’s precision and recall (Grishman 

& Sundheim, 1996). 

 

F1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
Precision × Recall 

Precision + Recall
  (3) 

 

Lastly, the accuracy of the models was defined as the ratio of accurately predicted entities 

divided by the total number of entities (Halteren et al., 2001).  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (4) 
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The above equations are calculated on the number of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) which are described in detail as 

follows (Li et al., 2022): 

▪ TP: the entities that are identified by NER models and match ground truth. 

▪ TN: the entities which are not identified or completely missed by the NER models. 

▪ FP: the entities that are identified by NER models but do not match ground truth. 

▪ FN: entities annotated in the ground truth that are not identified correctly by NER 

models. 

 

The code and methods implemented in the methods section is available under open licenses 

on GitHub: https://github.com/AristotleKandylas/GIS-NER-ADS-Thesis-Code 

5. Results 
With the completion of the experiments on the two deep learning models, useful 

conclusions can be drawn regarding their performance.  The precision, recall and F1-score for 

the models trained solely on the training dataset, using the best hyperparameters, are 

presented in Table 7. 

 

Model Accuracy Precision Recall F1-score 

BERT 0.9522 0.78 0.76 0.77 

Bi-LSTM 0.9391 0.41 0.46 0.43 

Table 7. Models’ performance according to the 4 evaluation metrics on validation/test 
dataset 

 

According to the accuracy metric, we can conclude that the BERT model outperforms 

the Bi-LSTM model in this spatial core concept recognition task. However, the difference 

between the models is not significant, as BERT’s accuracy is 95% and Bi-LSTM’s is around 94% 

(Table 7). 

Although accuracy is a very good first metric to evaluate the performance of the two 

models, this metric cannot guarantee exclusively, that the model with the higher accuracy is 

the best one especially if the dataset is not balanced-symmetric. In the training dataset, there 

are tags (Fig. 12) such as FLDO, FLDI, OBJQN, CVAER, OBJQI, etc., which are under-presented 

as each one of them corresponds to 1-6 keywords, while other tags such as OBJ, EVE, FLDN, 

PROPIR, etc. are over-presented in the dataset, as each tag corresponds to more than 29 

keywords.  

 

https://github.com/AristotleKandylas/GIS-NER-ADS-Thesis-Code
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Figure 12. Frequency of tokens per core concept tag in the CCD 

 

Given the uneven class distribution in the training dataset and taking into 

consideration that the recognition and tagging of the core concepts is a multi-label problem, 

the other three measures (Precision, Recall and F1-score) in Table 7, provide a more accurate 

and comprehensive picture, regarding the performance of the two models. 

By comparing the precision, recall and F1-score of the two models, it is observable 

that BERT exceeds the performance of the Bi-LSTM model in all three metrics. More 

specifically, the overall precision of BERT is 0.78, while the precision of Bi-LSTM is 0.41, 

conveying that the BERT performs better, as its precision is closer to the optimal value of 1. 

The higher precision of BERT is also related to a low false positive rate, meaning that in the 

case of the Bi-LSTM model, the user might lose correctly predicted core concepts. 

Correspondingly, the recall (0.76) of the BERT model is higher than the one of Bi-LSTM, 

representing a good value as it is above 0.5. On the contrary, the recall of the Bi-LSTM model 

is lower (0.46) than 0.5, denoting that out of the core concepts which should have been 

labeled correctly, only a limited number of core concepts have been tagged correctly or not 

tagged at all. 

Despite the importance of the aforementioned measures for the evaluation of the 

models’ performance, F1-score is more useful, especially in our case, where there are 

imbalanced classes in the training dataset, as it considers as a metric, both the false positives 

and false negatives. According to the experimental results, the F1-score of the BERT model 

(0.77) is higher, compared to the F1-score of Bi-LSTM (0.43). Provided that, F1-score makes 

more balanced predictions than the precision and recall metrics, it proves that the BERT model 

can predict more correct positive results in the experiments than Bi-LSTM, supporting robustly 

the better accuracy result of the BERT model and its superior performance. The detailed 

efficiency, based on the three previous measures, of each model on the IOB tags recognition 

task, can be seen in the next two tables, Table 8 and Table 9 : 
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IOB TAGS Precision Recall F1-score Support 
Total number of 

tag instances 

CNAC 0.75 0.75 0.75 4 5 

CVAL 1 1 1 3 12 
EVE 0.89 0.89 0.89 9 15 
FLDI 0 0 0 0 1 
FLDN 0.67 0.86 0.75 7 16 

FLDR 1 0.86 0.92 7 9 
NETQR 1 1 1 1 2 

OBJ 0.76 0.7 0.73 37 54 
OBJQB 1 1 1 1 2 
OBJQR 0 0 0 2 3 
PROPIR 0.75 0.75 0.75 4 8 

      
micro avg 0.78 0.76 0.77 75 127 
macro avg 0.71 0.71 0.71 75 127 

weighted avg 0.79 0.76 0.77 75 127 

Table 8. Precision, Recall and F1-score of BERT model per recognized IOB tag on the 
validation dataset 

 

 

IOB TAGS Precision Recall F1-score Support 
Total number of 

tag instances 
CNAC 0 0 0 0 5 

CVAL 0.67 0.25 0.36 8 10 
EVE 0.43 0.43 0.43 7 8 

FLDI 0 0 0 0 1 
FLDN 0.11 0.09 0.1 11 16 
FLDR 0 0 0 7 7 
NET 0 0 0 0 2 

NETQR 0 0 0 0 10 
OBJ 0.79 0.64 0.71 47 52 

OBJQB 0 0 0 0 2 

OBJQR 0 0 0 0 1 

PROPIR 0.2 0.1 0.13 10 9 
 

     

micro avg 0.46 0.41 0.44 90 123 

macro avg 0.18 0.13 0.14 90 123 

weighted avg 0.54 0.41 0.46 90 123 

Table 9. Precision, Recall and F1-score of Bi-LSTM model per recognized IOB tag on the 
validation dataset 

 

It should be clarified that only the included tags in the validation dataset are 

presented in the above tables. Therefore, the rest tags which are not present in the two tables 

were not included during the splitting in the validation set. One important conclusion from 

the two tables is that both models were able to recognize the OBJ and EVE tags efficiently. 

The main reason for this result is that these two tags appear with high density in the training 

dataset.  
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Furthermore, the training and validation loss graphs (Fig. 13). of the BERT and Bi-LSTM 

model, confirm the high effectiveness of the BERT to fit the training data and perform well on 

the validation set as its training and validation loss curve begins at a lower point (0.2686 and 

0.0985) than the ones of Bi-LSTM model (0.7044 and 0.4513). However, the loss curves of both 

models decrease by the number of epochs until the point where they are closer to each other. 

This illustrates that both models behave correctly as their losses are reduced after each epoch 

without presenting overfitting or underfitting. 

 

a.  

b.  
Figure 13. The training and validation loss of: a. BERT model and b. Bi-

LSTM model 
  

Finally, the BERT-based NER model was evaluated on three selected new questions, 

from another geo-analytical question corpus proposed by Xu, et al. (2022). As shown in Figure 

14 a, fire stations and school are correctly recognized as objects. Also in Figure 14 b, the model 

correctly captures the vegetation areas as field nominal. Finally, as it is presented in Figure 14 

c, the model recognizes accurately in the third question, the number as conamount count and 

the traffic accidents as events. 
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a.  b.  c.  

Figure 14. Predicted IOB tags of the BERT model on three new validation questions. a. 
Detection of OBJ core concepts, b. Detection of FLDN core concepts and c. Detection of 

CNAC and EVE core concepts 
 

6. Discussion  
This study is the first which attempts to recognize automatically core concepts from 

geo-analytical questions by training DL based NER model. The experimental results reveal that 

a more recent and advanced deep learning model such as BERT can achieve higher 

performance on spatial core concepts recognition task, compared to deep learning neural 

networks such as Bi-LSTM. The most important aspect which contributes to these results is 

that Transformers which are included in BERT, do not process necessarily data sequences in a 

particular order, as RNNs (e.g., Bi-LSTM) and CNNs do. On the contrary, they can understand 

the context and ambiguity of human language in any order. This enables BERT to identify 

easier the full context of a word-core concept in a sentence, by comparing the relation of 

every given word to all other words in the sentence (Devlin et al., 2019). In the present study, 

this becomes perceivable, as BERT can match the right IOB tags in the corresponding core 

concepts with the right order. For example, as Figure 14a illustrates, in the core concept “fire 

stations”, the word “fire” which is the begging of the phrase took the B-OBJ tag, while the 

word “station” is inside the phrase and took the I-OBJ tag.  

To this end, it also contributes the fact that BERT is a pre-trained model in contrast to 

the Bi-LSTM. This means that there is a large amount of linguistic a-priori knowledge encoded 

in BERT that is lacking in the other model. This linguistic knowledge of the co-occurrence of 

words (which is what MLM encodes in terms of vector embeddings), is required to solve the 

task of ambiguous words for core concept recognition. That is why in this research BERT model 

achieves higher accuracy in core concept recognition compared to the Bi-LSTM model which 

is not pre-trained. Conversely, the RNNs networks are based on word embeddings which 

demand extensive training on labeled data and in the end, they still fail to recognize as 

accurately as BERT, the different context included in the geo-analytical questions. This is 

related to the fact that words in RNNs networks are defined only by pre-fixed (vectors) 

identities-semantics (Huang et al., 2015). 

Despite the high performance of the BERT model, the approach to test and evaluate 

these two deep learning models encompassed some limitations. A significant limitation in this 

research was the restricted number of geo-analytical questions (309) from which only 4096 

tokens were produced, with the tokenization process. Although according to previous 
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research, both deep learning models can achieve satisfactory results with small datasets and 

in some cases Bi-LSTM model can outperform the BERT (Boudjellal et al., 2021; Souza et al., 

2020; Ezen-Can, 2020), I am inclined to believe that a larger dataset with geo-analytical 

questions might improve the core concept identification performance of both models. Ideally, 

future research could investigate whether a more extensive corpus with geo-analytical 

questions can lead to better training and in extent to better efficiency of these proposed 

models. 

In addition, as it has been mentioned in the result section, one serious drawback in 

the corpus is that some tags are over-presented while others are extremely under-presented, 

creating an imbalance among the tags’ distribution in the training dataset. This can be noticed 

by looking at tables 8 and 9 where both models have the highest percentages in all the over-

presented tags (e.g., OBJ, EVE, etc.) which correspond to more than 20 keywords in the 

dataset and fail to identify accurately all the tags which are under-presented and correspond 

to less than 20 keywords. The issue is more substantial in the Bi-LSTM model than in the BERT. 

The latter achieves to identify, with high accuracy, even tags such as NETQR and CNAC with 

less than 21 corresponding tokens (Table 8). At this point, it is important to clarify that during 

the experiments of this study, there have been attempts to overcome this limitation, by using 

a new version of the firstly created core concept dictionary, where particular subcategories of 

IOB tags (e.g., “OBJCONOBJCOVPRO”, “EVECONOBJCOVPRO”, “EVECONOBJCONPRO”, 

“OBJCONOBJCONPR” etc.) which appeared limited times (i.e., 1) in the dictionary, were 

combined into the main category e.g., PROPIR (proportion IRA). These modifications increased 

the number of corresponding IOB tags in specific categories and consequently improved the 

training dataset. Hence, any feature studies should focus on including, a more balanced 

number of tags in each core concept category, by implementing the aforementioned 

techniques in this paragraph.  

Along with the previous, one aspect deserving more study is how the prediction 

performance of the two deep learning models is affected if synonyms/hyponyms/hypernyms/ 

similar words will be used in the geo-analytical questions to replace the original words. For 

instance, in the question “What is the intensity of a hurricane in Texas”, the keyword 

“hurricane” could be replaced by “storm” and the keyword “intensity” could be replaced by 

“wind speed”.  By replacing the initial keywords with synonyms, a similar question could be 

created, with the only difference that the new keywords (e.g., “storm” and “wind speed”) 

might belong to new core concepts. In such a way, the keywords of under-presented core 

concepts will be extended in number and as a result the accuracy of the models might be 

increased too. Another aspect for future research would be, the use of combined and different 

deep learning models’ architectures. For example, a combination of the two models BERT+Bi-

LSTM or Bi-LSTM+CRF or a more advanced Bi-LSTM architecture which includes several layers 

for the model’s training (Ashrafi et al., 2020; Anh et al., 2017). Towards this direction, a 

detailed hyperparameter tuning research for both models can also be done, to further 

improve their performance. 

Finally, any future work in the field should focus on the appropriate evaluation of the 

two models’ performance by using an independent validation corpus. In this study, the two 

models were evaluated, by separating a proportion (10%) of the questions training dataset 

and using it as the test-validation dataset. However, what would be interesting is to train the 

models in the whole training dataset and use another corpus, which includes completely new 

geo-analytical questions to assess the models’ effectiveness. In this way, it would be possible 

to evaluate more accurately and explicitly the accuracy, precision, recall and F1-score of these 

two models in recognizing core concepts in different questions. 
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7. Conclusion 
As the use of deep learning models becomes increasingly popular in the named entity 

recognition (NER) tasks it is important to evaluate their efficiency in different datasets. A NER 
system for geoscience texts is a fundamental step for GIS-related information extraction. This 
research tests and compares the performance of two popular deep learning models for the 
recognition of spatial core concepts from geo-analytical questions. To this end, two deep 
learning models were developed, a BERT and a Bi-LSTM model and trained on the same 
training dataset. Afterwards, their performance was compared and evaluated on a test-
validation dataset which was separated by the initial training corpus. The experimental results 
designated that a more recent and advanced deep learning model such as BERT is significantly 
more effective in recognizing core concepts in geo-analytical questions, compared to an older 
deep learning architecture such as Bi-LSTM.  Additionally, this study showed that BERT can 
achieve remarkable results in core concept identification, even when the size of the training 
dataset is relatively small and there is an imbalanced distribution of tags. However, the 
performance validation was conducted on a limited number of questions from the training 
set, and this cannot provide a comprehensive overview of the model’s actual efficiency on a 
new question corpus. Several limitations including the previous one could be addressed and 

exceeded in future research. Then, these deep learning models could potentially be 
implemented, for geo-analytical question answering systems and in general for GIS 
mapping tasks. 
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