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Abstract 
 

Ice cover of lakes is an indicator of climate conditions and possible changes thereof. It is therefore 

identified as an essential climate variable, and tracking its worldwide timing, duration and extent is 

important. Due to the vast number of lakes on Earth however, it can be difficult to find efficient ways 

to continuously monitor the formation, duration and break-up of lake ice. Remote sensing can be a 

useful tool in that regard, but optical passive remote sensing can be hindered by the presence of 

clouds or night-time. In this study, the use of synthetic aperture radar (SAR) imagery is therefore 

proposed, an active system that can penetrate clouds and works both day and night. Because ice 

conditions can vary strongly through space and time, a fully convolutional network (FCN) is 

constructed. This deep learning network is specifically designed for semantic image segmentation: 

learning patterns from large amounts of data and assigning labels to each pixel in the imagery. The 

model is trained on four study areas from different parts of the world, and overall results show a mean 

accuracy of >80%. Predictions are better for non-frozen conditions (  9̴0%) compared to frozen 

conditions (  7̴2%). Slight overfitting of the data indicates that the use of additional study areas may 

be required to optimize model performance, but the overall results are promising and demonstrate 

the usefulness of its application in worldwide lake ice monitoring.  

 

 

 

 

  



3 
 

Contents 
 

Abstract ....................................................................................................................................... 2 

List of figures ............................................................................................................................... 4 

List of tables ................................................................................................................................ 4 

1. Introduction ............................................................................................................................ 5 

1.1 Background .................................................................................................................................. 5 

1.2 Objective and research question ................................................................................................. 6 

2. Data and methods ................................................................................................................... 7 

2.1 Study area .................................................................................................................................... 7 

2.2 Synthetic aperture radar ............................................................................................................. 7 

2.3 Deep learning model ................................................................................................................... 8 

2.4 Data pre-processing ..................................................................................................................... 9 

2.5 Model training ........................................................................................................................... 11 

2.6 Performance measures ............................................................................................................. 12 

3. Results .................................................................................................................................. 13 

4. Discussion ............................................................................................................................. 16 

4.1 Dataset imbalance ..................................................................................................................... 16 

4.2 Model set-up ............................................................................................................................. 16 

4.3 Training and prediction ............................................................................................................. 17 

4.4 Study areas ................................................................................................................................ 17 

5. Conclusion ............................................................................................................................ 18 

References ................................................................................................................................. 19 

Appendix A ................................................................................................................................ 21 

Appendix B ................................................................................................................................ 22 

 

 

  



4 
 

List of figures 
 

Figure 1. Selected study areas in a) Alaska (US), b) Canada, c) Finland and d) Russia. .......................... 7 

Figure 2. Different wavelengths from different bands give stronger or shallower penetration ............ 8 

Figure 3. Backscatter mechanisms for different surface types ............................................................... 8 

Figure 4. U-Net model architecture as used in this study. ..................................................................... 9 

Figure 5. Density plots of VV and VH polarizations .............................................................................. 10 

Figure 6. Number of images per category per study area. ................................................................... 10 

Figure 7. Distribution of selected train imagery over time per study area. ......................................... 11 

Figure 8. Mean accuracy (%) of all images per category for each study area ...................................... 13 

Figure 9. Accuracy for imagery over time for each study area ............................................................. 14 

Figure 10. Qualitative results for frozen lake imagery. ......................................................................... 15 

Figure 11. Number of images in the training dataset per category per study area. ............................ 16 

Figure 12. Qualitative results for non-frozen lake imagery .................................................................. 22 

 

 

List of tables 
 

Table 1.Confusion matrix, accuracy and F1-score for training dataset ................................................ 13 

Table 2. Confusion matrix, accuracy and F1-score for test dataset ...................................................... 13 

Table 3. Statistics of images per category per study area for 290 additional images .......................... 14 

Table 4. Statistics on additional images dataset model predictions..................................................... 21 

 

 

 

  

file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981262
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981263
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981264
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981265
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981266
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981267
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981268
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981269
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981270
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981271
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981272
file:///C:/Users/annel/Documents/UU/MSc_ThesisADS/Report_Documents/Noordhoff_ThesisADS_0622.docx%23_Toc106981273


5 
 

1. Introduction 
 

With a changing climate come rising temperatures, not only of air but also of water. Freshwater 

lakes around the globe have experienced a rise in average surface water temperatures, which together 

with increasing ambient temperatures can lead to important changes in the lakes’ ecosystems 

(O’Reilly et al., 2015). One directly observable effect is seen in the ice seasonality of lakes, with strong 

reduction of yearly ice cover due to later ice-on and earlier ice-off trends (Sharma et al., 2021). In the 

last 25 years, these trends have also been six times faster than in the 75 years before (Sharma et al., 

2021). Because of the sensitivity of lake ice cover to changes in atmospheric fluxes, it has been 

identified as an essential climate variable, asserting the importance to track worldwide changes in 

timing and extent of lake ice (Ma et al., 2021). 

 

1.1 Background 

 

Studies that have looked into lake ice cover trends have generally used data based on visual 

ground observations and/or optical (satellite) imagery (e.g. Heinilä et al., 2021; Tom et al., 2018). 

Although useful, ground observations can be costly and time-consuming, especially considering the 

many lakes in remote areas. Worldwide there are an estimated 117 million lakes, of which for example 

about 880.000 are located in the high latitudes of Canada (Messager et al., 2016; Verpoorter et al., 

2014). Optical remote sensing is more efficient in that regard, but is often hindered by the presence 

of clouds, low temporal/spatial resolution, or due to long winter nights and low sun elevation at high 

latitudes (Barbieux, Charitsi, & Merminod, 2018; Surdu et al., 2015; Tom et al., 2020).  

To overcome these limitations, active remote sensing systems using synthetic aperture radar 

(SAR) can be used. Microwave SAR works day and night and can penetrate clouds, thus providing year-

round, all weather images with a high resolution. Different types of sensors have been or are currently 

carried on multiple spaceborne SAR systems, such as Sentinel-1, RADARSAT or ALOS-PALSAR (Singha 

et al., 2018), creating a large available dataset. 

The classification of ice from satellite imagery can be a challenging one. Although the availability 

of SAR data greatly enhances the possibilities due to its independence of cloud cover, properties of 

ice and water can vary through time and space, making linear classification often difficult 

(Lindenschmidt & Li, 2019; Tom et al., 2018). Ice forms differently under different circumstances, 

thickening and changing throughout the winter. Water can contain various amounts of sediments of 

plants, or can have ripples due to wind. These factors all affect how a radar signal is backscattered. 

However, the application of deep learning models in this field has been promising. Studies 

implementing convolutional neural networks for both sea ice detection (Boulze & Korosov, 2020; 

Wang & Li, 2020) and lake ice detection (Dirscherl et al., 2021; Ma et al., 2021; Scott et al., 2020; Tom 

et al., 2020) have shown good results in making a distinction between water and ice. 

Convolutional neural networks (CNNs) are artificial neural networks that focus on pattern 

recognition within images (O’Shea & Nash, 2015). Initially developed to mimic human vision, they 

simulate processing of visual input in order to assign a label to an image. For the case of ice 

classification, a prediction for each pixel is required, meaning that the output size is the same as the 

size of the input image. One type of CNN that is able to assign labels per pixel is a Fully Convolutional 

Network (FCN). This type of network often uses the encoder-decoder architecture (EDA), where first 

the convolution network is applied and then a transpose-convolution network to upsample back to 
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the original map size (Long et al., 2015; Ronneberger et al., 2015; Xing et al., 2020). This type of 

architectures allows to take into consideration small and large features. 

 

1.2 Objective and research question 

 

Research performed using SAR data has often been on local scales and methods or models are 

therefore not (yet) suited for global applications  (Dirscherl et al., 2021; Sobiech & Dierking, 2013; Tom 

et al., 2020). Furthermore, many of the lake ice detection studies have been performed using classical 

CNN models. Therefore, this paper aims to determine lake ice cover at multiple locations around the 

world using a fully convolutional network and basic Sentinel-1 SAR data. The main research question 

is: how can lake ice cover be determined from SAR imagery using a deep learning fully convolutional 

network? 
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2. Data and methods 
 

2.1 Study area 

 

This study will attempt to detect lake ice in various regions of the world using a deep learning 

model. Therefore, several study areas were selected that were used in training of the model. This 

selection was done following several criteria: 

- Study areas are 10x10 km. 

- Study areas contain at least 1 complete lake. 

- Study areas contain a lake of at least 2x2 km. 

- Study areas must contain lakes that are frozen continuously for more than 2 months per year. 

Based on these criteria, four study areas were selected in Alaska (US), Canada, Finland and Russia 

(Figure 1). Besides the given criteria, the selection was done arbitrarily. 

 

 

2.2 Synthetic aperture radar 

 

A synthetic aperture radar is an active remote sensing system that uses radio- and microwaves 

for sensing. As opposed to optical passive sensors that operate in the visible and infrared part of the 

spectrum, SAR can penetrate through clouds and vegetation, and is not affected by the time of day. 

This makes it a useful instrument for studies where darkness or clouds can hinder acquisition (Podest, 

2017). 

Figure 1. Selected study areas in a) Alaska (US), b) Canada, c) Finland and d) Russia. 

a b 

c d 
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SAR emits electromagnetic waves that are backscattered and collected by the radar antenna. 

How much of the signal it backscattered depends on the polarization and wavelength of the signal, 

and the surface it reflects of. Polarizations can be transmitted or received vertically (V), horizontally 

(H) or a combination of both, with each enabling the detection of different physical properties of an 

object. Wavelength will determine the depth of penetration into a surface. SAR can use various 

wavelengths, which are often referred to as letter indicated bands, such as C-band (  6̴ cm) or L-band 

(  2̴3 cm). With longer wavelengths, the penetration becomes stronger (Figure 2). How a signal 

backscatter depends largely on the roughness of the surface. When a surface is smooth, reflection will 

be specular, meaning that most of the signal is returned away from the sensor, while rough surfaces 

with result in diffuse scattering, with the signal going into all directions (Figure 3) (Flores-Anderson et 

al., 2019; Moreira et al., 2013).  

 

2.3 Deep learning model 

 

Deep learning methods for computer vision have been rapidly developing over de last decades 

and the implementation of convolutional neural networks played an important role in the 

advancement of object detection and semantic segmentation. Initially developed to mimic human 

vision, they simulate the processing of visual input in the brain in order assign a label to an image. 

Semantic segmentation of images is the task of classifying different elements of an image. This makes 

it useful in lake ice detection, as parts of a lake may be frozen or unfrozen. Convolutional neural 

Figure 3. Backscatter mechanisms for different surface types, with h as an indicator for surface roughness (adapted from  
Flores-Anderson et al., 2019) 

Figure 2. Different wavelengths from different bands give stronger or shallower penetration (from: 
https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar). 
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networks are the most common models used for semantic image segmentation. Specifically, a fully 

convolutional neural network is a deep learning method where prediction is done on a pixel basis, and 

the output layer has the same size as the input layer (Ronneberger et al., 2015). 

An FCN is a CNN with an encoder-decoder structure. Its basic architecture consists of 

convolutional layers in which kernels (filters) convolve the input data to new values, pooling layers in 

which the dimensionality of the new values are reduced, and fully-connected layers in which the final 

calculation for the classification is carried out. The FCN model used in this study is the U-Net model, 

originally designed by Ronneberger et al. (2015) (Figure 4). The first part of the model has a general 

CNN architecture, where convolutional layers extract features from the image with 3x3 filters with 

Rectified Linear Unit (ReLU) activation, while also reducing the amount of data with max pooling 

layers. The convolution starts with 32 filters, which are doubled after every convolution block. The 

max pooling has a stride length of 2x2, reducing the output by factor 2 each block. The second part of 

the model consists of upsampling blocks that double the size of the output at each block, eventually 

returning to the original image size (Dirscherl et al., 2021; Ronneberger et al., 2015). 

When upsampling from the smallest resolution, information loss can occur. At every upsampling 

block there is therefore additional input from its downsampling counterpart to improve information 

availability throughout the network and counter information loss (so-called skip connections). 

Furthermore, at every block batch normalization is applied, as well as a dropout of 0.25. 

 

 

2.4 Data pre-processing 

 

The SAR data used in this study is captured by the two Sentinel-1 satellites, in orbit since April 

2016. These satellites have sun-synchronous, near-polar orbit with a 12-day repeat cycle for each 

satellite. Because they have a 180° orbital phasing difference, both satellites together have a repeat 

cycle of six days. Sentinel-1 carries a C-band SAR instrument, operating with a wavelength of   5̴.5 cm, 

with dual polarization (HH+HV, VV+VH) (ESA, 2022). It operates in various acquisition modes, of which 

the Interferometric Wide Swath Mode (IW) is most often used for land cover classification outside of 

 

Figure 4. U-Net model architecture as used in this study. 
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polar zones, with an incidence angle between 29-46°, a swath width of 250m and a resolution of 5-

20m. Flight direction can be ascending or descending (ESA, 2022).  

SAR data is freely available and easily accessed in Google Earth Engine (GEE). In this study, the 

first part of the data pre-processing was therefore done using the GEE platform. Data was collected 

for the years 2017-2021. The SAR Ground Range Detected data product with the IW swath mode was 

collected for each study area, with an ascending flight path and VV+VH dual polarization. The VV and 

VH backscatter signals in the study areas were the foundation of the dataset on which this study was 

performed. The difference in backscatter between frozen and non-frozen circumstances (Figure 5) 

form the basis of the hypothesis that machine learning models can detect and classify these classes. 

Additionally, incidence angle of the sensor was also added, as this can have an effect on the strength 

of the return signal due to different reflection mechanisms (Ma et al., 2021). In total, 420 images were 

collected for the four study areas for 5 summer and 5 winter seasons. 

To determine whether lakes are frozen or unfrozen during a certain time of year, optical satellite 

imagery from Planet was used. The satellite constellation of Planet (called PlanetScope) consists of 

over 130 nanosatellites that cover the entire globe on a daily basis with a resolution of about 3m 

(Planet, 2022). The PlanetScope 4-band (RGB-NIR) multispectral scenes were used for visual inspection 

of the study areas. For every year from 2017 to 2021, ice-on and ice-off days were determined. It was 

assumed that between the first full ice-on day and the first ice-off day, the lakes remained completely 

frozen, while between the first full ice-off day and the first ice-on day, the lakes are unfrozen. Break-

up or freeze-up periods are therefore not considered. Although it was attempted to classify lake ice 

Figure 6. Number of images per 
category per study area. 

Figure 5. Density plots of VV (left) and VH (right) polarizations for frozen and non-frozen lake conditions (training data). 
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based on a near-infrared threshold, this threshold seemed to differ strongly over time and space. 

Manually identifying frozen and unfrozen parts during transition periods for each study area for each 

year is too time-intensive, which led to the decision to leave these periods out of the dataset. 

Lake polygons were downloaded from HydroSHEDS (Messager et al. , 2016) and uploaded to GEE. 

These polygons were used to create part of the dataset that made the distinction between lakes and 

other surfaces (e.g. land or sea). Furthermore, they were used to define the lake areas that were either 

frozen or unfrozen, in order to create labels for the training, test and validation datasets.  

Because the backscatter of the SAR signal on water can be affected by wind (waves), wind speed 

and direction were also taken into account. The dataset was supplemented with hourly wind speeds 

in directions u and v (orthogonal) from the ERA5 Reanalysis from the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Muñoz Sabater, 2019), which is also available through the GEE 

platform. In addition to the VV+VH polarizations and incidence angle, both wind components were 

added to the dataset for analysis, with a resolution of   1̴1 km. 

The final dataset consisted of 420 images of 5 bands (VV, VH, incidence angle, u-wind, v-wind). In 

addition, information about lake location and frozen/non-frozen labels were added. The distribution 

of the images across the study areas is given in Figure 6. For Finland, the number of images is higher, 

mainly due to a higher number of frozen images. This point will be addressed in the discussion. The 

entire dataset was exported in GeoTIFF format with dimensions of 2016x2016 pixels to a Google 

Cloud Storage Bucket. This has the advantage of being accessible from both GEE and Google Colab, 

where the second part of the study was performed.   

 

2.5 Model training 

 

Google Colab is a Jupyter notebook environment that runs entirely in the cloud, with access to 

GPU for faster training of machine learning models. Due to a 12GB RAM limitation however, not all 

420 images could be downloaded into Colab’s virtual environment. Therefore, an arbitrary selection 

was made, consisting of 130 images that were divided into a 60% training data (78 images, Figure 7), 

20% validation data (26 images) and 20% test data (26 images). All datasets had about a 50/50 balance 

of frozen/non-frozen images. Due to the RAM limitations during model training, each GeoTIFF of 

2016x2016 pixels were split into 81 images of 224x224 pixels. This gave a total of about 6300 training 

images and 2x2100 test or validation images. 

Figure 7. Distribution of selected train imagery over time per study area. 
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The model was compiled with a binary cross-entropy loss function, an Adam optimizer and a 

learning rate of 0.0005. Training was done in batches of 32 images at the time, giving an input size of 

(32x224x224x5), of which 5 denotes the number of layers (variables) in each image. Training was done 

for 30 epochs at a time, after which the model was saved. This was done to prevent early termination 

due to GPU time limitation in Google Colab. After 150 epochs the model showed some overfitting and 

training was terminated. 

 

2.6 Performance measures 

 

To check model performance, the results were analyzed with several metrics, all based solely on 

pixels within lake polygons. Because the classification is binary and the datasets are assumed to be 

relatively balanced (about a 50/50 division between frozen and non-frozen pixels), first of all accuracy 

was determined. Accuracy is a metric that determines the percentage of correctly classified pixels as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
(1) 

 

where 𝑡𝑝 is true positive, 𝑡𝑛 is true negative, 𝑓𝑝 is false positive and 𝑓𝑛 is false negative (Dalianis, 

2018). Because accuracy can be biased due to imbalanced data, a confusion matrix will be constructed 

to inspect the performance for both classes individually. In addition to that, the F1-score will be 

determined, to assert that a slight imbalance in the class distribution does not alter the performance 

value. The F1-score is a metric that calculates a weighted combination of precision and recall, 

determined by (Dalianis, 2018): 

𝐹1 =  2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(2) 

  

Because a large part (290) of the collected images was not available for model training due to 

GPU limitations, these were used for an additional analysis. For this, the model was slightly altered to 

enable the ice prediction on complete images (dimension 2016x2016 pixels). For each image the 

accuracy was determined and then pooled into an average accuracy over all images. These results 

were used to check the robustness of the model for each study area and for either of the two lake 

conditions.  
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3. Results 
 

In this chapter, model results on both the test dataset and additional imagery is presented. The 

train dataset consisted of about 146 million pixels, including non-lake pixels. The total number of lake 

pixels on which Table 1 is based is about 58.5 million. The training dataset shows both an accuracy 

and F1-score of 99.4%. Comparing these values to the test dataset, the model may be slightly 

overfitted to the training data. However, also the test data has good performance, as shown in Table 

2. The test dataset consisted of about 52 million pixels, with a total number of lake pixels on which 

the statistical analysis was performed of about 21.5 million, of which 46.7% was frozen and 53.3% 

non-frozen. Overall, the model prediction on the test dataset has an accuracy of 83.3% and an F1-

score of 82.4%.  

 
Table 1.Confusion matrix, accuracy and F1-score for training dataset. All values are in percentage. 

 

 
 

 
 

Table 2. Confusion matrix, accuracy and F1-score for test dataset. All values are in percentage. 

 

 

 

 

 

To inspect the model performance more extensively, the 290 additional complete images were 

used for prediction and analysis. For the prediction, the accuracy was calculated per study area for all 

images and per category (Table 3 and Figure 8). The accuracy ranges from 0 to 100% for every 

category, but the accuracy of the model on all additional images was 80.3% on average and performs 

better on the non-frozen imagery (89.5%) than on the frozen imagery (72.4%). Also, the standard 

deviation of the accuracy for the frozen imagery is higher than for non-frozen. Overall, the model 

performs best on the Finland study area, although the non-frozen lakes in Canada have the highest  

          Prediction  
True 

Non-frozen Frozen  Accuracy F1-score 

Non-frozen 45.26 0.01  
99.38 99.43 

Frozen 0.61 54.12  

          Prediction  
True 

Non-frozen Frozen  Accuracy F1-score 

Non-frozen 44.11 9.19  
83.25 82.37 

Frozen 7.56 39.14  

Figure 8. Mean accuracy (%) of all images per category for each study area. Vertical bars indicate standard deviation. 
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Table 3. Statistics of images per category per study area for 290 additional images. Count and % of all images indicate 
contribution of given categories to the original training data. Shading indicates lowest (orange) and highest (green) values 
per column. 

  All Frozen Non-frozen 

All images count in training data 78 43 35 

 % of all images 100 55.1 44.9 

 mean accuracy (%) 80.3 72.4 89.5 

Alaska count in training data 11 6 5 

 % of all images 14.1 12.8 14.3 

 mean accuracy (%) 72.1 66.2 78.4 

Canada count in training data 16 6 10 

 % of all images 20.5 12.8 28.6 

 mean accuracy (%) 74.3 45.4 94.7 

Finland count in training data 33 23 10 

 % of all images 42.3 48.9 28.6 

 mean accuracy (%) 86.2 83.5 93.8 

Russia count in training data 18 8 10 

 % of all images 23.1 17.0 28.6 

 mean accuracy (%) 83.0 78.5 87.0 

 

 

mean accuracy (94.7%). However, on frozen lakes in Canada the model performs the worst (45.4%), 

lower than from a random binary draw. Alaska has the lowest mean accuracy for both the non-frozen 

images (78.4%) and the total set of images (72.1%).  

Table 3 also shows the number and percentage of images per category for each study area. It can 

be seen that low and high mean accuracies often coincide with the lowest and highest contribution of 

images to the total dataset. This will be further discussed in the next chapter. More detailed statistics 

can be found in Appendix A. 

Figure 9. Accuracy for imagery over time for each study area. Shaded areas indicate non-frozen imagery (summer periods). 



15 
 

Accuracies over time per study area for the additional imagery is show in Figure 9. It clearly shows 

that non-frozen images from the Canada study area have high accuracies. For Finland, accuracy in 

summer is also high (Table 3), but the figure shows that this all stems from the 2021 summer period. 

Alaska shows large variation, although summer imagery seems slightly better. Russia has overall quite 

high accuracies, which also shows from the average accuracies from Table 3. 

Examples of the qualitative results are shown in Figure 10 for better interpretation of the model 

outcome. For each study area a prediction for a frozen lake image is given, with the examples selected 

based on the accuracy of the prediction being similar to the average accuracy of the total frozen 

imagery dataset per study area. These accuracies in fact range from 0 to 100%, with the standard 

deviation shown in Figure 8. The VV and VH band show that that there are patterns visible on the lake 

surface in frozen conditions that may explain some of the prediction, but they don’t seem to dominate 

it. In Appendix B examples of non-frozen image predictions are given. 
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Figure 10. Qualitative results for frozen lake imagery for Alaska (19-03-2021), Canada (20-12-2019), Finland (10-04-2019) 
and Russia (23-04-2017). The first two columns show Sentinel-1 SAR VV and VH values (color range -30dB – 0 dB) 
including average windspeed, the third column the label (frozen) for the lake polygons and the fourth column the model 
prediction including accuracy (%). 
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4. Discussion 
 

Fully convolutional neural networks have previously been shown to be an excellent tool in 

semantic image segmentation. Furthermore, Sentinel-1 SAR imagery forms a valuable addition to 

traditional optical remote sensing data, which can be hindered by cloud presence or nighttime. The 

use of Sentinel-1 SAR imagery in combination with data-driven deep learning models for image 

classification therefore seems to have high potential, which was explored in this research. Here, 

interpretation of the results and corresponding discussion points are addressed.  

 

4.1 Dataset imbalance 

 

The FCN designed in this study for lake ice detection using Sentinel-1 SAR shows promising 

results, although they do show that there can be a large variation in the model performance both 

spatially and temporally. There are several factors that contribute to this variation, of which the 

training dataset distribution may be the most important one. Although there was a balance between 

the frozen and non-frozen images in the training dataset, the distribution of images between study 

areas was unproportionate, as can be seen in Figure 11, as well as in Table 3. With 4 study areas and 

2 classes, ideally each category covers about 12.5% of the entire training dataset, giving each study 

area 25% total. The Finland study area is however overrepresented mainly in the frozen domain 

(24.5%), which caused it to have the highest accuracy for the images with lake ice. However, there 

was also a high accuracy in the non-frozen domain, while the number of images there were not 

proportionally high (12.4%). The same goes for the Canada non-frozen category, which had the highest 

accuracy (94.7%), but contributed relatively equally to the training dataset (14.1%). This indicates that 

good model performance partly stems from overrepresentation, but that the model also has been 

able to learn from the equally distributed data in mainly the non-frozen domain. Balancing the dataset 

better could therefore lead to better results primarily in the now low-scoring categories.  

 

4.2 Model set-up 

 

The U-Net FCN model was used with its original architecture and training was done with a single 

set of hyperparameters. In machine learning models, optimization of hyperparameters is often crucial 

in creating a well performing model (Yang & Shami, 2020). Due to time limitations however, 

optimization of for example number of convolution blocks, number of filters, size of filters or the 

Figure 11. Number of images in the 
training dataset per category per study 
area. 
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activation function was not possible. The number of epochs can sometimes also influence model 

performance, but with the current dataset it was clear it was overfitting after a certain amount of time 

and further training of the model would not lead to better results on the validation and/or test 

dataset. Further research could look into improving mentioned hyperparameters, or even the effect 

of altering the architecture. 

 

4.3 Training and prediction 

 

Overall, the accuracies from the model predictions were much higher (89.5%) than the frozen 

domain (72.4%). This can indicate that it is easier for the model to distinguish water using SAR imagery 

than ice, a result often seen in ice classification with data-driven models (Ma et al., 2021; Tom et al., 

2020). This can be explained by the fact that the frozen state of lakes does not exist of a single type of 

surface cover. The Canadian Ice Service (CIS, 2005) reports over 10 different types of ice, with 

additional changes over time due to age and deformations. Furthermore, ice can be covered by 

(various types of) snow, further changing its reflective properties. Although not feasible within the 

scope of this study, this limitation may be addressed by changing the image classification from a binary 

one to a multi-label one, including the different ice categories. For sea ice classification such studies 

have been done (e.g. Boulze & Korosov, 2020; De Gelis et al., 2021; Khaleghian et al., 2021), but for 

lake ice types they have yet to be carried out. 

The five variables used for prediction (VV, VH, incidence angle, u-wind component and v-wind 

component) were considered to be the main influencers of backscatter under frozen or non-frozen 

conditions. Other studies using SAR to classify ice sometimes only use 2 polarizations for training 

(Boulze & Korosov, 2020; Stonevicius et al., 2022; Tom et al., 2020) or have added derivates such as 

mean values or ratios (Dabiri et al., 2021). Most comparable studies have better model results, 

independent of the number of variables used. It is therefore thought that the variable selection is not 

the main driver of the current results, but that the difference in data and model set-up is. However, 

including additional variables that assert certain spatial or temporal relationships may improve model 

performance. 

Further corrections to the data, such as speckle removal or radiometric corrections, were not 

applied, because those would require additional assumptions about the data, which was not desired. 

Under the objective of the study, it was implied that basic SAR data would be used, from which the 

model would learn the relevant features. However, applying some corrections may benefit model 

training, as noise may be filtered out and relevant features would become more pronounced. 

 

4.4 Study areas 

 

In this study it was attempted to create a deep learning model that could predict the frozen or 

non-frozen state of different lakes around the world based on SAR imagery. Four studies areas from 

four different places were therefore used for training and analysis of model performance. However, 

it is unknown how the model performs on lakes outside the selected study areas. Lower model 

performance on underrepresented areas in the training data might indicate that overfitting occurs not 

only on the training data, but on the four selected study sites in general. Further research could 

therefore look into adding training data from additional locations around the world and testing on 

another variety of different places. This may improve the model robustness and the usefulness of its 

application in lake ice and climate research all around the world. 
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5. Conclusion 
 

This study created a deep learning FCN model for lake ice prediction using Sentinel-1 SAR data. 

For this, a model with U-Net architecture was trained on four study areas in Alaska, Canada, Finland 

and Russia, that had continuous ice cover for several months each year. The performance of the model 

was assessed using accuracy and F1 metrics, and because the dataset was relatively balanced, 

accuracy was considered a good indicator. On a test dataset the model reached an accuracy of 83%, 

while for the train dataset it reached over 99%. This is an indication that the model was overfitted on 

the training data. However, performance on an additional dataset still shows relatively high accuracies 

ranging from 72.4% (frozen) to 89.5% (non-frozen) for the two different classes. Between study areas, 

there was some variation, mainly due to an imbalance in the distribution of the data between different 

study areas. 

Overall, the FCN seems like an adequate tool for semantic segmentation of lake ice imagery. 

Although the model results in this study are not as high as comparable studies, there are several 

improvements that are believed would increase model performance, such as better distribution of the 

training data and incorporating data of different study areas. Furthermore, model hyperparameter 

optimization might also improve the predictive performance. Further research can look into the 

application of these enhancements and possibly expand the workflow for easier predictions in new 

study areas. 

 

 

 

 

  



19 
 

References 
 

Barbieux, K., Charitsi, A., & Merminod, B. (2018). Icy lakes extraction and water-ice classification using Landsat 
8 OLI multispectral data. International Journal of Remote Sensing, 39(11), 3646–3678. 
https://doi.org/10.1080/01431161.2018.1447165 

Boulze, H., & Korosov, A. (2020). Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional 
Neural Networks, 1–20. https://doi.org/10.3390/rs12132165 

CIS. (2005). Manual of Standard Procedures for Observing and Reporting Ice Conditions.”. 
Dabiri, Z., Hölbling, D., Abad, L., & Guðmundsson, S. (2021). Comparing the applicability of sentinel-1 and 

sentinel-2 for mapping the evolution of ice-marginal lakes in Southeast Iceland. GI_Forum, 9(1), 46–52. 
https://doi.org/10.1553/GISCIENCE2021_01_S46 

Dalianis, H. (2018). Clinical text mining: Secondary use of electronic patient records. Clinical Text Mining: 
Secondary Use of Electronic Patient Records. https://doi.org/10.1007/978-3-319-78503-5 

De Gelis, I., Colin, A., & Longepe, N. (2021). Prediction of Categorized Sea Ice Concentration from Sentinel-1 
SAR Images Based on a Fully Convolutional Network. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 14(Dl), 5831–5841. https://doi.org/10.1109/JSTARS.2021.3074068 

Dirscherl, M., Dietz, A. J., Kneisel, C., & Kuenzer, C. (2021). A novel method for automated supraglacial lake 
mapping in antarctica using sentinel-1 sar imagery and deep learning. Remote Sensing, 13(2), 1–27. 
https://doi.org/10.3390/rs13020197 

ESA. (n.d.). Sentinel-1. Retrieved June 18, 2022, from https://sentinel.esa.int/web/sentinel/missions/sentinel-1 
Flores-Anderson, A. I., Herndon, K. E., Thapa, R. B., & Cherrington, E. (Eds.). (2019). The SAR Handbook: 

Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA. 
https://doi.org/10.25966/nr2c-s697 

Heinilä, K., Mattila, O., Mets, S., Sakari, V., Schwaizer, G., & Koponen, S. (2021). A novel method for detecting 
lake ice cover using optical satellite data. International Journal of Applied Earth Observations and 
Geoinformation, 104(October). https://doi.org/10.1016/j.jag.2021.102566 

Khaleghian, S., Ullah, H., Kræmer, T., Hughes, N., Eltoft, T., & Marinoni, A. (2021). Sea ice classification of sar 
imagery based on convolution neural networks. Remote Sensing, 13(9), 1–20. 
https://doi.org/10.3390/rs13091734 

Lindenschmidt, K. E., & Li, Z. (2019). Radar scatter decomposition to differentiate between running ice 
accumulations and intact ice covers along rivers. Remote Sensing, 11(3). 
https://doi.org/10.3390/rs11030307 

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440. 
https://doi.org/10.1109/ICCVW.2019.00113 

Ma, Z., Liu, Z., Pu, J., Xu, L., Li, K., Wangqu, L., … Duguay, C. (2021). Deep convolutional neural network with 
random field model for lake ice mapping from Sentinel-1 imagery. International Journal of Remote 
Sensing, 42(24), 9343–9367. https://doi.org/10.1080/01431161.2021.1995074 

Messager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. (2016). Estimating the volume and age of water 
stored in global lakes using a geo-statistical approach. Nature Communications, 7(1), 1–11. 
https://doi.org/10.1038/ncomms13603 

Moreira, A., Prats-iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). SAR-Tutorial-
March-2013. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. 

Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service 
(C3S) Climate Data Store (CDS). 

O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., … Allan, M. G. (2015). Rapid 
and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 
42(10), 773–781. https://doi.org/10.1002/2015GL066235.Received 

O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks, 1–11. Retrieved from 
http://arxiv.org/abs/1511.08458 

Planet. (2022). PlanetScope. Retrieved June 18, 2022, from 
https://developers.planet.com/docs/data/planetscope/ 

Podest, E. (2017). Basics of Synthetic Aperture Radar. NASA Applied Remote Sensing Training (ARSET) Program. 
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image 

Segmentation. International Conference on Medical Image Computing and Computer-Assisted 
Intervention, 1–8. 



20 
 

Scott, K. A., Xu, L., & Pour, H. K. (2020). Retrieval of ice/water observations from synthetic aperture radar 
imagery for use in lake ice data assimilation. Journal of Great Lakes Research, 46(6), 1521–1532. 
https://doi.org/10.1016/j.jglr.2020.08.018 

Sharma, S., Richardson, D. C., Woolway, R. I., & Imrit, M. A. (2021). Loss of Ice Cover , Shifting Phenology , and 
More Extreme Events in Northern Hemisphere Lakes, 1–12. https://doi.org/10.1029/2021JG006348 

Singha, S., Johansson, M., Hughes, N., Hvidegaard, S. M., & Skourup, H. (2018). Arctic Sea Ice Characterization 
Using Spaceborne Validation by Airborne Measurements. IEEE Transactions on Geoscience and Remote 
Sensing, 1–20. 

Sobiech, J., & Dierking, W. (2013). Observing lake- and river-ice decay with SAR : advantages and limitations of 
the unsupervised k -means classification approach. Annals of Glaciology, 54(62), 65–72. 
https://doi.org/10.3189/2013AoG62A037 

Stonevicius, E., Uselis, G., & Grendaite, D. (2022). Ice Detection with Sentinel-1 SAR Backscatter Threshold in 
Long Sections of Temperate Climate Rivers. Remote Sensing, 14(7), 1627. 
https://doi.org/10.3390/rs14071627 

Surdu, C. M., Duguay, C. R., Pour, H. K., & Brown, L. C. (2015). Ice freeze-up and break-up detection of shallow 
lakes in Northern Alaska with spaceborne SAR. Remote Sensing, 7(5), 6133–6159. 
https://doi.org/10.3390/rs70506133 

Tom, M., Aguilar, R., Imhof, P., Leinss, S., Baltsavias, E., & Schindler, K. (2020). Lake ice detection from sentinel-
1 sar with deep learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 5(3), 409–416. https://doi.org/10.5194/isprs-Annals-V-3-2020-409-2020 

Tom, Manu, Kälin, U., Sütterlin, M., Baltsavias, E., & Schindler, K. (2018). Lake ice detection in low- resolution 
optical satellite images. 

Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-
resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. 
https://doi.org/10.1002/2014GL060641 

Wang, Y.-R., & Li, X. (2020). Arctic sea ice cover data from spaceborne SAR by deep learning. Earth System 
Science Data Discussions, (December), 1–30. 

Xing, Y., Zhong, L., & Zhong, X. (2020). An Encoder-Decoder Network Based FCN Architecture for Semantic 
Segmentation. Wireless Communications and Mobile Computing, 2020. 
https://doi.org/10.1155/2020/8861886 

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and 
practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061 

 

 

 

  



21 
 

Appendix A 
 

 
Table 4. Statistics on additional images dataset model predictions. 

Alaska All Ice Water 
 

Canada All Ice Water 

count 54 28 26 
 

count 70 29 41 

mean 72.09 66.23 78.39 
 

mean 74.26 45.43 94.66 

st. dev. 29.80 31.13 26.90 
 

st. dev. 30.32 21.89 15.07 

max 100.00 97.00 100.00 
 

max 98.00 85.00 98.00 

min 0.00 0.00 16.10 
 

min 0.00 8.10 0.00          

Finland All Ice Water 
 

Russia All Ice Water 

count 107 71 36 
 

count 60 28 32 

mean 86.17 83.54 93.83 
 

mean 83.04 78.51 87.00 

st. dev. 16.06 16.81 14.92 
 

st. dev. 20.60 18.64 21.40 

max 100.00 100.00 100.00 
 

max 100.00 96.00 100.00 

min 5.50 5.50 14.70 
 

min 19.60 19.60 32.00 
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Appendix B 
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Figure 12. Qualitative results for non-frozen lake imagery for Alaska (26-10-2020), Canada (15-10-2020), Finland (04-08-
2021) and Russia (14-09-2017). The first two columns show Sentinel-1 SAR VV and VH values including average 
windspeed, the third column the label (non-frozen) for the lake polygons and the fourth column the model prediction 
including accuracy (%). 


