
Classifying and labeling the relationships between

cities with high levels of co-occurrence on the

English Wikipedia

August 13, 2022

Thesis by Diederik van Rijen (d.w.j.vanrijen@students.uu.nl)
MSc in Applied Data Science at Utrecht University

Supervisor: Evert Meijers
Second supervisor: Tongjing Wang

Second Examiner: Carolina Castaldi

1

Abstract

This study delves into three di�erent approaches of document classi�cation
in order to successfully classify the type of relationship between European
cities: "LDA Topic modeling, Word embedding classi�cation and Word fre-
quency representation". The �rst method provides a distribution of topics,
the second provides hard classi�cation, while the last method uses word fre-
quency metrics to represent a document by its most relevant words. LDA
topic modeling and word embedding classi�cation provided very similar re-
sults for a dataset of 311.000 paragraphs, indicating a serious level of accuracy,
and proving that they could both be used for classi�cation. The paragraphs
showed a pretty similar distribution of the following six topics: "entertain-
ment, diplomacy, education, art, transportation and sport." The last method,
representation of text by word frequency leaves the classi�cation up to the
viewer and can be considered visibly pleasing. The most important deliver-
ables of this study consist of two major datasets (1). 506,328 Individually
classi�ed paragraphs that contain co-occurrences of city pairs, and 2). the
aggregated classi�cation of 1,770 city pairs belonging to 60 cities).

Keywords| European cities, network, toponym co-occurrence, classi�cation, topic mod-
eling, word embedding.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Research Question . 5

2 Background 6
2.1 Text Classi�cation . 6

2.1.1 Rule-based systems . 6
2.1.2 Machine learning-based systems . 6
2.1.3 Classi�cation Types . 7

2.2 Text representation and encoding . 7
2.3 Latent Dirichlet Allocation . 7

3 Data 8
3.1 European cities . 8
3.2 Wikipedia Dump . 9

3.2.1 Ethical considerations . 9
3.3 Cleaning . 9
3.4 Preprocessing . 9

3.4.1 Toponym co-occurrence extraction 9
3.4.2 Tokenisation and Lemmatisation 10
3.4.3 Word Frequency Metrics . 11

4 Research Methodology 11
4.1 Translation to a data science problem . 11
4.2 LDA Topic Modeling . 11

4.2.1 Document choice . 12
4.2.2 Parameter settings . 12
4.2.3 Model Performance Analysis . 13

4.3 Word Embedding Classi�cation . 14
4.3.1 Adressed Problem . 14
4.3.2 Word Embedding . 14
4.3.3 Topic Vector Creation . 15
4.3.4 Pre-trained word embedding . 15
4.3.5 Design choices . 15
4.3.6 Algorithm Performance Analysis 16

4.4 Word Frequency Representation . 17
4.5 Di�erences between the Classi�cation techniques 17

5 Results 17
5.1 LDA Topic Models . 17

5.1.1 Distribution of words over topics 17
5.1.2 Distribution of topics over documents 19
5.1.3 Distribution of topics over city pairs 20
5.1.4 Analysis . 20

5.2 Word Embedding Classi�cation Model . 21
5.2.1 Document (paragraph) classi�cation 21
5.2.2 City pair classi�cation . 22
5.2.3 Analysis . 22

5.3 Model Comparison . 23
5.4 Word Frequency Representation . 24

5.4.1 Wordclouds . 24

6 Discussion 25
6.1 Limitations . 25
6.2 Future Work . 26

7 Conclusion 26

References 27

Appendices 29

3

Appendix A - Code 29
A.1 Packages . 29
A.2 Datasets . 29

A.2.1 Co-occurrence Matrix . 29
A.2.2 LDA Classi�ed Paragraphs . 30
A.2.3 Classi�ed City Pairs . 31

Appendix B - Extra Information 32
B.1 SpaCy . 32
B.2 Topic Coherence Model . 32

4

1 Introduction

1.1 Motivation
When we look at European cities as a network, there is a high emphasis on the nodes
(cities), while the edges (relationships) are often only covered by hard numbers (based
on ows of goods, transportation, connecting ights, trade data, or a wide variety of
other, often rather inaccurate proxies). This can be explained by the fact that measuring
relationships between cities has been a continuous and common challenge, and thus the
lack of good data has been called "the dirty little secret of world city research" [27].

Luckily for us, the pursuit of good data has become easier over the past years due
to the rise of data science and the steadily increase of the overall accessible data volume
[16]. This o�ers new possibilities, combined with the fact that cities that are strongly
related are often mentioned together (`co-occur') in written texts, according to Meijers
and Peris [23]. Analysing these toponym co-occurrences can shed new light on how these
cities relate to each other. The frequency of toponym co-occurrences tells us how strongly
related they are, and is relatively straightforward to obtain. The major challenge can be
found in accurately classifying those relationships, in what context are cities mentioned
together? Both supervised and unsupervised machine learning are plausible options for
text classi�cation, but a lexicon-based approach also seems particularly suited.

This paper is the result of a ten week long project with as overarching principal goal the
exploration and mapping of the relationships between di�erent cities and classi�cation
of these relationships. The deliverables of this project consist of this paper, a clean and
reproducible code base, as well as two datasets with proper classi�cation of both, the
1770 city pairs and the 506,328 paragraphs with city pair occurrences. This should make
it possible for other researchers to validate the results and pursue this line of research. A
visualisation of the classi�ed city pairs will be presented on a European map, as well as
a Lo-Fi prototype for the implementation of an interactive web application that lets the
user interact with the toponym co-occurrences and relationship labels.

This project also led to the following two papers: "The E�ect of Space-Language
Bias on Toponym Co-occurence Derived Networks" by Brecht Nijman and "Analysis of
Toponym Co-occurrences on Social Media" by Kevin O'Driscoll.

1.2 Research Question
The classi�cation of the relationships between cities adds value to the resulting network by
providing (the user with) a possible explanation on the strength of a relationship between
two cities. For example, the number of co-occurrences of Paris and Milan might be due
to their common link to art, and the relationship between Madrid and Manchester could
potentially be attributed due to the presence of well-known football clubs. Being able
to label the context of toponym co-occurrences plays a signi�cant role in understanding
their relationship. This need for accurate text classi�cation led to the following research
question:

"To what extent is it possible to classify and label the relationships between
cities with a high level of linguistic co-occurrences on the English Wikipedia?"

This research question will be answered using the following sub-questions:

ˆ What are the available options for classifying large texts?

ˆ How useful are the available classi�cation options for the labelling of the relation-
ships between cities? What are the pros and cons of the di�erent approaches?

ˆ What is the best approach to classify and label the relationships between cities?

The remainder of this paper is organised as follows. Chapter 2 provides some background
information covering some of the available classi�cation methods, text representation and
Latent Dirichlet Allocation (LDA), an unsupervised 'soft' clustering algorithm. Chapter
3 covers the data that has been used for this study and how it was preprocessed. Chapter

5

4 gives an insight into the methods that were used and provides reasoning for their usage.
Chapter 5 presents the results and model comparison. Chapter 6, the discussion, shows the
limitations of the study and provides recommendations for future work. The �nal chapter
concludes the study and provides an answer to the research question. Supplementary
information and graphical representations are to be found in the Appendix.

2 Background

2.1 Text Classi�cation
Figure 1 is an expanded version of a �gure from a literature review of 91 papers, writ-
ten between 2010 an 2017, on "text classi�cation techniques in AI" by Thangaraj et al.
[32]. The visualised tree represents algorithms that were mentioned along text classi�ca-
tion. The algorithms are divided based on their learning procedure. The methods and
algorithms that are shown in the green boxes were used during this study.

Figure 1: Hierarchical representation of text classi�cation algorithms.

2.1.1 Rule-based systems

Rule-based classi�cation systems apply (if/then) rules derived from elements or text pat-
terns to determine the category of text. An example would be to set up a list of relevant
words for each speci�c class after which the number of related words to each class gets
counted. A text will receive the class with the highest count of related words. Rule based
models can have good accuracy and all the steps in the classi�cation process are clear. It,
however, can take a lot of time to set up and requires deep analysis and numerous testing.

2.1.2 Machine learning-based systems

Machine learning-based classi�cation methods have gotten more and more attention re-
cently due to the increased computational power of computers [16]. Instead of relying
on manually crafted rules, it learns to make classi�cations based on training data. The
process of classi�cation model training can be seen in �gure 2. Pre-labeled training data
is used to learn the di�erent associations between texts in relation to their label. The
next step, after acquiring the training data, is 'Feature Engineering' . This means that fea-
tures get extracted from raw data, e.g. text to numerical representation as most machine
learning algorithms only understand numerical features. Features can be transformed,
and a selection of desired features, that contribute to the predicted class outcome, get
passed onto the machine learning model for training, which results in the �nal classi�-
cation model. Now we can actually classify unlabeled texts by doing feature extraction,
feeding those to the model and receiving a classi�cation prediction, as shown in �gure 3.

Both machine-learning and rule-based techniques can be combined in hybrid classi�ca-
tion algorithms. The following paper by Kamruzzaman et al. demonstrates its potential,
through the optimisation of a text classi�er by using word relation rules instead of words,
to derive a feature set from the labeled training data. Na•�ve Bayes Classi�er is then used
on those features to predict the class [21].

6

Figure 2: Training a machine-learning based classi�cation model.

Figure 3: Classifying text with the machine-learning based classi�cation model.

2.1.3 Classi�cation Types

Classi�cation tasks can be divided into di�erent categories dependent on the possible
classes and prediction outcome, being: Binary, multi-class, multi-label . The easiest type
is binary classi�cation, with only two exclusive available class labels. Popular algorithms
are: 'Logistic Regression, K-Nearest Neighbours, Decision Trees, Support Vector Machine
and Na•�ve Bayes' [22]. Logistic Regression and Support Vector Machines are speci�cally
designed for binary classi�cation.

Multi-class classi�cation covers the tasks that have more than two available class
labels, with a single predicted class. K-Nearest Neighbors, Decision Trees, Na•�ve Bayes,
Random Forest, Gradient Boosting and Arti�cial Neural Networks can all lead to good
results [8].

Multi-label classi�cation is the process where each text can be assigned multiple labels.
None of the previously mentioned methods can be used directly, but some adapted versions
are available: 'Multi-label Decision Trees, Multi-label Random Forests and Multi-label
Gradient Boosting '. Multi-label classi�cation can also be hierarchical in nature when the
labels are hierarchically structured [13], e.g. movie (romance, comedy) and sport (soccer,
tennis) .

2.2 Text representation and encoding
Proper feature extraction may involve encoding meaningful text into a vector represen-
tation, while preserving the context and relationships between words, in order to allow
computers to decode, understand and �nd text patterns. Text representation can be clas-
si�ed into two categories: Discrete text representations, and distributed or continuous text
representations.

In discrete text representation the representation of a word remains una�ected by
other words and context. Known examples are one-hot encoding, basic bag-of-words
(BOW), and advanced BOW (TF-IDF). Distributed text representation is when the rep-
resentation of a word is dependent or not mutually exclusive of another word. Known
examples are co-occurrence matrices, Word2Vec and GloVe. [12]

2.3 Latent Dirichlet Allocation
LDA, which stands for Latent Dirichlet Allocation, is an generative probabilistic model
and unsupervised 'soft' clustering algorithm that uses Dirichlet distributions to �nd topics
in a data set. LDA produces a probability distribution of groupings per item, whereas a
'hard' clustering algorithm like k-means assigns each item to a single cluster. The output
from a topic model that uses LDA consist of two parts: "A distribution of words over
topics, and a distribution of topics over documents." [10]. In layman's terms this means
that we have words that have a higher probability of occurring for a given topic, and we
have topics that have a higher probability of occurring for a given document.

To be able to �nd meaningful non-overlapping topics it is important to make sure
that the distribution of words over topics is coherent.

7

3 Data

3.1 European cities
A list of 150 European cities was provided which came from the following report [15]. Due
to the computational challenges of text classi�cation the number of cities was reduced to
the biggest 60 cities, based on the contiguous built-up area (morphological urban area)
speci�ed here [4], which resulted in a total of 1770 city pairs.

Table 1: The 60 European cities with the most residents in their morphological
urban area (MUA) of which the city pairs are classi�ed.

City Country Residents
Paris France 9,591,000
London England 8,256,000
Madrid Spain 4,955,000
Berlin Germany 3,776,000
Milan Italy 3,698,000
Barcelona Spain 3,659,000
Athens Greece 3,331,000
Rome Italy 2,532,000
Birmingham England 2,363,000
Lisbon Portugal 2,315,000
Naples Italy 2,308,000
Katowice Poland 2,279,000
Manchester England 2,207,000
Hamburg Germany 2,123,000
Budapest Hungary 2,123,000
Bucharest Romania 2,064,000
Warsaw Poland 2,004,000
Stuttgart Germany 1,735,000
Vienna Austria 1,674,000
Munich Germany 1,647,000
Brussels Belgium 1,498,000
Stockholm Sweden 1,479,000
Frankfurt Germany 1,462,000
Cologne Germany 1,398,000
Copenhagen Denmark 1,360,000
Valencia Spain 1,318,000
Turin Italy 1,309,000
Glasgow Scotland 1,228,000
Prague Czech Republic 1,175,000
Lyon France 1,175,000
So�a Bulgaria 1,174,000
Liverpool England 1,170,000
Porto Portugal 1,163,000
Seville Spain 1,082,000
Dublin Ireland 1,070,000
Helsinki Finland 1,065,000
Amsterdam The Netherlands 1,052,000
Rotterdam The Netherlands 1,025,000
D•usseldorf Germany 1,016,000
Essen-Oberhausen Germany 986,000
Lille France 953,000
Lodz Poland 919,000
Marseille France 862,000
Antwerp Belgium 830,000
Bilbao Spain 822,000
Newcastle England 814,000
Krakow Poland 807,000
Bochum-Herne Germany 804,000
Thessaloniki Greece 777,000
Nuremberg Germany 769,000
Riga Latvia 764,000
Duisburg Germany 758,000
Dortmund Germany 750,000
Hanover Germany 747,000
Z~A¼rich Switzerland 718,000
Oslo Norway 712,000
Bremen Germany 709,000
Dresden Germany 697,000
She�eld England 693,000
Palermo Italy 680,000

8

3.2 Wikipedia Dump
The principal and main data source consists of all 7 million articles on the English
Wikipedia (compressed and downsized to a 20GB �le). However, with some adjustments
and language support from Natural Language Processing (NLP) algorithms like SpaCy
[20] (lemmatisation) and GloVe [24] (word embeddings), it should be quite easy to either
include Wikipedia articles written in di�erent languages or totally new datasets like Reddit
for the classi�cation of toponym co-occurrences.

The articles are obtained by downloading a compressed Wikipedia Dump that serves
as Wikipedia back-up. The most recent Wikipedia dump for each language can be found
at https://dumps.wikimedia.org/backup-index.html . For this study we solely used
the articles from the Wikipedia dump from '2022-04-20', these articles are stored across
a multitude of (.bz2) compressed Wikipedia �les. The English articles can be obtained
at: https://dumps.wikimedia.org/enwiki/20220420/ .

3.2.1 Ethical considerations

According to the license information of Wikimedia all the textual content is freely available
under the GNU free Documentation License and the Creative Commons Attribution-
Share-Alike 3.0 License [5]. Even if some articles were to contain sensitive data this should
pose no problems due to the aggregated nature of the resulting classi�cation (classi�cation
over city pairs instead of paragraphs).

3.3 Cleaning
Because an o�cial wikidump was used, the Wikipedia articles came in the same, straight-
forward format. The text contained HTML tags and external and internal links which
had to be removed. A Python tool, called WikiExtractor [9], proved to be very useful
as it allowed for easy extraction of the plain text from the wikipedia dump, signi�cantly
downsizing its overall size. Referral pages, pages that link to other pages and have no
content themselves, were removed as they are not relevant to this study.

3.4 Preprocessing

3.4.1 Toponym co-occurrence extraction

First, the text �les containing all the articles are scanned for co-occurrences for the given
list of city pairs (e.g. (Paris, London) or (Milan, Berlin)), the co-occurrences of the �rst
380 city pairs are shown in �gure 4. When a city pair has been detected, the window
size of choice, in this case the full paragraph, the article title, article id and assigned
paragraph id will get written as a new line to a text �le corresponding to the city pair. A
.csv �le will also be populated for each city pair with the following columns and its values:
Title, city pair, article id, paragraph id and paragraph. These .csv �les will play a major
role in the classi�cation process and will be turned into the resulting datasets of this study.

Figure 4: Co-occurrence matrix of the �rst 20 cities from the list.

9

3.4.2 Tokenisation and Lemmatisation

Second, the csv �le that contains the paragraphs of a speci�c city pair is opened as a list
of paragraphs and downsized into chunks to avoid any memory allocation errors. With
the aid of priorly mentioned advanced NLP library, SpaCy, the paragraphs will get split
into a sequence of tokens that each represent a word, punctuation, whitespaces, etc. The
tokenizer starts by splitting the text on whitespaces, then the tokenizer processes the text
from left to right. Each substring receives two checks: 1). Does the substring match a
tokenizer exception rule?, and 2). Can a pre�x, su�x or in�x be split o�?. If there is a
match, the rule is applied and the tokenizer continues its loop, starting with the newly
split substrings. As shown in �gure 5, this allows SpaCy to split complex, nested tokens
like combinations of abbreviations and multiple punctuation marks.

Figure 5: Spacy tokenizer in action. [19]

Each token gets assigned a predicted part-of-speech (POS) tag (Noun, Verb, etc.) based
on the context and statistical methods. A list of possible SpaCy POS tags can be found
in �gure 23. The Named Entity Recognition and Dependency Parser parts were not nec-
essarily required, and thus left out to signi�cantly speed up the process. SpaCy has three
trained pipelines that di�er in the accuracy of their predictions [18]. The largest, the
'en web core lg' pipeline, will be used to maximize accuracy. The available steps of this
processing pipeline can be seen in Figure 6.

Figure 6: spaCy processing pipeline.[17]

Next, only the tokens within the processed text that either had a 'Noun' , 'Verb' or
'Adjective' POS tag and were not considered stopwords or punctuation were included.
Six new columns were created in the .csv �le of each city pair, representing the clean
and raw version of each of the the three di�erent POS tags. The raw column hosting the
output from the SpaCy lemmatisation and the clean column with removal of non-existent
words. These lemmatisation columns, created according to the bag-of-words (BOW)
model principle, disregard grammar and order but instead represent text as a histogram
of word occurrences, these are extremely important as they are used for each of the three
proposed classi�cation methods. Thus logically, after �nding out that the spaCy pipeline
was only '97%' accurate, a list of 379.000 common English words was used to validate
each word against and add in the cleaned column with only the lemmatised English words
from a paragraph.

Lemmatisation was chosen over stemming due to the fact that, while lemmatisation
takes a lot more time, it results in real dictionary words by taking into account context and

10

POS tags (e.g. 'change, changing' to change), whereas stemmer algorithm's hard-coded
rules to chop o� su�xes result in stemmed versions of a word (e.g. 'change, changing' to
chang).

3.4.3 Word Frequency Metrics

Because the paragraphs were converted into a bag of lemmatised words the right frequency
metric should be used in order to make the classi�cation as accurate as possible. The
easiest method to represent a document is by a simple bag-of-words representation, where
a set of vectors contains the count of word occurrences. These counts are only meaningful
when taking into account the length of the document, which is why the relative frequency
of words will be calculated by dividing it by the number of words within a document (TF).
Next, it is crucial to �nd how important a word is to a certain document relative to the
collection of documents, with as primary goal to leave out meaningless words that occur
often like, for example, 'city, year and time'. The numerical statistic that achieves this,
Term Frequency-Inverse Document Frequency (TF-IDF, consists of two parts: Looking
at the relative term frequency of a word in a document, and the number of documents
that contain the word. Words that appear in a lot of the documents will thus be seen as
less important to a speci�c document and normalised to a lower value [25].

4 Research Methodology
Due to the nature of this classi�cation task, three di�erent methods that could potentially
be successful at �nding a good representation over the city pairs were chosen. LDA Topic
Modeling, Word Embedding Classi�cation, and Word Frequency Metrics. All three use a
very di�erent technique and represent the relationship between two cities di�erently.

4.1 Translation to a data science problem
To be able to say something about the feasibility of the classi�cation and labeling of the
relationships between cities with a high level of (linguistic) co-occurrences on the English
Wikipedia we have to approach it as a data science problem. What algorithms exist,
or can be created to classify the relationships between cities, and do these consistently
provide us with accurate results? This will be done by comparing the results from both
the topic modeling and word embedding classi�cation method between themselves as
well as by manually reviewing samples of classi�ed paragraphs. In order to keep this
study relevant to the �eld of data science the classi�cation labels will not be based on
literature, instead topics will be sought after by an unsupervised technique that is used
to �nd (hidden) groupings in data, called Latent Dirichlet Allocation.

4.2 LDA Topic Modeling
The discussed topics within the text belonging to each city pair were exposed through a
method called LDA topic modeling. Topic modeling is an unsupervised machine learning
technique that is capable of scanning a set of provided documents, detect word and phrase
patterns within them and automatically cluster word groups that best characterize these
set of documents and create topic distributions for these documents. The input and
outputs of a topic model are visualised in Figure 7. According to Tarifa et al. [31],
there are two main reasons to perform topic modeling, these are: "Selecting meaningful
words to represent each topic, and having separate topics by maximising the cluster inter-
distance resulting in the most distinct topics". There are a lot of di�erent topic modeling
approaches (like Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis
(pLSA), Latent Dirichlet Allocation (LDA) and deep learning-based lda2vec), but they all
rely on the same basic assumptions: "Eachdocument consists of a mixture of speci�ed
number of topics , and each topic consists of a collection of words ". Figure 7 shows
the topic modeling pipeline. The topic modeling model that was used in this study,
LdaMallet [26] di�ers from other LDA topic models by using Gibbs sampling instead of
variational (Bayes) inference. This gives better results over time, but takes longer to run
[28]. Furthermore variational Bayes inference is irredeemably biased whereas the bias of
Gibbs sampling approaches 0 as long as enough samples are taken.

11

LdaMallet uses training documents for a proper estimation of word-topic and document-
topic distributions for both training documents and new documents. If topics are distinct
enough it should be possible to label them and thus �nding out if and what topics are
dominant for each document.

Figure 7: Basic principle of (LDA) topic modeling. [14]

4.2.1 Document choice

Deciding what a document represents in an lda topic model is crucial. Should para-
graphs that belong to speci�c toponym co-occurrences be counted as a single document,
or should each paragraph be counted as an individual document? It might make sense to
use combine the paragraphs belonging to the co-occurrences of a city pair into a single
document, in order to classify the city pair relationship straight away with the LDA topic
model. However, due to the arti�cial creation of these city pair text �les and lack of
semantic connectivity between each paragraph, an LDA topic modeling algorithm might
not be able to �nd semantically meaningful topics in them. The paragraphs containing
the co-occurrences of each city pair were already extracted and merged together as a .txt
�le, hence, an attempt was made to �nd meaningful topics across the city pairs of top
�ve biggest cities with the paragraphs of each city pair as a document. The result can be
seen in �gure 12. The LDA model was unable to represent cohesive topics, which can be
explained due to the lack of coherency within each document. Each document consisted
of a large number of paragraphs from di�erent articles that cover a lot of di�erent topics
instead of having truly dominant topics.

After a fruitless attempt the second option was tested, where each document represents
a single paragraph that will receive its own topic distribution. the count of dominant
topics in the paragraphs of a city pair should then result in a classi�cation of the city
pair itself. This gives a lot more exibility by making it possible to use classi�cation
thresholds and discarding smaller paragraphs in favour of the quality of the �nal clusters,
Figure 13 shows how the above choice of document led to a successful LDA topic model.

4.2.2 Parameter settings

LDA topic modeling requires a given number of clusters (=topics) and will then try to �nd
good word-topic and document-topic distributions. Because no speci�c number of topics
is expected in these documents, an LDA model was trained for each number of topics
within the range 2 to 21. Two other important parameters of an LDA model, MIN DF
and MAX DF received di�erent inputs to optimise the �nal model. The �nal model
will leave out words that either appear in less than 5% of the documents or more than
90% of the documents. The number of iterations was set to 1000 and the optimisation
interval was kept at 10 as advised by the documentation [6]. Both the Alpha and Beta
hyperparameters that represent document-topic-density and topic-word density were left
unchanged as these will get optimised automatically every N iterations where N is the
optimisation interval. A low Alpha forces documents to only contain 1 or a few topics
and a high Alpha means that documents are likely to contain a mixture of many topics,
Figure 8 shows the likely distribution of topics for a document based on di�erent Alpha
values. With a high Beta the topics are composed of a large number of words from the
corpus and with a low Beta the topics have less words.

12

Figure 8: Impact of the di�erent Alpha values on the topic distribution within a
document. [2]

4.2.3 Model Performance Analysis

Each LDA model was analysed with the aid of two great tools for �nding out how good
a topic model is, being the topic model coherence score and visualisation of the clustered
topics.

The coherence score of a topic model helps distinguish between topics that are se-
mantically interpretable topics and topics that are artifacts of statistical inference. It
is obtained by calculating the average of the distances between words for each topic to
measure the degree of semantic similarity between high scoring words of a topic. Well-
known NLP library 'Gensim' provides us with a coherence model, with great parameter
exibility, that returns a coherence score. There are multiple coherence measures that
can be used (e.g.CUMass ; CV ; CUCI ; CNP MI), of which CV was selected, considered the
best performing coherence measure according to the following paper about the space of
topic coherence measures [29]. A high coherence score indicates coherent topics, a good
score to aim for would be 0.6-0.7.

Visualisation was done through pyLDAvis [30], a library for interactive topic model
visualisation, which uses Principal Component Analysis (PCA) to reduce N-dimensional
vectors to 2D vectors to map the clusters in a two dimensional �eld. A good topic model
will have relatively big, similarly sized and non-overlapping bubbles scattered throughout
the chart. Greater distances between the clusters represents a larger semantic di�erence,
similarly sized bubbles are a sign that the topics are equally represented, and large circles
mean that the topics are well represented in the documents. By paying attention to these
three characteristics we could get an accurate representation of the dominant topics of
our documents and decide whether these clusters represent good, meaningful topics. By
experimenting with the relevance metric slider for each topic coherent, interpretable list
of words can be created that can easily be labeled based on the common topic. Table 3
shows the six clusters with their 15 most relevant words and their assigned labels that
were found by the LDA model in the paragraphs of the 435 city pairs.

After approving the topic model both visually and through its coherence score the
topic distribution of the documents should be analysed (e.g. table 4), to avoid unwanted
distributions. Some topics might be more present than others by having words with high
term frequencies that aren't necessarily representative of a meaningful topic. If multiple
topics have a similar score for a paragraph, this indicates that there is no true dominant
topic and thus should not result in a dominant topic. By looking at the distribution of
the values for each dominant topic we can chose a classi�cation threshold that is required
in order for a topic to be deemed dominant and the classi�cation to be trustworthy. Hard
classi�cation will be done, which means that majority Voting on the classi�ed paragraphs
will be done based on equal weights.

13

4.3 Word Embedding Classi�cation

4.3.1 Adressed Problem

A major drawback of LDA topic modeling is the lack of control a user has on the topics,
due to the unsupervised learning nature of the technique. To leave out a topic, one could
lower the number of topics by one and hope for good results, this however just create a
new set of clusters and topic distributions. Figure 13 shows quite a bit of overlap between
topic 3 (Art) and 4 (Education) which could lead to inaccurate categorisation due to the
potential similarity of the topics. The clustering might be considered good, but could be
better if either Art or Education was left out or merged together. LDA topic modeling
makes this di�cult because the distribution of a topic depends on all other topics. The
Word Embedding classi�cation method does not have this problem, as it requires a list
of provided topics and simultaneously allows the user to leave out (and add) topics they
want. Figures 15a and 15b show this in practice, the topic modeling and word embedding
algorithms had signi�cantly more similar results for 'Art' classi�ed documents when its
closest neighbouring topic 'Education' was left out.

4.3.2 Word Embedding

Word embedding, a term used for distributed representations of text in an n-dimensional
space, shows words as a multi-dimensional (e.g. 300) vector that tries to encode the se-
mantics of a word such that words closer in the vector space are expected to be similar
in meaning, also seen as the similarity principle. Figure 9 shows the basic principle of
word embeddings and their strength as they are essential for solving most NLP problems.
For example, it allows a user to quickly �nd the words that are close to one another
according to the word embedding model, or do mathematical calculations with words (
e.g. 'king' - 'man' = 'queen'). The word embeddings also work as feature extraction
method as it transforms raw data (characters) into a (meaningful) numerical represen-
tation that is required by most machine learning algorithms. Existing word embeddings
have been trained on a large number of texts, where each word is represented by a point
in the embedding space. These points are learned and moved around based on the words
that surround the target word in the texts that the word embedding model is trained on.
While the representation of a word by a n-dimensional vector might not totally cover the
semantics of that word, we rely on the principle that it will result in an accurate overall
classi�cation of a certain document if enough words are used to �nd overall similarity.
One thing to note would be that documents with a low number of words, or city pairs
with a lower number of documents are at risk of having 'wrong' classi�cation predictions.
Figure 16a and 16b show how paragraphs with a lower number of lemmatised words are
less likely to lead to the same classi�cation across all topics in both the LDA topic model
and word embedding algorithm.

Figure 9: Basic principle of word embeddings.[3]

14

4.3.3 Topic Vector Creation

If the position of the de�ned topics in the vector space could be found, the words within a
paragraph could be categorised by looking which topic vector is closest to them, and thus
classify the paragraph based on the sum of the distances between the words and their
closest topic. Due to the fact that words are 'only' represented along 300 dimensions,
a larger spatial distance between the vectors of the di�erent topics highly increases the
accuracy of the predictions of this model. The hard part is to �nd the vector that covers
the semantic meaning of a certain topic. This 'perfect' representation can be pursued
by taking the mean of the vector representation of multiple self-selected topic keywords,
however, �nding the right keywords turned out to be very hard to do manually. It ended up
being a lot better, for the use case of labeling city pairs, to use the 15 most relevant words
from each cluster that was found through the unsupervised LDA modeling visualised by
pyLDAvis with a preferably lower relevancy value. This works because the relevancy of
these words to their topic has already been proven and words that often appear together
are likely to belong to similar topics. Because both the LDA topic model and word
embedding classi�cation model use the same topics their results can be compared to each
other. The performance of this recommended approach is documented in the following
section.

4.3.4 Pre-trained word embedding

To continue with this method a word embedding is required, either self-trained or pre-
trained. The word embedding classi�cation model is word embedding independent and
thus any word embedding can be provided as parameter. However, Pre-trained word
embeddings are often trained on very large datasets leading to a pretty accurate spatial
vector representations of a word [24]. For this study a pre-trained word embedding by
GloVe was chosen that has been trained on 840 billion uncased tokens from Common
Crawl data, resulting in a vocabulary of 2.2 million words by GloVe, which consists of a
5GB text �le that can be found on the project page of GloVe under the following name:
'glove.840B.300d.zip' [24].

4.3.5 Design choices

To further improve the accuracy of the model paragraphs that either have less than 10
words or were assigned a dominant topic with a score below 0.7 by the LDA topic model
were not used for the classi�cation of the city pairs. This improves the results because
the model will not be able to �nd a dominant topic in a paragraph if there is none and
because small sized paragraphs are less accurately categorised according to Figure 16b.
The words in a paragraph can also be left out of the classi�cation equation for various
reasons, being: Not having a vector representation, not having a higher similarity score
to the most similar topic than the similarity threshold or being ambiguous (i.e. having
a score gap between the most dominant topic and the number two and three topics that
is too small). Ax example of this can be seen in �gure 10. The similarity threshold and
allowed score gap are parameters that can be changed. The similarity scores between
each word of a document and its most similar topic are temporarily saved, after which
the topic with the highest overall similarity score is selected as the predicted classi�cation
of a document, see �gure 11.

15

	Introduction
	Motivation
	Research Question

	Background
	Text Classification
	Rule-based systems
	Machine learning-based systems
	Classification Types

	Text representation and encoding
	Latent Dirichlet Allocation

	Data
	European cities
	Wikipedia Dump
	Ethical considerations

	Cleaning
	Preprocessing
	Toponym co-occurrence extraction
	Tokenisation and Lemmatisation
	Word Frequency Metrics

	Research Methodology
	Translation to a data science problem
	LDA Topic Modeling
	Document choice
	Parameter settings
	Model Performance Analysis

	Word Embedding Classification
	Adressed Problem
	Word Embedding
	Topic Vector Creation
	Pre-trained word embedding
	Design choices
	Algorithm Performance Analysis

	Word Frequency Representation
	Differences between the Classification techniques

	Results
	LDA Topic Models
	Distribution of words over topics
	Distribution of topics over documents
	Distribution of topics over city pairs
	Analysis

	Word Embedding Classification Model
	Document (paragraph) classification
	City pair classification
	Analysis

	Model Comparison
	Word Frequency Representation
	Wordclouds

	Discussion
	Limitations
	Future Work

	Conclusion
	References
	Appendices
	Appendix - Code
	Packages
	Datasets
	Co-occurrence Matrix
	LDA Classified Paragraphs
	Classified City Pairs

	Appendix - Extra Information
	SpaCy
	Topic Coherence Model

