
Network Traffic Simulator:
Designing an Extensible Traffic

Management System Using Python

Julia Ruiter

Yannis Velegrakis, Advisor

Ioana Karnstedt-Hulpus, Reader

MSc Applied Data Science

Department of Natural Sciences

July 11, 2022

Copyright © 2022 Julia Ruiter.

The author grants Universiteit Utrecht the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copying
is by permission of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

This paper documents the creation of an extensible traffic management system
that can be used to simulate various graph problems from congestion in city
traffic, to distribution and shipping logistics, to internet traffic. The Network
Traffic Simulator design process and motivation have been fully described,
and the paper is complete with a tutorial on how to use the software to solve
your own network traffic problems.

Acknowledgments

I’m extremely grateful for my partner, Warren Fletcher, for all the support
he has provided me (both professionally and emotionally) in the duration
of both thesis and this entire master’s program. He has given invaluable
guidance in writing and designing a proper/professional piece of software,
and has patiently helped fill in the gaps in my computer science knowledge,
pointing me in the right direction for data structure and algorithm usage.
This project would not be possible without the many design debates and
ensuing suggestions from him.

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

2 Existing Traffic Simulation Models 3

3 Design Motivations 7
3.1 Network Structure: how should the network be stored in

memory? . 7
3.2 How does the traffic network change state, processing car

movement? . 9
3.3 Where should car location be stored? 10
3.4 Discrete versus continuous systems: how is position represented? 11
3.5 On Paths, Origins, and Destinations 13
3.6 How do cars move along their path? 14
3.7 What kinds of object attributes should be required for the

simulation to run? . 17
3.8 Snapshot: a method for outputting the state of the entire

simulation . 18

4 Network Traffic Simulator: Structure and Architecture 19
4.1 Essential Modules for the Network Traffic

Simulator . 19
4.2 Essential Module Interaction . 25
4.3 Extended Module Interaction 26

5 Using the Network Traffic Simulator 29
5.1 Define the scope of the simulation 29
5.2 Identify or create the required data 30

viii Contents

5.3 Set up a new simulation environment and translate the scope
to code . 32

5.4 Interpret the simulation outputs 33

6 Next Steps 35
6.1 Software Improvement . 35
6.2 Feature Expansion . 36
6.3 Visualization . 37

7 Appendix 39
7.1 Dependencies . 39
7.2 System Specifications . 39
7.3 Example Config Files . 40
7.4 Example Simulator Setup Code 41

Bibliography 45

List of Figures

3.1 Random directional network . 9
3.2 Discrete positions: example . 11
3.3 Discrete positions: blockade . 12
3.4 Discrete positions: multiple cars at one location 13
3.5 Discrete positions: non-fixed locations 13

4.1 Network Module: traffic_network 20
4.2 Car Module: network_cars . 22
4.3 State Module: Traffic_cars . 24
4.4 Software Interaction: Full View 25
4.5 Software Interaction: User View 25
4.6 User-Software Interaction . 27

Chapter 1

Introduction

Making your morning commute to the office by car, waiting for your online
purchase to arrive days or weeks after ordering, using the Tor browser to
access articles or sites not available in your country; these are systems of
describing the movement of people, things, or information from point A
to point B, with various levels of intervention or autonomy in the process.
Each of these situations isn’t an action in isolation, but part of a larger sys-
tem of units moving over an underlying infrastructure. The purpose of this
project is to create a framework that can model each of these systems and more.

This generality is at odds with existing popular software for simulation
modeling, which typically specialize in one particular network type to simu-
late (ex: urban car traffic) [LWB+18]. Simulations built using these programs
have a wealth of domain-specific knowledge and available parameters to tune.
However, this can become troublesome when a user wants to extend the pack-
age to other network types. Due to domain-specific attribute dependencies,
users must be clever about how they use and overlap various domain-specific
packages to model other system types. Generally, this results in adding the
features of one to the other rather than modelling something new (ex: adding
NS2 to SUMO to model telecommunication protocols or mixed-mode travel)
[LC08] [SKMR14]. For a more detailed look at existing programs and related
research, see chapter 2, "Existing Traffic Simulation Models".

The new Traffic Management system/simulation framework outlined in
this paper aims to provide an alternative to this by being explicitly designed
around the question: How can one natively model the idiosyncrasies of a system
without loss of generality in the underlying software? A detailed discussion on
why particular design choices were made on the microscopic and macroscopic

2 Introduction

level can be found in chapter 3, "Design Motivations", but the general guiding
considerations used for ensuring software generality and adaptability to
various use-cases are:

• Modular: each component of the system is distinct and isolated. Though
an element may be dependent on another class, any functions pertaining
to it’s behavior are passed back down to the class it affects before
updating. This allows for further layers of abstraction or separation to
be added (or removed) if necessary.

• Abstract: if a system can be designed such that a network simulation
as a concept can be modeled, then the system should work for all
subclasses of network simulation. This means that a simulation should
be possible on the most bare-bones version of a network/object system.

• Consistent: subclasses have been ignored in this version of the software
and should continue to be absent as much as possible. Allowing for
subclasses allows for use-case-specific functions to creeps into the code;
by forcing functions to be general, you ensure the program is adaptable
to use cases not yet considered.

• Attribute agnostic: as much as possible, object attributes should be non-
essential; this follows from "Abstract". Though a "default" configuration
value has been set for essential variables, nearly all of the default values
are set to the least-restrictive values possible.

• Accuracy over performance: though many calculations could be sim-
plified by assuming fixed parameters, real-world systems are seldom
consistent in practice. By allowing each individual component the
ability to have unique attributes, the user can build more complex and
nuanced simulations.

As the software project this thesis refers to is open-source and still a work in
progress, some of the details in chapter 5, "Using the Network Traffic Simulator",
may become outdated as the project grows and evolves. Anticipated additions
in future versions and an outline for creating a visualizer and UI interface can
be found in chapter 6, "Next Steps". The current version and place where user
suggestions and contributions for additional features and implementations
can be made can be found at:

https://github.com/julialruiter/Traffic_Simulator
v1.0.0: fb860d1

Chapter 2

Existing Traffic Simulation Models

The majority of popular open-source network modeling software focus
explicitly on a single network type. The two most widely used tools and
models are SUMO, which specializes in tackling urban traffic simulations,
and NS2, which specializes in communication networks. //

SUMO has become the de-facto simulator used to research mobility prob-
lems (IEEE eXplore notes nearly 500 citations for the program’s inaugural
conference paper), allowing researchers to plan and execute urban planning
schemes that would be too costly (or time consuming, or flat-out impossible)
to enact [LWB+18]. SUMO works by giving its users a graphical user interface
where they can import geospatial maps data (typically from Open Street
Maps, but users can also draw a graph) and overlay traffic events. In the GUI,
users can add lanes to existing roads or change the type of vehicles allowed
per lane (car, bus, high-occupancy vehicle, bike, etc), adding edges to the
network and adding (or removing) restrictions to those edges [D+22]. While
heavy emphasis is placed on using the GUI, users can also opt to import files
and run simulations using Python.

Once the road network setup is complete, the user can move on to the
"Demand" setup, which is how SUMO describes adding vehicular traffic.
Through the GUI (or importing xml files), users can add vehicles, specifying
numerous vehicle attributes like vehicle type and route information[D+22].
The car creates a demand on the network to enter and exit at a particular
timestamp, then the network simulation tries to execute it.

While these features are what make SUMO excel at urban mobility simu-
lation, because of its dependence on geographic location, its use cases cannot
be abstracted out [LWB+18]. This means that even similar network problems

4 Existing Traffic Simulation Models

like pedestrian mobility on the same network, simulating truckers who com-
municate with one another on the same network, or allowing an individual
to move from one type of transportation to another require the additional
use-case-specific packages and simulators to run on top [NBKL21], [LWB+18],
[SKMR14]. The intersection of traffic and mobility (as in the aforementioned
adaptations to SUMO) has resulted in an entire genre of simulators called
VANET (Vehicular Ad-Hoc Network). However, VANET simulations cannot
be evaluated directly by SUMO nor the appended packages, thus requiring
yet another set of simulation packages to run on top of SUMO [LC08].

Of course, the same network traffic systems outlined above can be modeled
outside of the SUMO environment entirely. Far preceding the creation of
SUMO, papers on trucking and transport simulations can be found dating
back to the ’90s, even using programs like Microsoft Excel to run them
[Dag94]. This leads us to question whether SUMO’s painstakingly created
attributes and dependencies are even necessary for spinoff simulations.

To see an example of a more generalized framework in action, we can look
at the other popular network traffic simulation framework: NS2. NS2 is a
"object oriented simulator" tool which was designed explicitly for the simula-
tion and assessment of computer communication networks. The user manual
"Introduction to Network Simulator NS2" details how to use the system for an
extensive variety of communication-based simulations it supports have grown
extensively in the 30+ years of its existence [IH11]. Because it is a solid base for
simulations where objects may talk with one another, it has seen use beyond
its original scope (including many uses in conjunction with SUMO [LWB+18]).

While SUMO allows users to intuitively approach simulation from a
visual perspective, NS2 does not, nor should it: computer communication
is somewhat abstract and very intangible, so users to not expect a GUI
for setup (though users can then run the set up simulation in a viewing
window). Instead NS2 presents itself as a library users can install and use
with Python and runs on C++ objects. NS2 further differs in that is enables
the use of distributed computing to run the traffic events [IH11]. Rather
than modeling location of an object on an edge directly, NS2 operates by
calculating the time delay between nodes, and extrapolating location based on
that. This corroborates NS2’s claim to be a purely mathematical model [IH11].

The design of this traffic simulator has drawn heavily on SUMO for
guidance in accommodating "vehicle" attributes; this allows for nuanced

5

simulations to run and supports full customizaibility from the user in how
and when the "vehicle" objects can make changes to their route. But diverging
from SUMO and borrowing from NS2, this traffic simulator has tried to keep
the simulation as mathematical and modular as possible, ensuring that the
components can run in any order and regardless of user interference. Taking
inspiration from the detail of SUMO and the flexibility of NS2, this project
aims to create a self-contained simulation environment that can handle
a range of use-cases (provided the user has adequate configuration data
available).

Chapter 3

Design Motivations

The goal of this project was to design and code a general solution to the traffic
modeling problem. After all–if one can prove that the generalized solution
works, then any special case should, too, thus satisfying the aim to create an
extensible and multi-use simulation model.

To prove so requires combining graph theory, combinatorics, and data
structures. However, computers require a bit more work to conform to the nat-
ural mathematics of graph theory as they force discreteness. This meant that
special considerations had to be made to emulate the continuous real-world
systems it may be required to simulate. With real-world precision and ac-
curacy as the utmost goal, the system was designed with the following criteria:

3.1 Network Structure: how should the network
be stored in memory?

Nodes are connection points for several edges, like road intersections, cellular
towers, etc. By utilizing graph data structures, one can also take advantage
of the numerous existing path-finding algorithms and easily keep track of
connected pair of nodes (and their directionality).

The advantages of designing a directed graph model rather than undi-
rected are obvious: car lanes force traffic in a particular direction, and packets
of information cannot necessarily be transmitted in both directions (especially
if there are intermediary steps, like encryption, that are not reversible).

8 Design Motivations

Further continuing with intuitive design decision, it followed that the
network needed to be directional, and that multiple parallel edges between a
pair of nodes should be allowed. Directionality’s reason is easy to sport:

Directionality has another advantage in that it allows for multiple parallel
edges. This has the added benefit of intuitively and adaptably being able to
increase (or restrict) edge capacity, serving as another parameter the user can
tune to mimic real-world constraints. This ensures that this traffic simula-
tor has the flexibility to model microscopic and macroscopic traffic trends
[LWB+18]. Using normal commuting traffic as an example, a user can test
whether or not adding another lane to a freeway (or adding lane accessible to
cars only of a certain type) would ease congestion as they are able to view
metrics and positionality per timestamp of the entire system (macroscopic),
the set of edges between two nodes or each individual node (mesoscopic),
and the individual cars on those roads themselves (microscopic) [LWB+18].

Though some traffic simulations in existence use adjacency matrices to de-
fine neighbouring nodes [GPK02], this is not a scalable, nor desirable, solution
. While adjacency matrices are intuitive for humans to read and understand,
since most networks are fairly sparse they end up storing a lot of NULL values
and require n! complexity to process those NULLs. While little heed is paid
to memory conservation in the rest of this simulation’s design process, the
idea of holding space for nonexistent edges did not seem like a very good idea.
Instead, it makes sense to think more about the interactions of node-edge
pairs via their object pointers. Adjacency matrices acknowledge that an edge
is defined by its originating and terminal nodes, but fails to demonstrate how
a node is only interesting because of the set of inbound and outbound edges
it connects. To capture both of these ideas, dictionary mappings were utilized
to identify and link nodes to edges and edges to nodes, allowing either or
both interactions to be utilized, depending whichever one was more intu-
itive for the particular action being done at any point in the simulation process.

How does the traffic network change state, processing car movement? 9

Figure 3.1 Proposed structure: random directional network with objects on it,
with one edge per possible object-carrying "lane" (non-redundant)

3.2 How does the traffic network change state, pro-
cessing car movement?

A methodical process is needed to execute all the actions that can take place
on each tick of the simulator (tick being the function that executes said
changes for each incremental timestamp in the simulation runtime). Once
all available or possible actions have been made for that tick, the simulation
is considered to be in a new state, and that information about that state is
returned to the user.

The network object consists of nodes and edges, so it makes sense to
break down the action queue to these levels as well. However, you can’t just
arbitrarily run all nodes and edges as there is an inherent order and hierarchy
to them. As edges are defined by their start and end nodes, it makes sense to
have edge tick processes as a dependent of node tick processes. Furthermore,
because nodes are capable of having multiple inbound and outbound edges,
it is essential to process a particular node’s edge ticks together to ensure as
smooth and realistic of a movement between edges as possible.

To ensure that each component of a network is only processed once, on
each tick, the network tick function iterates through all nodes listed in the net-
work’s node dictionary. Each node, in turn, processes each outbound edge in
its adjacent outbound edges dictionary. The network tick and its subsequent
node and edge ticks will be performed as many times as necessary until the
cars run out of energy (more on that later in the Movement section) or no

10 Design Motivations

more advances can be made with the current remaining energy potentials,
and report out the number of loops needed to do so and the total percent
of potential energy used. These values can be used as a proxy for network
congestion, though more as a benchmark between ticks or simulations than
as an absolute value of ability.

To ensure that no node nor edge is favored (ei: always has their candidate
cars move before any other node or edge’s), the order in which these items
are iterated is shuffled with each pass. While this helps immensely with
simulation accuracy, the random nature is what prevents the output numbers
from being a reliable and accurate metric of network (in)action.

3.3 Where should car location be stored?
A traffic simulation is not very insightful without considering the things
which themselves cause traffic–Who, or what, keeps track of where the "cars"
are? Though innocuous, the question leads to some philosophical fancies
that need to be addressed before determining who (or what) is in charge of
your position.

If you’re driving home at midnight, you might choose to take a faster
route or a more scenic route, you might pull over to look at the citylights or
take a pause because you’re feeling sleepy, or you might drive a bit over the
speed limit up because there’s not likely to be any cops on the road at this
hour of night. It feels like you own the road and you have full control over
where you are right here right now.

But what if you (are trying to) drive home 5 o’clock Friday in the thick of
traffic? Yes, you chose to take a particular route home, but now you’re stuck in
bumper-to-bumper traffic and can’t move forward til the car in front of you
decides to (or can at all). While you may be in control of your car, you don’t
have full control over your ability to move, and thus over your position. This
leads to the inevitable conclusion that a simulation will be most accurate if
the network controls the cars rather than letting the cars control themselves,
meaning that current position must be stored on the objects over which the
cars are moving: the edges.

Discrete versus continuous systems: how is position represented? 11

3.4 Discrete versus continuous systems: how is
position represented?

Since edges store car locations and move them along a particular distance
each unit of time, it’s tempting to think of positions in terms of capacity. If an
edge is 10 units long and cars travel 2 units per time, there are 5 positions a
car can be, so a car’s position can be stored as its index in the capacity queue.
This makes movements easy to simulate and requires a minimal, fixed storage
space no matter the amount of cars on the network. So this is that design
choice, right?

...well, not quite. Sure, the example above is easy to quantify, but breaks
down when situations arise that obstruct predictable movement, ranging
from traffic jams to even just switching to an edge with a different speed
limit. If a car is unable to move its full potential, it’s then unable to move into
the next discrete state. So where does it go? And where do any cars after it go?

The problem with defining position by the distance a car can go at it’s
maximum speed is that there’s a lot of unaccounted distance. If a car is
going 10 m/min, then the position would be defined as 10 meters later (if the
unit time distance of the simulation were in minutes)–in a road stretch of 60
meters, there would be 6 possible positions.

Figure 3.2 Example discrete system with 6 slots, 3 of which currently occupied

Now let’s say that the car (car A) has reached the end of the road segment
and is trying to turn onto a crossroad, but the crossroad is completely full.
Car A must stop at the end of the road segment and wait for an opening.

12 Design Motivations

The car behind (car B), meanwhile, is still driving 10 m/min but must stop
before crashing into the halted car in front, but any cars behind it are still
capable of moving fully into the next position in the queue. Where is Car B?
It cannot be in the final position (as Car A is still occupying it), and the penul-
timate position is now taken up by Car C which was one position behind Car B.

Figure 3.3 No obstructions yet: all cars have proceeded one slot forward

Faced with this situation in a discrete system, we must compromise on
simulation accuracy: either you allow cars to pile up on positions (defeating
the purpose of a queue and unrealistically depicting car location), or you
prevent cars from moving at all (artificially causing traffic on the current edge
when there is, in fact, room to move. This cascades onto other connected
edges and may stall the whole simulation). While option one doesn’t seem
too terrible, it runs the risk of allowing cars to "jump" over halted cars; if car
C’s destination is the location car A is stuck, then when car C piles onto the
position two timestamps later, it registers as completing its journey despite
that being impossible in a real-world scenario.

On Paths, Origins, and Destinations 13

Figure 3.4 Car A is stuck, car B and C advance, causing car B to share a spot
with car A

Figure 3.5 Car A is stuck, car B advances to an in-between stage, Car C advances
one slot forward

It is clear that some other solution is needed if a realistic simulation is to
be created. And that solution is simple: switch to floating point positions. By
mapping cars to their exact position from 0 to maximum edge length, the
user can be explicit about how long each car is and how close the cars are
allowed to be to each other, all the while ensuring accuracy in car behavior
by preventing skipping. While this adds additional complexity to movement
calculations, the resulting affinity for precision solves any practical or logical
issues that a discrete system would incur.

3.5 On Paths, Origins, and Destinations
"How do I get from Point A to Point B?" and what even constitutes a "point"?
Path-finding algorithms typically find the fastest/shortest/"best" route be-

14 Design Motivations

tween any 2 given nodes, which would imply that nodes are the points.
This intuitively makes sense and works great for simulation paths with
bounded, real-world constraints. Take (a very simplified example of) email
communication: emails will always start at one machine (node), travel to a
server (node), and perhaps be passed onto another server for the receiver to
view (node); there might be more or less steps between each landmark, but
the only place a message can originate is at one of the endpoints.

However, cars do not spawn in the middle of a four-way intersection, nor
does it make sense to create a network model where every possible parallel
parking spot is a separate node in a network. For one, someone could do a
terrible parking job and take up two spots, therefore creating some new start
or end node somewhere between the existing spots. But the more pressing
issue with breaking a road into n continuous, sequential, connected segments
is the same sort of unwanted inefficiency as the adjacency matrices proposed
earlier: there’s a lot space and computation wasted on pairs that generally
provide no function to the simulation.

This led to design decision to turn the usual graph structure on its
head, and instead allow cars to enter and leave the network from the edges
themselves. To make this work for traditional node-to-node paths, the car
placement mechanism has been written in such a way that if no specific edge
location has been specified for a start and end point, a path is selected based
on those nodes and the "car" is placed at position 0 along the first edge (and
finishes its journey at the maximum length of the final edge, or effectively at
the terminal node).

Since start and end locations have been set to edges, path finding calcu-
lations also are done on an edge to edge basis. As edges only know their
bounding nodes (and nodes their adjacent edges), calculations are done on
the network level, allowing chaining between edge dictionaries of nodes and
node dictionaries of edges to build potential paths.

3.6 How do cars move along their path?
A simulation is practically useless unless it models the movement of objects
predictably and (semi-)realistically; the problem of how to model node-
crossing caused quite some consternation.

How do cars move along their path? 15

For an intersection consisting of one inbound edge and one outbound
edge, the logic is simple: when a car reaches the end of one edge, check
the following edge and place it there if there is room. Even in the simple
scenario, there are certain complexities that arise when translating that from
math theory to computer code, and compound when adding more degrees
of freedom by adding more inbound and outbound edges:

• What counts as "room"?

• How far does a car go on to the following edge?

• What if the two edges have different speeds?

• What if cars from two (or more!) different inbound edges want to move
onto the same new edge?

• Are cars allowed to change their path?

And this list doesn’t even consider what happens what other optional at-
tributes like stoplights are added into the mix!

"Room" is the easiest to answer and was already hinted at a few sections
ago: a car will move as far as it possibly can, given the internal and external
constraints on its movement. This holds for movement within a given edge
and across edges (node-crossing).

In describing why a discrete system didn’t work, the word "potential" was
used to describe a car’s possible range of movement; this was not on accident.
Even on a floating-point system, the maximum distance a car is allowed to go
in one unit of time (tick) is an essential calculation for determining all aspects
of a car’s movement. This value is denoted as "maximum_tick_potential",
which was derived from leaning into the field of physics:

• "Work" is defined as the amount of energy expended to move a certain
distance in a certain period of time.

• An object at rest has some arbitrary value of potential energy.

• The law of conservation of energy states that the total energy of a system
must remain constant.

16 Design Motivations

It follows that the total energy of the universe remains constant, so any energy
expended on moving an object is subtracted from the object’s potential energy
to ensure the balance remains. By defining a car’s "potential" for movement
during one tick, we can define its actual moment as a proportion of that,
allowing multiple actions to be done in one tick (as long as there is energy
potential to spend). Furthermore, we can calculate the total un-expended
energy at the end of the tick of the entire network or for a particular edge and
use this as a metric for how backed-up or congested the network is.

3.6.1 Car movement using tick potential
The following steps describe how a car can possibly move within one tick.

1. Each car starts with it’s maximum potential energy at the start of a tick
(default = 1). This is the currently available potential energy.

2. Any car that takes an action on the list below is done moving for
the current tick and will be moved from the current_cars queue to a
processed_cars queue.

3. If a car has been added to the simulation and is waiting to enter the
network, check if its start position is open, and add it to the edge at the
location if possible (or keep it in the waiting queue if not). Placement
on the edge uses up the full energy potential to prevent cars that enter
late in the network tick loop from moving more than is realistic.

4. Evaluate how far a car can possibly move along its current edge: The
maximum possible distance is the edge’s speed limit times the currently
available potential energy, but the actual possible travel distance is that
to any obstacle in front of it. If there is a car in front, the car can only
move to behind it; if the edge ends, the car can only go to the end at
the current speed; if the car reaches its path end position, it leaves the
network entirely; otherwise, the car can go its full potential.

5. Calculate the work done to get to that position: divide distance travelled
by maximum potential distance (speed limit).

6. Subtract work done from the remaining available energy (or maximum
potential energy). If there is still energy left and a car has reached the
end of the current edge, proceed. Otherwise, wait til the next tick.

What kinds of object attributes should be required for the simulation to run?
17

7. Evaluate if the car can proceed on to the next edge: nodes might
have a (time) penalty for crossing (such as time to physically cross an
intersection); if the car does not have enough energy left after "paying"
this penalty, then the car cannot proceed further and must wait til the
next tick.

8. Select the next edge in the path: for some cars, this is simply the next
edge in the path list; other cars (depending on car type) may require a
calculation to choose a new path first.

9. Repeat steps 3 through 8 as long as there is energy remaining or until
the car is forced to wait.

3.6.2 Multiple Inbound Edges: Mitigating preferential treat-
ment of nodes or edges

The issue of multiple cars across several edges eligible to change onto the
same new edge is solved, in part, by the random shuffling of each node
tick and edge tick order. Some randomness will persist as the order edges
are processed may affect whether other cars are even eligible to enter after
it, but one could argue that the randomness accurately portrays real-world
indecisiveness (at least for car traffic networks) and thus is not something
to fear, but rather embrace. However, if this is deemed undesirable by the
user, they can mitigate the effects by choosing a small enough tick time that
differences are negligible. Tick time can be adjusted by adjusting the scalar
values for the maximum speed parameter of the edges.

3.7 What kinds of object attributes should be re-
quired for the simulation to run?

Since the simulation software should allow for full flexibility in what types
of network systems it models, it was important to make sure the simulation
requires as few mandatory fields as possible to produce a reasonable simula-
tion, but allow for additional parameters inherent to a particular system.

Following basic graph theory, the essential attributes for the network
(nodes and edges) itself is only what is strictly required to make a graph:
a unique identifier per object, and for edges a value to link each end to it
respective node. However, a slew of additional attributes (like delay for

18 Design Motivations

nodes or maximum capacity for edges) can be specified to make the traffic
model more complex, adapting parameters and interactions to more closely
model a specific real-world system of choice.

3.8 Snapshot: a method for outputting the state of
the entire simulation

Though the random factor prevents a truly reproducible simulation, simula-
tion snapshot output has been designed in such a format that it can also serve
as config file input for later simulation. This provides continuity between
all files associated with the simulation and makes it easier to recover the
simulation and its output in case of machine failure/crashing.

Snapshots output a human-readable dump of the entire simulation state,
including all details on cars, edges, and nodes. It was deemed essential that
the user be able to obtain these snapshots whenever they like, allowing the
flexibility to save every single tick state (and maybe dump to a database for
detailed analysis), or choose only final or important interim states if desired.

Chapter 4

Network Traffic Simulator:
Structure and Architecture

This software is comprised of several interconnected modules. Each module
represents an abstract concept required for modelling a traffic scenario, each
containing as many classes as are needed to create the components necessarily
for that concept. This results in the creation of three selfcontained modules
representing the network, the cars/objects traversing the network, and the
state-changer. To make the simulation complete and fully self-contained, the
user may utilize two additional optional modules for generating the network
structure and car objects. Following naming conventions, and module
that a user may directly interact with has been named using capitalization;
dependent modules (hidden to the user) are named using only lowercase.

4.1 Essential Modules for the Network Traffic
Simulator

4.1.1 Network Module: traffic_network
As noted in the previous chapter, a network must have three components
(network structure, nodes, and edges) and there exists an inherent hierarchy
to these structures (a network only exists by defining sets of connected nodes).
Though for creation purposes it may make sense to define the nodes and
edges and let the network be a dependent object, that does not make sense
for the problem at hand: traffic simulation is the analysis of objects moving
over a network, therefore the Network itself must be given (requiring a class
of its own), leading to the component Nodes and Edges being dependent

20 Network Traffic Simulator: Structure and Architecture

classes. The module traffic_network has been created to collect the instances
and interactions of all network components for a simulation instance.

The resulting module structure is as follows:

Figure 4.1 Hierarchical structure of objects within the traffic_network module

The traffic_network module creates and runs an instance of a Network
object which creates and corrals its constituent Node and Edge objects. Please
note that the functions in this module should be hidden from the user. Instead,
the user should call for changes using theTrafficManager API.

Network class

The Network class contains all attributes and functions relating to the net-
work as a whole. It contains a pointer to the TrafficManager simulation
instance it was created for, a global timestamp, and dictionaries mapping IDs
of the nodes, edges, and cars on the network back to the objects they represent.

Since the simulation depends heavily on the structure of the network, the
Network class hosts a slew of functions whose output is utilized by both the
User and cars running on the network. It has the capability to place new
cars on the network, add and remove nodes and edges from the network,
find (optimal) paths between any two points on the network, assess the
consumed movement "potential" of the system, and oversees the movement
tick() function on the Node level.

Essential Modules for the Network Traffic
Simulator 21

Node class

The Node class contains all attributes and functions pertaining to the purpose
of a Node in the network. Each Node has dictionary mappings of its inbound
and outboud Edge ids back to the Edge objects they represent. This is
essential for facilitating the movement of cars across the Node when cars
move off one Edge and onto another via theNode’s tick() function. Nodes
may also have an instersection_time_cost; this value is used to account for
the real-world time (and space) delay that occurs when switching from one
edge to another (like the physical time and distance of turning a corner on a
busy road, or the time it takes to perform an http handshake).

Additionally, the Node supports stoplight capabilities, which are more
broadly categoriezed as a time-based restriction on available Edges. At-
tributes like stoplight pattern, duration, and delay define which "open" and
"closed" states are available, with a change_stoplight() function to control the
cycling through these states.

Edge class

The Edge class contains information and functions related to an individual
Edge in the Network. While it needs pointers back to the start and end
Node objects that define it (and other attributes that were part of the Edge’s
Network config), it also does a lot of work in the actual movement of cars in
the simulation.

When an Edge’s start_node object calls on the Edge to tick(), the car
must not only keep track of the Cars currently located on it (via a Car id to
Car object mapping), but discern between which Cars it has already and
has yet to move on the current tick (in order to prevent cars from moving
more than their potential energy allows them to). For each Car on the Edge,
the Edge must try to move it as far forward as possible, checking on the
potential, the exit positions, and the physical location of any other Cars on
the Edge to prevent the cars from overlapping or phasing through each other.
Furthermore, the Edge collects a list of any cars that have left the Network
(by path completion or User input) whos last position was on that Edge,
ensuring that Car information is never lost.

The Edge also has another role to play in the Node tick() of its end_node:

22 Network Traffic Simulator: Structure and Architecture

when a Node tries to transfer a Car from one Edge to another, it may fail if
there is no room available on the new Edge. This means that the old Edge
must be capable of both holding onto the Car in case of failure, or handing it
off if successful.

4.1.2 Car Module: network_cars
"Car" is the general term used in this document (and the Simulator itself) to
describe an object traversing the network as it allows for intuitive labeling
of its attributes. Once instantiated, a car is not dependent on the network
to continue existing; to represent this semi-independence, the Car class was
moved to a separate module:

Figure 4.2 Classes structure within the network_cars module

In practice, though, the car is not very interesting when trying to simulate
overall network behavior and ensuing traffic scenarios. Any attributes the
user may care about (such as current location) are only relevant in context. So
while network_cars technically exists as a self-contained module, it is never
used in isolation. Instead, this module is automatically imported into the
traffic_network module, seamlessly allowing these two modules to interact
with one another.

This module creates and stores a car object. A car is created when called
into existence by an API call via the Traffic module. While the network_cars
module is fully dependent on the network_traffic module to move, car objects
can exist separately. Thus, network_cars is imported into the network_traffic
module to allow for object-network interaction.

Once again, the functions here should be hidden from the user. Instead,
the user should call for changes and additions using theTrafficManager
API. Internal functions belonging to the network_traffic module can be seen
below:

Essential Modules for the Network Traffic
Simulator 23

Car class

The Car class contains all pertinent static information about a Car (like id or
car_length), as well as information and ability to update dynamic values (like
route_status). The flexibility of the Car to handle both types of data is what
allows the Simulation to remain flexible and extensible.

Most notably, a car can be assigned a "Static" or "Dynamic" type; a "Dy-
namic" type indicated that the Car is capable of recalculating its path any
time time it reaches a Node. This is coupled with a route_preference attribute
which determines what kind of path ("Fastest", "Shortest", or "Random") the
Car will follow when it enters the Network or recalculates when reaching a
Node.

The Car must also keep track of its state at all times. Any time the Car
moves during an Edge tick, it must recalculate its remaining potential to know
if it is eligible for movement again. It must also be aware of where it is trying to
exit the Network so it can tell the Edge where to exit, and must also know if its
eligible to move at all (the User may halt it with a pause_car(Car_ID) function).

It is important to note that while the Car stores all of the information
needed for it to run in the simulation, the simulation exists without the Car,
and thus the Car itself has no power to change any Network attributes.

4.1.3 State Module: Traffic
The final component necessary to creating a simulation is a mechanism
for advancing the state of the network. State changing includes adding,
removing, and advancing any cars on the network as far as possible within a
particular unit of time, and are all essential for creating a hands-off simulation.

But simulation state refers to more than the set of current car locations. It
includes system metadata (like lists of nodes and edges in a network, and
their attributes) and dependent calculations from that metadata. By allowing
the user an access point to adapt any component of the network, this software
achieves its goal of being adaptable and extensible to other types of networks
and simulations.

The Traffic modules serves as an API to the underlying simulation,
allowing users to (indirectly) interact with the network components and car

24 Network Traffic Simulator: Structure and Architecture

objects. The set of all these access points into the simulation allows for the
direct management of traffic and has thus been wrapped into an aptly named
class, TrafficManager:

Figure 4.3 Classes structure within the Traffic module

Note that the Traffic module allows only for indirect access to the simulation
components. By using this API as an intermediary between users and network
simulation components, the user is given access only to commands that are
relevant to analysis, and hide internal functions that facilitate those actions.
For example, if a user wants a particular car to halt in place, they can call on
the API function that requests it. The Traffic module then passes that request
to the traffic_network and/or network_cars module to handle if and when it
becomes relevant.

TrafficManager Class

The TrafficManager class instantiates a simulation instance and exposes all
necessary/desired functions for interacting with the simulation once it is
running. This means that it must keep track of the Network is controls and a
global timestamp for the system. The timestamp (which can be retrieved with
a get_timestamp() function) allows the User (or CarGenerator module) to
know when to trigger an event like add_car(Car_ID) or output the simulation
state with get_snapshot().

As the TrafficManager class serves as the simulation’s API, it contains
various functions for the User to interact with the simulation or passively
return network information. Besides add_car, the User may use TrafficMan-
ager to remove_car, or even pause_car (and subsequently resume_car). The
User may also request Network information via the TrafficManager class
for things like listing all possible routes in the network, expected time (or
distance) to complete a particular route, or a dump the simulation’s state
via get_snapshot (which the User may then want to save in a json file or
otherwise).

Essential Module Interaction 25

4.2 Essential Module Interaction
Putting the modules together, we get the following depiction of how the
modules interact with one another:

Figure 4.4 Full view of interactions between the modules and their individual
components

However, as the user doesn’t need to concern themselves with the specifics
on which functions in which classes work and when, we can streamline the
architecture diagram to:

Figure 4.5 Generalized overview of interactions between modules in the Traf-
ficManager ecosystem

26 Network Traffic Simulator: Structure and Architecture

4.3 Extended Module Interaction
For the simulation to run, it must be provided with car objects to move on the
network and a network object to move the cars along. How this information
is provided to the Traffic module is left up to the user, but some suggestions
are provided below.

4.3.1 Importing Cars
With existing traffic data, one may want to create a realistic simulation by
generating cars and adding them to the network in a way that emulates the
real-world data. To do this, a colleague has created a separate CarGenerator
module that allows users to generate cars probabilistically. This optional
module can be run on its own, or integrated directly into the simulation
by passing along the TrafficManager and Network instance pointers to the
generator. The details of the generation process and types of patterns the
module generates can be found in a colleague’s project writeup.

In lieu of using the CarGenerator module, users may provide their
own custom car objects (as a dictionary) as input into the TrafficManager
instantiation. By allowing file-import flexibility to the car adding mechanism,
the simulation is therefore capable of using its own snapshot outputs as input
to a new simulation. This allows users to run the same batch of cars (created
manually, or by the module) to be run over multiple simulations and compare
outputs.

4.3.2 Importing a Network
Much like importing cars, flexibility has been given in how network structures
can be loaded into the simulation.

An optional module, UnderlyingNetworkGenerator, has been written for
creating networks based on mathematical concepts like Erdős-Renyi random
networks or complete bidirectional networks. This module creates a stripped-
down version of a Network object, assigning only the most essential attributes
to individual nodes and edges. Simple underlying networks may be beneficial
for simulations where emphasis is to be placed on the mechanisms of the
network action itself (like stoplight cycles or road capacity metering) rather
than microscopic analysis. Though the current version of this module is
quite bare-bones, it can (and will) be easily adapted to include more complex,

Extended Module Interaction 27

probabilistic attribute assignments.

For real-world simulations, though, a user would probably prefer to
import existing road or network data. This can be done by converting
geojson/csv/shp files to the json format seen in the simulation repository’s
file "EXAMPLE_network_config.json". This method has been tested and
confirmed by taking road and waterways WFS data from Het Nationaal
Wegenbestand [MvIeW22] and stripping the "road" segments to just their ID,
start-point identifier, end-point identifier, and directionality (if a segment
was labeled as bi-directional, then the segment was duplicated with a new
ID, reversing the start and end points).

4.3.3 Complete Module Interaction
Incorporating the car and network imports and user direction into the Simu-
lation ecosystem, we end up with the resulting User-Software Architecture
Model:

Figure 4.6 Generalized overview of interactions between modules, including
the use of optional generator modules and/or load files. The starred component
(created by a colleague) is separate from the traffic manager ecosystem detailed
in this paper

Chapter 5

Using the Network Traffic
Simulator

This chapter illustrates how the traffic simulator software works by guiding
the reader through one hypothetical road-traffic simulation step by step in
sections 5.1 through 5.4. Though automotive traffic is used for the example
case, instances where the given car simulation may differ from other types of
network simulations have been highlighted.

5.1 Define the scope of the simulation
The details of setting up the simulation depend on several factors:

1. What type of network system is being modeled?

2. What is the goal of the simulation?

3. What types of objects traverse the network? Are the uniform?

4. What data is already available to create the simulation? If none, what
do we know about the system?

5. What changes or additions need to be made to a basic network structure
to model the idiosyncrasies of the network or desired observations?

6. How long will the simulation run? Or how what criteria needs to be
met before the simulation is complete?

For our walkthrough example, the answers might look like the following:

30 Using the Network Traffic Simulator

1. A province’s road network. Some roads are one-way, and some roads
have multiple lanes per direction.

2. We want to analyze if adding more highway lanes reduces traffic during
rush hour.

3. Cars and shipping trucks share the road.

4. There is geospatial data available for city roads (in csv format). However,
there is only one lineitem per named road segment. We don’t have car
data, but we know that during the daily rush hour period around 8000
cars travel northbound.

5. Trucks tend to go 10% slower than the speed limit. Everything else
seems normal or standard enough.

6. We want to observe the simulation for a window of time 1 hour before
to 1 hour after rush hour. We will need to run two simulations (one
including the extra highway lanes and one without).

5.2 Identify or create the required data
This software requires that network and car objects be imported as a dictio-
nary objects. At the bare minimum, each imported network requires 2 or
more nodes and 1 or more edges (with start and end node IDs specified),
with unique identifiers for each. Each imported car requires (at minimum)
a unique identifier and a start and end location for the journey it will take.
Users may specify additional attributes that align with their simulation scope,
but these are not essential for a simulation to run.

Users feed information into the simulation by providing specially-formatted
objects (json or otherwise). A complete view of the file format can be found
in section 7.3 (Appendix), but the main thing to note is that very few fields
are mandatory.

The Network config file consists of two parts: Node list and Edge list. The
only mandatory field for Nodes is the id as a unique identifier, but users may
also add details on stoplights/passage gates (if applicable). Edges have a few
more required attributes (id, start_node_id, end_node_id), but also allow the
user to specify conditions for metering like speed and maximum capacity.
Real-world simulations will typically require the user to specify edge_length

Identify or create the required data 31

as well, though the simulation will run regardless, defaulting to equal-length
edges (if none specified).

5.2.1 Object creation
Users can create the objects themselves, or use the optional CarGenerator and
UnderlyingNetworkGenerator modules to output such files. These config
files are necessary to launch a new simulation, but are also the expected
format of any additions to the network or simulation during the run time.
Any objects imported after initialization should only include new objects.

Because the simulation has been designed to be capable of importing
objects from another simulation’s outputs, it should be noted that the config
files can be combined into one document.

5.2.2 Example
Back to our simulation example. we identified an existing dataset for network
that needed formatting and a schema (but no data) for creating cars. This
requires reformatting the csv network data and using the CarGenerator
module (described in a colleague’s thesis) to create the cars.

To use the network csv data, we first need rename and reconfigure the
fields to match those required to match the our scope, then convert the file
from csv to json. In this case, the steps required are:

1. Rename the start and end node fields, and label the edge identifier field
as "id".

2. Redefine speed. If the daytime speed limit is 60 km/h but we want our
system to have a tick size (process new state) of 1 second to improve
simulation accuracy. Converting to meters per second, that max_speed
is now 16.667.

3. Create mirror edges for segments labeled "bidirectional". If edge 1789 is
bidirectional and goes from A to B, then we need to create a new edge
with a new unique ID that goes from B to A.

4. Duplicate edges to represent the multiple lanes. If the highway is
currently 4 lanes wide, then 3 additional copies are needed for each
edge representing the highway.

32 Using the Network Traffic Simulator

5. Create a second copy of the network file, but add extra edges represent-
ing the extra lane on the freeway.

6. Convert the csv(s) to json.

If we decided to create cars manually instead, we could use the DEFAULT
car config file to to batch out the creation of two car types: cars (who travel
like normal), and trucks (who drive 10% slower, which translates to setting a
default max_tick_potential to 0.9).

5.3 Set up a new simulation environment and trans-
late the scope to code

The Traffic module serves as an API into the simulation controls; to use
Traffic and either of the optional generator modules in the Traffic Network
Simulator, the user must import them into their workspace.

Set up a new python file with the following (or something similar), down-
loading/installing the modules and (default) config directory associated with
this software.

In your working file, use relevant calls to the Traffic API to build your
simulation. Generally, this includes building a script that calls for a certain
amount of ticks, adding cars at relevant points along the way. For more
complex simulations, the user may want to use commands to pause or resume
the motion of particular cars (simulating traffic accidents) or prevent access to
entire roads/sections of the network. Please refer to the chapter 7, "Appendix",
for a full list of API commands available in the current software version.

For our working rush hour traffic example, we have the following things
to consider:

• Import the car and (two) network config files and store them as dictio-
nary objects. Note: The car objects are assumed to be stored in file after
generation here, but that is not necessary.

• Since we are running 2 simulations (the existing road network with and
without the additional lanes), we need to instantiate one TrafficManager
per simulation.

Interpret the simulation outputs 33

• Determine how many ticks the simulation(s) must run for. If "rush
hour" is 2 hours and we want to also capture the hour before and hour
after, we need our simulation to run for 4-hours’ worth of ticks. Since
the max_speed precision is defined as meters per second, the simulation
should run for 14400 ticks.

• Batch out when cars enter the network wince the 8000 cars obviously
do not all start driving at the same time. Perhaps for the first half hour,
400 cars enter, 800 the next half hour, 1500 for the next four half hours,
then 400 for the last 2 half hours. (Though there are more accurate ways
to model network enter time than these discrete buckets, that choice is
left to the user).

• Store network snapshots. One snapshot per tick may be excessive, but
a snapshot every minute may be reasonable. This could translate to
grabbing a snapshot every 60 ticks.

To translate these steps to code, we can loop TrafficManager.tick() for as many
ticks are needed between snapshot dumps (TrafficManager.get_snapshot())
and car additions (TrafficManager.add_car(Car_ID)). For an example Simula-
tion working file, refer to section 7.4 (Appendix).

5.4 Interpret the simulation outputs
When running tm.tick(), a pair of statements will print in the terminal for
each tick:

• "Steps needed to process tick: n"

• "Percent of available energy used on tick: m.00%"

Due to how the tick function works, the full set of nodes and edges will
processed as many times as it takes for no more energy to exist or the tick to
cause all cars to use up their energy potential. This number of iteration will
be 1 if no cars are able to move at all (due to having completed their journey
or being labeled temporarily by the user as "immobile"); but more frequently
the minimum count is 2 due to a second pass checking if any more motion is
possible. Any number higher than this is a proxy for how complicated the
current state change is, but holds no direct meaning on its own.

34 Using the Network Traffic Simulator

However, the second item holds more weight. Since cars move by using
tick potential, if something is preventing a car from moving, movement
potential will remain at the end of the turn, indicating that some kind of
bottleneck or obstruction is in the way. Due to the random order of node and
tick processing, the user should refrain from taking the energy consumption
as a direct metric of congestion, but instead use a moving window average
to detect trends or even a global average when comparing simulations (if
evaluating the difference a capacity meter, or speed limit change, etc can
make).

Of course, the user can also elect to save snapshots of the whole network
simulation at any point in time. These snapshots can be individually analyzed
for a detailed overview of current network state, or aggregated with a database
to observe or compare individual (or categories of) cars and edges.

Chapter 6

Next Steps

As this is the first version of the Network Traffic Simulator software, there are
several aspects that can be added or improved upon in successive iterations.
Some features are already hinted at in the code itself with placeholder
functions, and others don’t involve the existing code at all. This version
succeeded in building a functional and extensible traffic simulator that, due
do its modularity, can be easily tweaked and expanded by users or future
contributors. Generally, the improvements fall into three categories: software
improvements, feature expansion, and creating a visualizer.

6.1 Software Improvement
software design-wise, the system is solid in that its logic is predictable and
airtight, and that the system is extensible. However, there are still many
changes that can be made to improve the simulator, particularly in terms of
computational complexity.

1. Subclasses: Though the use of subclasses is at odds with the design
considerations outlined earlier in the paper, the current use of if
statements to check for particular properties is not completely in line
with the principle of extensibility. To remedy this, the use of subclasses
should be considered for nodes (stoplights/none) and for cars (static
versus dynamic path-following).

2. Tick processing: Currently, each tick cycle processes all cars on every
single node and edge in the network, and cycles are repeated until no
mar cars move. This means that the edges without cars are checked
on each pass, and cars that are immobile or finishes moving for the

36 Next Steps

timestamp are checked with each network tick cycle. At the cost of
increasing memory complexity to store extra variables and statuses,
some drastic improvements in computational complexity can be made
by doing so.

3. Logs instead of prints: While the two status messages printed per
tick are beneficial for debugging and analyzing short simulations, they
clutter the terminal and bury other print statements (like Exceptions)
that may be more important. The next version will include an option
for the user to toggle which kinds of print statements they want to see
(car additions, car trip completitions, tick data, etc) and specify a log
file to dump them to.

6.2 Feature Expansion
Building on the existing framework, the following features can and should
be added to future releases:

1. Remove Node/Edge: While the simulator currently supports the ad-
dition of nodes and edges into a running simulation, there is only a
placeholder for removal so far. This was due partly in the interest of
time, but also due to the question of how cascading effects should be
handled:

• If an edge is removed, what happens to the cars that were on that
edge or waiting to enter the network along that edge?

• What about if a node is removed? Should this remove all inbound
and outbound edges associated with the node?

• Should cars lost in the removal be flagged with the generic "Re-
moved from the simulation at X’ status, or would something else
provide more insight to the users?

• Should removed edges be catalogued like removed cars are?

Ideally, other users should be surveyed for input before any solution is
proposed.

2. Stoplights: Currently stoplight change logic is available in the traf-
fic_network module and it defines the active stoplight setting as the set
of edges currently allowing cars to exit. However, this logic has not yet
been activated during the node tick process. Before adding a check for

Visualization 37

stoplight presence and status, additional input is requested from users
whether the existing stoplight state (at the node level) makes sense at
all.

3. Smarter path calculations: The current software version includes the
option to select the best route based on shortest completion time in
normal circumstances, but does not include any option for recalculating
around traffic jams/congestion. This is done somewhat on purpose
as a PhD student is working on a related project on metering, creating
reinforcement learning models that identify these (literal) roadblocks
and circumvent them. Additionally, before a "Fastest_now" calculation
can be created, a more consistent and intuitive metric for congestion
levels is needed.

4. Congestion Metric: Currently there exists a proxy for network con-
gestion levels (it’s the "Percent of available energy used on tick" print
statement for each tick call to the Traffic module. While it would be
simple to consider the used energy metric per individual edge, there is
not enough evidence (yet) that this is a useful or insightful metric. We
must consider the following:

• Currently congestion is considered in terms of total energy con-
sumption and on the network level. But would it make more sense
to report on the car level (the number of individual cars that were
able to move their full distance, the number that were stuck at a
complete standstill, and/or the average tick potential used by cars
that used some in-between amount)?

• Or should congestion be considered as the average of edge-level
congestion?

• Are we even on the right track associating congestion with move-
ment potential? Perhaps we should define it in terms of the ability
of a new car to enter the network: What is the available remaining
capacity per edge?

6.3 Visualization
Currently, the only way a user can view the output of a simulation is by
saving and viewing snapshots. These snapshots were explicitly designed to
be used for generating a simulation visualization, but the visualizer itself

38 Next Steps

was not yet created due to time constraints. Below is a proposal for building
a visualizer:

• Simulation precision: As the simulation runs in discrete tick intervals,
it makes sense to update the visualization with each tick, which can
be done by utilizing the "get_snapshot" function already created for
this purpose. While this does not create a continuous simulation, true
continuity is not achievable due to the code design. However, continuity
can be approximated by using animations to transition the image from
one tick state to the next.

• Snapshot deltas: In the current version of the code, you can find
a placeholder function labeled "get_snapshot_deltas", which would
report only the differences between one snapshot and the next (rather
than dump data for the entire network). Creating this function would
allow a much smaller file to be sent to whatever server would host the
visualizer, though is entirely non-essential for local instances or small
simulations.

• Implementation: Because the visualizer will be built from the snapshot
json files, the language that the visualizer is written in doesn’t need to
match the simulator. Instead, we can use JavaScript to take advantage
of the vis.js library or D3.js library, each specifically written to display
(dynamic) graphs.

– vis.js provides simple graphs off the bat. While it doesn’t seem
like it (easily) supports the ability to add objects (cars) to the
edges, you can change the displayed elements to reflect attributes
weights. This would allow you to create a visualization displaying
congestion, where the thinkness of the edge between two nodes
is proportional to congestion. This can be beneficial for visually
isolating traffic bottlenecks. D3.js appears very much the same.

– Another option for simulations based on real-world geographic
data is to utilize the ArcGIS API. While this does not solve the issue
of displaying cars on the network, it does accurately reflect the
relative relations and distances between and two nodes, whether
they are connected or not.

Chapter 7

Appendix

This sections contains excerpts from the Network Traffic Simulator code and
an overview of the system this software was created and tested on. The
version you see here is the complete documentation for version 1.0.0, released
1 July 2022.

The features found in this version were created to meet (and exceed) the
requirements and expectations set by Universiteit Utrecht staff and serves
as a graduation thesis project for their MSc Applied Data Science program.
This release, while a bit barebones on the generator side, sets up a complete,
adaptable framework for urban traffic simulations (and other use cases!).

Please check the project’s repository (below) for the latest instantiation:

https://github.com/julialruiter/Traffic_Simulator

7.1 Dependencies
So much as possible, libraries have been kept to the standard Python libraries.
This means that the current Network Traffic Simulator software version has
no external dependencies.

7.2 System Specifications
This software was created and tested on a machine with the following specifi-
cations. Though no official stress-testing has been done for this publication,
this information may be relevant in analyzing any metrics reported in follow

40 Appendix

ups:

OS Name Microsoft Windows 10 Home

OS Version 10.0.19044 N/A Build 19044

OS Configuration Standalone Workstation

OS Build Type Multiprocessor Free

System Manufacturer ASUSTeK COMPUTER INC.

System Model VivoBook_ASUSLaptop X521EA_S533EA

System Type x64-based PC

Processor Intel64 Family 6 Model 140
Stepping 1 GenuineIntel 2803 Mhz

Installed RAM 16.0 GB (15.7 GB usable)

7.3 Example Config Files
This section contains the full expected config file structure referenced
inchapter 5, "Using the Network Traffic Simulator". Mandatory fields for
the configs have been bolded:

7.3.1 Car object format
{

"car_list": [
{

"id": <int>,
"start_edge": <int>,
"start_pos_meter": <float>,
"end_edge": <int>,
"end_pos_meter": <float>,
"path": <list of consecutive edge ids>,
"car_length": <float>,
"car_type": <"Static" | "Dynamic">,
"route_preference": <"Shortest" | "Fastest" |

"Random">,
"max_tick_potential": <0 < float 1>

Example Simulator Setup Code 41

},
...

]
}

7.3.2 Network object format
{

"node_list": [
{

"id": <int>,
"intersection_time_cost": <int>,
"stoplight_pattern": <list of int lists>,
"stoplight_duration": <int>,
"stoplight_delay": <int>

},
...

],
"edge_list": [

{
"id": <int>,
"start_node_id": <int>,
"end_node_id": <int>,
"edge_length": <float>,
"max_speed": <float>,
"max_capacity": <int | Infinity>

},
...

]
}

7.4 Example Simulator Setup Code
To translate the Simulation example from chapter 5, "Using the Network Traffic
Simulator" into code, we may write the following:

from Traffic import TrafficManager
import json

42 Appendix

if __name__ == "__main__":

import configs
network_config_original = None
try:

with open("./configs/road_data.json") as
original_json_file:

network_config_original = json.load(
original_json_file)

except Exception as E:
print(E)

network_config_newlane = None
try:

with open("./configs/road_data_extralane.json") as
newlane_json_file:

network_config_newlane = json.load(newlane_json_file)
except Exception as E:

print(E)

car_config = None
try:

with open("./configs/generated_cars.json") as car_file:
car_config = json.load(car_file)

except Exception as E:
print(E)

batch cars
cars_batch_1 = car_config["car_list"][0:400]
cars_batch_2 = car_config["car_list"][400:1200]
...etc

set up the 2 simulations
tm_original = TrafficManager(network_config_original)
tm_newlane = TrafficManager(network_config_newlane)

advance timestamps for simulation 1, adding cars when
necessary, outputting snapshots when necessary

for car in cars_batch_1:
tm_original.add_car(car)

Example Simulator Setup Code 43

for tick in range(1800): # 30 min
tm_original.tick()
if tick % 60 == 0:

with open(str(tm_original.get_timestamp()) +
’_snapshot.json’, ’w’) as f:

json.dump(tm_original.get_snapshot(), f)

...etc for remaining car and time batches
repeat "advance timestamps" for tm_newlane

Bibliography

[D+22] German Aerospace Center (DLR) et al. SUMO user documen-
tation, 2022. https://sumo.dlr.de/docs/index.html.

[Dag94] Carlos F Daganzo. The cell transmission model: A dynamic
representation of highway traffic consistent with the hydro-
dynamic theory. Trans. Res. Part B: Methodol., 28(4):269–287,
August 1994.

[GPK02] David Goldsman, Sebastien Pernet, and Keebom Kang. Logis-
tics 1: simulation of transportation logistics. In Proceedings of
the 34th Winter Simulation Conference: Exploring New Frontiers,
San Diego, California, USA, December 8-11, 2002, pages 901–904,
January 2002.

[IH11] Teerawat Issariyakul and Ekram Hossain. Introduction to network
simulator NS2. Springer, New York, NY, 2 edition, December
2011.

[LC08] Kun-chan Lan and Chien-Ming Chou. Realistic mobility models
for vehicular ad hoc network (vanet) simulations. In 2008 8th
International Conference on ITS Telecommunications, pages 362–
366, 2008.

[LWB+18] Pablo Alvarez Lopez, Evamarie Wiessner, Michael Behrisch,
Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod, Robert
Hilbrich, Leonhard Lucken, Johannes Rummel, and Peter Wag-
ner. Microscopic traffic simulation using SUMO. 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2018.

https://sumo.dlr.de/docs/index.html

46 Bibliography

[MH15] Ajith Muralidharan and Roberto Horowitz. Computationally
efficient model predictive control of freeway networks. Trans-
portation Research Part C: Emerging Technologies, 58:532–553, 2015.
Special Issue: Advanced Road Traffic Control.

[MvIeW22] Rĳkswaterstaat Ministerie van Infrastructuur en Waterstaat.
Dataset: Nationaal wegen bestand (nwb), 2022. data re-
trieved from PDOK, https://www.pdok.nl/introductie/-/article/
nationaal-wegen-bestand-nwb-.

[NBKL21] Mohamed Nahri, Azedine Boulmakoul, Lamia Karim, and
Ahmed Lbath. A reactive system for pedestrian mobility simu-
lation. Procedia Computer Science, 184:469–475, 2021. The 12th
International Conference on Ambient Systems, Networks and
Technologies (ANT) / The 4th International Conference on
Emerging Data and Industry 4.0 (EDI40) / Affiliated Work-
shops.

[SKMR14] Guilherme Soares, Zafeiris Kokkinogenis, José Macedo, and
Rosaldo Rossetti. Agent-based traffic simulation using SUMO
and JADE: An integrated platform for artificial transportation
systems. pages 44–61, November 2014.

[vdGPvA19] Jeroen P T van der Gun, Adam J Pel, and Bart van Arem. The
link transmission model with variable fundamental diagrams
and initial conditions. Transportmetrica B: Transport Dynamics,
7(1):834–864, December 2019.

https://www.pdok.nl/introductie/-/article/nationaal-wegen-bestand-nwb-
https://www.pdok.nl/introductie/-/article/nationaal-wegen-bestand-nwb-

	Abstract
	Acknowledgments
	Introduction
	Existing Traffic Simulation Models
	Design Motivations
	Network Structure: how should the network be stored in memory?
	How does the traffic network change state, processing car movement?
	Where should car location be stored?
	Discrete versus continuous systems: how is position represented?
	On Paths, Origins, and Destinations
	How do cars move along their path?
	What kinds of object attributes should be required for the simulation to run?
	Snapshot: a method for outputting the state of the entire simulation

	Network Traffic Simulator: Structure and Architecture
	Essential Modules for the Network Traffic Simulator
	Essential Module Interaction
	Extended Module Interaction

	Using the Network Traffic Simulator
	Define the scope of the simulation
	Identify or create the required data
	Set up a new simulation environment and translate the scope to code
	Interpret the simulation outputs

	Next Steps
	Software Improvement
	Feature Expansion
	Visualization

	Appendix
	Dependencies
	System Specifications
	Example Config Files
	Example Simulator Setup Code

	Bibliography

