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Abstract 
 

Feature extraction is the process of transforming the raw data into features that the model 
will be trained on while trying to preserve as much information as possible. Choosing the proper 
feature extractor can greatly affect the performance of a classifier. Feature extraction has evolved 
from the older techniques such as tf-idf and Doc2Vec to transformers that have already been pre-
trained on large corpora. However, although the newer techniques seem promising, it is not 
always clear when and why one feature extractor may outperform another. The aim of this study 
is to examine if state-of-the-art feature extractors (i.e., transformers like RoBERTa, MPNET, and 
SPECTER) can outperform classical feature extractors (i.e., tf-idf and Doc2Vec) when 
classifying systematic reviews as relevant or irrelevant. The study involved running multiple 
simulations with the ASReview software to see how well the different feature extractors (in 
combination with various classifiers) classified research articles as relevant or irrelevant. The 
results indicated that a tf-idf feature extractor, in combination with a Naive Bayes classifier, 
outperformed all other combinations, including the sentence transformer feature extractors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All of the code for this study can be found on GitHub: https://github.com/acaklovic/Comparison-
of-feature-extractors-using-ASReview/tree/main 
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1. Introduction 
 
1.1) Motivation and Context 
In recent years, there has been a large influx of academic research papers. The purpose of 
systematic reviews is to summarize and analyze research studies that focus on the same topic of 
interest. However, in order for systematic reviews to avoid bias, they must attempt to find all 
possible relevant research papers on the topic (O’Mara-Eves, Thomas, McNaught, Miwa, & 
Ananiadou, 2015). The task can be made easier with the use of machine learning and, more 
specifically, text classification - the machine learning task of assigning text to predefined 
categories.  
 
Systematic reviews are a laborious process, with the average manual screening time lasting 2.4 
years and with 23% of systematic reviews needing to be updated after two years due to the 
constant flow of new research (Kontonatsios, Spencer, Matthew, & Korkontzelos, 2020). 
Machine learning can ameliorate the systematic process in numerous ways. When a single 
screener performs a systematic review, bias may be introduced, but asking more researchers to 
perform the screening also may not always be feasible (O’Mara-Eves, 2015). Active learning, in 
combination with machine learning text classification, can be used to avoid bias, increase 
accuracy, and decrease screening time while keeping the researcher in the loop.  
 
ASReview is an AI active learning system that uses the titles and abstracts of research papers to 
classify a set of papers as relevant or irrelevant for the researcher (van de Schoot et al., 2021). 
This study will be using the ASReview software to examine the effects of different feature 
extraction methods on the performance of the machine learning classifier. ASReview allows the 
user to implement various feature extraction methods in order to reach optimal performance and 
find as many relevant articles as possible in the least amount of screening time. Thus, the feature 
extraction methods are a vital part of the ASReview process and determine how successful a 
model’s performance is.  
 
ASReview: 
The ASReview pipeline consists of four main parts: 1) data preparation + feature extraction, 2) 
training the model, 3) tuning the model, and 4) repeating the cycle until all relevant records are 
found (full details of the steps in the ASReview pipeline can be seen in Figure 1). The pipeline 
utilizes a process called active learning, which is meant to keep the “human-in-the-loop” by 
asking them to repeatedly label studies that then become part of the training set, and then using 
the new training set to retrain the model (van de Schoot et al., 2021).  
 
Active learning involves the machine learning model interacting with the reviewer in a cyclical 
process where the accuracy of the model improves with every iteration. The initial training set is 
created by the reviewer labeling a certain amount of articles as relevant or irrelevant (in the case 
of ASReview, the training set can be chosen randomly or through keyword search). Then, the 
model ranks the articles from most to least relevant and asks the reviewer to label the article 
ranked highly, thus expanding the training set during the next run. This repeats until a pre-
determined stopping criterion is reached (O’Mara-Eves, 2015). Thus, the advantage of active 
learning is the decrease in workload (how many labeling tasks the system has to go through). In 
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addition, the reviewer maintains some control during the process since they are informing the 
machine which articles they think are relevant or not (van de Schoot et al., 2021).  

 

 
Figure 1: ASReview Pipeline - The software uses active learning in order to build machine learning models 

that find all relevant articles 
 
An important step in the ASReview pipeline is the extraction of features from the raw text data, 
which is performed during the data preparation stage (before the active learning cycle and before 
the model training begins).  
 
 1.2) Literature review 
 
Feature Extraction: 
Feature extraction transforms the raw text input into a usable numerical vector representation of 
“features” that are then fed into the machine learning classifier (Kontonatsios et al., 2020). 
Feature extractor selection can be just as important as classifier selection when it comes to 
ensuring the optimal performance of the model. Incorporating the correct feature extractor can 
decrease the search space of the classifier by focusing only on the most important features. Over 
the years, feature extraction models have moved from tf-idf and Doc2Vec to newer transformer 
models like SBERT (and variants like RoBERTa, XLNET, and MPNet). 
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Transformers: 
When examining the plethora of language models in the academic field, newer models such as 
neural networks are competing to overtake the more classical models such as tf-idf. Neural 
networks, such as recurrent neural networks (RNNs), use a layered architecture to work with 
dense word vectors and automatically learn features that capture semantic and syntactic 
information (unlike the high-dimensional and computationally heavy vectors of tf-idf) (Kalyan et 
al., 2022). However, in recent years an even newer state-of-the-art architecture has emerged. 
Transformers are the next generation of neural networks with a unique architecture that solely 
focuses on the attention mechanism. The transformer model uses transfer learning by training a 
model on one task and then applying it to a completely different task (Acheampong et al., 2021). 
When a model is pre-trained, it means that it has already been trained using a different task and 
dataset. Transfer learning employs pre-training so that the weights from training on one task are 
then used for a new task to make the completion of the new task faster and more accurate (Qiu et 
al., 2020).  
 
Certain layers of the transformer architecture are similar to RNNs, but the inputs that feed into 
these neural layers have changed to more dense embeddings that can contain more information. 
This is done by utilizing three new components in the architecture: 1) Positional encoding, 2) 
Self-attention, and 3) Multi-head attention (Briggs, n.d.). 
 
Positional encoding means that the order of the words in the sentence (also called sequence) is 
considered. The network structure includes “encoder” and “decoder” layers in the place of the 
recurrent/convolutional layers of a neural network so that the syntax of the sequence of text is 
not lost (Briggs, n.d.; Vaswani et al., 2017). The encoder layer takes the input vector and uses 
self-attention to make sure the global context of the word (how the meaning of the word changes 
across all contexts) is coded. The advantage is that complex language nuances can then be 
encoded in these vectors, making for a more accurate model (Kalyan et al., 2022). 
 
The attention mechanism is a key aspect of the architecture because it ensures the model is 
focusing only on the most relevant parts of the data (Acheampong et al., 2021). More 
specifically, the attention mechanism is self-attention, which codes the different positions of the 
sequence so that contextual information is retained (Vaswani et al., 2017). Self-attention 
provides three key advantages in comparison to the recurrent/convolutional layers of neural 
networks: 1) better computational complexity, 2) improved long-range sequence dependencies 
(interactions between far apart words), and 3) parallel processing of input sequences 
(Acheampong et al., 2021; Vaswani et al., 2017). 
 
Input sequences being processed in parallel leads to the concept of multi-head attention, a vital 
component of the transformer architecture formed from self-attention. Multi-head attention is the 
stacking of self-attention layers. Self-attention means the meaning (semantics) of a word is found 
by looking at that word in only one context. However, multi-head attention performs self-
attention in parallel so that the representation of a word changes depending on the 
position/context it is in (Terechshenko et al., 2020; Kalyan et al., 2022).  
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The question of how all these concepts are pieced together is further explained in the original 
paper introducing the transformer architecture, Attention is All You Need, by Vaswani et al., 
2017. The representation of the transformer architecture can be seen in the diagram below:  
 

 
Figure 2: Transformer model architecture from Attention is all you Need by Vaswani et al., 2017 

 
The diagram above shows that transformers consist of the same feed-forward layers that are 
found in neural networks but indicates the key differences discussed above. The general picture 
is that the presence of the positional encoding mechanism allows for the order of a sequence 
(syntax) to be maintained (Vaswani et al., 2017). In addition, the masked multi-head attention 
mechanism focuses on only the most relevant information in the input in order to cut down on 
computation costs while still maintaining accuracy. This means that the inputs feeding into the 
neural layers are more information-rich than in a classic neural network like an RNN (Vaswani 
et al., 2017).  
 
Additional Feature Extraction Methods: 
ASReview offers a couple of classical feature extractor techniques. A basic overview of the 
feature extractors is given below, along with an explanation of specific transformer models that 
will be evaluated in the study:  
 
There are four basic, but very important, differences that can be discerned between the feature 
extraction models: 1) Syntax (the arrangement of the words/sentence), 2) Semantics (the 
meaning of the words/sentence), 3) Context (the meaning may change depending on the 
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surrounding words/sentences), and 4) Out of Vocabulary (OOV) (words that are not in the 
training set but are in the test set) (Naseem et al., 2021). Each of these four differences will be 
examined for each feature extractor below, along with other advantages and disadvantages: 
 

1) Classical: Tf-idf 
Tf-idf is one of the first feature extractors to be implemented. Tf-idf is a categorical word 
representation, which is one of the easiest ways to represent text because it simply uses 
symbology. Unfortunately, categorical representations create sparse vectors of features and thus 
suffers from the curse of dimensionality. In this model, term frequency is calculated as how often 
a word appears in a document. The Inverse Document Frequency assigns bigger weights to terms 
with a higher (or lower) frequency so that common words don’t have as large of an impact 
(Naseem et al., 2021). The full equation is:  
 

tf-idf (t, d) = tf (t, d) * idf(t), 
 

where t is the term in document d for the total number of documents n, so that idf (t) = log (n / df 
(t)) + 1 and df (t) is the document frequency of t. In addition, due to being a categorical word 
representation, tf-idf does not consider syntax, semantics, context, or OOV sentences. The 
benefits of tf-idf include the fact that it is easy to compute, and common terms do not impact 
results (Naseem et al., 2021). 
 

2) Classical: Word2Vec (and Doc2Vec) 
 Word2Vec employs word embeddings and is in fact a continuous word representation, which 
solves the curse of dimensionality and lack of syntax and semantics that are associated with tf-
idf. Word embeddings are vectors representing text that are based on the rule that if certain 
words are used in a similar context, then they should have the same meaning. Note that Doc2Vec 
is simply a variation of Word2Vec that processes sentences instead of words (Tabinda Kokab et 
al., 2022; Naseem et al., 2021).  
 
Word2Vec consists of two shallow, hidden neural network layers that turn each word into a 
vector representation (or in the case of Doc2Vec, it turns the sentence into a vector). When 
creating the vector representation, words that are variations of each other (ex: “run” and 
“running”) are near each other in the vector space. The issue with Word2Vec and Doc2Vec is 
that these models need a large corpus in order to perform well (Naseem et al., 2021). Word2Vec 
and Doc2Vec fail to recognize that the meaning of a word/sentence can change due to context 
(Terechshenko et al., 2020; Qiu et al., 2020). 
 
State-of-the-art: SBERT and its variants 
SBERT is a transformer, more specifically a sentence transformer, that incorporates the 
foundation of neural networks with an attention mechanism in order to create a self-supervised 
model. SBERT is based off of BERT (Bidirectional Encoder Representations from 
Transformers) and it creates sentence embeddings by adding a pooling operation to the output of 
the BERT model (Reimers & Gurevych, 2019). BERT was trained on a huge corpus consisting 
of Book-Corpus and the English Wikipedia (Liu et al., 2019). BERT is a self-supervised model, 
meaning that it was trained on raw texts instead of a labelled dataset, and instead uses certain 
training tasks to create inputs and labels (Hugging Face, n.d.). 
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The two tasks that are used to train BERT: 1) Masked language model (MLM) and 2) Next 
sentence prediction (NSP). An MLM is when 15% are randomly replaced with the “mask” token 
and the model then predicts the masked tokens. In the NSP task, the model has to recognize 
when the second sentence follows the first, in a pair of given sentences (Naseem et al., 2021).   
 
One advantage of BERT is that it uses bidirectional self-attention, which means that the model 
reads text from both directions (Cohan et al., 2020). Unlike tf-idf and Word2Vec, BERT 
considers the context (neighboring words) in a sentence and OOV words (Rajapaksha et al., 
2021). One disadvantage is that the MLM doesn’t account for dependencies between predicted 
tokens (Song et al., 2020). BERT also has limited input length and less training than some of its 
variants (Adoma et al., 2020; Liu et al., 2019). 
             

3) State-of-the-art: RoBERTa 
RoBERTa is a variation of SBERT that was trained on a larger corpus of text (Book-Corpus, 
CC-News, Open-Web-Text, Stories, Wiki) in order to increase performance (Liu et al., 2020). In 
comparison to SBERT, RoBERTa has fewer parameters, but better performance (Liu et al., 
2019). RoBERTa’s advantages include better training (longer training period with a larger set of 
data), no longer having the next sentence prediction (NSP) task, larger batch sizes, training on 
longer sequences, and the use of dynamic masking (meaning that the masked tokens in MLM 
change during training instead of staying static, like with BERT) (Naseem et al., 2021; Glazkova, 
2021).  One of the main issues with RoBERTa in comparison to BERT is that it is more 
computationally expensive and takes longer to run (Acheampong et al., 2021). In addition, the 
corpus does not contain scientific research articles, which is a disadvantage in this study.  
 

4) State-of-the-art: MPNet 
The default sentence transformer in the ASReview software is all-mpnet-v2. MPNet stands for 
masked and permuted language modeling, and is another model based on BERT that was created 
to improve performance (Song et al., 2020). The key difference between BERT and MPNet is 
that MPNet no longer employs the original version of the Masked Language Model (MLM) task. 
The issue with MLM is that it causes the model to ignore the positional dependencies between 
the masked tokens (meaning that the predicted tokens are assumed to be independent of each 
other - this does not coincide with human language) (Song et al., 2020). Instead, MPNet 
combines MLM from the BERT architecture, along with the Permutation Language Model 
(PLM) from XLNet (another model based off of BERT), to create a new model. The new model 
improves BERT in two ways: 1) it uses MLM to note the position information of all tokens, 2) 
and uses PLM to note the dependency between predicted tokens (Song et al., 2020). 
 

5) State-of-the-art: SPECTER 
SPECTER is a transformer that uses document-level embeddings instead of word or sentence-
level embeddings (Cohan et al., 2020). By using document-level embeddings, the model allows 
for the comparison of documents and not just pieces of text, which could be preferable when 
wishing to find relevant scientific articles. In fact, the model is trained with scientific research in 
mind - it uses SciBERT, a version of BERT trained on scientific text, as the base of the model 
(Cohan et al., 2020). The model uses citations to compare similarity between documents and 
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further trains the model on hundreds of thousands of scientific paper titles, abstracts, and 
citations (Cohan et al., 2020). 
 
A summary of all the models’ advantages and disadvantages listed above can be seen in the table 
below. The only model architecture that fulfills all four parameters examined is the sentence 
transformer. 
 
 Model Syntax Semantics Context Out-of- 

vocabulary 
(OOV) 

Classical Tf-idf X X X X 

Classical Doc2Vec ! ! X X 

State-of- 
the-art  

Transformer Models 
(RoBERTa, MPNet, 
SPECTER) 

! ! ! ! 

Table 1: A table summarizing the main differences between the feature extraction models  
 
Transformer Model Selection: 
Past literature shows that the RoBERTa model has a consistently high performance on various 
text classification tasks. In a study comparing the performance of BERT, DistilBERT, 
RoBERTa, XLNet, and ELECTRa as language models for an emotion recognition task (Reddit 
comments labeled with emotion categories), RoBERTa outperformed the other pre-trained 
models (Cortiz, 2021). In a large-scale study on transformer-based word embeddings, 
transformer feature extraction models were paired with a CNN classifier in order to detect 
sarcasm and irony in social media datasets (Twitter and Reddit). Amongst all of the transformer-
based models, RoBERTa performed the best (Ahuja & Sharma, 2021). Additionally, a study on 
political science text classification compared the language models ULMFIT, RoBERTa, and 
XLNet (in combination with the SVM, logistic regression, and random forest classifiers). 
RoBERTa had a higher performance, especially for the smallest datasets tested, which was 
attributed to the fact that RoBERTa is trained longer and on larger corpora (Terechshenko et al., 
2020). Additionally, the study compared transformer models to classical methods such as bag-of-
words and word2vec and concluded that transformer language models performed the best.  
 
Two other sentence transformers will be implemented in this study: SPECTER and MPNet. The 
SPECTER model seems to be well-aligned to ASReview goals: the fact that it is trained on 
scientific paper titles and abstracts coincides with the data that ASReview most often reviews. 
MPNet, the default of ASReview’s SBERT feature extractor, will also be included in the 
comparison. The model is another interesting sentence transformer to examine because it has 
different advantages than RoBERTa and SPECTER: while RoBERTa carries the advantage of 
being trained on large corpora, and SPECTER has been trained on scientific corpora, MPNet’s 
advantage is that it models the complexities of human language more accurately. 
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1.3) Aims and Research Question 
Previous research has shown that transformer models, such as variations of SBERT, are a 
powerful new method of feature extraction. However, although many studies compare the 
performance of various transformer models, not many studies directly compare classical vs. 
state-of-the-art feature extraction models, especially in the context of systematic reviews. There 
is a gap in the research when it comes to comparing both the theoretical background and 
performance of various feature extractor types/architectures for systematic reviews.  
 
This study focuses on the following research question: Can new feature extraction methods, i.e., 
transformers (i.e, RoBERTa, SPECTER, MPNet), outperform more classical feature extraction 
techniques (i.e., tf-idf, Doc2Vec) in ASReview?  
 
This question will be examined in the context of ASReview, the systematic review software that 
uses machine learning to find relevant papers. The purpose of answering this question is two-
fold: Firstly, there exist many theoretical reasons why certain text representation models should 
outperform other models. It is important to examine how these theoretical reasons play out in an 
empirical setting in order to reach optimal performance in the empirical setting. Secondly, the 
research question is meant to assist the target audience: the end-user of ASReview software. 
Since feature extractor selection is an important step the user performs, it is important for the 
user to understand the performance of the different types of feature extractors. Picking the right 
feature extractor could increase model performance: the user will find more relevant articles in a 
shorter amount of time. This study aims to shed light on which feature extraction methods 
ASReview should implement in the future. 
 
2. Data 
 
ASReview offers multiple benchmark datasets for users to run simulations with. For this study, 
the PTSD Trajectories dataset by Van de Schoot et al. was chosen. This dataset deals with PTSD 
trajectories and uses articles about longitudinal studies examining posttraumatic stress after 
trauma (van de Schoot et al., 2017; van de Schoot et al., 2018). Finding relevant articles for a 
systematic review is an imbalanced problem; in most cases, there will be a lot more irrelevant 
than relevant articles (O’Mara-Eves, 2015). The benchmark dataset used in this study is no 
exception. The dataset contains 6,189 studies that were extracted from Pubmed, Embase, 
PsychInfo, and Scopus, and as this is a labeled dataset, it is known that 43 of those studies are 
considered “relevant” (included in the systematic review).  
 
3. Methods 
 
3.1) Methodology Steps 
To examine the question of whether or not there is a difference in classical and state-of-the-art 
feature extractor performance, the process was broken down into three main steps: 1) Model 
Selection, 2) Implementation and Simulation, and 3) Performance Metrics.  
 
First of all, the literature overview was used to select the models with the best expected 
performance. The model selection step began afterwards, and in this step the focus was on 
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examining the models found on Hugging Face. The implementation step involved running the 
selected Hugging Face models (since many variations of models exist) from the sentence-
transformers library using the ASReview Python API and simulation settings. The simulation 
mode in ASReview contains a SBERT feature extractor that can be adjusted for different models. 
This study made use of these settings to implement the various Hugging Face models. 
Performance metrics, calculated using the ASReview “statistics” package, were used to examine 
how well the combination of the sentence transformer with the different classifiers managed to 
find all the relevant articles. Further explanation of all of the steps will be given in the sections 
below.   
 
3.2) Model Selection  
The model selection step was based on the results of the literature review, where RoBERTa and 
SPECTER proved to be promising transformer language models (along with MPNet, the 
ASReview default). The model selection process carried out by investigating Hugging Face 
models. 
 
Hugging Face: 
All sentence transformer models in this study were implemented using the sentence-transformers 
library on Hugging Face. Hugging face (https://huggingface.co/) is a website containing open-
source machine learning models and allows users to upload and download models for free, 
including a wide variety of sentence transformer models (Hugging Face, n.d.). Using the 
knowledge from background research, which indicated RoBERTa was the model of interest, 
three different transformer models were selected.  
 
Model version and the number of downloads were both examined when selecting which model to 
implement from the sentence-transformers page (in other words, the model version with higher 
downloads was preferred since high popularity generally indicates a more recent version of the 
model). Model versions differ due to the fact that as part of the open-source community, any user 
can download, fine-tune, and then upload the updated version of a model. Following past 
research, a “distil” (all-distilroberta-v1) and “base” (stsb-roberta-base-v2) version of the 
RoBERTa model were selected from the sentence-transformers library. The “base” version is the 
larger base version of the model, while the “distilled” version of the model is a lighter and faster 
version with half the number of layers and a little over half of the parameters of the “base” 
model. The “distilled” version runs twice as fast (Hugging Face, n.d.). 
 
Implemented Feature Extractors and Classifiers: 
The classifiers used in this study (along with their implementations in ASReview) are as 
follows: 1) SVM, 2) Logistic Regression, 3) Random Forest using the sklearn library, 4) Naive 
Bayes using the sklearn Multinomial Naive Bayes classifier, and 5) NN2 classifier (a fully 
connected neural network with 2 hidden layers, dense and of the same size) (ASReview., 2022). 
Each of the classifiers was run in combination with each of the six feature extractors (with the 
exception of Naive Bayes, which was only run with tf-idf).  
 
The feature extractor implementations are: 1) The Doc2Vec implementation using the genism 
library and 2) Tf-idf implemented using the sklearn library (ASReview., 2022). The sentence 
transformers are: 3) Distil-RoBERTa, 4) RoBERTA-base, 5) Allenai-SPECTER, and 6) All-
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mpnet-base-v2. The transformers were extracted from the Hugging Face sentence-transformers 
library (Hugging Face, n.d.) and implemented using the ASReview code for SBERT 
(ASReview., 2022). All-mpnet-base-v2 is the current default sentence transformer used by 
ASReview. Further details about the architecture of the chosen transformer models can be found 
in Table 2.  
 

Sentence Transformer Architecture Corpus model was 
trained on 

Documentation  

all-distilroberta-v1 6-layer, 768-hidden, 12-
heads, 82M parameters 
(distilled from RoBERTa- 
base) 

Book-Corpus, CC-News, 
Open-Web-Text, Stories, 
Wiki 

https://huggingface.co
/sentence-
transformers/all-
distilroberta-v1 

RoBERTa-base 12-layer, 768-hidden, 12-
heads 125M parameters 

Book-Corpus, CC-News, 
Open-Web-Text, Stories, 
Wiki 

https://huggingface.co
/sentence-
transformers/stsb-
roberta-base-v2 

Allenai-specter 12-layer, 768-hidden, 12-
heads 110M parameters 

SciBERT corpus 
 

https://huggingface.co
/sentence-
transformers/allenai-
specter 

All-mpnet-base-v2 12-layer, 768-hidden, 12-
heads 110M parameters 

Book-Corpus, CC-News, 
Open-Web-Text, Stories, 
Wiki 

https://huggingface.co
/sentence-
transformers/all-
mpnet-base-v2 

Table 2: Sentence transformer models selected from Hugging Face 
 
3.3) Implementation and Simulation  
To examine the performance of different feature extractor and classifier combinations for finding 
relevant articles, the simulation mode of the ASReview software was used (version v0.19.3) (van 
de Schoot et al., 2021). The simulation mode allows for customization of feature extractors and 
classifiers. A total of 25 combinations and simulations were run; all of the implemented feature 
extractors and classifiers can be viewed in Figure 3 (further details are also given in the next 
section). The simulations follow the ASReview pipeline mentioned in the section above, with the 
feature extraction run on the Schoot et al. dataset. Figure 3 shows a basic overview of the 
simulation and the steps of the analysis.  
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Figure 3. Simulation Steps Overview - Shows the feature extractors and classifiers used during the simulation runs. 

A total of 25 simulations were run. 
 
The simulations were run on Google Colab Pro, using a high-RAM GPU to speed up the run-
time of the simulations (Colab Pro can reach ~25 GB of RAM) using the ASReview Python API 
and command line interface (ASReview., 2022). Only the feature extractor and/or classifier were 
changed during the simulations in order to keep performance results as unbiased as possible. The 
default settings used were as follows: 
 
Setting Name Chosen Value Definition  

Query strategy Max query 
(default)  

Model chooses record with highest relevance score 
(article most likely to be relevant) 

Balance strategy Double 
balance 
(default) 

Rebalancing strategy that super-samples 1’s based on 
the number of 0’s and the total number of studies in the 
dataset 

Number of 
instances 

10 The number of studies queried during each query 

Initial seed 10 (can be any 
fixed number) 

Setting the seed to a fixed number controls for the 
randomness in each simulation run so that performance 
can be compared in an unbiased manner 

Prior knowledge 1 relevant, 1 
irrelevant 

Starting training set  

Table 3: Simulation settings for the ASReview simulation mode (v0.19.3) 
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This study chose to use default settings as much as possible in order to emulate the settings that 
most users will use. The query strategy determines how to choose the next record the researcher 
needs to label. The balance strategy helps deal with the imbalance problem systematic review 
datasets commonly have (van den Brand & van de Schoot, 2021). The initial seed is necessary in 
order to minimize bias due to randomness. The prior knowledge refers to the articles labeled by 
the researcher (through random or keyword selection). The size of the prior knowledge 
determines the starting training set that will be used to train the first model in the active learning 
cycle. In this study, the prior knowledge was set as one relevant and one irrelevant article in 
order to also see how well the models perform in the beginning of the training, when the training 
set is small (i.e., when the researcher does not label many articles). It should be noted that 
changing these simulation settings could impact the performance of the models, which is why 
they are kept constant for all the simulations in this study.  
 
3.4) Performance metrics 
To assess the performance of the different models, the recall curves were plotted. The recall plots 
show two metrics - Work Saved Over Sampling (WSS) at 95% recall and Relevant References 
Found (RRF) at 10% recall. WSS@95 means that at 95% recall, the given percentage is the 
amount of work that can be saved (in this case, how many less studies need to be screened). A 
higher WSS@95 is preferable since it indicates how much work the researcher can save by using 
machine learning instead of manual screening (to find 95% of all relevant articles) (O’Mara-
Eves, 2015; van den Brand & van de Schoot, 2021). 
 
RRF@10 is the number of relevant articles found after screening 10% of the dataset. A higher 
RRF@10 score is preferable because it means that more relevant records have been found after 
screening only 10% of the articles. If the RRF does not change from RFF@5 to RRF@10 it 
could indicate that some of the relevant articles are hard to find and are taking longer to be found 
(van den Brand & van de Schoot, 2021).  
 
An additional metric, Average Time to Discovery (ATD), was also utilized. ATD refers to the 
average time it takes to find a relevant article, expressed as a percentage/proportion of all articles 
in the dataset being screened (van den Brand & van de Schoot, 2021). This metric is useful for 
examining how much of the dataset needs to be screened in order to find a relevant article, and 
thus a lower ATD means the model is more efficient at discovering a relevant article.     
 
Unlike traditional recall plots where the axes are precision and recall, in the recall plots used in 
this study, the x-axis shows the percentage/proportion of studies that have been screened. The y-
axis shows the percentage/proportion of relevant studies that have been found. The grey diagonal 
line indicates random screening, which is the rate of finding relevant articles when performing 
manual (random) screening. Thus, horizontal lines in the plot illustrate the RRF@10 at a specific 
point in the screening process, while the vertical lines indicate the WSS@95 (the number of 
studies that needs to be screened so that a certain level of recall is reached) (van den Brand & 
van de Schoot, 2021).  
 
 



 

15 

4. Results 
 
The results indicate that the best performing combination of feature extractor and classifier is tf-
idf and Naive Bayes. This coincides with the past ASReview simulation results, which also 
indicated that the tf-idf and Naive Bayes combination has the best performance (van de Scoot et 
al., 2021). Recall plots were examined to determine which models performed the best, along with 
WSS@95, RRF@10, and ATD.  
 

 
Figure 4: Recall plot of top five best performing models (based on WSS@95). Models are listed in order - 

SPECTER with RF is the worst of the top five models; Tf-idf with Naive Bayes has the best performance amongst 
all of the models 

 
 

Model WSS@95 RRF@10 ATD 

Tf-idf and NB 91.89% 100.00% 0.0177 

Tf-idf and LR 91.86% 97.62% 0.0189 

Tf-idf and SVM 91.33% 97.62% 0.0276 

Distill-RoBERTa 
and NN2 

90.44% 95.24% 0.0356 

SPECTER and RF 89.95% 100.00% 0.0185 

Table 4 - Performance metrics of top five models  
 
WSS@95 was used as the primary metric to assess model performance, but an optimally 
performing model is one that has high WSS@95, high RRF@10, and low ATD. The WSS@95 
for tf-idf and Naive Bayes is 91.89%, which means that the model saves the researcher 91.89% 
of work when used instead of manual screening. However, it is also interesting to note that the 
Distil-RoBERTa and NN2 model is the top fourth model (with a WSS@95 value of 90.44%), 
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while the SPECTER and random forest model is the top fifth model (with a WSS@95% value of 
89.95%). The sentence transformer models may not be performing quite as well as tf-idf, but 
they do show some promise. Their WSS@95 scores are not drastically lower than those of tf-idf 
and Doc2Vec (except for RoBERTa-base). Distil-RoBERTa and SPECTER are the most 
promising transformer feature extractors, outperforming the ASReview default MPNET.  
 
Figure 4 shows the top five feature extractor and classifier combinations based on WSS@95. 
Note, the x-axis is cut off at 45% reviewed because all models have reached 95% recall by that 
point. Tf-idf takes the top three spots when in combination with the logistic regression, SVM, 
and Naive Bayes models, making it the best performing feature extractor overall. This means that 
this model saves the most time for the researcher (WSS), finds the most relevant articles while 
only needing to screen a small amount of the dataset (RRF), and needs a shorter amount of time 
to find a relevant article (ATD). 
 

 
Figure 5: RRF plot of top five models (for RRF@1, RRF@2, RRF@5, and RRF@10). Models are listed in order - 
SPECTER with RF is the worst of the top five models; Tf-idf with Naive Bayes has the best performance amongst 

all of the models 
 
As expected, the tf-idf and Naive Bayes model has the highest RRF@10 at 100.00%. This means 
that the model found all relevant articles after only screening 10% of the dataset. The RRF@10 
scores of the rest of the top five models are all close to 100%. One interesting thing to note is 
that the Distil-RoBERTa and NN2 model has a slightly lower RRF@10 score (95.24%) than the 
SPECTER and RF model (100.00%), but still has a slightly higher WSS@95 score. Tf-idf with 
Naive Bayes has the lowest ATD at 0.0177. The ATD of the models generally increases as the 
WSS@95 score increases, which is to be expected (see appendix for full results). The higher the 
WSS@95 score, the more work the reviewer saves, and thus it is expected that it would take less 
time for a better performing model to find a relevant article (i.e., a smaller ATD).  
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Figure 6: Recall plot of bottom five (the worst performance) models (based on WSS@95). Models are listed in order 

- MPNet with LR is the best of the bottom five models; Roberta-base with SVM has the worst performance of all 
models 

 
Model WSS@95 RRF@10 ATD 

RoBERTa-base and 
SVM 

38.54%  64.29% 0.131 

RoBERTa-base and 
LR 

40.09% 50.00% 0.148 
 

RoBERTa-base and 
NN2 

52.75% 40.48% 0.153 

RoBERTa-base and 
RF 

47.49% 59.52% 0.142 

MPNet and LR 81.14% 92.86% 0.0347 

Table 5 - Performance metrics of bottom five models.  
 
An examination of the bottom five models based on WSS@95 (Figure 6) shows that RoBERTa-
base is consistently the worst performing feature extractor. The RoBERTa-base feature extractor 
has a drastically lower WSS@95 in comparison to all other feature extractors (see Table 5), and 
the worst performing model is RoBERTa-base and SVM with a WSS@95 value of 38.54%. The 
next worst feature extractor is the MPNet because when it is in combination with the logistic 
regression classifier it achieves a WSS@95 of 81.14% (however, this value is still much higher 
than the WSS@95 values of the RoBERTa-base models). To see the results of all 25 model 
combinations please refer to the appendix.   
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Figure 7: RRF plot of bottom five models (for RRF@1, RRF@2, RRF@5, RRF@10, RRF@20, and 

RRF@50).  Models are listed in order - MPNet with LR is the best of the bottom five models; Roberta-base with 
SVM has the worst performance of all models 

 
The RRF@10 scores of the bottom five models show more variation than the top five models. 
For all RRF values (RRF@1, RRF@5, etc.) the MPNET model performs better than RoBERTa-
base, and RoBERTa-base combined with the NN2 classifier tends to have the lowest RRF values 
(see Table 10 in the appendix). A direct comparison of the RFF values shows that the worst 
RoBERTa-base model based on WSS@95 (RoBERTa-base and SVM) has a RRF@10 of 
64.29%, while the RoBERTa-base and NN2 has a RRF@10 of 40.48%. This indicates that when 
the RoBERTa-base feature extractor is paired with the NN2 classifier it needs to screen a larger 
proportion of the dataset before it can perform as well as other models (it has worse performance 
in the beginning of the screening process). ATD scores confirm this because RoBERTa-base 
with NN2 has the highest ATD at 0.153, which means that it takes longer to find relevant 
articles.  
 
In fact, all of the RoBERTa-base models have much lower RRF@10 scores in comparison to all 
other feature extractors (a difference of about ~30-40% in most cases), suggesting that these 
models struggle to find a relevant article as efficiently as the other feature extractors. This 
suggests that the RoBERTa-base feature extractor is not suitable for this task or may require 
some fine-tuning in order for its performance to increase to a comparable level.  
 
When individually examining the results of each classifier (table of all results is in the appendix), 
the following feature extractor is the best for each classifier (based on WSS@95 and RRF@10): 
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Classifier  Best performing feature 
extractor (based on 
WSS@95) 

Best performing feature 
extractor (based on 
RRF@10) 

Logistic Regression Tf-idf Tf-idf  

Random Forest SPECTER SPECTER 

SVM Tf-idf Tf-idf 

NN2 Distil-RoBERTa Tf-idf 

Naive Bayes Tf-idf → only feature extractor that 
can be used with NB 

Tf-idf → only feature extractor that 
can be used with NB 

Table 6 - Best performing feature extractor (based on WSS@95 and RRF@10) for each classifier 
 
It can be seen that tf-idf is dominating as the best performing feature extractor across most 
classifiers. Even when the sentence-transformer outperforms tf-idf on a certain classifier, the 
margin is a small amount. For example, in the case of SPECTER and random forest the 
WSS@95 is 89.95%, which is only slightly above the tf-idf and random forest WSS@95 of 
89.05%. 
 
This shows that the answer to the research question is not clear-cut or simple. In some cases 
(combinations with the classifier) the classical feature extractors perform better, and in other 
cases the sentence transformers manage to perform a little better. Overall, the results indicate that 
classical feature extraction methods such as tf-idf are powerful in their own right and should not 
be underestimated, but that transformer language models also have the potential to perform 
feature extraction well.  
 
5. Discussion  
 
5.1) Main Findings 
Past research indicated that RoBERTa models should have a high performance. In fact, the study 
by Terechshenko et al. suggested that on the whole, transformer models should perform well as 
feature extractors. However, the performance results show some discrepancies with the 
theoretical research: In general, the sentence transformers are not performing better than the 
classical feature extractors. Instead, they are performing about the same or even at a lower 
performance level. This could be due to several reasons: 1) the more complex transformer 
models may be overfitting on the data, and/or 2) the datasets the transformers were pre-trained 
on may not be ideal for systematic reviews (although the SPECTER model slightly contradicts 
this point). 
 
A closer look at the architecture and theoretical background of the different feature extractors 
suggests another possible reason. Recall that tf-idf focuses on the frequency of a word within a 
text. When searching for relevant scientific articles, there may be certain keywords that are very 
frequent and are present within all of the documents. Moreover, it is important to remember that 
in the context of ASReview, the search for relevant articles is often being performed based on 



 

20 

keyword(s) given by the researcher. This means that the chosen keyword(s) have a high 
importance, and so placing a high importance/weight on distinctive keywords may be the reason 
that tf-idf performs so well. In addition, tf-idf is a word-based feature extractor, rather than a 
sentence-based feature extractor. Tf-idf may be benefitting from focusing on words instead of 
sentences.  
 
However, when examining only the transformer feature extractors, one finding is very clear: The 
ASReview default transformer model is not the transformer model with the highest performance. 
Distil-RoBERTa and SPECTER tend to outperform MPNET. Therefore, it could be beneficial to 
consider using either the Distil-RoBERTa or SPECTER model as the default transformer model. 
The Distil-RoBERTa model would be preferable if generalizability (working with all types of 
text, including non-scientific text) needs to be considered.  
 
5.2) Study Limitations 
Study limitations include the fact that not all possible sentence transformer (and classical feature 
extractor) models were tested, since it is not feasible. In addition, the statistical power of the 
results could be improved by running more simulation of all the models. Furthermore, the 
models were only run on one dataset, but performance could change if the models were run on a 
dataset of a different topic. Pre-trained models such as sentence transformers could have greatly 
varying performance if the data type is one the model has never been exposed to.  
 
Another study limitation to consider is the fact that the transformer models were not fine-tuned, 
which could potentially significantly change performance. The lack of hyperparameter tuning 
and training on additional data could potentially be used to explain RoBERTa-base’s low 
performance, but unfortunately no conclusions can be drawn within the scope of this study. The 
significantly lower performance of the RoBERTa-base feature extractor could also indicate that 
transformers are too complex of a tool for a fairly simple task. Of all the sentence transformer 
models, the RoBERTa-base model is the most complex at 12 layers and 125 million parameters 
(compared to Distil-RoBERTa’s 6 layers and 82 million parameters) (Hugging Face, n.d.). For a 
task as straightforward as finding article relevance with a non-noisy dataset, such a complex 
feature extractor may be unnecessary. 
 
5.3) Future Research 
Future research on feature extractors could focus on testing the performance of transformer 
models on noisy datasets. With a noisy dataset, the performance of transformers may increase, 
and they may even outperform the simpler models like tf-idf and Doc2Vec. The more complex 
architecture of transformers lends itself to more challenging tasks, since these pre-trained models 
are able to pick up on subtleties that the more classical feature extractors may not analyze (such 
as synonyms, differences due to context, etc.). As part of this research, one could implement a 
wider range of models - not only transformer models but also additional classical feature 
extractors to broaden the comparison.  
 
Another suggestion is for future research to compare changes in performance due to increased 
parameters versus fine-tuning the transformer models. RoBERTa-base has the most parameters, 
but also the worst performance in this study. This suggests that a large number of parameters 
may not translate into better performance. Instead, the fact that SPECTER and Distil-RoBERTa 
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can perform almost as well as tf-idf when paired with certain classifiers, suggests that the pre-
training of the transformer model may be more important. Recall, SPECTER’s advantage is that 
it is trained on scientific text (so the model has domain knowledge) and Distil-RoBERTa is 
trained on the largest corpus (so the model has a wide range of knowledge). Additionally, 
MPNET is not performing particularly, which is not too surprising under this logic, considering 
the fact that its advantage is that it uses a different structure for its pre-training task (but the 
corpus it is pre-trained on is not particularly large or relevant to scientific research).  
 
A more focused approach would be to choose to focus only on fine-tuning the transformer 
models. The SPECTER model has already been pre-trained on scientific articles but did not 
perform significantly better from the Distil-RoBERTa model. Further exploration of various 
tuning methods, along with training on new datasets (such as scientific articles in different 
domains and news articles), could demystify the effects of fine-tuning and potentially increase 
the performance of transformer models.  
 
6. Conclusion  
 
The selection of a feature selector can have a great impact on classifier performance. The answer 
to the question of whether or not the new transformer feature extractors can outperform classical 
models in ASReview is: not quite yet, but perhaps with more tuning. This study shows that 
simply because a feature extractor model is new and state-of-the-art, does not mean that it is the 
best model for every situation. Although the performance of three out of four (Distil-RoBERTa, 
MPNet, and SPECTER) of the sentence transformers was promising, the classical tf-idf feature 
extractor still performed the best overall. The results of this study illustrate the importance of not 
underestimating older, classical models. However, this does not mean that transformer models 
should be completely discounted. Rather, the fairly good performance of some of the transformer 
models shows the potential of focusing on fine-tuning and improving these models in future 
research.  
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7. Appendix 
 
Although performance relies on the combination of the feature extractor with the classifier, in 
order to better examine the feature extractor performance on its own, the average WSS@95 was 
computed across all classifiers for each feature extractor. There is variation when the feature 
extractor is combined with a different classifier, which is why standard deviation was also noted. 
These results further reinforce the fact that the tf-idf performs best on average across all 
classifiers, while RoBERTa-base performs the worst: 
 
Feature Extractor  Mean WSS@95 across all 

classifiers 
Standard Deviation (SD) 

Distil-RoBERTa 85.66% 4.0061 

RoBERTa-base 44.71 % 5.7398 

Allenai-specter 87.34% 2.4656 

All-mpnet-base-v2 82.72% 1.3278 

Tf-idf 90.90% 1.0771 

Doc2Vec 85.93% 1.1725 
Table 7 - Average WSS@95 and SD across all classifiers for each feature extractor 

 
 
 
Schoot et al. Dataset Complete Simulation Results:  
Feature 
Extractor 

Classifier WSS@95 WSS@100 RRF@5 RRF@10 Run 
time 

ATD  

Distil-
RoBERTa 

SVM 80.55% 
 

40.02% 
 

80.95% 
 

92.86% 
 

15m 
35s 
 

0.0492 
 

 Random 
Forest 

83.07% 82.08% 90.48% 92.86% 15m 1s 0.0302 

 Logistic 
Regression  

88.58% 69.63% 88.10% 97.62% 4m 52s 0.0347 

 NN2 90.44% 58.56% 95.24% 95.24% 1h 51m 
41s 

0.0356 

RoBERTa-
base 

SVM 38.54%  
 

12.91% 
 

33.33% 
 

64.29% 
 

14m 
58s 
 

0.131 
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 Random 
Forest 

47.49% 
 

49.78% 
 

40.48% 
 

59.52% 
 

12m 
47s 
 

0.142 
 

 Logistic 
Regression 

40.09% 
 

15.23% 
 

23.81% 
 

50.00% 
 

8m 50s 
 

0.148 
 

 NN2 52.75% 2.89% 14.29% 40.48% 1h 50m 
52s 

0.153 

Allenai-
specter 

SVM 87.33% 66.17% 88.10% 97.62% 11m 
11s 

0.0347 

 Random 
Forest 

89.95% 93.18% 92.86% 100.00% 13m 
12s 

0.0185 

 Logistic 
Regression 

88.69% 77.74% 85.71% 97.62% 9m 49s 0.0294 

 NN2 83.38% 86.77% 60.47% 93.02% 1h 45m 
31s 

0.0561 

All-mpnet-
base-v2 

SVM 84.28% 73.10% 83.33% 90.48% 18m 
25s 

0.0366 

 Random 
Forest 

81.69% 79.55% 88.10% 92.86% 12m 
36s 

0.301 

 Logistic 
Regression 

81.14% 75.90% 85.71% 92.86% 4 min 
45s 

0.0311 

 NN2 83.75% 71.20% 83.33% 92.86%  1h 52m 
4s 

0.0359 

Tf-idf SVM 91.33% 73.32% 95.24% 97.62% 35m 
43s 

0.0276 

 Random 
Forest 

89.05% 71.44% 90.48% 95.24% 12m 
24s 

0.0333 

 Logistic 
Regression 

91.86% 82.87% 97.62% 97.62% 37.3s 0.0189 

 Naive 
Bayes 

91.89% 
 

91.08% 
 

97.62% 
 

100.00% 
 

13.5s 
 

0.0177 
 

 NN2 90.36% 79.42% 95.24% 97.62% 3h 6m 
41s 

0.0262 

Doc2Vec SVM 85.91% 84.13% 59.52% 95.24% 1h 4m 
28s 

0.0496 
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 Random 
Forest 

85.25% 87.55% 52.38% 95.24% 13min 
57s 

0.0524 

 Logistic 
Regression 

87.82% 88.46% 64.29% 95.24% 4m 2s 0.0454 

 NN2 84.72% 78.58% 76.19% 92.86% 1h 49m 
1s 

0.0389 

Table 8 - Complete Simulation Results: WSS@95, WSS@100, RRF@5, RRF 10, runtime, and ATD for all feature 
extractor and classifier combinations; 25 simulations run in total 

 
 
 

Model  RRF@1 RRF@2 RRF@5 RRF@10 

Tf-idf and NB 21.428571 71.428571 97.619048 100.000000 

Tf-idf and LR 33.333333 71.428571 97.619048 97.619048 

Tf-idf and SVM 16.666667 47.619048 95.238095 97.619048 

Distil-RoBERTa and NN2 19.047619 42.857143 95.238095 95.238095 

Allenai-specter and RF 33.333333 69.047619 92.857143 100.000000 
Table 9 – RRF values of top five models 

 
 

Model  RRF@1 RRF@2 RRF@5 RRF@10 RRF@20 RRF@50 

RoBERTa-base and SVM 9.523810 11.904762 33.333333 64.285714 88.095238 92.857143 

RoBERTa-base and LR 2.380952 7.142857 23.809524 50.000000 83.333333 92.857143 

RoBERTa-base and NN2 0.000000 0.000000 14.285714 40.476190 80.952381 97.619048 

RoBERTa-base and RF 7.142857 9.523810 40.476190 59.523810 71.428571 97.619048 

MPNET and LR 21.428571 54.761905 83.333333 92.857143 97.619048 100.000000 
Table 10 – RRF values of bottom five models 

 
 
Code and additional visualizations can be found on: https://github.com/acaklovic/Comparison-
of-feature-extractors-using-ASReview/tree/main 
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