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Abstract

In multiple-point geostatistics, the one-on-one copying of patches from
a training image to a realisation in multiple-point geostatistics simulations
is called verbatim copy. Verbatim copy is an important quality metric which
has to be minimised in relation to other quality metrics. Previous methods
used computer vision techniques on the realisation image to quantify ver-
batim copy. In that way, the problem becomes hard and complex to solve.
To get around the complex nature of computer vision, the index coherence
map (ICM) was used. Various metrics were created to transform the ICM
into usable values for analysis. A synthetic dataset of ICMs with a know
verbatim copy degree was created to validate and test the metrics. A sliding
window method was able to correctly reconstruct the verbatim copy in the
synthetic ICMs. Using hierarchical clustering and PCA more metrics were
extracted. These metrics provide useful insights into the quantity and shape
of verbatim copy, allowing to have a summarised overview of the quality.
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1 Introduction

(a) (b)

Figure 1: Two frequently used training images for MPS. Adapted fromMariethoz
and Caers, 2014. (a) Stones (b) TI depicting channels (Strebelle, 2002))

In many climate and geological simulations, the starting state of the model is the
training image (TI). For example, a benchmark training image used in water flow
simulations is the strebelle image (Fig 1b). To do the stochastic simulation of ran-
dom fields, previous research proposed methods to sample multiple realisations
from one training image. This class of methods is calledmultiple-point geostatistics
(MPS) (Mariethoz & Caers, 2014). MPS takes higher order relations into account
and there are algorithms for both discrete and continuous data. MPS has a wide
variety of usages including the enhancement of microscopic imaging (Wang et al.,
2022), the reconstruction of porous media (Zhang & Du, 2012) and the interpola-
tion of remote-sensing data (Yin et al., 2017; Zakeri & Mariethoz, 2021). MPS al-
gorithms generally come in two types, patch-based and pixel-based. Patch-based
algorithms search for an optimal cut of the training image into patches, the real-
isation image is then the quilting of these patches. In pixel-based algorithms, for
every position in the realisation image pixel-based algorithms construct a condi-
tional distribution of the neighbourhood in the training image. A realisation is
the sampling from these distributions. When similar patterns are rare and there
is only a single option to sample from, one-on-one copying from the training im-
age occurs. This effect is called verbatim copy. Some verbatim copy is inevitable.
But a good realisation is realistic and has a low verbatim copy.

Abdollahifard et al., performed a quality evaluation of MPS realisations (Abdol-
lahifard et al., 2019). They quantified verbatim copy through pattern innovation.
Pattern innovation was measured using computer vision techniques including
scale-invariant feature transform (SIFT). SIFT was used to detect keypoints in the
training image and the realisation and then find the matching keypoints in the
two images. They then validated their methods using (but not exclusively), hu-
man participant detection of the verbatim copy in the realisation image. Pattern
innovation is not directly translatable to verbatim copy because pattern innova-
tion is dependent on the richness of the training image. Also, when using the
realisation image, part of the verbatim copy information has been lost because
unless every pixel in the training image has a unique value, the origin cannot be
perfectly reconstructed.

Another way to measure verbatim copy is to construct the index coherence map
(ICM). The ICM is the map corresponding to a training image and realisation
set, where every value in the ICM corresponds to the location in the training im-
age from where the pixel in the realisation originates (Mariethoz & Caers, 2014).
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When the training image and the realisation are the same, the ICM is the linear
index of the training image. In this case, the ICM contains every value between
1 and the number of pixels in the training image. When this is the case the real-
isation has maximum verbatim copy with respect to the training image. On the
other hand, an ICM that is pure noise means that there is no verbatim copy in
the realisation image. Local verbatim copy in the realisation can occur when two
direct neighbouring pixels have a distance of 1 in the ICM. This means that the
two pixels were neighbours in the training image and they are also neighbours in
the realisation. When two pixels in the ICM are each other’s linear progression
by the number of columns and rows, as if the pixels were from the ICM of the
maximum verbatim, we also consider it verbatim copy. Because the ICM has a
finite number between 1 and the number of pixels in the training image, the ICM
possibly allows translating the problem of quantifying verbatim copy to a data-
science problem. This is in comparison with using the training image, which is a
hard computer vision problem.

With most MPS algorithms, the ICM is not a byproduct of the algorithm. The
pixel-based MPS algorithm Direct Sampling introduced MPS for continuous im-
ages (Mariethoz et al., 2010). Direct Sampling can also produce an ICM with-
out extra computational cost. Quick Sampling V1.0 (QS), a more recently pro-
posed pixel-based MPS algorithm, improves upon Direct Sampling by allowing
for sampling in predictable constant time and can also produce an ICM (Gravey
& Mariethoz, 2020). QS needs hyper-parameter tuning to improve various qual-
ity metrics one of which is the amount of verbatim copy. There are no reliable and
direct ways to quantify verbatim copy yet and as of writing, there is no known
labelled data-set of training image and realisation pairs with a known verbatim
copy degree. To translate the problem of quantifying verbatim copy into a data-
science problem, we propose to construct a synthetic ICM dataset with known
verbatim copy that models the verbatim copy in the ICM. This synthetic ICM
dataset can then be used to calibrate verbatim copy metrics, which can be used
to predict the known verbatim copy in the data.

The methods that are built to work for the synthetic ICM dataset can then be used
to quantify the verbatim copy in QS realisations.
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2 Data

Figure 2: Left: training image, middle: search pattern, right: mismatch map.
Adapted from (Gravey & Mariethoz, 2020)

2.1 QS Dataset

The authors of Gravey and Mariethoz, (2020) provided us with QS realisations
from two training images. The first is a 250 × 250 image from (Strebelle, 2002),
referred to as strebelle after this (Fig 1a). The second training image "stones" is a
200× 200 image depicting stones, much used in MPS benchmarks, (Fig 1b).

QS has a wide set of user-configurable parameters. For a single value in the re-
alisation, QS works by computing a mismatch map between the TI and the cur-
rent realisation. The mismatch map is constructed based on the neighbourhood
around a pixel (Fig. 2). The size of the neighbourhood is defined by the parameter
N . Then this pixel is sampled from the k set of best candidates having the lowest
values in the mismatch map (Gravey & Mariethoz, 2020). In our dataset we have
realisations for every N between 1 and 199 and for every k:

k ∈ [1,1.01,1.02,1.05,1.10,1.15,1.20,1.30,1.50,1.70,2,2.50,3,5,10]

The realisation and the ICM have the same dimensions as the training image. The
ICM has values between 0 and (n− 1), where n is the product of the row size and
refers to the position from which the pixel in the realisation was sampled from
the flattened training image. This flattened training image can be constructed by
appending every row of the image to the right of the upper row. The row and
column index can be reconstructed using the quotient and the remainder of i

n
where i is the value of the ICM and n is the number of values in the matrix.
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(a) (b)

(c) (d)

Figure 3: Different samples from the QS-stones dataset. (a) Left: Training image,
right: ICM colour gradient, maximum verbatim copy. (b) Low verbatim copy and
realistic. (c) High verbatim copy and realistic. (d) Low verbatim copy and non-
realistic.

2.2 Data exploration

In high verbatim copy realisations, we expect to see patches from the training
image being copied into the realisation. This results in the values of the ICM, cor-
responding to the verbatim patch, having a low distance between them. For two
neighbouring values in the patch in the ICM, we expect them to have a distance
of 1. When two values are further apart we expect them to have a distance equal
to their distance in the matrix (column/row wise).

In MPS, the goal is to generate realistic samples, keeping the natural structure in
the training image, but adding a stochastic component. A consequence of verba-
tim copy is that the patch is inherently a realistic copy of the original. So in cases
with a lot of verbatim copy, we expect to have a realistic realisation. Although,
this is not always the case. A realisation with low verbatim can either be random
noise, and thus be nonsensical, or be realistic. The best scenario is a low verbatim
but realistic realisation.

The ICM can be transformed into a colour image by using a colour gradient image
with two varying colour dimensions where maximum verbatim copy results in
a perfect gradient (Fig. 3a). We can then randomly take realisations from the
dataset, visually searching for cases of verbatim copy.

We select both on the look of the realisation image and the ICM (Fig. 3).

• Figure 3a a training image on the left and a perfect ICM (max. verbatim
copy) on the right.

• Figure 3b shows a realistic image, the ICM looks noisy to the human eye.

• Figure 3c shows a realistic realisation, andwe can see gradient colour patches
in the ICM.

• Figure 3d does not look like a plausibly realistic scenario of the training
image, and the ICM looks like noise.
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By comparing the ICM in Figure 3c and the original Figure 3a, and then looking
at the images, we see whole stones being copied, a kind of unwanted verbatim
copy.

2.3 Data preparation

The goal here is to propose metrics to discern between Figure 3b and Figure 3c,
realistic and low verbatim, and realistic and high verbatim. To do this a more
quantitative method than visual analysis is needed to calibrate the verbatim copy
metrics. Using a synthetic dataset that has similar verbatim properties to what
can be seen with the human eye in figure 3, verbatim copy could be better quan-
tified. A synthetic dataset of different ICM with a varying verbatim copy was
crafted to do this. These ICMs do not have a linked training image or a reali-
sation. They only show similar verbatim patches as were seen in the previous
figures.

Figure 4: Three samples from the synthetic data. Left: zero verbatim. Middle:
16.61% verbatim. Right: 72.47% verbatim

Circular verbatim patches were added from a perfect ICM (Fig. 3a right) onto

a noise background. For example, the perfect ICM of 3 × 3 is
(1 2 3
4 5 6
7 8 9

)
. To cre-

ate different degrees of verbatim copy average number of verbatim patches p
is varied. For every sample a full random ICM of size m × m, uniformly dis-
tributed between {1, · · · ,m2} is created. Then n patches from a gradientmapwhere
n ∼Normal(p,5) are added to the full random ICM. Every patch has a random ra-
dius r where r ∼ Normal(2,10). For both n and r, negative values are set to zero.
The origin and destination location of each patch are both sampled as (x,y) ∼
Unif orm(radius,m−radius) and are independent. In order to add noise, from ev-
ery patch pixels are knocked out with a probability P(knocked_out = T rue) = 0.4.

Using the above method, for every n between 1 · · ·600 10 samples were gener-
ated, totalling 6000. The verbatim patches in every sample, were also added to
an empty matrixM instead of the full random ICM.M was then used to calculate
the percentage of pixels that are verbatim.
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3 Methods

The goal is to study different aspects of verbatim. To find where verbatim is lo-
cated, a sliding window method is proposed. Here the number of neighbours an
index in the realisation image has that are from the same place in the training
image are counted. This result is then used in a clustering algorithm to find the
size and amount of verbatim patches. To measure the shape and density of the
verbatim patches, the windows extracted from the sliding window method are
transformed to a single metric using principal component analysis (PCA).

The metrics above will be validated using the generated synthetic data. The ver-
batim detection will output a verbatim percentage, this will then be used in a
linear regression analysis. A perfect verbatim detection algorithm will output
the same verbatim percentage as the truth known from the synthetic data. Linear
regression will thus reflect if this is the case.

Every method will result in a single metric which can be further analysed (see
table 1).

3.1 Sliding WindowMatches

The input to the sliding window matches is an ICM A. Every Ai,j refers to the
location in the training image the pixel from the realisation image was sampled
from. An ICM B of the same size as A is constructed by filling the rows with
increasing numbers, from 1 to (m ∗ n), like the right ICM in figure 3a. B is the
ICM of a realisation image that is the exact copy of the training image. In MPS
one can think of A as being sampled with replacement from B, thus {Ai,j ∈ B|i, j ∈
N} holds. Verbatim copy is then defined as the number of positional matches
between an area around Ai,j and Bm,n where Ai,j = Bm,n. Intuitively, this is the
number of neighbours in A around a pixel that were sampled from the same area
in B. Note here that no rotation or scaling of the sampled verbatim is assumed.
The number of matches in a window around every value in Ai,j is counted, this is
then weighted using the number of pixels in a window (Eq. 1).

Vm,n =
1

(w ∗ 2+1)2

w∑
a=−w

w∑
b=−w

δBi+a,j+b ,Am+a,n+b
(1)

i = ⌊Am,n/k⌋ (2)

j = (Am,n − ⌊Am,n/k⌋) (3)

Where δi,j is 1 if i = j else 0, V is the verbatim density map, w is the window size
around a pixel, (w ∗ 2 + 1)2 is the area of the window, k is the maximum index,
k =mmax ∗nmax, i and j are the indexes of the origin pixel in B.

To test if the method was robust to noise, it was tested on 100 pure noise ICMs.
The mean verbatim percentage, calculated as the number of non-zero values in
V divided by m ∗ n, was on average 0.11% and the maximum was 0.17%. Note
that the maximum verbatim percentage is 100. Robustness against noise was also
tested for different values of the window size w, see Fig. 5. In addition, run-time
was recorded for different w. From these tests, there is no evidence of an increase
in performance when increasing window sizew. To detect long-range verbatim,w
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needs to be bigger, thus exponentially increasing run-time. But in some scenarios
and implementations, this might not pose a problem.

This method is translated to a single metric (V1) by counting the number of val-
ues in V that are 1 or higher and then dividing by the number of values in V .

V1 =
|Vm,n > 0|
m ∗n

(4)

(a)

(b)

Figure 5: (a) The effect of window size in the sliding window method. Left: The
run-time of the method on a 200× 200 sample. Middle: The fraction of verbatim
predicted in pure noise. Right: The error in predicting the verbatim fraction from
a synthetic sample where the true percentage of verbatim pixels was known. (b)
Verbatim detection using the sliding window method on a random sample from
the synthetic data. Left: index coherence matrix as input. Right: Verbatim density
as output.
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3.2 Grid Based Agglomerative Hierarchical Clustering

To quantify the size and number of verbatim patches in the verbatim density map
constructed in the previous method, Grid Based Agglomerative Hierarchical Clus-
tering (GBAHC) was used. Hierarchical clustering in this scenario is ideal because
it can find an arbitrary amount of clusters. But, ordinary hierarchical clustering
has O(n3) complexity. Because of the nature of the verbatim density map, having
arbitrary clusters between any pixels does not make sense. We can constrain the
clustering algorithm with a grid, only considering the four direct neighbours of a
pixel to cluster. This reduces the complexity toO(n) (Murtagh &Contreras, 2017).
Hierarchical clustering takes a distance metric and a linkage criterion. The dis-
tance metric depends on the type of linkage. For image clustering in noisy data,
only complete and ward linkage is suitable. Ward linkage together with the eu-
clidean distance metric is shown to be effective for image clustering (Bruse et al.,
2017). Experiments with the method described below confirm this.

We start with an image V of size m × n. In our case, this is the verbatim density
map constructed in section 3.1. We then construct a graph G, which is the list of
directly connected pixels. In a 2d image, we have (m ∗ n) ∗ 4−m ∗ 2− n ∗ 2 connec-
tions, corrected for the edges of the image. Then the set of every connected pixel
C0 = {{V0,0,V1,0} · · · {Vm,n−1,Vm,n}} is our first set of clusters. We then repeatedly
calculate Ward’s minimum variance between all clusters that are connected by at
least one pixel in the graph G, see Eq. 5 (Ward, 1963). The two clusters with the
lowest Ward’s minimum variance will be merged. We will continue merging until
we reached a pre-defined threshold minimum variance all clusters are merged.

di,j = ||Xi −Xj ||2 (5)

The result C is the set of clusters and the assignment of every value in V to a
cluster. From this one can plot a dendrogram, which is useful for the analysis
of a single clustering result (Espinoza et al., 2012). To summarise the clustering
results, the number of clusters (V2) and the average cluster size (V3) were calcu-
lated. V3 is calculated as the number of pixels in the cluster divided by the total
number of pixels.

V2 = |C | (6)

V3 =
1
V2

V2∑
i=0

|Ci | (7)

3.3 Principal component analysis of verbatim windows

To research the shape of the verbatim principal component analysis (PCA) was
used on the windows Wi constructed in section 3.1. PCA is a fast and proven
dimensionality reduction method. PCA is the eigenvalue decomposition of the
covariance matrix XTX (Pearson, 1901). In this case, every row in X is a flattened
window inW . The columns then refer to every position of the window. Xi,0 being
the Wi,0,0 and Xi,n being Wi,w,w where n is the amount of pixels in the image, w
being the sliding window size. XTX is then the covariance of each pixel in the
index coherence matrix. This is high when two pixels have verbatim in multiple
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windows. The eigenvalue decomposition ofXTX (PCA) is then the set of principal
components wi which explain the variance the best. The variance, in this case, is
the difference between the verbatim windows. Using X · wi one can transform
all verbatim windows to the single value connected to the principal component.
Every principal component explains a part of the variance. The first few principal
components usually explain the most variance.

In both the single QS parameter analysis and the multivariate analysis,
analysing all windows is not feasible. In the worst case, we have m2 windows for
a m×m image per parameter configuration. Because of this, n verbatim windows
were sampled at random positions from every parameter configuration. The ver-
batim windows were combined into one Xi = (v ∗ n) × b matrix, where v is the
number of realisations in one parameter configuration, n is the number of sam-
ples, b is the area of the window. For every parameter configuration i we ran PCA
on Xi resulting in Wi , the set of principal components.

For the multivariate analysis, the number of sampled windows per parameter
was decreased. Then the whole process was repeated 20 times while averaging
the principal components. Because the QS data was stored in separate files per
parameter k, the right order of execution was chosen to speed up input-output
time.

V4 = X ·w1 (8)

3.4 Validation

To validate the previously described methods against the synthetic data, we used
linear regression analysis. A linear relation between the number of positive val-
ues in V from Eq. 1 and the true verbatim in the synthetic data is expected. The
root mean square error (RMSE) is also calculated as eq. 9. The RMSE reflects the
average error in the unit that was predicted.

RMSE =

√∑n
i=1 (ŷi − yi)2

n
(9)

Verbatim metrics
Short Description Method Formula
V1 Percentage of pixels

that have a neighbour
verbatim pixel

Sliding window 4

V2 Number of clusters
found

GBAHC 6

V3 Average cluster size GBAHC 7
V4 Verbatim density

(First component)
PCA 8

Table 1: Verbatim metrics
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4 Results

The sliding window matches visually shows a correct reconstruction of the ver-
batim patches in the synthetic data (Fig. 5b). In the full synthetic dataset the V1
metric (7x7 window) correctly predicted the the percentage of pixels that have
verbatim with RMSE = 0.3098 (Fig. 6e). Based on visual analysis, the density
map produced by the sliding window matches method can capture the presence
of verbatim copy in a low and high verbatim sample in both training images (Fig.
6. In the QS dataset with the stones TI there is lower verbatim (V1) when the
QS parameter k increases when ignoring the N parameter. (Fig. 6f). But for all k
values lower than 2 there seems to be no effect.

The verbatim density map was then used in clustering to further analyse the data
(Fig. 7a). The RMSE of the predicted number of verbatim patches by the cluster-
ing algorithm was RMSE = 4.34 (Fig. 7). After fitting a linear regression between
the real number of clusters and the predicted number of clusters in the synthetic
dataset we find R2 = 0.797. The number of clusters (V2) metric decreases when
the QS parameter k increases (Fig. 7d).

For the QS data, the previous metrics were also applied while varying both k
and N . In the stones TI, the V1 metric only shows the extreme cases (Fig. 8a).
The PCA V4 shows more variance (Fig. 8b). The kernel density of the metrics
confirms that the V4 metric is more equally distributed, and can identify more
types of verbatim copy (Fig. 8d). The cluster V2 metric shows a similar pattern as
V4, but due to computational limitations has fewer data points (Fig. 8c). Analysis
on the strebelle TI shows less verbatim copy in both V1 and V2 metric (Fig. 9).

The PCA V4 metric, for windows randomly sampled over N for a given k shows
a logarithmic relation with the k-parameter. (Fig. 10a). The V4 metric on the syn-
thetic data shows a linear relation with the known verbatim percentage, but it
overestimates for most values (Fig. 10b). The first PCA component window shows
a relation with the k parameter (Fig 10c). The second and the third projected com-
ponent do not show a clear relation.

10



(a) (b)

(c) (d)

(e) (f)

Figure 6: Verbatim detection. (a, b) A low and high verbatim copy sample from
the QS dataset (stones, parameter=’3.0’). In the subplot: Top-left is the training
image, top-right is the QS realisation, bottom-left is the ICM and bottom-right is
the detected verbatim density. (c,d) Low and high verbatim copy sample with the
strebelle training image. (e) The fraction of pixels that have a positive verbatim
fraction. Sampled from the synthetic dataset (f) Boxplot showing the distribution
over the percentage of pixels verbatim for different values of k. Sampled from the
QS dataset (stones training image), 50 samples per parameter.
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(a)

(b)

(c)

(d)

Figure 7: (a) QS stones clustering example. Threshold=3.5. Disconnected clusters
with the same colour are separate clusters. (b) Dendrogram of clusters in (a) (c)
Clustering on synthetic data results. The green line shows a perfect linear rela-
tion (y=x) Left: The number of verbatim patches (circles) against the number of
found clusters. Middle: The truth verbatim factor against the number of found
clusters. Right: The known percentage of verbatim pixels against cluster size. (d)
Clustering on the stones training image with varying parameter k.
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(a) (b)

(c) (d)

Figure 8: Verbatim metric for both k and N on the stones training image. (a)
Verbatim metric (V1) for both k and N extracted from every realisation, (b) PCA
metric (V4) for both k and N by sampling verbatimwindows from realisations. (c)
Cluster metric (V2) (d) distribution of the values in (a,b,c) showing the amount
of information present in the metrics.

(a) (b)

Figure 9: Verbatim metric for both k and N on the strebelle training image. (a)
Verbatim metric (V1) for both k and N extracted from every realisation, (b) PCA
metric (V4) for both k and N by sampling verbatim windows from realisations.
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(a) (b)

(c)

Figure 10: PCA results. (a) Left: First PCA component fitted on the QS dataset.
Right: Verbatim fraction as output. (b) First PCA component fitted on the syn-
thetic dataset against the known percentage of verbatim pixels. The green line
shows expected linear increase. (c) PCA fitted on the QS dataset, the top row is
the first principal component, the middle is the second and the bottom is the
third row. The columns are the k-parameter.

14



5 Discussion

A classic data-science problem has predictor variables and target variables. For
quantifying verbatim copy there are no proven existing metrics and there are no
target variables to learn from. Based on expert domain knowledge and qualitative
analysis of the realisations, a synthetic dataset with known degrees of verbatim
copy was constructed. This allows the use of the data-science paradigm for val-
idating new metrics. The hypothesis about what verbatim copy is and how to
create it in the synthetic data directly affects the effectiveness of the results.

The sliding windowmatchesmethod, generating the verbatim densitymap, when
visually analysed, shows to correctly highlight the verbatim patches in both the
synthetic data and the QS data. The usefulness of this method on its own is un-
clear. Because when tuning an MPS algorithm there are too many realisations
generated to be visually analysed. QS realisations and the synthetic data, show
no rotation or scaling of the verbatim patches. Future research can verify or adapt
these methods under rotation or scaling if needed. The sliding window method
likely does not work under scaling of the verbatim patches because an equal
distance between the pixels is assumed in the method. A convolutional neural
network can be a possible solution, as it can create many different windows for
different scenarios.

The V1 metric, the percentage of positive pixels in the verbatim density map,
was very effective in scoring the synthetic data. But in the QS data, did not find
much information. Only a slight downtrend in the V1 in the QS data is noticeable.
There seems to be no sensitivity towards lower k values, only after k = 2 does the
V1 metric change. Which could mean that the higher the k-parameter, the lower
the verbatim fraction (Fig. 6f).

The V1 metric assumes that when a pixel has a neighbour verbatim pixel, the
pixel is part of a verbatim patch. Under the synthetic data, this holds and it is
statistically unlikely that this happens in noise. This was verified in the tuning of
the method. But in the QS-stones data, a pixel likely has a few verbatim neigh-
bours without there being noticeable verbatim. Also, the V1 metric does not take
into account how many of a pixel’s neighbours are verbatim (verbatim density).
Future research can see if it is possible to create other metrics based on the slid-
ing window method that is more sensitive to verbatim copy. This metric may
include a threshold on the number of verbatim pixels before adding to the total
percentage.

The clustering method was able to find the number of clusters in the synthetic
dataset. In the QS-stones dataset, we see that there are fewer clusters for higher
parameter values. This is in line with the previous QS-stones finding. We see
a slight increase in the average cluster size for higher k-parameters. But in most
higher parameters there were no found clusters (Fig. 5). These results are promis-
ing and the insights provided by the hierarchical clustering paradigm are inter-
esting. One of these is the dendrogram, the dendrogram can be a useful tool in
analysing single realisations (Fig. 7b). It is possible that the distances read from
the dendrogram can lead to more insights into the nature of verbatim copy in a
specific problem. But the threshold distance in hierarchical clustering is prob-
lematic. With the threshold parameter, we do not need to specify the number of
clusters before clustering. But future research should focus on how the parameter
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changes for different training images and MPS settings. Also, the computational
costs involved with this clustering method can be problematic for large sets of
realisations. Future research can look into optimising the clustering algorithm
specifically for this problem.

The average of the first PCA component linearly correlates with the known ver-
batim percentage in the synthetic dataset. When looking at the shape of the first
component one can see that it is always radial. This means that the average first
component is just the sum of the pixels around a verbatim pixel, discounting
far away pixels. This results in a combination of the number of verbatim pixels
and the density in their neighbourhood. The average first component in the QS-
stones dataset shows a negative correlation with the k parameter, agreeing with
our findings above. The second and third components show no direct correlation
to the k-parameter value. But future research can look at the distribution of these
PCA components as they might hold information about the shape, direction and
distance of the verbatim copy in a dataset.

The multivariate plots provide a useful tool for analysing verbatim copy under
the two QS parameters. The PCA metric holds more information than the V1
metric. The cluster metric was too computationally expensive to run for every
parameter combination, but it might still hold valuable information.

The problem of translating verbatim detection to a data-science or machine-
learning problem is that there is no labelled data, no right or wrong. In this thesis,
we constructed a synthetic dataset with a known verbatim copy degree. We pro-
pose that future research focuses on building realistic synthetic verbatim copy
data sets of high resolution. This can then be used in a Common Task Framework
(CTF) setting (Donoho, 2017). CTF is the basis for a data-science competition. A
publicly available labelled dataset is shared, participants try to train a model and
predict on an unlabelled testing dataset, and a general committee then scores the
results using the labelled testing dataset.

16



6 Conclusion

The index coherence map (ICM) allows for precise quantification of the verba-
tim copy in synthetic data through various metrics. In contrast with previous
research, where verbatim copy was quantified using the realisation image, the
ICM verbatim metrics allow for direct quantification of the verbatim copy. The
ICM verbatim metrics provide a tool to tune and benchmark the Quick Sampling
(QS) and related algorithms.

A sliding window metric was used to transform the ICM into the verbatim den-
sity map. This shows a direct visual representation of where verbatim copy is in
the realisation. Through hierarchical clustering, the verbatim patches were de-
tected in the verbatim density map. The clustering method is computationally
expensive and requires tuning. More work is needed to optimise the clustering
algorithm and tuning.

The PCA method showed useful insights into the behaviour of verbatim copy
under different QS parameters. Future research can look at the other PCA com-
ponents, which possibly encode the shape and range of verbatim.

The need for a labelled verbatim copy dataset was shown. Future research is
needed on creating such data sets. When they become standardised, the problem
becomes more accessible to the data science and machine-learning community.
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