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ABSTRACT

Although the number of transaction fraud events grows slower than the number

of transactions in total, it is still a problem for many institutions. Detecting

fraudulent transactions is challenging for multiple reasons, including a general

lack of labels, class imbalance, and hidden and evolving fraud patterns. Even

more difficulties emerge while modeling public transaction datasets, namely feature

anonymization, missing information, and data aggregation. This work suggests a

pipeline of modeling fraudulent transactions, which accounts for most of those

concerns based on other researchers’ experience. From the modeling approaches,

one can distinguish those based on transaction features and those using graph

anomaly detection methods. This research combines both methods and presents

cross-validation results over two datasets. Performance scores did not indicate the

superior predictive power of any presented approach. Nevertheless, the addition of

graph features in the case of the second dataset significantly improved validation

scores and therefore indicated the direction for further research.

Key Words: [fraud detection, Random Forest, graph theory, transaction data].
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1 Introduction

Credit card fraud and payment fraud are a part of the larger group of financial

crimes and can affect all levels of society (Gottschalk 2010). ComplyAdvantage

company provides Anti-Money Laundering (AML) technology and tracks statistics

in various financial crime branches. In the recent 2022 report, the authors showed

that despite a slight decrease, fraud is still one of the top three out of fourteen

branches that financial institutions and governments are screening against. From

the perspective of big institutions, recent trends focus on fraud and loan defaults

regarding COVID-19 relief programs (over $84 billion loss in the USA). On the

other hand, the UK has reported over a 70% increase in authorized push payment

(APP) fraud cases in the first half of 2021 (ComplyAdvantage 2022). On the

bright side, European Central Bank concluded in their latest report (ECB 2021)

that throughout 2015-2019 fraudulent card transactions using SEPA increased at

a slower pace than card payments in general. Nevertheless, in 2019 the fraudulent

ones amounted to €1.87 billion, so there is still scope for improvement. Those

statistics emphasize the need to accurately identify fraudulent transactions when

prevention measures fail (Bolton and Hand 2002). Some researchers Pourhabibi et

al. 2020 underline that detecting fraud is especially critical in emerging areas such

as the FinTech industry. It is because such companies are particularly vulnerable to

fraud in the early stage of development when security measures are not prioritized.

Modeling fraud on labeled transaction data sets often includes many chal-

lenges, such as evolving fraud patterns, capturing fraudulent transactions in real-

time, skewed features’ distributions, and class imbalance (Abdallah et al. 2016,

Awoyemi et al. 2017). Moreover, the data is constrained by security and pri-

vacy concerns. Laws such as EU General Data Protection Regulation (GDPR)
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or California Consumer Privacy Act (CCPA) prevent third parties from using it.

Therefore, fraud detection data sets are usually synthetic and often insufficiently

rich (Ryman-Tubb et al. 2018). On the other hand, available real-world data sets

contain anonymized and often aggregated features, making it impossible to per-

form inference analysis. Moreover, companies providing such data often delete

sensitive observations that could expose real customers and/or merchants. This

fact poses an additional task of choosing and implementing the missing data im-

putation technique. Those factors make fraud detection a particularly challenging

task.

1.1 Research aim

This research aims to suggest the modeling pipeline to account for each of the

mentioned difficulties (3.2). That includes feature engineering, missing data im-

putation, dimensionality reduction, and validating Random Forest model (3.5)

results. Every mentioned step is based on other researchers’ experience in fraud

detection. The analysis is performed on publicly available and labeled transac-

tion datasets. The other aim of this research is to evaluate whether representing

transaction data as graphs improves the model performance. For this purpose,

the graph scheme is proposed, and its node-level and community-level features are

chosen and extracted. Finally, those features are merged with the preprocessed

original data and the performance is compared. The assumed hypothesis states

that adding graph features significantly improves the model score. The analysis

for this project is programmed in Python and R languages, and the detailed source

code can be found in the GitHub repository1.

1github.com/JanAndrosiuk/fraud-detection-transaction-data
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2 Literature Review

2.1 Challenges of modeling fraud

There are many industry surveys in the field of fraud detection. One of the most

cited is the paper published by Abdallah et al. 2016. The authors reviewed five ar-

eas of industry - credit card, telecommunication, healthcare insurance, automobile

insurance and online auction. The period captured by their research (1994-2014)

reflects the tendency of the credit card and money laundering operations account-

ing for more than half of the observed fraud. The core of the work focuses on

presenting other researchers’ methods of dealing with the challenges of modeling

fraud in different branches. Regarding the credit card fraud area, the authors

mention concept drift, class imbalance, a large amount of data, and the support

for real-time detection. As to the concept drift, one of the indicated methods is

to train ensemble classifiers by streaming sequential chunks of credit data. This

method assures that model addresses fraud pattern evolution. On the other hand,

the class imbalance can be handled by random under-sampling majority class,

random over-sampling minority class or Synthetic Minority Over Sampling Tech-

nique (SMOTE). The latter generates synthetic observations from minority class

based on the proximity to actual observations. However, it is also common to per-

form cost-sensitive learning by tuning class weights to punish the classifier more

in case of, e.g. false positive predictions. The Random Forest classifies in the

scikit-learn package Pedregosa et al. 2011 provides such a feature. The authors

also mention several methods of dealing with large numerosity and dimensionality

of data. These include feature selection, aggregation, and extracting eigenvectors

from Principal Component Analysis (PCA). However, the PCA in its raw form is
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not suitable for high cardinality categorical variables (Niitsuma and Okada 2005),

while more suitable variations of this method are more complex to implement. As

to real-time detection, the general idea behind it is the need for a rapid detection

model which also minimizes memory usage. The authors point out multiple al-

gorithms that increase the speed of data processing and/or filtering out relevant

data bits. These include Bootstrapped Optimistic Algorithm for Tree Construc-

tion (BOAT) and self-organization map (SOM).

2.2 Anomaly detection in transaction graphs

Transaction data can also be transformed into a graph. The graph structure can

be created in many ways (Belle et al. 2019). The most common straightforward

method is keeping the natural bipartite nature of credit card transactions by as-

signing cardholders and merchants as nodes with edges as transactions. However,

in some cases, merchant nodes are not the origin of the fraud, so it might be more

beneficial to make the one-mode projection. This operation casts a bipartite graph

to its monopartite equivalent (single population of nodes). In the example of card-

holders and merchants, the graph’s edge weights represent the sum of connections

between each pair of cardholders and merchants. Another approach is to represent

transactions as nodes. This way enables the creation of embedding vectors for each

transaction easily.

After graph creation, it is possible to detect fraud using the Graph-Based Anomaly

Detection (GBAD) methods. Pourhabibi et al. 2020 did a thorough literature re-

view of documented GBAD approaches between 2007 and 2018, covering data

mining and machine learning techniques. It appears that GBAD methods can

differ on many different levels. Those include:
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• Learning method - the choice is correlated with the availability of labels.

One can choose between supervised, unsupervised and semi-supervised tech-

niques.

• Nature of the graph - monopartite vs bipartite, homogeneous vs heteroge-

neous (referring to number of unique connection types), directed vs undi-

rected, static vs dynamic, attributed vs plain (regarding both nodes and

edges).

• Occurrence of anomaly - whether anomaly is detected on the level of nodes,

edges, sub-graphs, or events.

• Detection method - most approaches include community-based (distinguish-

ing groups of nodes based on their interconnections), probabilistic-based

(constructing a model of normal behaviour and tracking outliers), and structural-

based (detecting anomalies based on topological features of nodes and/or

edges of the graph).

• Structural representation - either feature engineering or graph representation

learning. In the case of the first, the authors point out the importance of

choosing significant features for the analysis.

One of the conclusions from the paper is that supervised methods are rarely ex-

amined - accounting for roughly 5% of collected publications. That happens due

to the general lack of labels in real-world data sets. Research trends in other lev-

els seem to favor monopartite, homogeneous, static and attributed combinations.

Meanwhile, the division between directed and undirected approaches is almost

equal. As to detection methods - community-based approaches are usually se-

lected. The authors also advise using evaluation metrics adequate to the problem

of fraud detection using supervised methods. In case of high-class imbalance, it

is better to use precision-recall (PR) curves instead of Receiver Operating Char-
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acteristic (ROC). In the latter case, a significant change in the number of false

positives (FPs, so-called false alarms) will not change the score as much as in the

case of PR. Alternatively, F-measure is also suggested as it balances precision and

recall scores.

2.3 Approaches

Huang et al. 2018 underline that methods of financial fraud detection usually focus

either on network topological features or entity features separately. It is empha-

sized that although GBAD methods may detect that certain entities are fraudu-

lent, they do not consider why such activities happen based on available data. It

is underlined that data pieces in the transaction set are internally linked. There-

fore they violate the usual assumption of supervised and unsupervised methods,

which is the independent and identical distribution (i.i.d) and auto-correlation. It

is also pointed out that detection methods should address different case scenarios

of fraud. Those include:

• Outlier points - those address exceptionally low or high attribute values of

nodes or edges.

• Merge - a scenario when multiple nodes are connected with one fraudulent

node and between themselves. By dispersed transactions of a similar type,

the fraud from the central node is covered.

• Ring - while the merge scenario describes the dispersed activity, the im-

port/export chain explains the ring most accurately. In such a chain, all

involved nodes are tightly connected and form a directed circle of transac-

tions.
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The fact which is necessary to realize is that although outliers can be detected

solely from the entity data, the merge and the ring cases require information about

the local structures of the network. This remark is the second reason, but both

pieces of information should be included in modeling transaction fraud. The au-

thors propose a self-developed algorithm that takes advantage of both approaches.

On the other hand, Xuan et al. 2018 analyzed the B2C transaction dataset

provided by the Chinese e-commerce company. The data covered a period from

11.2016 to 01.2017 and included over 30 million observations with 62 features

where 0.27% was labeled fraudulent. To detect the fraud, the authors applied

two variations of the Random Forest (RF) classifier and other algorithms such

as Support Vector Machine (SVM), Naive Bayes classifier, and Artificial Neural

Network (ANN). The first RF variation is described in detail in this paper’s section

(3.5). As to the second, the splitting rule has been changed to account for centers

(means) of classes instead of the common Gini index approach (Equation 11). The

class imbalance was tackled by random under-sampling of the majority class, and

the ratio between the training and validation set was set to 7:3. Despite the lack

of promising results, the authors compared the first RF approach with every other

used algorithm. Validation results were acquired on the sample of training data.

Those have shown the superiority of the first RF classifier over every other method

in F-Measure.
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3 Data and methods

3.1 Data description

3.1.1 Vesta dataset

For this study, two data sets are analyzed. The first one is provided by the Vesta

Corporation, which specializes in guaranteed payment card-not-present (CNP)

transactions for the telecommunication industry. The dataset contains informa-

tion about online credit card transactions. Although most of the information

about dataset features was anonymized and/or aggregated, some aspects are still

worth noticing. It consists of 334 continuous variables and 57 categorical ones.

Categorical features describe product codes, payment card information, concealed

home addresses, e-mail domains, device information and types (operation system

information, browser information, screen resolutions, and other), and some aggre-

gated features, e.g. sum of matching names between payment cards. In total,

categorical features account for 15040 levels, which by default makes the popular

one-hot encoding method useless for classifiers which cannot handle very sparse

feature matrices. Numerical ones mainly consist of aggregated features such as

countings and rankings and specific ones such as physical distances between trans-

actions and time differences between transactions. The target variable is boolean,

and the fraudulent accounts for approximately 7.8% of all observations.
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3.1.2 Elliptic dataset

According to the second dataset, it was provided by the Elliptic company, which

specializes in money laundering detection by analyzing blockchain transactions.

Organizations such as cryptocurrency businesses, financial institutions, and regu-

lators are usually customers of Elliptic and similar companies. The company has

been actively collecting bitcoin transaction data since 2013 and claims to have col-

lected over 100 billion data points. The analyzed dataset is the sample of 234355

transactions collected over approximately two years and distributed over 49 time

steps. Therefore, the set represents aggregated information about transactions be-

tween pairs of entities for each time step. However, in this case, transactions are

not solely payments for products but rather transfers between different entities.

The dataset contains 166 features assigned to those pairs, which are continuous.

Although the vast majority of variables’ labels are hidden, the company claims

those features relate to mentioned time-step information, transaction fees, the vol-

ume of received Bitcoins, counts of incoming and outgoing transactions, and other

aggregated data. The target is of boolean type with illicit label comprising around

3.5% of total observations.

3.2 Data preparation

The original dataset from the Vesta Corporation is comprised of variables missing

around 22% of information on average. There is also no row with a complete set

of observations. That is why some imputation techniques had to be considered.

Following the work of Rubin 1976, the Missing at Random (MAR) scenario was

assumed to continue the analysis. In reality, it is most probably the missing not

at random (MNAR) case due to the hidden anonymization process. Figure (1)
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there are some variables which most probably directly explain the missing pattern

of other features. However, these are not the majority. In most cases, variables

lack data simultaneously.

Figure 1: Vesta dataset - Missing pattern correlations
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Note: The figure shows correlation patterns between missing values. High positive corre-
lation between variables means that the missing pattern is similar between those two. On
the other hand, pairs with low negative correlation may be a sign of causality within them.

Moreover, Figure (2) shows some extreme cases of variables where missing data

accounts for 95% of total numerosity. Apart from that, it is worth noticing that

there are in total 10821 unique missing value patterns in the training dataset.
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Figure 2: Missing values per variable
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Note: The figure shows degree of missingness per variable in Vesta train dataset. The red line represents the
average missingness of 22.2%.

In such a case, adding variables explaining missing patterns is advised. However,

for datasets analyzed in this research, it is impossible. Simple operations such as

list-wise deletion or mean imputation (most frequent class imputation in the case

of categorical features) should be avoided as those may cause loss of information,

an increase in model variance, and distortion of feature distribution. On the other

hand, the multiple imputation method via mice and miceforest packages (Buuren et

al. 2021, Wilson 2020) proved to be extremely slow for highly dimensional datasets

with a large number of observations. Especially in those, where a significant part

is missing. That is why it was decided to use multivariate imputer from the well-

known scikit-learn package with custom estimators: Random Forest classifier for

categorical features and Random Forest regressor for continuous variables.

The Random Forest algorithm is explained in detail in section (3.5) of this

paper. According to the source code documentation, the Iterative Imputer trains

the model, which predicts values of one feature based on other features. It can

either include all of the other variables or just a subset. If some particular count

is specified, the algorithm will sample several variables with probabilities propor-
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tional to the absolute correlation between the variable mentioned above and other

ones. The algorithm can be run multiple times on the same data to ensure conver-

gence with an optional early stopping threshold. The convergence is measured by

the change in the infinite norm of a difference between imputed matrices in each

time-step (Equation 1).

diff = ∥Xt −Xt−1∥∞ (1)

Additionally, the algorithm can be set to perform the multiple imputation (Buuren

et al. 2021) and generate multiple imputed sets for different random seeds. Then,

such datasets can be used as training sets for multiple independent models and

the final results can be averaged. Apart from the fact that this approach yields

more robust estimations than standard imputation, it may also be used to study

the sensitivity of estimations over different random states. However, it is very

computationally heavy to perform such imputation in the case of datasets like the

one provided by Vesta.

For this research, the parameter of maximum iterations of the Iterative Imputer

was set to 10. The motive was to reduce the high computational complexity of

the method. With this parameter, the default convergence criterion was not met,

but a significant reduction in the difference norm value between iterations could

be seen.

Every operation in this research has been run on the laptop with an i7-9750H CPU

(12 cores, 2.60GHz) and 32GB RAM (2666MHz, DDR4). With this setup, it took

approximately 20 hours to perform the imputation on the training set.

Another problem during the data preparation part was the high cardinality of

43 categorical variables. Those should not be one-hot encoded as it would result

in an additional 14442 dimensions in the data set. Therefore, the input matrix
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would be too sparse for the Random Forest classifier. Using Principal Component

Analysis (PCA) is a common practice to reduce the dimensionality of data at

known cost (James et al. 2013). The general motive is representing the given data

by independent vectors (principal component loadings) directed towards variation.

For each mth component, equation (2) must be solved, where n and p respectively

stand for the number of observations and features, and ϕm is the mth loading

vector.

max
ϕm

=

[
1

n

n∑
i=1

(
p∑

j=1

ϕjmxij

)]
(2)

Eigenvalue decomposition or Singular Value Decomposition (SVD) techniques are

commonly used for the effective equation solution. Once the loading vector is ap-

proximated, analyzed observations may be approximated using formula (3), where

zim is the so-called score vector of mth component.

xij ≈
M∑

m=1

zimϕjm, where zim =

p∑
j=1

ϕjmxij (3)

It is also worth mentioning that before performing PCA, the data must be normal-

ized to calculate the variation in reference to the center of the coordinate system

(and also ease some computations). When PCA is performed on unscaled data,

loadings will be skewed towards variables with the highest variances. The num-

ber of components is a tunable parameter, which can be either chosen based on

marginal explained variance gain, the scree plot (both referring to the so-called

elbow method), or simply by the bottom threshold of variance explained by the

PCA model. The last useful feature regarding PCA is the bi-plot which can be cre-

ated based on loadings assigned to features and observations. Such visualization

helps analyze correlations in data, but it is suitable only for pairs of components.
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Therefore, it becomes useless for higher number dimensions.

Correspondence Analysis (CA) follows similar intuition to the PCA but is

more suitable for nominal variables. The general idea is to preserve the χ2 distances

between pairs of observation rows and feature vectors. Following Abdi and Valentin

2007, similarly to PCA, it is crucial to find the matrix which will be subject to the

SVD method. This time, the data matrixX is defined as a one-hot encoded matrix

of exclusively categorical variables, and Z = N−1X is its version normalized by

the sum of all observations of X. Then, weights (so-called masses) for rows and

columns are defined based on their respective sums (4).

r = Z1, c = 1TZ (4)

In the above equation, 1 is the column vector of ones. After this step, metnioned

weights are square-rooted, inversed, and represented as diagonal matrices (5).

Dr = diag

(
1

r

)
, Dc = diag

(
1

c

)
(5)

Then finally, the subject of SVD is defined by the equation (6).

Dr

(
Z − rcT

)
Dc (6)

In a nutshell, such representation of data describes deviations of data points from

the origin of the vector space, which are weighted by masses of observations and

variables. From this point, the process continuous in line with the PCA. As the

CA is a method meant only for two nominal variables, Multiple Correspondence

Analysis (MCA) is its generalization to a more extensive set of categorical features.

Entity Embedding (Guo and Berkhahn 2016) serves as an alternative to the
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methods based on SVD. A detailed explanation of this method is beyond the scope

of this paper. It was not evaluated due to the complexity of integration with the

cross-validation method. Nevertheless, the core concept is to train the Artificial

Neural Network (ANN) model with transformed categorical feature matrices as the

input and the target vector as the output. The core of this approach lies within

mentioned matrices, as their dimensionality accounts for the number of unique

records of each feature and the horizontal dimension is the tunable parameter.

There is no direct way to calibrate the latter, apart from checking the performance

score of the fit. Nevertheless, once the ANN is trained, its weight matrices may

be exported to another model. The advantage of this method is that one may

arbitrarily choose the output column dimension but at the cost of interpretability.

Regarding the Vesta dataset, it was chosen to perform the PCA on numerical

features and MCA on categorical ones. After that, the results were concatenated

and used as a training set for the Random Forest model. Both PCA and MCA scree

plots (Figure (3)) show relatively flat and logarithmic-shaped cumulative curves.

That indicates that none of the components explains the variance significantly

more than any other. Therefore, the standard elbow method of choosing a set of

the most significant components is inapplicable. That is why it was decided that

for the PCA, the number of the components will be chosen based on the threshold

percentage of accumulated variance arbitrarily set to 95%. However, in the case

of MCA, such a method would yield more than 3000 components. That is why

it seemed more rational to let the Random Forest handle Vesta set categorical

variables automatically. This feature is briefly explained in section (3.5).
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Figure 3: Variance and cumulated variance of PCA and MCA components for the
Vesta dataset

(a) PCA Scree plot
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(b) MCA Scree plot
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Note: X axis refers to an index of particular component (beginning with the one explaining the highest fraction
of variance), while Y axis describes explained variance. Figures differ in aesthetics as the PCA was created in
Python matplotlib package, while MCA - with R ggplot package. Nevertheless, both Y axes refer to the same
scale (0-100% of explained variance).

As to the Elliptic dataset, the target variable was re-engineered to inform about

the fraudulent transaction (edge) rather than the illicit node. For this purpose, it

was assumed that if at least one node in a transaction pair was labeled as illicit,

the whole transaction is considered fraudulent. As the dataset did not contain any

categorical features, only the PCA was performed again for dimension reduction.

Figure (4) shows the pattern of explained variance distribution for the Elliptic

training set. The conclusion remains the same as in the Vesta set, which is why it

was again decided to use the threshold variance. That accounted for 114 variables.
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Figure 4: Elliptic dataset - PCA Scree plot
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Note: X axis refers to index of particular component (starting from
the one explaining the highest fraction of variance), and Y axis - to
the explained variance.

3.3 Graph scheme

As was mentioned in the section 1, the part of this research aims to examine the

contribution of graph features inclusion on the performance of the fraud detection

model. The crucial part of this task is to define a graph scheme. Following Belle

et al. 2019, one of the common approaches is to create two distinct populations

of nodes - cardholders and merchants. That yields a bipartite representation of

the data. In such a scheme, edges have equal weight but may include different

attribute values (Figure 5).
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Figure 5: Bipartite graph scheme for on-
line transactions
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Note: Nodes signed as C represent cardholders, while M
represent merchants. In case of the Vesta dataset those
refer to accounts and devices, respectively.

For the Vesta dataset analysis, a bipartite graph scheme included two popula-

tions of nodes - cardholders and devices. Cardholders were identified by the string

concatenation of features referring to payment cards. On the other hand, entries

of the device-info feature were assigned as device nodes.

The problem with such representation comes when calculating some particular

graph metrics. Eigen-vector centrality is one such example, as it is heavily based

on the directed nature of the graph and is not robust to nodes outside of Strongly

Connected Components (SCCs). In the case of the Vesta dataset, the number

of SCCs equals the nodes’ count. That is because merchants cannot point back

to cardholders. Due to this fact, in some cases, it might be worth performing

one-mode projection (projecting from bipartite to the monopartite scheme). This

operation aggregates bipartite edges by summing them. Furthermore, it assigns

those sums to weight attributes of new edges in the monopartite scheme (Figure

6).
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Figure 6: One-mode projection to
monopartite graph scheme

C1 C2 C3
weight = 2 weight = 1

Note: One-mode projection from bipartite graph from
the Figure (5). C stands for cardholder nodes while
weight is the new edge attribute.

This method yields an undirected graph that describes a number of joint inter-

mediaries connect cardholder nodes. Such a scheme is more robust to multiple

graph operations than a bipartite one. Mathematically, one-mode projection can

be obtained by the dot product of an adjacency matrix A with its transposition

and zeroed out diagonal (Equation 7). In the equation below, D refers to the

matrix Y with preserved diagonal elements and zeroed-out rest.

Y = AAT −D (7)

In the case of the Vesta dataset, the one-mode projection was used on the bipartite

scheme to aggregate information about connections between cardholders. As to

the Elliptic dataset, the monopartite projection was imposed by default, because

the dataset in its raw form represented only one population of account nodes.

3.4 Graph features

This research focuses on detecting fraudulent transactions. This fact is particu-

larly interesting while analyzing bipartite projection on the Vesta set, where every

record contains information about the origin node (account) and the destination

node (device). It means that statistics regarding both populations enrich the fi-
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nal dataset. However, transaction data in the Elliptic set was extended only by

statistics from a single population of nodes. The graph features were extracted

using the Neo4j graph database management system queries via Python scripts.

Subsections below describe the choice of graph metrics.

3.4.1 Centrality metrics

The first metric is degree centrality, which informs about number of neighbors of a

particular node (Freeman 1978). In the case of directed graphs, degree centrality

can be further distinguished between in-degree and out-degree. The metric for a

particular node can be easily computed as a sum of either row or column of the

adjacency matrix.

On the other hand, betweenness centrality of the node informs about the ratio

of shortest paths that go through that node to all shortest paths that occur in the

graph. As calculating every shortest path in the graph is highly computationally

expensive, Neo4j uses Brandes’ approximate algorithm (Brandes and Pich 2007).

In this approach, start nodes are sampled with a probability relative to their

degree. The time complexity for each start node is O(nm), where n and m refer

to the number of nodes and edges, respectively.

The PageRank centrality is an iterative algorithm based on assumptions that

state: i) particular node’s importance increases with its in-links count, ii) that

it’s also influenced by an importance of those in-links source nodes, and iii) that

each node’s importance is divided equally among destination nodes (Brin and Page

1998). The iterative process is defined in Equation (8), where q is the PageRank

centrality vector in a time-step t, P is the transition matrix (the adjacency matrix

A which values are divided over the node degree matrix D), n stands for the node
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numerosity, and β is the tunable parameter.

q(t) = βP Tq(t−1) +
1− β

n
1, P = ATD−1 (8)

In simple words, creating matrix P refers to assumptions i) and iii), while the

iterative process of passing scores between nodes refers to the assumption ii). On

the other hand, parameter β accounts for the problem of sink-nodes and periodic

traps which may cause the score to get zeroed and/or not lead to a stationary

state. The parameter balances the inheritance of neighbors and the node itself.

The convergence of the above formula can be proved by transformation to ergodic

Markov chain model, which is guaranteed to converge.

Hyperlink-Induced Topic Search (HITS) expands on the idea taken from PageR-

ank by accounting for both in-degree metric (authorities) and the out-degree (hubs)

(Kleinberg 1999). The iterative process is very similar to the PageRank, apart

from the fact it is normalized in the Euclidean space sense (meaning that squares

of scores sum up to one) rather than in the probabilistic sense (scores sum up to

one). Update rules can be seen in the Equations (9), where a and h refer to scores

of authorities and hubs, respectively. α and β are tunable parameters to adjust

relative weights between those two scores.

a(t) = αAh(t−1), h(t) = βAa(t−1)

∥a(t)∥ = 1, ∥h(t)∥ = 1
(9)

As can be seen, those two scores are complementary to each other, meaning that

one is dependent on the other. Moreover, as mentioned before, both scores are

normalized after each iteration t. The convergence of both scores when the number
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of iterations approaches infinity can be proved by Perron Frobenius theorem.

3.4.2 Component and community metrics

The Weakly Connected Component (WCC), which was firstly introduced by Galler

and Fisher 1964, represents a subgraph which other subgraphs cannot reach. SCCs

(3.3) and WCCs yield different results for directed graphs, but they are the same

for directed ones. In the SCC, every node is reachable by others, while in the

WCC, no cycle is required. It was not specified in the Neo4j documentation

which algorithm is used to detect WCCs. However, common implementations

use either Breadth-First Search (BFS) (Moore 1959) or Depth-First Search (DFS)

(Tarjan 1972), which are both popular algorithms to perform graph traversing.

The difference lie in data-structures used for implementation - priority queue for

BFS, and stack for DFS. For this research, only the size of the WCC to which a

particular node belongs is analyzed.

Louvain method (Blondel et al. 2008) is a more sophisticated method of explor-

ing relevant subgraphs. The method follows the idea that mentioned subgraphs

should have strong internal and weak external connections. The algorithm does

so, by maximizing modularity score for the whole graph (Equation 10).

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj), (10)

where:

• Aij : Adjacency matrix cell representing edge weights between nodes i, j

• ki and kj : node degrees

• Ci and Cj : indices of communities that nodes i and j belong to

• δ: Kronecker delta function (1 if Ci = Cj , else 0)
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• m: sum of edges in the graph

The difference inside parentheses informs about the deviation of edge weights from

its expected value. The score itself belongs to [−0.5, 1], with scores higher than

0.3 meaning in practice that the graph has a significant community structure. The

algorithm is two-phased. Initially, every node is in its community, and the process

only assigns nodes to their neighbors’ community if that improves the modularity

score. This phase repeats until there is no possible improvement for each node.

In the second part, the algorithm aggregates communities by representing them

as nodes and assigning new edge weights as sums of previous edge weights be-

tween communities. This phase is also performed until reaching a stationary state.

Such transformed network is then re-iterated with both steps until the mentioned

criterion is reached. Some implementations also include the resolution parame-

ter, which controls the final sizes of communities. It is sometime advantageous

because the Louvain method is an approximation algorithm and therefore might

yield inconsistent results. Tuning the resolution parameter between iterations of

the algorithm helps with this fact. Following the WCCs detection, only the sizes

of the communities were appended to the training set.

3.5 Prediction model

Regarding the actual classification of fraudulent transactions, it was decided to

use the Random Forest (RF) classifier. The choice was dictated by the promising

performance of other researchers within the field of fraud detection (Xuan et al.

2018, Sahin and Duman 2010, Seyedhossein and Hashemi 2010). First of all, it is

worth explaining how the simple Decision Tree (DT) algorithm works (James et

al. 2013). The idea is to divide the feature space into high-dimensional rectangles
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called boxes which yield information about the expected class label. Those boxes

are created by iteratively splitting the feature space, and the splitting point in each

iteration is determined by the purity of created splits. The purity itself is based on

the proportion of class labels in each box. The metrics which are commonly used

for this purpose are: Gini index (11) and Entropy (12). In following equations, K

refers to number of class labels and p̂mk - to proportions of those classes in mth

box.

G =
K∑
k=1

p̂mk(1− p̂mk) (11)

D = −
K∑
k=1

p̂mk log p̂mk) (12)

For the two-class problem, G ∈ [0, 0.5], andD ∈ [0,−log(0.5)] (as limp→0 p log(p) =

0) and in both cases the goal is to minimize the score for each box. However, it

would be computationally expensive to evaluate which point is splitting the space

optimally for each variable and then reiterate through each possible sequence of

variables. Therefore, decision trees use greedy approach by default. In each step

the algorithm chooses the best combination of feature and observation (within this

feature) to perform the split. Although such an approach is easy to implement, it

does not handle well situations where a less optimal intermediate step leads to the

a better overall result. The Random Forest builds on top of ideas of Decision Trees

by performing the bagging operation, which is a method of averaging results from

multiple DTs trained on different samples of the original set. In such a way, the

algorithm deals with the problem of high variance which occurred in DTs. More-

over, on top of sampling observations, RF also samples features. Consequently,

the algorithm can overcome the problem of correlation between variables which

skews the results. As correlated variables occur commonly, it is advised to use a
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low number of variables in each sampled set, which is usually the square root of

total numerosity. It is worth mentioning that tree-based methods can automati-

cally deal with nominal variables. However, there is a seldom-mentioned problem

regarding nominal variables with high cardinality. It is logical that in such case,

the algorithm will tend to split the feature space based on individuals rather than

groups of observations leading to overfitting. That was one of the reasons to per-

form PCA and/or MCA on both Vesta and Elliptic sets. The other one was to

make sure that the final dataset is universal for future implementations (using

other estimators), which may not be able to handle categorical variables automat-

ically.

4 Results

For the purpose of this research, several models have been validated. For the Vesta

set, following approaches have been evaluated.

Vesta baseline - the model was trained on the dataset with missing data im-

puted by the Iterative Imputer. Numerical variables were replaced with principal

components using PCA to reduce dimensionality and simultaneously account for

95% of existing variance. Categorical variables were label-encoded, and no further

transformations were applied. Finally, the RF classifier with default scikit-learn

parameters was used to generate predictions in cross-validation. To account for the

class imbalance, the weight parameter inside classifier settings was set to balanced

to randomly over-sample minority class.

Vesta bipartite - this approach extends the baseline by the addition of bipartite

graph features. Section (3.3) explains bipartite scheme in detail. Selected graph

metrics are thoroughly described in the section (3.4) of this paper. Ultimately,
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each transaction record in the dataset was enriched by metrics describing the ori-

gin and source node.

Vesta mono - the approach serves as an alternative to the bipartite scheme. The

idea behind it is to emphasize the relationship between cardholders at the cost of

information aggregation. Details of the one-mode projection are described in sec-

tion (3.4). The selection and addition of mentioned metrics follows the bipartite

approach.

As to the Elliptic set, only two approaches were validated due to the monopar-

tite nature of the data.

Elliptic baseline - continuous data was transformed with PCA to capture 95%

of existing variance. Settings of the classifier remained the same as in the Vesta

dataset analysis, because the random search method did not show any improve-

ment.

Elliptic graph - the baseline Elliptic approach enriched with graph features. The

choice of metrics and their implementation follows the Vesta set analysis proce-

dure.

Table (1) shows the results for all of the validated approaches. Those were ac-

quired using the same random seed to make them comparable.

Table 1: Cross validation results for multiple models

Approach Accuracy Precision Recall F1-score

Vesta baseline 95.25% 92.04% 43.14% 58.73%
Vesta bipartite 95.28% 92.28% 43.45% 59.06%
Vesta mono 95.27% 92.16% 43.44% 59.03%

Elliptic baseline 98.00% 90.54% 47.53% 62.32%
Elliptic graph 98.18% 92.02% 52.09% 66.51%

Note: The table shows cross validation results for multiple models. Specification of each approach is described in
the section (4) of this paper. Random seed was set using the Random python package to a value of 2022 in order
to make results comparable within the same dataset.

Firstly, the above results indicate that any proposed graph representation of the
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Vesta dataset significantly improved the fraud detection model performance. How-

ever, it might be the case that de-anonymization of the data would lead to better

results (section 5). Every selected metric confirms those results.

However, the Elliptic dataset analysis results indicate the opposite conclusion.

The improvement can be especially seen in the Recall score. This metric is es-

pecially crucial as it captures information about transactions which were falsely

labeled as non-fraudulent. Although that score remains relatively low in this ap-

proach, its improvement can serve as a promising direction for further research.

To investigate that more, feature importance order was investigated (Figure 7).

Figure 7: Elliptic graph approach - feature importance order
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Note: The figure represents importance scores of analyzed variables of Elliptic dataset in descending
order. The Y axis informs about the accumulated impurity decrease, which is the total decrease in
node impurity weighted by the proportion of samples reaching that node and averaged over all trees
of the ensemble method. Black error lines on each bar represent standard deviation of the score over
all trees. Suffixes from and to refer to origin and destination nodes, respectively. On the other hand,
numbers in X axis represent indices of principal components.
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Feature importance scores indicate that graph metrics were indeed significant for

the analysis. Especially PageRank and degree scores of destination nodes signif-

icantly reduced the node impurity. However, based on the relatively significant

standard deviation of those scores, it is suggested to average them on the larger

number of iterations in further research.

5 Conclusion and Discussion

The research aimed at suggesting the pipeline of modeling transaction data to

detect the underlying fraud. Presented framework handles the challenges of miss-

ing data imputation using the Iterative Imputer, transformations of categorical

data (PCA, MCA), creating graph scheme, extracting graph features, and finally

detecting fraudulent transactions using the class-balanced RF classifier. Every

method and processing step were described in sections before.

The Vesta dataset proved to be relatively more challenging than the Elliptic,

which is partially why final performance scores favoured the latter. It has also been

evaluated that further aggregation using one-mode projection did not yield any

visible improvement. Although using card data to represent cardholder signatures

seemed promising, that cannot be said about the device information data. It might

be the case that getting more specific, user-oriented data such as anonymized IP

addresses and more specific device information could help form a more densely

connected network. Entities of such a graph would then represent less aggregated

features and could potentially distinguish fraudulent nodes.

On the bright side, Elliptic dataset analysis confirmed the hypothesis that

projecting transaction data as a graph and including its features may significantly
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improve the overall predictive ability. Those observations were confirmed by the

feature importance investigation, which showed that some of the included graph

features are at the forefront of the importance order. Nevertheless, their impact

should be investigated more by averaging multiple iterations.

5.1 Further research

There are multiple aspects of this research that could have been investigated, if not

for computational time limitations. The first such thing is hyperparameter tuning.

Given the used hardware (section 3.2), it took approximately 15 hours to evaluate

15 combinations of hyperparameters using the RF classifier. Such time made the

thorough tuning process difficult. Moreover, it would be beneficial to compare

presented approaches with state-of-the-art graph representation learning methods

such as Graph Neural Networks (GNNs). It would be particularly interesting in the

case of the Elliptic dataset, which modeling yielded promising results. Moreover,

entity embedding and multiple imputation methods should be implemented within

the cross-validation process and compared with the MCA approach. Apart from

that, every combination of approaches should be tested against different random

seeds to check its robustness. As to the classifier implementation itself, it would

be worth evaluating implementations based on graphical processing units which

offer higher parallelism of computations.
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