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Abstract

There are various data structures that represent data interrelationships in
the universe of information. One is a graph-based data structure, which
depicts a collection of entities connected by relationships. Resource De-
scription Framework (RDF) is a widely used data model that facilitates the
storage of graph-based data. This system, unlike standardised SQL, lacks
a consistent schema that evolves over time. When presenting a complete
schema is crucial, the loose standards combined with timeout limits in the
retrieval process pose a challenge. The objective of this master’s thesis is
therefore to develop a partial schema retrieval pipeline in order to solve the
previously outlined problem. We evaluate the quality of our approach by
measuring performance and completeness. This is conducted by running
the pipeline against several SPARQL-endpoints. The pipeline lays the foun-
dation for retrieving partial graph schemas per iteration. The result is a
rendered set of visualisations of partial schemas displayed in a hierarchi-
cal aggregated view. This should provide the ability to iteratively express
portion of a graph, regardless of the evolving schema.
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Chapter 1

Introduction

Resource Description Framework (RDF) is a widely used graph-based data
model that facilitates the storage and retrieval of data. RDF is used within
the world of Semantic Web as standard for exchanging machine understand-
able information across applications and communities. Various communities,
such as life sciences, demographics, and government, use RDF to describe
their domain-specific data. Over the last years, the datasets have become
more accessible. As an example, in May 2021, the project Linked Open
Data Cloud1 that tracks datasets which have been published in the Linked
Data format, reported 1301 datasets totaling more than 400 billion triples2.
There are also platforms such as Wikidata3, DBpedia4 and MusicBrainz5

which provide a SPARQL interface for querying information. Furthermore,
RDF does not require a schema beforehand in order to query and store in-
formation such as in a traditional Relational Database System (RDBMS).
This gives the users the flexibility to develop data without the need for a
pre-existing schema, but it also adds complexity as the data becomes more
unstructured. In the universe of information, RDF datasets are getting big-
ger but also more complex. This makes them harder to comprehend and
utilize without an explicit schema, preventing users from exploring the data
naturally.
Querying the right pattern from a SPARQL-endpoint pose a challenge when
exploration of all facts of a certain entity or entities is crucial. This is mainly
due to lack of consistent schema demanding complex queries to define the
entities and their properties that might burden the server or pose timeout.
Inconsistency is caused by the heterogeneity in the RDF data: a set of enti-
ties from the same class may represent diverse properties. The fact that the
structure of the entities are diverse, which indicates the presence of implicit

1https://lod-cloud.net
2https://lod-cloud.net/versions/2021-05-05/lod-data.json
3https://www.wikidata.org
4https://www.dbpedia.org
5https://musicbrainz.org
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classes, this would be hidden if the goal was to extract one class. Thus, the
critical problem is to discover these implicit classes in the semi-structured
data, taking into account the server timeout.
In the field of Semantic Web, several studies have been conducted on RDF
schema discovery and visualization [1, 2, 3]. However, previous researches
focused on initial datasets and complete information retrieval only. From a
usability point of view, this forms a barricade in order to directly explore
the parts of the schema structure. This makes it interesting to investigate
whether parts of an RDF schema can be revealed iteratively obtained from
a SPARQL-endpoint.
Therefore, in this thesis, we design a pipeline which lays the foundation
for retrieving the RDF schema partially in an iterative fashion by querying
an SPARQL-endpoint. We define partial as in retrieving a portion of the
schema. Our approach is an automatic process of partial schema discovery.
This allows for expressing a portion of the schema iteratively represented
as a property graph describing the structure of the discovered entities by
revealing their properties and relationships. In our approach, we do not
require an initial dataset, nor do we focus on complete visualization of a
RDF schema. The end users directly benefit from the opportunity to ex-
plore a portion of the schema structure that is being expanded incrementally.
Thus, in this thesis, we study the problem of expressing a portion of an RDF
schema iteratively, that is: given a SPARQL-endpoint as input, retrieve a
portion of the schema by querying a SPARQL-endpoint while taking into
account the server timeout, discover patterns within data distribution and
merge overlapping patterns in order to present a partial schema by applying
a hierarchical density-based clustering algorithm. We evaluate the quality
of our approach by measuring performance and completeness. This is con-
ducted by running the pipeline against several SPARQL-endpoints.

In this thesis the following research question will be answered:

Q1: What sequential operations should be incorporated in the pipeline to
retrieve RDF schema partially from a SPARQL-endpoint?

In order to answer the research question we formulate the following sub-
questions:

Q11: How can the server timeout be taken into account when querying?

Q12: What metric is used for measuring the similarity of the entities?

Q13: What machine-understandable representation is required for grouping
similar entities?

Q14: How can the obtained entities be grouped and represented as a prop-
erty graph?
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Q15: What metric can be used to measure the quality of grouping?

This thesis is part of the GraphPolaris6 project, which tends to iteratively
express portion of RDF schema in order to make querying easier and clearer.
GraphPolaris is a project that offers everyone the ability to perform data
analysis with comprehensible and user-friendly interface. The source code
of our pipeline implementation is available online7.

The remainder of this thesis is organized in the following manner: section 2
discusses the approaches of other researchers. Section 3 introduces the theo-
retical background of different concepts and the techniques used throughout
this master’s thesis. Section 4 describes the sequential operations within
the pipeline in order to obtain partial RDF schema. Section 5 provides the
experiments performed and the results. Finally, section 6 contains the con-
clusion and future work.

The contributions of this thesis are:

• A pipeline which lays the foundation of iteratively retrieving par-
tial RDF schema from a SPARQL-endpoint represented as a property
graph

• The end users directly benefit from the opportunity to explore a por-
tion of the schema structure that is being expanded over time

• An automatic model selection method capable of selecting a model
based on DBCV within each pipeline iteration

• Usage of the state-of-the-art extension of hierarchical density-based
clustering algorithm for grouping and merging overlapping entities

• Evaluation of the performance and completeness

In this thesis we do not cover the possibility to halt the retrieval program
due to the short time of the master thesis. Therefore, it is out of scope.

6https://www.graphpolaris.com
7https://git.science.uu.nl/vig/mscprojects/rdf-schema-retrieval
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Chapter 2

Related Work

The aim of this thesis is to describe the sequential operations required in
order to retrieve RDF schema partially from a SPARQL-endpoint. In addi-
tion, taking into account the server timeout and heterogeneous data. The
operations are investigated by analyzing data retrieval, vectorization and
clustering techniques. This is carried out using theories, techniques and
concepts. This chapter will discuss the numerous studies that contribute to
the theoretical framework of this thesis.

As already mentioned, RDF is a widely used graph-based data model that
facilitates the storage and retrieval of data. It does not require a schema up-
front, as in a traditional Relational Database System (RDBMS). This gives
the users the flexibility to develop data without the need for a pre-existing
schema, but it also adds complexity. As the datasets grow, they become
more difficult to comprehend and utilize without an explicit schema, pre-
venting users from exploring the data naturally. In schema discovery, due
to lack of consistent schema, it demands complex queries to define the enti-
ties and their properties. This is caused by the heterogeneity in RDF data,
which indicates the presence of implicit classes. The discovery of these im-
plicit classes, or so called patterns, has been addressed by several research
works. Some of these works rely on initial datasets [4, 2, 1, 3, 5], whereas
[4] also offers the possibility of using a SPARQL-endpoint for data retrieval.

In [4], the authors proposed a hierarchical clustering algorithm to con-
struct a summary of linked data, which is represented as a simple Entity-
Relationship where classes, properties and relationships are expressed as en-
tity types, attributes and entity type relationships. The unique instances of
class types are retrieved by executing queries using the predicate rdf:type
within the statement. For the case of their initial dataset option the data
dump is stored in a local triple store. In order to apply the set of properties
of instances for clustering, unlike our vectorizer, they construct a similar-
ity matrix using Jaccard Similarity. This is a similar method also used in
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[1, 3, 5]. To identify groups of similar instances they apply hierarchical
agglomerative clustering, which is a ”bottom-up” approach. The clustering
result is then validated using Silhouette Coefficient in order to determine the
number of clusters. However, exploring the hierarchical tree for determin-
ing the cut-off can be costly. Moreover, the performance of a ”bottom-up”
approach is slow1 when clustering large datasets. In our approach, we apply
HDBSCAN, which is a fast and scalable clustering algorithm compared to
hierarchical agglomerative clustering. Furthermore, in order to assign a label
to a cluster they look for the most occurring class name by using a greedy
algorithm. However, a cluster of entities that represent multiple class types
which all occur once along with having a hierarchical relation, might lead
to assigning a chain of classes. For example, a particular cluster would be
given the class names Artist and Person, while Artist inherits from Person.
In our approach, we analyse the multiple class types or overlapping class
types that only exist within a particular cluster to construct hierarchical
linking and assign a class type label.

Opposed to hierarchical agglomerative clustering and similarity matrix,
the authors in [2] proposed a top-k approximate graph pattern miner capa-
ble of rendering a summarization of a RDF graph, that best describe the
input dataset. In the initial step the RDF graph is transformed into a bi-
nary matrix, where the rows represent the subjects and the columns the
predicates. The semantics are retained in the matrix by capturing distinct
types, attributes and properties. Apart from attributes and properties, our
approach does not retain distinct types in the matrix because inclusion of
types can introduce bias when clustering. Moreover, the matrix is used in
the modified version of the PaNDa+ algorithm [6] to retrieve the best ap-
proximate RDF graph patterns based on several cost functions. As a result,
each extracted pattern represents a set of subjects that approximately share
common set of properties. Then, the RDF summary graph is constructed
based on the extracted patterns. Apart from semantic linking, the authors
do not deal with hierarchical linking in their work.

Compared to the works aforementioned, several research works [1, 3, 5]
in the field of schema discovery use a different clustering approach. The au-
thors proposed an extension of density-based clustering algorithm to extract
a schema-like directed graph. In [1], the retrieved data is used as input to the
density-based clustering algorithm to identify the summary types (nodes).
Each type represents a group of similar instances based on their set of prop-
erties and is described by a profile. The authors describe a profile as a set
of incoming and outgoing properties that have a certain probability within
each resource of a particular type. The incoming properties are annotated
as in and the outgoing properties as out. In our approach, we used similar
annotation to offer the possibility for semantic linking. Then, for building

1https://hdbscan.readthedocs.io/en/latest/performance and scalability.html

8



the schema-like directed graph, semantic and hierarchical linking is applied.
In the former, the annotated edges are used in order to construct a directed
edge between types as in [3, 5]. For example, T1 is linked with T2 by its
outgoing edge which is the incoming edge for T2. The latter considers the
outgoing edge annotated with the hierarchical property rdfs:subclassof
in order to link T1 with T2 using an adapted version of ascending hierar-
chical clustering algorithm.

Since the underlying algorithms in [4, 2, 1] are expensive and inefficient
for large datasets, the authors [3] proposed a scalable schema discovery
approach relying on their previous work [1]. To achieve scalability, the
authors apply parallel execution of the approach in their previous work
using Spark2 to improve the performance. Unlike Spark, our approach for
clustering uses parallel execution as well, which is an option in HDBSCAN.
The parallelization is processed in several steps. In the initial step, the data
is split and stored in HDFS format. Then, the files are read in parallel
and go through a mapper that generates a pair of entityID and property.
The pairs with the same entityID are then send to a node where a reducer
groups the properties of the same entity to output a key value pair (entity,
{properties}). These pairs form the input for the step ’pattern extraction’,
which outputs the pairs ({pattern}, number of entities). Then, these pairs
go through a reducer where the pairs with the same key and number of
entities are grouped and outputs a list of patterns along with the number of
entities.

In addition to parallelization, there is a challenge in incrementally updat-
ing a schema with new information. Last year, the authors [1, 3] published
a paper [5] where they propose an incremental schema discovery approach
for massive RDF datasets. Their algorithm is capable of performing incre-
mental build and updates on the schema when new RDF instances arrive
from a new dataset. The authors use an adapted version of a density-based
clustering algorithm to extract schema information from an RDF graph in
a parallel and incremental fashion. The parallelization is applied by using
distributed processing framework Spark. Their approach consists of three
main steps. In the first step, the new inserted entities go through data dis-
tribution where the data is split into chunks in order to assign the entities to
various processes. This forms the input for the second step for computing
the neighborhood of each new entity to identify the core entities. In the
third step, a set of clusters is constructed locally in each chunk based on
the new entities’ neighborhood. These clusters are then merged to generate
new clusters that represent the new classes in the schema.

With respect to the research works outlined in this chapter, they are limited
to complete retrieval of information [4] and initial datasets [4, 2, 1, 3, 5]

2https://spark.apache.org
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to provide a graphical representation of the schema. Meaning, they do not
address the problem of partial retrieval of RDF schema from a SPARQL-
endpoint, to iteratively visualize a portion of the schema in an expanding
manner. This is therefore a research gap that our approach will cover. In
our approach, we do not require an initial dataset, nor do we focus on com-
plete visualization of a RDF schema. The end users directly benefit from
the opportunity to explore a portion of the schema that is being expanded
iteratively.
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Chapter 3

Theoretical Background

In this chapter, we provide simple terminology which are useful for defining
some concepts and techniques used throughout this master’s thesis. Section
3.1 explains briefly the semantic structure of RDF. In section 3.2, we define
the RDF schema. Section 3.3 covers the query language for RDF data.
Section 3.4 describes the vectorization for transforming textual data into
machine-understandable structure. In section 3.5, we explain the different
similarity techniques for measuring the similarity of objects. Section 3.6
describes the clustering techniques for grouping similar objects. Finally,
section 3.7 explains the selection criteria applied for validating clustering
results.

3.1 Resource Description Framework (RDF)

Resource Description Framework (RDF) is a graph-based data model ap-
proved as a recommendation by World Wide Web Consortium (W3C) in
1999 [7]. RDF is used within the world of Semantic Web as standard for
exchanging machine-understandable data across applications and communi-
ties [8]. Various communities use RDF to describe their ontology-specific
data such as life sciences, demographics and government data. RDF schema
(RDFS) and Web Ontology Language (OWL) are essential in creating in-
terlinked datasets. Both are Semantic Web languages and RDF vocabulary
extensions for representing knowledge about things and their relationships
[9][10]. Ontologies are described using RDFS and OWL as a set of concepts
composed of classes (e.g. Person and Book), properties (e.g. name) and
relationships (e.g. authorOf) used to define semantic facts within a dataset
[11]. These concepts are utilized to describe the metadata of a set of classes,
as well as the relationship in between. The properties are used to specify a
group of instances that form an entity. In RDF, a description of an entity is
represented as a set of triples obtained through semantic queries. A triple
is compromised of three parts: subject(S)→predicate(P)→object(O)
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[12]. Meaning, a subject S has a predicate P (also known as property) that
has a value containing the object O. For example, the triple (S,authorOf,O)
denotes a relation between the entities S (e.g. Author) and O (e.g. Book)
described by the property ’authorOf’. Furthermore, the triple parts consist
of three types: Uniform Resource Identifier (URI), Literal (L) and Blank
nodes (B). URI is a set of characters composed of components defining the
path of a resource [13]. The components are scheme, authority, path and
fragment as illustrated in Fig. 3.1.

Fig. 3.1. Example of a URI syntax [13]

It is used to uniquely identify a resource in RDF. URI represents all
three parts of an triple where S and O are entities, also known as nodes in
a graph, while P represents the relation between S and O as directed edge.
B can appear in S and O representing anonymous resource for which a URI
or L is not given. L occurs only in O representing values such as Strings
and Integers, as illustrated in Fig. 3.2.

Fig. 3.2. (a) represents the structure of a triple, (b) entity C1 is an author
of entity C2 denoted by a circle and (c) entity C1 has a property ’hasName’
linked to a literal value denoted by a rectangle

An equivalent representation in a Relational Database System (RDBMS)
would result in S as a row of a relational table, P as an attribute, and L or O
as a related cell containing a literal value or URI. Furthermore, the schema
approach between RDBMS and RDF differ. RDBMS requires to specify a
schema beforehand in order to query and store data, also known as ’schema
first’. RDF is less strict and allows the ’schema last’ approach. This gives
the users the flexibility to develop and access data without the need for a
pre-existing schema, but it also adds complexity. RDF data is stored in a
single table as a set of triples, also known as triple store, consisting of three
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columns: S, P, and O. In order to retrieve the triples RDF data is queried
using SPARQL, a RDF Query Language based on graph pattern matching,
which we will explain in section 3.3.

3.2 RDF Schema (RDFS)

As mentioned in section 3.1, RDF Schema [9] is an semantic extension of the
basic RDF vocabulary consisting of a set of concepts composed of classes,
properties and relationships for describing resources. This is essential in
creating interlinked data in RDF. To define and explain the RDF Schema
graph, we provide more details below.

Fig. 3.3. (a) represents a RDF schema graph and (b) represents a RDF
data graph

Let R denote a set of resources and B a set of blank nodes. P denotes a
set of properties and L a set of literal values respectively. A dataset, denoted
as D, is defined as a set of triples,

D ⊆ (R ∪B)× P × (R ∪B ∪ L). (3.1)

As described in section 3.1, R and B can be seen as a node whereas P as
an directed edge. The properties containing literal values are considered as
an attribute of a node. Thus, a RDF schema is a directed graph G(N,E)
consist of nodes

N ⊆ R ∪B (3.2)

and directed edges
E ⊆ N ×N. (3.3)
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Fig. 3.3a illustrates an example of a RDF schema graph which defines
the set of classes and properties. For example, the classes Author and Book
are both a subclass denoted by the property subclassOf. The class Author
inherits from Person and defines a collection of resources that represent au-
thors’ entities, whereas the class Book which inherits from Document defines
a collection of resources that represent books’ entities. Both classes have a
set of properties that represent literals, whereas Author has an additional
property representing a relationship with Book. This means, a property can
reflect both literal and relationship. Fig. 3.3b shows two instances:

[
Isaac

]
and

[
Opticks

]
.
[
Isaac

]
is an instance of class Author denoted by the rela-

tionship type, which has three literal properties: fname and lname of type
String and yearOfBirth of type Integer. The property authorOf has a value[
Opticks

]
denoting that

[
Isaac

]
is an author of the book

[
Opticks

]
. Fur-

thermore, the resource
[
Opticks

]
is also an instance but of class Book with

the properties label and genre of type String and year of type Integer.

Definition 1 (Primitive Types)We define primitive types with rdf:type,
rdfs:subclassof and rdfs:label. These properties are used to define the
type, subclass and label of an instance. For example, the instance

[
Opticks

]
is of type Book and the class Book is a subclass of Document. These primi-
tive types are not user defined and are commonly used when creating data.

Definition 2 (Pattern) We define a pattern as a set of user defined types
such as fname and lname. These set of properties characterizes the entities.

Definition 3 (Property Graph) We define a property graph as a sim-
plified representation of a RDF graph where a node along with the edge
contains an internal structure as illustrated in Fig. 3.4. For example, the
property yearOfBirth of the class type Author is represented as an internal
property whereas authorOf as an edge (relationship) to Book.

Fig. 3.4. A property graph that represents the RDF schema graph illus-
trated in Fig. 3.2
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3.3 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a standard
query language for RDF that earned a W3C recommendation in 2008 [14].
SPARQL is used for querying patterns in RDF data for retrieving infor-
mation from the semantic applications. The (triple) patterns are similar to
RDF triples, but the subject, predicate, and object can all be variables.
As an example, take the following simple query illustrated in Fig. 3.5.

Fig. 3.5. A simple SPARQL query to get one hundred triples in RDF triple
store

This query selects one hundred triples that fits the pattern ?s ?p ?o de-
fined in the WHERE clause. The question mark indicates a variable. These
variables match any entity, predicate, or literal that fits the query’s pattern.
Furthermore, without the clause LIMIT, this would return all triples that
match the pattern. However, this may lead to timeout or burden the server
when querying large triple stores. Therefore, it is mostly recommended to
use LIMIT. In addition, the clause OFFSET allows to omit a number of
triples in order to receive the triples after a certain OFFSET value. This
eliminates the problem of not being able to receive the remaining triples,
for example due to a timeout. When the aim is to obtain all properties of a
certain entity the following query pattern is applied, see Fig. 3.6.

Fig. 3.6. A simple SPARQL query to find all distinct properties of a
particular entity

This query returns a set of properties (predicates) that describe the
entity ’book1’. The DISTINCT clause is used to eliminate duplicates,
for instance, when duplicate properties of an entity is not required. Also,
SPARQL allows declaration of a prefix for a schema (vocabulary) for read-
ability.

As illustrated in Fig. 3.7, first the prefix is defined to abbreviate the URI
of the schema, then the query finds all distinct entities ?s of type ’book’,
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Fig. 3.7. A simple SPARQL query to find all entities of type book

which is a class defined in the schema. The form prefix:suffix should be
interpreted as a URI concatenated with the suffix (e.g. book). For exam-
ple, the prefix ’pub:〈http://example-ontology.com/taxonomy/〉’ and suffix
’book’ would result in ’http://example-ontology.com/taxonomy/book’.

3.4 Vectorization

Vectorization is a technique for extracting numerical features from textual
data used within the field of Natural Language Processing (NLP) for ma-
chine learning algorithms [15]. Most of these algorithms (e.g. clustering
algorithm) need numerical representation, for example a document-term ma-
trix, as they are unable to understand raw textual data [15]. A document-
term matrix [16] is a two-dimensional array where the rows represent the
documents (e.g. entities) and the columns represent the words (e.g. proper-
ties). In order to transform a collection of textual data into document-term
matrix there are several techniques. This process is called vectorization.
The most commonly used techniques are ”Term Frequency–Inverse Doc-
ument Frequency” (TF-IDF) [17] and ”Bag-of-Words” (BoW) [15]. The
former is a numerical statistic that indicates the importance of a word to
a document in a collection or corpus by weighting the words, whereas the
latter simply counts the occurrence of words in a document.

Moreover, BoW can also represent a binary matrix, which we will refer
to as a ”Binary Bag-of-Words” (BBoW) from now on. BBoW marks one if
the word is present and zero if it is absent. For example, assume two enti-
ties having a certain set of properties (CSs). Their CSs are c1 = {fname,
lname, authorOf} and c2 = {label, genre, year}. Then, the rows represent
the distinct entities and the columns the distinct properties, see Table 3.1.

Table 3.1: A BBoW representation depicting c1 and c2

entity fname lname authorOf label genre year

c1 1 1 1 0 0 0
c2 0 0 0 1 1 1
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In this thesis, we will apply TF-IDF and BBoW.

In addition, because the document-term matrix is a high dimensional data,
clustering algorithms suffer from the curse of dimensionality which reduces
the quality of clustering results [18]. In order to solve this problem, dimen-
sion reduction techniques are used [19]. Therefore, we will apply UMAP,
which is a fast and scalable dimension reduction technique used as a prepa-
ration step for clustering. For more details about UMAP, we refer to [20].

3.5 Similarity Measure

In Natural Language Processing (NLP) and Information Retrieval, measur-
ing similarity plays an important role. The similarity measure is a way of
determining how closely objects (e.g. set of words and documents) are re-
lated. These measures are often employed when grouping similar objects,
such as in a clustering technique. There are numerous techniques [21] in
measuring the similarity, such as Cosine Distance, Euclidean Distance and
Jaccard Distance. Cosine Distance is a commonly used metric which com-
putes the distance between two objects in terms of directions in a vector
space. The distance is expressed as an angle in the range 0 to 180 degrees.
The Euclidean Distance, also referred as the L2-norm, is the square root
of the sum of squared distance between two objects expressed as a positive
numerical value. In addition, Jaccard Distance measures the dissimilarity
between two objects expressed as a numerical value between 0 and 1. This
is computed by dividing the difference between the sizes of the union and
the intersection of two objects by the size of the union. With respect to the
metrics, several schema discovery approaches [22, 1] have used the Jaccard
Similarity for measuring the similarity between two objects.

Since Cosine Distance is a commonly used metric in NLP, we will apply
Jaccard Distance and Cosine Distance in this thesis.

3.6 Clustering Algorithm

Clustering is an unsupervised machine learning technique used to find sub-
groups or clusters in unlabeled dataset [23]. The aim of clustering is to group
data into clusters using predefined similarity measure, such as the metrics
described in section 3.5. The notion is to group data that share common
characteristics into one cluster described by a distance. In our case, for
example, due to heterogeneity in the data, entities of a certain class type
may have a diverse set of properties. A clustering technique could be used
to reveal these unknown subgroups (implicit classes) in order to describe
the RDF schema in a structural manner. Clustering is a popular technique
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with a variety of approaches. Partition-based, density-based and hierarchi-
cal clustering are well-known approaches.

Partition clustering (e.g. K-means) [19] partitions data points into dis-
tinct groups. However, this method requires a pre-specified number of clus-
ters, whereas density-based and hierarchical clustering do not. This poses a
limitation when the number of clusters is unknown.

On the other hand, hierarchical clustering [19] methods presents a tree
based structure called a dendrogram. This is constructed in two ways:
bottom-up and top-down. The formal iteratively merges similar clusters
into one cluster based on a distance metric, while the latter is built by
split operations from top-down. In order to extract the clusters, a cut-off
point must be specified, which is challenging to perform. In addition, the
performance is slow when clustering very large datasets.

In contrast, density-based methods [19], such as DBSCAN [24], group
neighbouring data points into clusters that form dense areas, allowing for
arbitrarily shaped clusters. The data points in the sparse areas are consid-
ered as noise. Moreover, discovering schema using density-based clustering
on RDF data has yielded positive outcomes [1, 3]. However, the authors uti-
lized their own adapted algorithm for building hierarchical relation. On the
other hand, only using density-based clustering produces non-hierarchical
clusters based on global density, which often fails to properly represent com-
mon data with clusters of varying densities.

Therefore, in this thesis, we will apply a hierarchical density-based clus-
tering algorithm (HDBSCAN), which is a robust hierarchical version of
DBSCAN. This method does not suffer from the previously outlined draw-
backs and produces a simplified hierarchy consisting of only the most signifi-
cant and stable clusters. In addition, it is fast1, scalable, noise-resistant and
finds clusters of arbitrary shape, which is useful for our case where the data
consists of heterogeneous entities. For more information about HDBSCAN
(hierarchical density-based clustering) we refer to [25].

3.7 Selection Criteria for HDBSCAN

Clustering is a challenging field. Even if a clustering algorithm fits well on
one dataset, there is no guarantee that it will do similarly on another. Thus,
relying on a global parameter value may not always result in a clustering
solution. For example, in our approach with no human effort, each itera-
tion of the pipeline retrieves a subset of the RDF data. These subsets may
differ from each other and require different set of hyper-parameter values.
In these cases, hyper-parameter tuning is used. Hyper-parameter tuning in
machine learning is the problem of selecting parameter values for a learning

1https://hdbscan.readthedocs.io/en/latest/performance and scalability.html
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algorithm [26]. This is generally used in order to improve the performance
of a learning algorithm and to eliminate the human effort.

Like most of the machine learning algorithms, HDBSCAN has also hyper-
parameters, such as cluster selection epsilon and min cluster size.
The former parameter [27] is a distance threshold used to merge data points
that fall below the threshold. For example, two entities that have a measured
distance below the threshold would be considered as neighbors due to shar-
ing similar set of properties. However, this can result in minor differences
when using various values. The latter [27] is the most important parameter
that controls the smallest grouping to consider as a cluster. Meaning, using
a large value will result in few clusters due to the merging of similar neigh-
bouring clusters, whereas a small value will output large number of clusters
[27]. To achieve this, the following question must be asked: what relative
measure is used to evaluate clustering results?

Since there are no ground truth labels, measuring clustering results is a
difficult task. For example, precision and recall cannot be used to assess the
outcomes. As a result, it demands evaluation metrics that do not require the
use of ground truth labels. Generally used relative measures for validation
are detailed below.

• Silhouette Width Criterion [28]
Silhouette is a widely used metric for determining the quality of a
clustering result, with a value ranging from -1 to 1. The value indicates
how successfully an data point is classified within its own cluster rather
than in nearby clusters. Higher values suggest better clusters, while
values near zero indicate clusters that overlap. The Silhouette score
(S) is formulated as

S =
b− a

max(a, b)
(3.4)

where a is the average distance between each point within a cluster
and b is the average distance between all clusters.

• Density Based Clustering Validation (DBCV) [29]
DBCV is a relative measure for density-based clustering algorithms,
which accounts for noise and captures the shape properties of clus-
ters through densities. The result is a weighted sum of Validity Index
values of clusters, yielding a score between -1 to 1. A higher num-
ber indicates a better clustering solution. As the literature explains,
DBCV is formulated as
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DBCV (C) =
i=l∑
i=1

|Ci|
|O|

V c(Ci) (3.5)

where |Ci| represents the size of the cluster and |O| is the total number
of objects under evaluation including noise. The Validity Index of a
cluster is represented by V c(Ci).

In this thesis, we will apply DBCV for hyper-parameter tuning since Silhou-
ette does not account for noise, arbitrary shaped clusters and makes use of
distances. Distance is not applicable for a density-based technique such as
HDBSCAN.
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Chapter 4

Schema Retrieval Process

The aim of this thesis is to partially retrieve an RDF schema from a SPARQL-
endpoint, taking into account the server timeout and the heterogeneity of
RDF data. To achieve this, it requires a pipeline consisting of sequential
operations to orchestrate the partial retrieval process. In parallel, this chap-
ter provides the answer to our research question. The overarching process,
as illustrated in Fig. 4.1, consists of two phases. The former, described in
section 4.1, retrieves the required prior knowledge in order to build an ini-
tial structure and pass on relevant data as input for the pipeline. The latter
orchestrates the sequential operations in order to produce partial schemas,
which is described in section 4.2. Throughout these phases we use SPAR-
QLWrapper1 for being able to query a SPARQL-endpoint. A SPAR-
QLWrapper is a Python tool that provides an user-friendly library for
querying and modifying RDF data remotely.

Fig. 4.1. Global representation of the schema retrieval process

1https://sparqlwrapper.readthedocs.io
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4.1 Prior Knowledge

In order to orchestrate the pipeline, a prior knowledge must be acquired ini-
tially. The prior knowledge forms the starting point for retrieving patterns
throughout the pipeline. Note that this phase is only initialized once and
our approach does not require an initial dataset. To define the prior knowl-
edge, as starting point, we first analyzed several query statements by exe-
cuting them against a RDF data running on our local machine and external
SPARQL-endpoint. Then, we compared the results of the query statements
in order to find a common ground between the different SPARQL-endpoints.
As a result from this research, we developed two important methods (shown
as step 1 in Fig. 4.1) for this phase: (i) retrieving explicit class types along
with their respective properties and (ii) retrieving the number of instances
represented by each class type. An alternative starting point would be to
query without using a class type or by class type. The first option, would
require a large number of queries that might burden the server and cause
timeout in order to represent a meaningful entity with the related properties.
The second option, RDF data can consist of small sizes classes, which would
not result in a clustering solution. Thus, to obtain a meaningful amount of
data for clustering, many requests would be required.

In the former method, we first obtain the classes (?c) including their set
of properties (?p) by means of the query:

SELECT DISTINCT ? c ?p ?o
WHERE {

? c a owl : Class .
? c ?p ?o .

}

In this query we use the OWL vocabulary in order to obtain the class
types which belong to the dataset itself. Then, the resulting class types
including their related set of properties are transformed into a property
graph (see Algorithm 1) in order to have an initial structure and to avoid
the queries required for obtaining hierarchical knowledge for step 6 in Fig.
4.1. The transformation of an RDF graph into a property graph gives the
advantage of summarizing the information in a more simplified way.

The retrieval process of class types and the transformation (as described
in Algorithm 1) is as follows. Lets denote nodes as N and triples as T.
Then, the retrieved T go through an information gathering loop. As soon
as there is no query result from an endpoint, the retrieval process stops. In
each iteration of the loop, a Ni is constructed for a certain class type unless
it exist. Then, all occurring literals of a certain class type together with the
primitive types, except for ’subClassOf’, are stored in a property collection
of Ni. The ’subClassOf’ is not stored in a property collection but in edge
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collection so that a hierarchical link can be formed. Subsequently, any pred-
icate that is not a literal is stored as an edge in the edge collection of Ni.
After the transformation step, the resulting nodes are stored in a collection
which then becomes the initial structure of explicit classes retrieved from
the SPARQL-endpoint. The initial structure represents the fundamental
hierarchical structure of the schema which then becomes the input for step
6 in Fig. 4.1. This gives the possibility to construct hierarchical linking for
the partial schemas, which is described in more detail in section 4.2.5.

After the former method, the number of instances represented by each
class type needs to be acquired. This is important in order to provide a valid
amount of data for clustering (shown as step 5 in Fig. 4.1), as from our
empirical findings classes may represent few instances. Note, an instance
or instances form an entity, as described in section 3.1. This is accom-
plished by partitioning the class types, obtained from Algorithm 2, based
on their size (as described in Algorithm 3). Meaning, for each iteration, the
pipeline is provided with a batch that contains a set of classes. As an exam-
ple, lets denote a batch as B and consider the following: {Person=1000},
{Artist=1000}, {Company=30000} and {Galaxy=50000} with a batch size
of 2000 denoted as L. Then, there are three Bs, where B1 contains the
set of classes {Person, Artist}, B2 contains {Company} and B3 contains
{Galaxy}. The batch size specifies the minimum required size a batch must
have in order to iterate to the next batch. This allows RDF schemas to be
retrieved in batches in phase two, see Fig. 4.1 and 4.2.

The class types and their sizes are retrieved by executing the following
query:

SELECT ? c (COUNT(DISTINCT ? s ) as ? f r e q )
WHERE {

? c a owl : Class .
? s a ? c .

}
GROUP BY ? c
ORDERBY ? f r e q

In the query above, we use the clause ORDER BY to arrange the class
sizes in ascending order. This makes it possible to first process several
small classes so that the first iteration processes a larger portion of the
graph compared to batches containing fewer classes. After applying the
query for retrieving class sizes (see Algorithm 2), the results go through a
partitioning process (see Algorithm 3) where each batch is assigned one or
multiple class types based on their size. Then, the resulting batches are
stored in a collection which then becomes the input of the pipeline (shown
as phase 2 in Fig. 4.1), see section 4.2.
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Algorithm 1 Retrieval of explicit class types

Require: E = SPARQL-endpoint, W = window size
position← 0
collection← newHashMap
running ← True
while running do

q ← buildQuery(position,W )
triples← applyQuery(E, q) ▷ Querying the endpoint for the triples
if triples is empty then

stop running
end if
for triple ∈ triples do ▷ Starting point of the transformation

position← position+ 1
c← getSubject(triple)
p← getPredicate(triple)
o← getObject(triple)
if c ∈ collection then

node← collection[c]
if p is a subClassOf and o does not exist in the edge collection then

- construct an edge given ’subClassOf’ and o
- then append the edge to the edge collection of node

else if p is a Literal or Primitive Type and does not exist in the property collection
then

- update the property collection of node with p
else

- construct an edge given p and o
- then append the edge to the edge collection of node if it does not exist

end if
else

node← newNode(c)
if p is a subClassOf then

- construct an edge given ’subClassOf’ and o
- then append the edge to the edge collection of node

else if p is a Literal or Primitive Type then
- update the property collection of node with p

else
- construct an edge given p and o
- then append the edge to the edge collection of node

end if
collection[c]← node

end if
end for

end while
return collection ▷ Collection of class types
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Algorithm 2 Retrieval of class types with their sizes

Require: E = SPARQL-endpoint
q ← buildQuery()
triples← applyQuery(E, q) ▷ Querying the endpoint for the triples
collection← newHashMap
for triple ∈ triples do

classType← getSubject(triple)
classSize← getFreq(triple)
collection[classType]← classSize

end for
return collection ▷ Collection of class types with their sizes

Algorithm 3 Partitioning class types based on their sizes

Require: C = Collection of class types with their sizes, L = batch size
batch← 0
currentSize← 0
collection← newHashMap
collection[batch]← []
for classType, size in C do

if currentSize+ size ≤ L then ▷ Assign class type to existing batch
if batch in collection then

collection[batch] ← collection[batch] ∪ classType
else

collection[batch] ← [classType]
end if
currentSize ← currentSize+ size

else if size ≥ L then ▷ Assign one class type to a new batch
if batch ̸= 0 then

batch ← batch + 1
end if
collection[batch] ← [classType]
batch ← batch+ 1
currentSize ← 0

else ▷ Create a new batch and assign a class type
batch ← batch+ 1
collection[batch] ← [classType]
currentSize ← size

end if
end for
return collection ▷ Collection of batches

4.2 Pipeline

After the retrieval of the class types and allocating them to batches in sec-
tion 4.1, each batch forms an input for the pipeline phase. In this phase we
orchestrate the sequential operations, shown as step 2, 3, 4, 5 and 6 in Fig.
4.1, in order to produce a partial schema, by applying the techniques de-
scribed in section 3.4, 3.5, 3.6 and 3.7. The pipeline is executed in iterations,
see Fig. 4.2.

In each iteration the pipeline is given a batch that iterates through the
operations. Note, a batch consist of a distribution of class types which
represents a portion of the RDF schema graph. The entities represented by
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Fig. 4.2. A illustration of the pipeline iteration

a class type may vary due to heterogeneity, which indicates the existence
of implicit classes, as explained in the introduction. Thus, in the pipeline
phase, we are interested in discovering these diverse patterns along with
grouping the overlapping patterns in order to represent a partial schema.

4.2.1 Data Retrieval

After obtaining the batch, this operations’ aim (shown as step 2 in Fig. 4.1)
is to discover the patterns within the distribution of entities represented by
a set of class types. Since a batch can contain multiple classes, the quantity
of query executions must be considered so that the server is not overloaded.
To achieve this, we first analyzed the query statements that provide the
possibility to acquire the entities from a set of class types. Then, we analyzed
the structure of the entities for data transformation. As a result of the
conducted analysis, we developed two methods: (i) retrieving the entities
from a set of class types and (ii) discovering the patterns.

In the former method (see Algorithm 4), we first retrieve the entities
(?s) of the classes (?c) along with their outgoing (edges) properties (?p).
This is accomplished by the following query:

SELECT DISTINCT ? c ? s ?p ?o
WHERE {

VALUES (? c ) { (<CLASS TYPE>) (<CLASS TYPE>) ( . . . ) }
? s a ? c .
? s ?p ?o .

}
OFFSET <POSITION>
LIMIT <WINDOW>

Then, we retrieve the incoming (edge) properties (see Algorithm 5) to
enable semantic linking for the graphical visualization process. Semantic
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linking, for example, is the process of linking node N1 with node N2 by its
outgoing edge which is the incoming edge for node N2.

The variables of the query statement for retrieving the incoming prop-
erties are as follow: ?o represents the entity from the previous query that
belongs to class type ?c, ?p represents the incoming property and ?s repre-
sents the URI where the property is coming from:

SELECT DISTINCT ? c ?o ?p ? s
WHERE {

VALUES (? c ) { (<CLASS TYPE>) (<CLASS TYPE>) ( . . . ) }
?o a ? c .
? s ?p ?o .

}
OFFSET <POSITION>
LIMIT <WINDOW>

In these queries, we use the clause VALUES in order to retrieve the
entities of multiple classes by one query. This gives the possibility not to
overload the server. Suppose a batch contains twenty class types, then
the cost would be twenty queries, but using this clause reduces the cost
to one query. From our empirical findings, however, there is a limit to
concatenating number of class types within the VALUES clause. This is
due to the fact that sending a request to an endpoint has a limit on string
length. We therefore empirically set the number of concatenating class types
to twenty, as shown below:

VALUES (? c ) { (<1>) (<2>) . . . (<20>) }

Suppose a batch contains sixty class types, then the cost is three queries.
In addition, we combine the OFFSET and LIMIT clause as a solution to
the server timeout problem to be able to start from the position where the
timeout occurred. This allows for retrieving the remaining triples. Note
that certain SPARQL-endpoints might have a retrieval limit. We found, for
instance, that DBpedia is limited to 10000 triples per query. This means
that in such situations, the query is executed multiple times until all entities
are retrieved.

After the execution of the queries, the results go through a data trans-
formation, see Algorithm 4 and 5. During this step, we first annotate the
properties by concatenating them with types: Label, Class, In and Out.
Label and Class form the primitive types, whereas In, Out and properties
without annotation the user defined types (see section 3.2). This allows for
clustering based on user defined types in order to discover patterns as the
primitive types are generic. After this step, the entities along with their
transformed properties are stored in a collection. This collection forms the
input for the latter method.
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Algorithm 4 Retrieval of entities from a set of classes

Require: E = endpoint, C = class types, W = window size
position← 0
entities← newHashMap
classLabels← newCollection
running ← True
while running do

q ← buildQuery(position,W )
triples← applyQuery(E,C, q)
if triples is empty then

stop running
end if
for triple ∈ triples do

position ← position + 1
c← getClass(triple)
s← getSubject(triple)
p← getPredicate(triple)
otype← getObjectType(triple)
o← getObject(triple)
if s ∈ entities then ▷ Data transformation

- Annotate the property given p, otype and o
- Update the properties collection of the entity when not seen before

else ▷ Data transformation
- Create a new hash index for the unseen entity
- Store the obtained property along with the annotation given p, otype and o
- Append c to class label collection

end if
end for

end while
return entities, classLabels ▷ Collection of entities, Collection of class labels

Algorithm 5 Retrieval of entities’ incoming properties

Require: E = endpoint, I = entities, C = class types, W = window size
position← 0
running ← True
while running do

q ← buildQuery(position,W )
triples← applyQuery(E,C, q)
if triples is empty then

stop running
end if
for triple ∈ triples do

position ← position + 1
p← getPredicate(triple)
o← getObject(triple)
if o ∈ I then ▷ Data transformation

newP = annotate the property p with in
if newP /∈ I[o] then

I[o] = I[o] ∪ newP
end if

end if
end for

end while
return I ▷ Collection of entities with outgoing and incoming edges

In the next step, we apply the method pattern discovery, see Algorithm
6. In this step, we distinguish user defined types from primitive types in
order to retain specific properties for clustering. Then, we remove the prop-
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erties that have similar meaning. An example from our analysis, assume
the following properties {P1=wd:name} and {P2=wdt:name}. P1 refers to
a literal value, whereas P2 refers to the data type of P1 as a URI. Then,
these properties are likely similar due to the fact that P2 gives a data type
meaning to P1. In this case P2 can be omitted. After this step, each pattern
and primitive types are stored in separate collections. Then, the collection
of patterns forms the input for the next operation, see section 4.2.2.

Algorithm 6 Pattern discovery

Require: E = Collection of entities
patterns← newCollection
primitives← newCollection
for entity ∈ E do

properties ← E[entity]
ud← userDefined(properties)
ud← removeSimilarProperties(ud)
pt← primitiveTypes(properties)
patterns ← patterns ∪ ud
primitives ← primitives ∪ pt

end for
return patterns, primitives ▷ Collection of patterns, Collection of primitives

4.2.2 Vectorization

After the retrieval process and the extraction of patterns (shown as step 2
in Fig. 4.1), the subsequent operation (shown as step 3 in Fig. 4.1) is to
transform the data into a numerical representation for clustering. Before
the data (patterns) can be used for clustering, it must first be converted
into a machine-understandable format as described in section 3.4. This is
performed by vectorization. In order to select an appropriate vectorization
technique, we performed an experimentation using TF-IDF and BBoW. We
applied HDBSCAN with different datasets and fixed parameter values. As
a result, the experimentation has led to BBoW which for our approach offers
promising clustering results. After the selection of the vectorizer, we first
concatenate the set of properties of each row into a string. This results in a
list of strings, where each row represents the properties, an example is shown
in table 4.1. The concatenation allows for using the vectorizer CountVec-
torizer from the Scikit-learn library to construct a BBoW. Scikit-learn [30]
is a Python library which offers tools for machine learning purposes. Since
the BBoW is a simple two-dimensional array, with the rows representing
the patterns and the columns representing the distinct properties, it can be
achieved by using few parameters of CountVectorizer. Therefore, after
the concatenation, we utilize the CountVectorizer with default parame-
ter values except for the parameters binary and token patterns. These
two parameters must be set manually to construct a BBoW and to preserve
the annotations applied to the properties. In order to construct a BBoW
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we set the first parameter to ’True’. The second parameter is set with the
following regex value:

r ” (?u)\b [\w−]+\b”

We have found that using this regex value is important to preserve the
annotations applied to the properties in section 4.2.1. Otherwise, the BBoW
will result in a number of columns that are not equal to the number of
distinct properties.

Table 4.1: Concatenation of properties (patterns)

Collection Set of strings

[’fname’, ’lname’, ’authorOf’] ’fname lname authorOf’

[’preferred’, ’genre’, ’year’] ’preferred genre year’

After constructing a BBoW of our collection, the data goes through a
decision flow to decide on the application of dimension reduction (shown as
step 4 in Fig. 4.1). This is described in section 4.2.3.

4.2.3 Dimension Reduction

Dimension reduction is an important operation in our pipeline because it
overcomes the problem of the curse of dimensionality by reducing the di-
mensions of a high dimensional data, as mentioned in section 3.4. Reducing
the dimensions depends on a certain condition. We describe a condition as
a threshold in order to determine whether to apply a dimension reduction
technique before clustering, denoted as a red diamond in Fig. 4.1.

In order to find a threshold, we conducted a research. We looked for the
maximum dimension that HDBSCAN could have while still delivering good
results. As a result, according to the HDBSCAN documentation2, it is rec-
ommended to have a data up to 50 or 100 dimensions to preserve a good
performance. In order to keep just enough information and performance, we
have set the threshold to 70. After determining a threshold value, we apply
UMAP3 for dimension reduction. UMAP has quickly grown in popularity
as a dimensionality reduction technique, which is fast and scalable. In ad-
dition, it preserves the global structure of the data. For this reason, this
technique is more applicable to our case as computational efficiency matters.

For the application of UMAP, we need to consider several hyper-parameters
that controls how it performs dimensionality reduction. These parameters
are metric, n components and init. The metric parameter determines
how distance is calculated in the input data’s surrounding space. Note dis-
tance measures are covered in section 3.5. As our experimentation using Co-

2https://hdbscan.readthedocs.io
3https://umap-learn.readthedocs.io
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sine Distance for HDBSCAN and UMAP has led to promising results com-
pared to Jaccard Distance, we use Cosine Distance. The n components
parameter determines the dimensionality of the final embedded data after
performing dimensionality reduction on the input data. For this parameter
we set the threshold value outlined before. The third parameter init, de-
termines how to initialize the low dimensional embedding. This parameter
consists of two options. The first option is ’random’, which assigns initial
embedding positions at random. This is mostly used when the number of
columns exceed the number of rows. The second option is ’spectral’, which
considers the fuzzy 1-skeleton. For more details on ’spectral’ we refer to
[20], we only use this option when the number of columns do not exceed
the number of rows. Because we don’t have an initial dataset at hand in
order to choose one of these options, we set up the UMAP to automatically
select the correct option based on the data dimensions. This way, we are
not dependent on selecting a proper option manually. After vectorization
and dimension reduction, the data is ready for clustering, see section 4.2.4.

4.2.4 Selection HDBSCAN Model

The selection of a HDBSCAN model is an important operation within the
pipeline, shown as step 5 in Fig. 4.1. This is due to the fact that each
iteration retrieves a subset of the unknown data that might vary from other
subsets. A subset, only exists within an iteration that might require dif-
ferent hyper-parameter values compared to other iterations. Thus, using
global hyper-parameter values might not fit certain subsets due to diversity.
Therefore, an automated selection of hyper-parameter values is required for
each iteration. To achieve this, there are two important steps: selecting
the required hyper-parameters and a method capable of performing auto-
matic model selection based on DBCV. In the initial step, we first analyzed
the required hyper-parameters for HDBSCAN as described in section 3.7.
Then, we conducted an experiment using a range of different values for each
hyper-parameter in order to understand the behavior along with the relative
measure DBCV. As a result, the experimentation has led to following values
for automatic hyper-parameter tuning: min cluster size = (5, 10, 15, 20)
and cluster selection epsilon = default. The former (most important)
is a relative intuitive parameter to use and determines the minimum group-
ing to consider as a cluster. We set this parameter to various values as we
are also interested in grouping of patterns that are rare and merging clus-
ters with their most similar neighboring clusters. This makes it possible
to merge overlapping patterns into one cluster that are similar. The latter
parameter is set to default since it had dramatic effect on clustering during
our analysis. In addition, we apply as well the following hyper-parameters:
core dist n jobs, metric and cluster selection method. Since scal-
ability is important in our approach, we set the first parameter to −1 in
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order to compute the jobs in parallel using all cores. The second param-
eter requires a metric to measure the distance between the patterns. We
set this parameter to Cosine Distance as it produces, according to our ex-
perimentation, promising results compared to Jaccard Distance. The third
parameter determines how it selects flat clusters from the cluster tree hier-
archy. We set the parameter to ’leaf’ in order to produce a more fine grained
clustering. Outliers may be produced by the orchestration of the selected
hyper-parameter values. However, the outliers are crucial in our approach
since they still represent entities. Therefore, we treat an outlier as a sepa-
rate cluster.

The second step is to automatically select an model based on the DBCV
score. To achieve this, we constructed a method (see Algorithm 7) that is ca-
pable of computing several versions of HDBSCAN with values (5, 10, 15, 20)
for the parameter min cluster size. We initiate this by iterating over the
values of min cluster size. In each iteration we construct a HDBSCAN
model with the values outlined previously. Then, we store the DBCV score
in order to match with the next iteration. As soon as a higher score exists,
the new score and the model is stored. When the loop is finished, we select
the model with the highest DBCV score.

Algorithm 7 Selection HDBSCAN model

Require: D = Embeddings
score← 0
model← None
E ← {5, 10, 15, 20}
for i ∈ (0, 1, ...,

∣∣E∣∣) do
minClusterSize← E[i]
model← computeClustering(D,minClusterSize)
currentScore← calculateDBCV (model)
if i = 0 then

score← currentScore
model← model

else if score < currentScore then
score← currentScore
model← model

end if
end for
return model ▷ Selected model

After obtaining the clustering results, the results form the input for the
next operation to build a partial schema, see section 4.2.5.

4.2.5 Building Partial Schema

This operation, is essential in order to build a partial schema (shown as step
6 in Fig. 4.1). Since scalability matters, we use Dask4 for parallel processing.

4https://www.dask.org

32



Dask is a Python library that makes it easy to parallelize tasks for compu-
tational efficiency. This operation consists of two steps: data mutation and
transformation to a property graph. In the initial step we prepare the data
for parallelization. We first build a data frame using Dask consisting of
the cluster labels, patterns, primitive types and class labels. After building
a data frame, we mutate the primitive types by excluding the class types
discovered in each entity. The class types will be used for constructing hier-
archical relationships in the partial schema. The class types are then stored
in a separate column of the data frame, named class overlaps. Subsequently,
we separate the clusters from the cluster that contains outliers. Since each
cluster represents a schema, the outliers must be separated to construct a
schema for each outlier as well. Then, we group each pattern by cluster
label. After computing these tasks in parallel, the result forms the input for
the second step.

In the second step, we transform the data obtained from the previous step
into a property graph (partial schema). In addition, we use the fundamental
hierarchical structure from the prior knowledge phase to assign the correct
class type to a cluster based on the hierarchical relationship. When a hierar-
chical relationship is not available in the fundamental hierarchical structure,
we apply the most common class type from the class label collection. To
achieve this, we first iterate over each cluster. Then, in each iteration we
construct a node with a hash id in order to distinguish from other nodes and
to avoid duplicates when visualizing the schema. Subsequently, we assign a
merge of distinct properties and primitive types as attributes and the prop-
erties annotated with In as incoming and Out as outgoing edges. These
annotated edges give the possibility to build the semantic linking during
visualization process.

Then, we assign a class type to a cluster by finding the hierarchical rela-
tionship between the class types that exists within the cluster. For example,
assume we have a cluster denoted as C1 that contains the following class
types {Thing, Actor, Person} as shown in Fig. 4.3. Note that the class types
within the example, Fig. 4.3a, are not hierarchically arranged. These class
types represent a sub-graph. In order to find the leafs in the sub-graph, we
first construct the hierarchical relation by using the fundamental hierarchi-
cal structure retrieved in the prior knowledge phase. Then, the found leaf or
leafs are assigned to the node, that represents C1, as an outgoing edge. We
assign the leaf instead of every level of the hierarchy since the subclass Actor
represents the same patterns as the generic classes. As mentioned before,
when a hierarchical relation can not be constructed due to the fact that a
sub-graph is not present, then we use the most common class label. After
these steps, we apply deduplication to avoid duplicate nodes that might oc-
cur within the outliers and when appending explicit classes obtained in each
sub-graph. Lastly, we store the distinct nodes in a collection in order to be
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Fig. 4.3. A cluster denoted as C1. (a) C1 with multiple class types assigned
and (b) C1 with only the leaf assigned

produced for visualization.
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Chapter 5

Evaluation

This chapter represents some experimentation results using our approach.
We have evaluated the quality of our pipeline by measuring completeness
and performance. This is conducted by running the pipeline against sev-
eral SPARQL-endpoints with various sizes. We started easy with simplified
graphical visualization by using a small RDF dataset1 running on our local
machine. Then, we used on top some metrics for complex networks as DB-
pedia2 and Wikidata3. Since the complex networks are large, we ran the
pipeline for 10 iterations. The experiment setup had the following proper-
ties:

• macOS Monterey (v12.4)

• Apple M1 Pro 10 cores (8 high-performance, 2 high-efficiency)

• 16 GB RAM LPDDR5

• Python 3.8

• Jupyter Notebook

5.1 SPARQL-endpoints

In order to evaluate the completeness and performance of our approach, we
used our local machine, DBpedia and Wikidata SPARQL-endpoint. The
last two endpoints expose large amount of triples and classes. To give an
impression of various sizes, we have executed several queries to represent a
summary, see Table 5.1.

1https://graphdb.ontotext.com/documentation/free/quick-start-guide.html#load-
data-through-the-graphdb-workbench

2https://dbpedia.org/sparql
3https://query.wikidata.org
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Table 5.1: SPARQL-enpoints used for evaluation

Name Triples Classes Endpoint

Local machine 77k 7 http://localhost:7200/sparql
DBpedia 1.1 billion 1k http://dbpedia.org/sparql
Wikidata 13.9 billion 10k https://query.wikidata.org/sparql

DBpedia exposes 1.1 billion triples and 1k classes, while Wikidata ex-
poses 13.9 billion triples and 10k classes. This shows the complexity of the
networks under question.

5.2 Completeness

In order to evaluate the completeness of our retrieval process, we have used
information retrieval metrics such as precision, recall and F-score [31]. In
order to achieve this, we measured the number of triples retrieved and the
number of triples used per iteration.

We define precision as the fraction of the triples retrieved that are actu-
ally used, as shown in equation 5.1.

Precision =

∣∣used triples ∩ retrieved triples
∣∣∣∣retrieved triples

∣∣ (5.1)

Furthermore, we define recall as the fraction of the triples used to the
query that were in fact retrieved, as shown in equation 5.2.

Recall =

∣∣used triples ∩ retrieved triples
∣∣∣∣used triples

∣∣ (5.2)

In addition to precision and recall, the F-score is a commonly used trade-
off and is defined as the harmonic mean of precision and recall, see equation
5.3.

F − score =
(2 x Precision x Recall)

(Precision + Recall)
(5.3)

These metrics represent a numerical value between zero and one, which
indicates the accuracy of the retrieval process. A value closer to one means
high accuracy, while a value closer to zero means less accurate.

In addition, we also measured the expected instances and actual retrieved
instances in each iteration.
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5.3 Performance

To evaluate the performance, we measured the computation time, number
of executed queries, number of classes processed and clustering quality per
iteration. This is described in detail below.

Computation time gives an indication of the elapsed time on each itera-
tion to produce a partial schema.

Number of executed queries depicts the number of queries executed in
each iteration to retrieve a portion of the RDF data.

Number of classes processed depicts the number of classes processed in
each iteration from which the entities where used for clustering.

Clustering quality represents the DBCV score of the clustering result in
each iteration.

5.4 Result

After extracting the required measurements, as outlined in the previous
sections, we will analyse the results by representing the metrics for com-
pleteness and performance. We will first evaluate the results of the small
RDF dataset on our local machine by showing a simple graphical network
visualization along with a total summarization. Then, we will evaluate the
results of the complex networks by representing metrics.

For the simple dataset, running on our local machine, the pipeline pro-
duced 7/7 explicit and 278 implicit classes, see Fig. 5.1. The visualization
depicts a property graph constructed from 44k triples and 509 discovered
patterns. The blue nodes represent the explicit classes, whereas the yellow
nodes represent the implicit classes. The visualization shows several implicit
classes that have relationship with multiple explicit classes. This explains
the existence of overlapping patterns of two classes that are a subclass of
a common class. Furthermore, there are many implicit classes, for example
the area at the bottom-right in Fig. 5.1. This is due to the existence of high
heterogeneity within a particular explicit class, as expected.

The results for completeness of the retrieval process of triples show a pre-
cision, recall and f-score of 1. This means that all the information retrieved
from our local machine has in fact been used. Note, only 44k/77k were
retrieved, this is due to the existence of instances that are not represented
by a class type. In contrast, the completeness for the expected and actual
retrieved instances are: expected = 2901 and actual = 2227. Meaning, the
expected number of instances, represented by class types, that we retrieved
in phase one, is not equal to the number of instances retrieved. This can
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Fig. 5.1. A graphical representation of a simple RDF dataset

be explained by the fact that the instances occur in multiple classes, for
example overlapping classes, which leads to fewer instances.

Moving on to the performance summary, the result shows a computation
time of 2 minutes, a total query execution of 4 and processed classes of 7.
In other words, the pipeline has processed all the classes by running a few
queries in a short amount of time.

When we evaluate the results of the complex networks, Fig. 5.2a shows
a good result with high completeness on the retrieval process for DBpedia
and slightly lower for Wikidata, as shown in Fig. 5.2b. The slightly lower
completeness indicates the removal of certain predicates that are likely sim-
ilar, as explained in section 4.2.1. The results for the expected and the
actual retrieved instances are illustrated in Fig. 5.3. Looking closer at the
fourth iteration of DBpedia, see Fig. 5.3a, we notice a higher actual num-
ber of instances than expected number of instances. This might indicate
the existence of new instances at the moment of retrieving. The remaining
result in each iteration might be due to overlapping class types or removal
of instances from the server at the moment of retrieving.
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(a)

(b)

Fig. 5.2. (a) DBpedia and (b) Wikidata results show the completeness of
the retrieval and usage of triples

(a)

(b)

Fig. 5.3. (a) DBpedia and (b) Wikidata results show the completeness of
the expected and the actual retrieved instances
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(a)

(b)

Fig. 5.4. The performance result of the pipeline querying (a) DBpedia and
(b) Wikidata over iterations

The performance results in Fig. 5.4, shows a longer computation time in
the first iteration for Wikidata (Fig. 5.4 b1) compared with DBpedia (Fig.
5.4 a1). This is because Wikidata has a large number of small sized classes
(Fig. 5.4 b3), requiring more query executions (Fig. 5.4 b2). However,
this decreases over iterations when querying large sized classes resulting
in fewer queries. This also indicates the existence of a query limit from
the server. DBpedia has a query limit of returning 10k records, whereas
Wikidata can return around 500k records with one query execution. For
instance, DBpedia (Fig. 5.4 a2) required approximately 40 queries to process
about 10 classes, whereas Wikidata (Fig. 5.4 b2) required approximately 18
queries to process about 200 classes. The performance of the pipeline shows
good result when you consider the request time and the subsequent queries
required. Furthermore, the clustering quality on Wikidata (Fig. 5.4 b4)
increases over iterations when the number of small sizes classes decreases
(Fig. 5.4 b3). The low DBCV score of the first iteration may be due to the
large number of small sized classes that do not represent enough data points
of a particular pattern to form a cluster. However, given the complexity
of clustering within each iteration, the results show a good score. Finally,
Table 5.2 shows a summary of the 10 iterations conducted on DBpedia and
Wikidata.
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Table 5.2: Summary of the pipeline on DBpedia and Wikidata endpoints

DBpedia Wikidata

Total computation time 55.45 min. 62.57 min.
Total retrieved triples 3.48 million 5.66 million
Total used triples 3.47 million 5.57 million

Total number of queries 359 114
Total class types processed 73 1.2k
Total expected instances 17.7k 20k
Total actual instances 17.8k 19.4k

Total patterns discovered 13.4k 9.2k
Total explicit classes 213/1k 1.2k/10k
Total implicit classes 4.2k 2.3k

Mean DBCV 0.55% 0.73%
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Chapter 6

Conclusion and Future Work

This chapter summarizes the key aspects of this thesis in section 6.1 and
describes the future work in section 6.2.

6.1 Conclusion and Discussion

In this thesis, we have proposed an approach for partially retrieving RDF
schema from a SPARQL-endpoint. Despite the fact that RDF data is het-
erogeneous, lacks consistent schema and the endpoints having server limi-
tations, our argument stands that it can be partially retrieved in order to
produce a partial schema using the techniques described in this thesis. In
contrast with the literature’s outlined in the related work chapter that rely
on an initial dataset, we propose an approach that does not require an initial
dataset nor complete retrieval of information.

To achieve this, our approach has to construct a prior knowledge by ob-
taining class types along with their sizes in order to have a starting point
and a fundamental hierarchical structure. The starting point is expressed
in batches that consist of class types. Each batch forms the input for the
pipeline for iterative computation. The batch is used to retrieve triples
taking into account the server timeout. The server timeout is overcome
by utilizing OFFSET and LIMIT in the query statements. The retrieved
triples are required to discover patterns that reflect the existence of implicit
classes. In order to have a machine-understandable format for clustering, the
discovered patterns are transformed into a numerical representation using
a vectorizer. To overcome the curse of dimensionality, a dimension reduc-
tion technique is applied depending on the dimensionality of the numerical
representation. In order to cluster similar patterns and allow the merging
of similar clusters, a hierarchical density-based algorithm is applied along
with Cosine Distance as similarity measure. For assessing the quality of the
clustering solution, DBCV is employed as a relative measure. The final step
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is to produce a partial schema. To do so, the cluster solution along with the
fundamental hierarchical structure are utilized in a constructed method for
building a partial schema in a parallelized fashion.

Our experiments show that most of the partially retrieved triples are in fact
processed to produce partial schemas in an iterative fashion using batches as
starting point, both on DBpedia and Wikidata. In addition, the results show
a good performance on computation time, the number of queries executed,
the number of processed classes and the clustering solution, regardless of the
evolving schema, the request limitations and the heterogeneity of the data.

Since our approach is the first in partially retrieving RDF schema from
a SPARQL-endpoint in an iterative fashion, we assert that employing single
threading and multi-threading for retrieving triples has no noticeable differ-
ence in the efficiency of the retrieval process. This is due to the fact that
the request-time remains the same.

There is also a limitation in our approach. Since the request time differs per
endpoint, it can result in a longer computation time. This is due to various
security measures of the external server such as connection limit, rate limit,
query execution timeout and maximum SPARQL query solution. This is,
however, out of our hands.

6.2 Future Work

The research can be expanded in various ways as additional work. In our
approach, we use a vectorizer to construct a numerical representation for
clustering. It would be interesting to apply a precomputed similarity ma-
trix using a similarity measure to evaluate computation time and clustering
results, as HDBSCAN also provides the option of utilizing a precomputed
representation. Another extension of the research is the application of an in-
cremental hierarchical density-based algorithm. In our pipeline, clustering
is applied for each iteration, however the cluster solution for forthcoming
patterns in subsequent iterations is not stored. Utilizing an incremental
approach, allows for the clustering solution to be stored in memory and
updated when new patterns emerge. This could provide a lightweight com-
putation and a better clustering solution.
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