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Abstract

One of the major contributors to sea level rise along the Dutch coast during the 21st century
is Ocean Dynamic Sea Level (ODSL). ODSL is defined as the sea level anomaly due to ocean
currents, wind stresses and local thermosteric and halosteric effects. Along the Dutch coast, cli-
mate models project an ODSL rise between 0 - 35 cm at the end of the century, depending on
the emission scenario. Hence, this accounts for a large part of the total projected sea level rise of
30 - 120 cm along the Dutch coast. It is important that climate models are able to model ODSL
correctly. However, the current state-of-the-art climate models from CMIP5 and CMIP6 show a
large spread in ODSL projections and ODSL rise at the Dutch coast increased significantly be-
tween CMIP5 and CMIP6. One hypothesis for the latter is the larger increase in global mean
temperature in CMIP6. This increase is larger than the assessed ranges provided in the Sixth
Assessment Report (AR6) by the Intergovernmental Panel on Climate Change. In this study, we
aim to improve the quality of ODSL projections from CMIP5 and CMIP6 by better understanding
the processes that influence ODSL change along the Dutch coast. First, we use linear regression
models to identify the reason for a model’s ODSL change. The processes we consider as ex-
planatory variables for ODSL change are global surface air temperature (GSAT), global mean
thermosteric sea level (GMTSL), and the Atlantic meridional overturning circulation (AMOC)
strength. Using only GSAT as a predictor variable works for the CMIP5 ensemble but does not
explain all long-term changes for CMIP6. Including an additional predictor variable improves
the model. More specifically, we find that the model using predictor variables GSAT and AMOC
performs best at predicting ODSL change at the Dutch coast for both CMIP5 and CMIP6. For
most individual models, we find that an increase in GSAT, and a weakening of the AMOC, re-
late to an increase in ODSL along the Dutch coast. The regression analysis results are combined
with Monte Carlo sampling to generate probabilistic ensembles of ODSL projections consistent
with the AR6 assessed ranges of GSAT and GMTSL. This method enables us to correct the ODSL
change for the high temperature bias in CMIP6 models. We find that the effect of GSAT is too
small to explain the difference in ODSL between CMIP5 and CMIP6. However, we see that the
sensitivity to GMTSL and AMOC increased in CMIP6 which could point to a difference in model
dynamics between CMIP5 and CMIP6. Furthermore, we find that the location of deep convec-
tion is important for ODSL along the Dutch coast. We see that models that show a deep mixed
layer in the Greenland Sea for the period 1975 - 2004, project a larger rise in ODSL at the Dutch
coast for both ensembles.
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1 INTRODUCTION 1

1 Introduction

1.1 Global and Regional Sea Level Rise

Sea level rise is one of the main consequences of global warming. The rise of global mean sea level (GMSL)
has accelerated over the past decades due to thermal expansion of sea water and an increased mass loss of
land ice. Recently, Steffelbauer et al., 2022 showed that this acceleration is also observed along the Dutch
coast. Projections show that GMSL will continue to rise during the 21st century as a consequence of an-
thropogenic forcing (Slangen et al., 2016; Oppenheimer et al., 2019; Fox-Kemper et al., 2021). The rise of sea
level has a broad socio-economic and environmental impact on coastal communities and low-lying coun-
tries (Hinkel et al., 2014). Among the most vulnerable regions are countries such as China, Vietnam, and
Indonesia (Dasgupta et al., 2009), but also in Europe, more than 200 million citizens live within 50 km
from the coastline (Vousdoukas et al., 2020). Because of this large impact, it is of significant importance to
provide policymakers with reliable projections that can serve as the basis for implementing adequate adap-
tation measures.

In some areas, sea level rise is projected to be larger than in others and therefore, the projections in sea
level are not spatially homogeneous. These regional differences arise mainly from three processes: (1) ocean
dynamics, (2) rotational and gravitational effects caused by redistribution of mass within the cryosphere
and hydrosphere, and (3) vertical land motion caused by glacial isostatic adjustment (Stammer et al., 2013).
Along the Dutch coast, ocean dynamics is one of the major contributors to total sea level rise during the 21st

century. The rise of sea level due to ocean dynamics is referred to as ocean dynamic sea level (ODSL). ODSL
is defined as the sea level deviation from the geoid, with the inverse barometer effect applied (Gregory et al.,
2019). A simpler way of explaining ODSL is that it reflects the sea level anomaly due to local thermosteric
and halosteric effects, ocean currents and wind stresses (Gill and Niller, 1973; Gregory et al., 2016). The
interannual variability in ODSL is large, mainly due to wind effects. By definition, the global mean of ODSL
is zero.

1.2 Ocean Dynamic Sea Level in Global Climate Models

The primary tools to construct ODSL projections are atmosphere-ocean general circulation models (AOGCMs).
The Coupled Model Intercomparison Project (CMIP) is a standard experimental framework for studying the
output of coupled AOGCMs developed by groups worldwide. Figure 1.1 shows the median ODSL change
at the end of the century projected by the latest two phases from CMIP (CMIP5 and CMIP6). For these
results, the models were forced with an intermediate emission scenario. The temporal average over 2081 -
2100 is compared to the reference period 1900 - 1949. The spatial patterns in CMIP5 and CMIP6 are simi-
lar and most of the larger-scale features are reasonably well understood. For instance, the rise of ODSL in

Figure 1.1: Ensemble median ODSL change in CMIP5 and CMIP6 from model runs forced with an interme-
diate emission scenario (RCP4.5 for CMIP5, and SSP2-4.5 for CMIP6). The difference between 2081 - 2100
and reference period 1900 - 1949 is shown. These results are based on 27 models for CMIP5, and 30 for
CMIP6.
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the Arctic is driven by increased freshwater input (Couldrey et al., 2021), and the meridional dipole pat-
tern in the North Atlantic is driven by a reduction in heat loss north of 40°N (Bouttes et al., 2014). The
difference between CMIP5 and CMIP6 is most pronounced at higher latitudes and in the Arctic. In these
regions, CMIP6 models project a larger rise of ODSL. The results are similar for the other emission scenarios.

The ODSL pattern near the European coast is shown in Figure 1.2. The North Sea is one of the regions that
show larger increase in ODSL, together with the area along the Norwegian coast and North and West of the
British Isles. This is found for the lower and higher emission scenarios as well. Furthermore, the difference
between CMIP5 and CMIP6 is similar to the sea level change patterns themselves. This indicates that the
pattern from CMIP6 models is amplified with respect to CMIP5. This is also the case for the other emission
scenarios.

Figure 1.2: Ensemble median ODSL change for the intermediate emission scenario. The difference between
2081 - 2100 and reference period 1900 - 1949 is shown for CMIP5 (left) and CMIP6 (centre), and the difference
between CMIP5 and CMIP6 is plotted (right). The North Sea region is indicated with black lines.

In this study, the focus is on long-term ODSL change along the Dutch coast. Instead of only selecting
grid cells near the Dutch coast, we consider changes over the North Sea, indicated by the black box in
Figure 1.2. One motivation for this is that global climate models are not always able to resolve small scale
processes sufficiently. For instance, some models show checkerboard-like patterns for ODSL in the North
Sea (Hermans et al., 2020). We filter these spatial inaccuracies by taking the average over a larger region.
The choice is validated by the fact that steric effects are expected to be similar for the North Sea and the

Figure 1.3: ODSL projections for the North Sea from CMIP5 (blue) and CMIP6 (red) models for three sce-
narios: low emission scenario RCP2.6/SSP1-2.6, intermediate emission scenario RCP4.5/SSP2-4.5, and high
emission scenario RCP8.5/SSP5-8.5. The median and the 5 - 95 percentile of the ensembles are plotted. The
reference period (1900 - 1949) is indicated by grey shading.
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Dutch coast since most of the steric increase is due to overflow from the deep ocean (Bingham and Hughes,
2012). This overflow is expected to be distributed homogeneously over the basin. Furthermore, by taking
the average over the North Sea, we filter out some of the highly variable wind effects. The smoothed
time series of the spatially averaged ODSL in the North Sea are shown in Figure 1.3 for three different
emission scenarios1. The CMIP5 ensemble shows a slight positive trend for all scenarios during the 20th

century, followed by a faster rise between 2000 - 2075 and a drop after 2075 for the low and intermediate
emission scenarios. The CMIP6 ensemble shows no rise in ODSL during the 20th century, followed by a fast
rise starting in 2000. For the low and intermediate scenarios, the rise slows down in 2060. Note that the
uncertainty bands show a dip in ODSL change between 1960 and 2000 for the CMIP6 ensemble. This is not
seen in the CMIP5 time series.

Figure 1.4: ODSL change in the North Sea region between 2081 - 2100 and 1900 - 1949 for three scenarios for
CMIP5 (blue) and CMIP6 (red). The edges of the bars represent the different percentiles given in the table.

Figure 1.4 summarises the end of the century projections of ODSL in the North Sea for the lower, inter-
mediate, and higher emission scenarios for both CMIP5 and CMIP6. The projected change averaged over
2081 - 2100 is plotted for different percentiles of the ensemble. Compared to the period 1900 - 1949, climate
models thus predict an ODSL rise of 0 - 35 cm along the Dutch coast at the end of the 21st century, depend-
ing on the emission scenario. This accounts for a large part of the total projected sea level rise of 30 - 121
cm along the Dutch coast (KNMI, 2021). Two other things stand out from this Figure. First, we note that
the CMIP6 ensemble shows a larger spread in the projections for the lower and intermediate emission sce-
narios. This is surprising since we would expect the additional development time of the models to reduce
the divergence. Second, we see that CMIP6 models project a larger ODSL change than CMIP5 models for
all scenarios. Previous studies show that changes in ODSL can be related to changes in global temperature
(Perrette et al., 2013; Yuan and Kopp, 2021; Bilbao et al., 2015). Remarkable is that the climate sensitivity
of the CMIP6 models is higher, leading to higher global mean temperatures. This is also referred to as the
’hot model’ problem (Zelinka et al., 2020; Hausfather et al., 2022), and could thus potentially play a role in
the increased ODSL rise in CMIP6. The sixth assessment report (AR6) of the Intergovernmental Panel on
Climate Change (IPCC) provides assessed temperatures ranges for each scenario. These ranges are lower
than the CMIP6 temperature ranges, and for most scenarios higher than the CMIP5 temperature ranges (see
Appendix A). The primary aim of this study is to correct for these assessed temperatures and investigate if
this reduces the difference between the ensembles, and the uncertainty in the projections.

1The emission scenarios are represented by Representative Concentration Pathways (RCPs) in CMIP5, and by Shared Socioeconomic
Pathways (SSPs) in CMIP6. The scenarios considered in this study are low emissions (RCP2.6 / SSP1-2.6), intermediate emissions
(RCP4.5 / SSP2-4.5), and high emissions (RCP8.5 / SSP5-8.5)
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1.3 Difficulty of Observing Ocean Dynamic Sea Level

One might think that another way to reduce the uncertainty in the projections is to constrain them with
observations. However, directly measuring the change in ODSL is not possible. One way to estimate it
is by subtracting all known contributions from the total sea level rise, which is measured by tide gauges
and satellites. The remaining part is then due to the change in ODSL. This method’s disadvantage is that
the propagation of uncertainty in the other contributors leads to large uncertainty in the remaining ODSL.
Another way to estimate the past change in ODSL is to use reanalysis data of temperatures and atmosphere.
A third way makes use of the reasoning by Bingham and Hughes, 2012, stating that steric increase in shallow
seas can be computed using the steric increase in the deep ocean nearby. The effects of the wind are not
included in these steric budgets. Figure 1.5 compares the time series of two steric budgets (Steric 1 and
Steric 2), ORA 20-C reanalysis data and the individual CMIP models. A smoothing filter is applied to the
latter two to exclude the variability caused by wind effects. The reference period is set at 1980 - 1999 as
all time series cover this period. For the reanalysis, ten individual members and the mean are plotted. We
see that the members show a large spread in the first half of the 20th century. Furthermore, the reanalysis
data shows a significant drop in ODSL in 1950. This drop is not seen for Steric 2 and neither for most of the
CMIP models. If we look at the period from 2000 and on, we see that the reanalysis data shows a faster rise
than the budgets. Summarising, we find that the different budgets and reanalysis data do not agree well.
Therefore, it is not possible to constrain the projections with observations. This motivates us to get a better
understanding of the ODSL data from the CMIP models which could help us decrease the uncertainty in
the projections.
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Figure 1.5: ODSL time series for the Dutch coast from ORA-20C reanalysis data (purple) covering 1900 -
2009, Steric 1 covering 1979 - 2018 (blue), Steric 2 (orange) covering 1950 - 2020, and individual CMIP
models (grey) covering 1900 - 2020. A smoothing window of 25 years is used for the reanalysis and CMIP
data to filter out the short-term effects of the wind. No smoothing window is applied to the steric budgets
since these are not influenced by wind. The grey shading indicates the reference period from 1980 - 1999.

1.4 Previous Studies on Ocean Dynamic Sea Level

Since we cannot make any model selection based on the budgets and reanalysis, we need to work with the
CMIP data as it is. In order to correct the data for the assessed AR6 temperatures, we have to get a better
idea of what processes drive the long-term (multidecadal) change in ODSL along the Dutch coast. Here, we
provide a short overview of earlier work.

Several studies use pattern scaling2 approaches to relate ODSL change to certain climate variables. Perrette

2Pattern scaling is a simple way to produce climate projections beyond the scenarios run with AOGCMs. The technique assumes
that a spatial climate anomaly pattern obtained from an AOGCM can be scaled by a global climate variable (Tebaldi and Arblaster,
2014).
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et al., 2013 derive a spatial pattern by regressing ODSL on global mean surface air temperature (GSAT).
Bilbao et al., 2015 examined the relationship between ODSL and GSAT, global mean thermosteric sea level
(GMTSL), ocean volume mean temperature, and global mean sea surface temperature using pattern scal-
ing. They find that ocean volume mean temperature is generally a better predictor than GSAT. Additionally,
they show that the pattern is very similar under different scenarios for a given model. Palmer et al., 2020
present a new set of local sea level projections based on CMIP5 using global thermal expansion (GTE) as
regressor for ODSL. Yuan and Kopp, 2021 build upon Bilbao et al., 2015’s speculation about the relative
importance of shallow and deep warming under different scenarios and develop an emulator for ODSL
change using GSAT and deep ocean temperature as predictor variables. The time series for GSAT and deep
ocean temperature are generated based on emulation of five individual CMIP5 models using a two-layer
model, FaIR-2LM. By combining the time series with the regression coefficients and using Monte Carlo sam-
pling, they construct probabilistic ensembles of ODSL projections. This method allows them to interpolate
between emission scenarios and propagate the uncertainty at low computational costs.

The main conclusion of the pattern scaling studies discussed above is that it is possible to scale the pattern
of ODSL with global climate variables. Multiple studies however point to the importance of local processes
that could influence ODSL. For instance, for the North Atlantic, several studies relate ODSL change with
the strength of the Atlantic meridional overturning circulation (AMOC). Katsman et al., 2008 found that a
significant reduction of the AMOC correlated with larger steric sea level in the eastern North Atlantic basin
using CMIP3 models. Chen et al., 2019 find that the large uncertainty in CMIP5 ODSL projections in the
North Atlantic is connected to the uncertainty in the change of the AMOC. They suggest that reducing the
inter-model spread in the change of the AMOC can greatly improve the consistency of ODSL projections
among different models. Lastly, Lyu et al., 2020 analyse ODSL data from CMIP5 and CMIP6 and find that
the larger ODSL change in the North Atlantic in CMIP6 is associated with a larger weakening of the AMOC.

Since the North Sea is part of the North Atlantic, we expect that the AMOC influences ODSL levels at the
Dutch coast as well. Therefore, we expect that including the AMOC as a predictor variable in the pattern
scaling method could be an improvement.

1.5 Research Questions

The primary aim of this study is to obtain ODSL projections that are consistent with the AR6 assessed ranges
of GSAT and GMTSL and to see if this correction explains the difference between CMIP5 and CMIP6. We
formulate the following research questions:

1. What processes can be related to ocean dynamic sea level change along the Dutch coast?

2. Can the difference in predicted temperature increase between CMIP5 and CMIP6 models
explain the difference in ocean dynamic sea level change?

3. Can we provide ocean dynamic sea level projections that are consistent with the AR6 assessed
ranges of temperature and global mean thermosteric sea level?

The data is discussed in Section 2, together with information on the different emission scenarios and the
assessed ranges of GSAT and GMTSL from the AR6. To answer the first question, we use (multiple) linear
regression models discussed in Section 3.1 including the predictor variables: GSAT, GMTSL, and AMOC.
The latter is included since earlier research points out that the AMOC is related to ODSL in the North
Atlantic. Therefore we expect it to also be of importance for the North Sea. In order to make the projections
consistent with the AR6 assessed ranges, we combine the regression coefficients with Monte Carlo sampling
to generate probabilistic ensembles of ODSL. This method is primarily inspired by Yuan and Kopp, 2021 and
further discussed in Section 3.2. Using the corrected projections, we will find an answer to question 2. as
well. The results are presented in Section 4, followed by the discussion in Section 5. Finally, we answer our
research questions in 6.1, and provide some suggestions for further research in 6.2.
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2 Data

This study uses global climate model data, observations and reanalysis data, and assessed ranges from the
AR6.

2.1 CMIP5 and CMIP6 Model Data

For the analysis of the processes that can be related to ODSL, we use Phase 5 (CMIP5) and Phase 6 (CMIP6)
data from the Coupled Model Intercomparison Project. The models included in CMIP all run a long spin-up
simulation using stationary forcings. The pre-industrial control (piControl) simulation branches out from
the spin-up and uses fixed forcings. Analysing the piControl run allows us to diagnose the climate drift
in an unforced system. The historical simulation branches out of the spin-up at the same time and covers
the years 1850 - 2005 for CMIP5, and 1850 - 2014 for CMIP6. In these simulations, all time-varying climate
forcings known for this period are used (e.g. greenhouse gases, volcanic activity, solar radiation).

The future projections use the end of the historical experiment as the initial conditions and run until 2100
for most models. Future projection runs are forced with different greenhouse gas scenarios. These scenarios
are reflected by Representative Concentration Pathways (RCPs) in CMIP5 as defined by Van Vuuren et al.,
2011, and by Shared Socioeconomic Pathways (SSPs) in CMIP6 as defined in O’Neill et al., 2014. We focus
on three different scenarios in this study: low radiative forcing (RCP2.6 / SSP1-2.6), intermediate radiative
forcing (RCP4.5 / SSP2-4.5), and high radiative forcing (RCP8.5 / SSP5-8.5).

We select the models that provide data for ODSL and GSAT. Some of these models also provide data for
GMTSL and AMOC. An overview of the number of models that have data available for given combinations
of variables is given in Table 2.1. The complete list of models and their institutes can be found in Appendix B.
For each model, only the first ensemble member indicated by the ensemble name ‘r1i1p1’ is used. For all
variables, we obtain the yearly average from the downloaded monthly data, and we set the reference period
to 1900 - 1949. The next subsections contain more detailed information about the post-processing steps of
the individual climate variables.

ODSL + GSAT ODSL + GSAT
ODSL + GSAT + GMTSL + AMOC

RCP2.6 20 18 7
CMIP5 RCP4.5 27 23 8

RCP8.5 25 21 9
SSP1-2.6 30 19 14

CMIP6 SSP2-4.5 30 20 14
SSP5-8.5 31 20 15

Table 2.1: Number of models available for each combination of variables for the different scenarios and
CMIP phases.

2.1.1 Ocean Dynamic Sea Level

ODSL is given by the CMIP variable zos. It has three dimensions: time, latitude, and longitude. The piCon-
trol simulation is used to correct for the linear drift in each model’s historical and future scenario simulations
(Hobbs et al., 2016). The models do not discretise the ocean on identical grids. To be able to analyse the mod-
els together, the data is regridded to the same 1.0°×1.0° grid. Besides, the land-sea mask is not the same for
all models. This causes issues close to the coast and in almost enclosed seas. By spatially extrapolating the
available data to where there is no data, we avoid having spatial discontinuities in maps of the ensemble
mean and standard deviation. ODSL at the Dutch coast is obtained by taking the spatial average over the
region indicated by the black box in Figure 1.2 (51.5°N – 59.5°N, 3.5°W – 7.5°E).
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2.1.2 Global Mean Thermosteric Sea Level

GMTSL is given by the CMIP variable zostoga. Similar to zos, the linear drift in zostoga is removed using the
piControl runs. Furthermore, some models from CMIP5 showing non-physical discontinuities in zostoga are
filtered out.

2.1.3 Global Surface Air Temperature

GSAT is given by the CMIP variable tas. The global mean of the tas variable is downloaded from the KNMI
Climate Explorer (Climate Explorer n.d.). The drift of the data in the piControl run was found to be small.
Therefore, the GSAT data has not been corrected for this.

2.1.4 Atlantic Meridional Overturning Circulation

As a proxy for the AMOC strength we use the overturning mass stream function, given by msftmyz in
CMIP5, and by msftmz for the meridional direction or msftyz for the y-direction in CMIP6. No drift correction
is performed for these variables. We take the stream function at latitude 26°N, which is the latitude often
used in literature (Cunningham et al., 2007; Mielke et al., 2013). The stream function is then divided by the
average density of ocean water, ρ = 1026 kg/m3, and multiplied by 10−6 to obtain the AMOC strength in
Sverdrups (Sv). For CMIP6, some models provide data for both variables msftmz and msftyz. msftmz is used
when it is available for a certain model, otherwise we take msftyz.

2.2 Observational and Reanalysis Data

2.2.1 Ocean Dynamic Sea Level

This section contains some background on the reanalaysis and budget data for ODSL that was shown in
Section 1.3. Ocean Reanalysis of the 20th Century (ORA-20C) is a 10-member ensemble of ocean reanalyses
covering the past century (Ocean Reanalysis of the 20th Century — ECMWF n.d.). The data set has a spatial
resolution of 1.0°×1.0°. It uses atmospheric forcing from ERA-20c, ECMWF’s first atmospheric reanalysis of
the 20th century. We use variable zos from the ORA-20C data set. Monthly data for this variable is available
from January 1900 to December 2009. For the analysis, we obtain the annual average and use a smoothing
filter of 15 years.

Additionally, we compare two local steric budgets with the reanalysis and CMIP data. These budgets are
computed by integrating changes in temperature and salinity at deep-ocean sites close to the Dutch coast.
The first budget, ’Steric 1’, covers the years 1979 - 2018 and uses EN4 data (Good et al., 2013). Temperature
and salinity differences are integrated down to 4000 m. The second budget, ’Steric 2’, covers 1950 - 2020 and
uses IAP data (Ocean and Climate n.d.). Integration goes down to 1100 m.

2.2.2 Global Surface Air Temperature

Observations of GSAT are used for the reconstructions and taken from the HadCrut5 data set (Met Office
Hadley Centre observations datasets n.d.). We use variable tas. The best estimate and 2.5 - 97.5 percentile are
provided and we use data from 1900 to 2005.

2.2.3 Global Mean Thermosteric Sea Level

There are no direct observations of GMTSL change as it is one of several contributors to total sea level
change. Frederikse et al., 2020b obtain an estimate of GMTSL over the past century based on in situ subsur-
face observations and reconstructions by Zanna et al., 2019. The data from 1900 to 2005 is used and obtained
via Frederikse et al., 2020a. We use the best estimate and the 5 - 95 percentile.



2 DATA 8

2.3 AR6 Assessed Ranges

The AR6 presents assessed ranges for future GSAT and GMTSL under different emission scenarios. These
are used to make the ODSL projections for the 21st century consistent with the AR6 GSAT and GMTSL
ranges for the lower (SSP1-2.6), intermediate (SSP2-4.5), and higher (SSP5-8.5) emission scenario.

2.3.1 Global Surface Air Temperature

The assessed ranges for GSAT are given in Chapter 4.3.4, Table 4.5 of AR6 WG1 (Lee et al., 2021). These
assessed future changes are explicitly constructed by combining scenario-based projections with observa-
tional constraints based on past simulated warming. Best estimates and 5 - 95 percentile values for each
scenario are given for three periods: 2021 - 2040, 2061 - 2080, and 2081 - 2100. A third-order polynomial is
fitted to these values to obtain yearly values. The left panel in Figure 2.1 shows the observational data for
GSAT combined with the AR6 assessed changes for the three scenarios this study focuses on.

2.3.2 Global Mean Thermosteric Sea Level

The assessed ranges for global mean steric sea-level ranges are obtained from NASA’s Sea Level Change
Portal (Sea Level Projection Tool – NASA Sea Level Change Portal n.d.). The assessed global mean thermosteric
sea level rise is derived from a two-layer energy budget emulator consistent with the assessment of ECS and
TCR (Fox-Kemper et al., 2021). Ranges are given for every ten years. The best estimate and 5 - 95 percentile
values are used, and again a third-order polynomial is fitted to the values to obtain assessed ranges for
each year. The right panel in Figure 2.1 shows the reconstructed GMTSL data from Frederikse et al., 2020b
combined with the AR6 assessed ranges.

Figure 2.1: GSAT and GMTSL time series of the obersvational product, and the assessed AR6 ranges for
different scenarios. For the GSAT observations, the ensemble median and the 2.5 - 97.5 percentile from the
HadCrut5 dataset are shown. For GMTSL, the ensemble median and 5 - 95 percentile from the reconstruc-
tions based on Frederikse et al., 2016 are shown. The AR6 ranges cover the period 2005 - 2100, and the
ensemble median and 5 - 95 percentile are shown. Grey shading denotes the reference period 1900 - 1949.
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3 Methods

3.1 Investigating the Possible Drivers of ODSL

To find the answer to our first research question, and inspired by aforementioned studies (Perrette et al.,
2013; Bilbao et al., 2015; Palmer et al., 2020; Yuan and Kopp, 2021), we analyse the relation between ODSL
and different variables using (multiple) linear regression models. The three predictor variables we consider
are global surface air temperature (GSAT), global mean thermosteric sea level (GMTSL), and the strength
of the Atlantic meridional overturning circulation (AMOC). The regression analysis uses time series from
the individual CMIP5 and CMIP6 models. For each model, we obtain scenario-independent scaling factors
between ODSL and the different variables. In the following sections, smoothing of the data, three different
regression models, and the method of analysing their performance are presented.

3.1.1 Data Smoothing

The interannual variability in ODSL is relatively large, mainly due to wind effects. We are, however in-
terested in the longer-term change in ODSL. In order to exclude the short-term variability we use a locally
weighted scatterplot smoothing (LOWESS) filter. This method fits separate regression to fragments of the
data. The window size of the fragments is set at 25 years. The LOWESS filter is applied to all variables from
the CMIP data sets, and the reanalysis data.To give a better idea on the amount of interannual variability
in ODSL and GSAT, the time series for the CanESM5 model is plotted in the upper panel of Figure 3.1. The
lower panel shows the smoothed time series using the 25-year LOWESS filter.

Figure 3.1: Comparison of original and LOWESS smoothed data for ODSL (blue) and GSAT (red) from
CMIP6 model ’CanESM5’. The grey area denotes the reference period, and the orange area shows the
window size used for the smoothing.

3.1.2 Model I: GSAT as Predictor

The first regression model (Model I) is a simple linear regression model with predictor variable GSAT. This
choice is motivated by the fact that ODSL is affected by changes in temperature and salinity, which are
themselves affected by changes in (among others) surface fluxes of heat (Lowe and Gregory, 2006; Bouttes
and Gregory, 2014). The regression model is defined as

ODSL(t) = α+ βG × GSAT(t) + ϵ(t), (1)

where α is an intercept term which can be interpreted as the offset, β1 is the regression coefficient which
can be interpreted as the scaling relationship between ODSL and GSAT, and ϵ is the residual term. We
make the assumption that the sensitivity of ODSL to GSAT is similar under different scenarios. To obtain
the scenario-independent regression coefficients for each model, we concatenate the historical time series of
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ODSL and GSAT with the time series from the available scenario runs. Using these concatenated time series,
the regression analysis is performed for all individual models from CMIP5 and CMIP6 that have ODSL and
GSAT data available.

3.1.3 Model II: GSAT and GMTSL as Predictors

The second model (Model II) includes GMTSL as an additional regressor for ODSL. This variable depends
on the interior redistribution of heat and therefore on the three-dimensional temperature field within the
ocean. This variable thus reacts on different time scales than GSAT. This regression model is expressed by

ODSL(t) = α+ β1 × GSAT(t) + β2 × GMTSL(t) + ϵ(t). (2)

This model is identical to Model I except for the third term, which represents the contribution of GMTSL to
ODSL with regression coefficient β2. Again, we perform the analysis with the concatenated time series of
the historical run and the available scenario runs for each model separately.

3.1.4 Model III: GSAT and AMOC as Predictors

Several studies comment on the importance of the AMOC on ODSL in the North Atlantic (Katsman et al.,
2008; Lyu et al., 2020). This motivates us to investigate the relation between the AMOC and ODSL in the
North Sea in our third model (Model III). Also, including a local process like the AMOC might improve the
predictive power of the model. We thus include AMOC as an additional predictor variable and define the
third model as

ODSL(t) = α+ β1 × GSAT(t) + β2 × AMOC(t) + ϵ(t). (3)

3.1.5 Analysis of Regression Models

The Root Mean Squared Error (RMSE) estimates the deviation of the regression model results from the actual
data. This metric can thus be used to evaluate and compare the performance of the regression models. The
RMSE is computed for each CMIP model separately by taking the sum of the squared residual term for each
time step. Mathematically we can define it as

RMSEj =

√√√√ 1

N

N∑
k=1

ϵj(tk)2, (4)

where subscript j denotes the model, N is the number of data points, in our case, the available years for the
data, and ϵj(tk) is the residual term at time tk. The better the fit of our regression model, the smaller the
residual term and therefore also the smaller the RMSE. To study the general performance of the regression
model for the complete ensembles, we obtain the ensemble average RMSE for CMIP5 and CMIP6 by taking
the average of the RMSE of the individual models.
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3.2 Generating Probabilistic ODSL Ensembles

To answer the last two research questions, we use the results from the regression analysis to generate prob-
abilistic ensembles of ODSL projections for both CMIP5 and CMIP6. Our method is primarily inspired by
Yuan and Kopp, 2021, in which they combine the regression coefficients with Monte Carlo sampling. We
generate two types of ensembles. For the first type, the input data for the explanatory variables is based
on the CMIP data. We call this type of ensemble the ‘CMIP ensemble’. The second type of ensembles uses
input data for GSAT and GMTSL based on observations and the assessed ranges of AR6. We call this the
‘AR6 ensemble’.

Figure 3.2: A schematic representation of the Monte Carlo simulation performed for the ODSL projections.
The above process is repeated 10.000 times for both the CMIP ensemble, and the AR6 ensemble.

A schematic representation of the Monte Carlo simulation performed to construct the ODSL projections is
shown in Figure 3.2. The first step is to randomly draw a time series for the predictor variables for a specific
scenario. These time series are sampled from distributions that are constructed based on CMIP output for
the CMIP ensemble, and on observations and AR6 ranges for the AR6 ensemble, shown in Figure 2.1. For
the CMIP ensemble, we obtain the distributions by fitting a normal distribution to the CMIP output. Fitting
a more complicated distribution raised problems due to the spread between models. For the AR6 ensemble,
we fitted a Weibull distribution to the observations and AR6 ranges because these were slightly skewed. We
did not fit any distribution for the observations from 1960 - 2005 because the uncertainty is negligible for
that period. Note that there are no observations or AR6 assessed ranges for AMOC. Therefore, the AR6 en-
sembles using Model III also use the CMIP output of AMOC to create the sampling distributions. The time
series is then created by randomly selecting an index of the sorted distribution and using this same index
for every time step. That way, we follow a certain percentile of the distribution and obtain a smooth time
series for the input variables. For the multiple models (II and III), we do not assume any relation between
the predictor variables. This means that we randomly select the index for each predictor variable separately.

The second step is to randomly draw the regression coefficients computed in the regression analysis from
either CMIP5 or CMIP6. These are then combined with the time series of the predictor variable. The corre-
sponding offset α is added to these results, and with that, one time series of ODSL is constructed.

This process is repeated 10.000 times for all three emission scenarios for both the CMIP and AR6 ensemble
and both the CMIP5 and CMIP6 regression coefficients. This thus results in 12 ensembles of ODSL projec-
tions. For each scenario and both CMIP5 and CMIP6, we can compute the difference between the CMIP
ensemble and the AR6 ensemble. This can be used as a correction factor for the difference in GSAT and
possibly GMTSL between the CMIP projections and assessed AR6 ranges. This correction factor can then be
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subtracted from the original ODSL projections to obtain projections that are consistent with the AR6 ranges.
By analysing the resulting corrected projections from CMIP5 and CMIP6, we can see if the temperature
difference explains the difference in ODSL.



4 RESULTS 13

4 Results

4.1 Regression Analysis

In this section, we show the results of the different regression models used to get more insights into the
drivers of ODSL change along the Dutch coast. We will first discuss the overall performance of the different
regression models based on the metric RMSE. Then, we will discuss each model in detail where we also
focus on the difference between the sensitivity to the predictor variables in CMIP5 and CMIP6.

4.1.1 Performance of Regression Models

Table 4.1 shows an overview of the CMIP5 and CMIP6 ensemble average RMSE for the different regression
models. The smaller the RMSE, the more the predicted values are in line with the real data. Using an
additional predictor variable lowers the RMSE values for both CMIP5 and CMIP6. For CMIP5, we see
that both additional predictor variables have the same effect on the RMSE, whereas for CMIP6, including
the AMOC leads to a lower RMSE than using GMTSL. The RMSE values thus suggest that the multiple
linear model using AMOC and GSAT as predictors performs best for CMIP6. Note that for CMIP5, we find
a smaller RMSE for each of the regression models compared to CMIP6. The difference in RMSE score is
most pronounced in the linear GSAT model. The RMSE scores for the individual models can be found in
Appendix C.

Model I Model II Model III
GSAT GSAT + GMTSL GSAT + AMOC

CMIP5 CMIP6 CMIP5 CMIP6 CMIP5 CMIP6
# of models 27 31 23 20 9 15
RMSE [cm] 3.10 10.19 2.36 6.25 2.36 4.54

Table 4.1: Regression results for the CMIP data for different regression models. The regression is performed
on concatenated time series from the available CMIP models. The number of models available for each
model is listed in the table.

These metrics give a quick overview of the performance of the different models. It is, however, also impor-
tant to analyse how the regression models perform for the different scenarios. Furthermore, it is interesting
to study the relative importance of the different predictors in the multiple linear models and see if that
changes between CMIP5 and CMIP6. We will discuss each regression model separately in the coming sub-
sections to further investigate this.

4.1.2 Model I: GSAT as Predictor

Figure 4.1 shows the time series of the ensemble-averaged regression model and the different terms for
Model I using GSAT as a predictor variable. For CMIP5, the simple linear regression model is able to predict
ODSL changes for the historic period and the different scenarios. For CMIP6, however, the regression
model overestimates ODSL between 1960 - 2010. Thus, it cannot capture the drop in 1960 projected by the
CMIP6 models. Furthermore, the ODSL change is underestimated at the end of the 21st century for both
the lower (SSP1-2.6) and intermediate (SSP2-4.5) scenarios. For the higher (SSP5-8.5) emission scenario, we
find that the regression model overestimates the ODSL change at the end of the century. Here, the ODSL
rise projected by the CMIP6 models is nearly linear, whereas the regression model projects an exponential
increase in ODSL.

Figure 4.2 shows a frequency histogram of the values for regression coefficient β1. This visualisation allows
us to analyse the scaling of GSAT and ODSL and the difference between CMIP5 and CMIP6. We mostly find
positive values for β1, indicating a positive correlation between GSAT and ODSL. For most models, both in
CMIP5 and CMIP6, an increase of GSAT thus relates to a rise of ODSL along the Dutch coast. For CMIP5,
we find an average β1 of 3.62 cm/K. This means that, on average, with every GSAT increase of one degree,
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Figure 4.1: Ensemble-averaged regression for CMIP5 (a) and CMIP6 (b) based on Model I. The average
RMSE is shown in the title. The x-axis covers the historical run, and three scenario runs for low, interme-
diate and high emissions. The different colours denote the ensemble average CMIP ODSL data (blue), the
contributing terms of the regression model (green, black) and the total regression model (red). The reference
period 1900 - 1949 is marked by grey shading.

ODSL rises by 3.62 cm for the CMIP5 models. Note that six CMIP5 models show a value of β1 close to zero.
The individual model plots (see Appendix C) show that these models are also the ones that project nearly
no change in ODSL. For CMIP6, we find that both the average and the spread of β1 are larger than in the
CMIP5 models. However, we must keep in mind that the regression model does not perform well for the
CMIP6 ensemble, so we should be careful analysing this set of regression parameters.
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Figure 4.2: Frequency histogram plot of β1 values for Model I using GSAT as a regressor. Blue colors indicate
CMIP5 values and red indicate CMIP6 values. The dashed lines indicate the average β1.

Generally, we thus find a positive correlation between GSAT and ODSL along the Dutch coast. Furthermore,
we find that this regression model is able to capture most of the long-term variability of ODSL in CMIP5.
For CMIP6 however, this is not the case. This motivates us to investigate the other predictor variables.

4.1.3 Model II GSAT and GMTSL as Predictors

Figure 4.3 shows the ensemble-averaged results of the regression analysis using Model II, which includes
GMTSL as an additional predictor variable. The different colours again denote the different contributors to
the total regression model. Model II is able to capture most long term changes in ODSL for the CMIP5 en-
semble. The flattening of the ODSL rise in the lower emission scenario is captured, and the average RMSE is
fairly low. For the higher emission scenario, the model slightly overestimates the end of the century ODSL.
In the last half of the century, the regression model somewhat overestimates the trend. The contributions
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from GSAT and GMTSL are almost equal for all scenarios. The contribution from the GSAT component is
more critical at the beginning of the scenario runs, but at the end of the century both processes contribute
equally. For CMIP6, not all long-term changes can be predicted by Model II. Again, the drop in 1960 is not
captured by the regression model. Furthermore, ODSL is underestimated from 2040 - 2080 in both the lower
and intermediate scenarios. For the higher emission scenario, the regression model overestimates the end
of the century ODSL change by more than 5 cm. Also, the regression model trend at the start of the 21st cen-
tury is smaller than the trend in the CMIP6 projections. The figure also indicates that the contribution from
GMTSL became relatively more important in CMIP6 models. However, there is not a big difference between
the CMIP5 and CMIP6 GMTSL projections (Appendix A). Therefore, the larger contribution of GMTSL in
CMIP6 must be due to a larger dependence on the variable, and thus larger values for β2, in the regression
model.
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Figure 4.3: Ensemble-averaged regression for CMIP5 (a) and CMIP6 (b) based on Model II. The average
RMSE is shown in the title. The x-axis covers the historical run, and three scenario runs for low, interme-
diate and high emissions. The different colours denote the ensemble average CMIP ODSL data (blue), the
contributing terms of the regression model (green, black) and the total regression model (red). The reference
period 1900 - 1949 is marked by grey shading.

To investigate the latter, we visualise the regression coefficients of Model II in Figure 4.4. For CMIP6, the
average dependence on GSAT is smaller, and the spread in β1 is larger (left panel). For several models, a
negative value for β1 is obtained, indicating a negative relation between GSAT and ODSL. The scatter plot
shows that those models have a larger dependence on GMTSL. For most models, however, a positive value
for β1 is found, indicating a positive relation, just as was found for Model I. Looking at the right panel, we
see that the GMTSL dependence on average doubled in the CMIP6 models compared to the CMIP5 models.
Also, we see a larger spread for the CMIP6 models. Most models show a positive relation between ODSL
and GMTSL. However, some models, especially in CMIP5, show a negative relation. The on average lower
β1, and larger β2 in CMIP6 explains the difference in the ratio of the contributors between CMIP5 and CMIP6
that we see in Figure 4.3. The negative values for the regression coefficients show that we must be careful
with giving physical meaning to the coefficients. We are aware of this, and it is further discussed in Section 5.

From the presented results, we conclude that the regression model performs well for the CMIP5 ensembles.
For CMIP6, however, the model performs less well. Especially the drop in the historic period and the
overestimation of the higher emission scenario are remarkable. Nonetheless, we see that including GMTSL
reduces the RMSE and improves the projections for the end of the 21st-century projections in the lower and
intermediate emission scenario. Additionally, we find that the relative importance of the different predictor
variables changes between CMIP5 and CMIP6.
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Figure 4.4: Frequency histogram (a), and scatter plot (b) of β1 and β2 values for Model II, which uses GSAT
and GMTSL as regressors. Blue colors indicate CMIP5 values and red indicate CMIP6 values. The dashed
lines in (a) indicate the ensemble average values for the regression coefficients.

4.1.4 Model III: GSAT and AMOC as Predictors

Our third model includes the strength of the AMOC as an additional predictor variable besides GSAT. The
results of the regression analysis using Model III are shown in Figure 4.5. For CMIP5, the regression model
is able to predict the end of the century ODSL change well. However, the regression model does not cap-
ture the enhanced ODSL level between 2040 and 2070 in the lower emission scenario RCP2.6. Furthermore,
we see that the contribution of the AMOC (yellow) is rather low with respect to the contribution of GSAT
(black). For CMIP6, we see that Model III is able to capture most of the long-term variability in ODSL. The
model also captures the drop of ODSL in 1960, whereas Model I and II were unable to do so. Furthermore,
we see that it captures the flattening of ODSL at the end of the century in the lower emission scenario.
For the higher emission scenario, we see that the regression model does a good job at predicting the ODSL
change at the end of the century, whereas Model I and II overestimated it. One remarkable difference be-
tween the two ensembles is that the contribution from the AMOC term is substantially larger in CMIP6.
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Figure 4.5: Ensemble-averaged regression for CMIP5 (a) and CMIP6 (b) based on Model III. The average
RMSE is shown in the title. The x-axis covers the historical run, and three scenario runs for low, interme-
diate and high emissions. The different colours denote the ensemble average CMIP ODSL data (blue), the
contributing terms of the regression model (green, black) and the total regression model (red). The reference
period 1900 - 1949 is marked by grey shading.

This difference between CMIP5 and CMIP6 is also clear from the distributions of the regression coefficients,
plotted in Figure 4.6. Again, we see that the dependence on GSAT is primarily positive, and a slightly
smaller average β1 is found for CMIP6. For the AMOC dependence, most models show a negative value
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for β2 and thus a negative relation. From the scatter plot, we see that models with a larger dependence
on GSAT show a lower dependence on AMOC. The physical interpretation is further discussed in Section
5. For CMIP6, we see that the average β2 is three times more negative than the average β2 from CMIP5,
thereby indicating that the dependence on AMOC increased between CMIP5 and CMIP6. Furthermore, the
spread in β2 is large in CMIP6 compared to CMIP5. For β1 it is the other way around.
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Figure 4.6: Frequency histogram (a), and scatter plot (b) of β1 and β2 values for Model III, which uses GSAT
and AMOC as regressors. Blue colors indicate CMIP5 values and red indicate CMIP6 values. The dashed
lines in (a) indicate the ensemble average values for the regression coefficients.

To summarise, we find that including AMOC as an additional predictor variable improves the predictive
power, especially for CMIP6. Most models show a negative relation between AMOC strength and ODSL
along the Dutch coast. This relation is stronger in CMIP6, and therefore the relative contribution of the
AMOC is larger. Here, it is important to keep in mind that only 9 models for CMIP5 and 15 models for
CMIP6 were used for the analysis.
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4.2 Probabilistic ODSL Ensembles and Corrections

This section contains the results for the ODSL reconstructions based on the regression analysis. We choose
to reconstruct ODSL based on Model II and Model III. The results for these models are separately discussed
in the following sections. We do not reconstruct ODSL based on Model I because this model is not suited
for CMIP6.

4.2.1 Ensembles based on Model II

The motivation to use Model II to reconstruct ODSL is twofold. First, the regression model is based on a
sufficient number of models and it is able to predict end-of-the-century ODSL change reasonably well for
both ensembles, except for the higher emission scenario in CMIP6. Second, the AR6 provides ranges for
both predictor variables GSAT and GMTSL. Therefore, we can correct for both variables and construct pro-
jections that are consistent with both ranges.

Figure 4.7 shows the time series of the median reconstructed ODSL using the CMIP input (purple) and the
AR6 input (green) for all scenarios for both CMIP5 and CMIP6. The black dashed line shows the median of
the original CMIP data for that specific scenario. Note that the CMIP ensemble projects a different change
than the original data. This is partly due to the regression model not being able to capture the ODSL change
exactly, and partly because the normal distributions that we use as input differ slightly from the CMIP out-
put. We thus focus on the difference between the CMIP ensemble and the AR6 ensemble since it is difficult
to compare the AR6 ensemble with the original CMIP data. Focusing on CMIP5, we see that correcting for
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Figure 4.7: Time series of the CMIP ensemble (purple) and the AR6 ensemble (green) based on Model II.
Results are shown for both CMIP5 and CMIP6, for different scenarios. The median and 17 - 83 percentile
are shown. The black dashed line represents the median of the CMIP models.

GSAT and GMTSL results in a slightly larger ODSL change in the 21st century for the lower and interme-
diate emission scenarios. For the higher emission scenario, we see that the AR6 model input first increases
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the ODSL projections from 1970 - 2030, but at the end of the century, the difference is practically zero. For
CMIP6, the AR6 input also increases the ODSL projections for the lower emission scenario. Furthermore,
the ODSL projections based on AR6 input are larger than those based on CMIP in the period 1950 - 2020 for
the intermediate and higher emission as well.

The difference between the green and purple lines from Figure 4.7 is plotted in Figure 4.8. This difference,
as mentioned in Section 3, can be interpreted as a correction factor for the original ODSL data. For CMIP5,
the difference between the two probabilistic ensembles is around zero during the 20th century and up until
2050. From 2050 on, the difference increases for the lower and intermediate emission scenarios. However,
the difference is very small compared to the total ODSL change. For CMIP6, we see that the difference be-
tween the CMIP ensemble and the AR6 ensemble is around 1 cm for all scenarios from 1950 - 2050. After
that, the difference decreases for the lower and intermediate emission scenarios. For the higher emission
scenario, the difference decreases as well but then increases to the opposite sign after 2080.
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Figure 4.8: The difference between the CMIP emsemble and AR6 ensemble for different scenarios based on
Model II.

We can also visualise the end of the century projections from both ensembles. Figure 4.9 shows the per-
centiles for the average ODSL change over the years 2081 - 2100. The purple bars indicate the results for the
CMIP ensemble, and the green bars indicate the results for the AR6 ensemble. At first sight, not much dif-
ference is seen between the two probabilistic ensembles. For both ensembles, the spread increases slightly in
the AR6 ensemble. If we look in detail, we see that the median decreases slightly for all scenarios in CMIP6
when using the AR6 assessed ranges. For CMIP5, the AR6 input increases the median for the lower and in-
termediate emission scenarios and decreases the median for the higher emission scenario. Furthermore, we
see that for CMIP5, the lower end of the uncertainty is larger than the upper end. This is also obvious from
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Figure 4.9: Average ODSL change for the CMIP ensemble (purple) and the AR6 ensemble (green) for CMIP5
(a) and CMIP6 (b), computed using Model II.
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Figure 4.7. Since the input distributions are either normally distributed (CMIP ensemble) or only slightly
skewed (AR ensemble), this larger uncertainty at the low end has to be the result of the model parameters.
Some models show only slight or no changes in ODSL and therefore have values around zero for both β1,
and β2 (see Appendix C), which results in the low projections in the ensembles. This result agrees with
Figure 1.4, where we also see that the low-end uncertainty is larger for the original CMIP5 data.
In summary, the correction using AR6 assessed ranges for GSAT and GMTSL is very small. In the regression
analysis, we found that most models show a positive relation between ODSL and both these variables. Since
the AR6 GSAT ranges are higher (lower) than CMIP5 (CMIP6) GSAT, we would expect an increase (decrease)
of ODSL due to that correction (see Appendix A). For GMTSL however, the AR6 assessed ranges are slightly
higher than the CMIP5 and CMIP6 projections of GMTSL. The correction for this component would thus
lead to a decrease in ODSL. These two terms then cancel each other out and lead to nearly no difference
between the CMIP and AR6 ensembles.

4.2.2 Ensembles based on Model III

Using Model III as a basis for our reconstruction has, again, a twofold motivation. First, this regression
model performed well for both ensembles and is able to capture the drop in ODSL in CMIP6. Second, it is of
value to include this local process in the projections because previous work shows the importance of AMOC
for ODSL in several nearby regions (Katsman et al., 2008; Lyu et al., 2020). The downside of using Model III
is that fewer CMIP models have data available for the predictor variables, whereas we would like to base
our reconstructions on as many models as possible. On top of that, the CMIP6 members that do provide
data for these variables do not show a big difference between their GSAT projections and the assessed AR6
ranges. Therefore, the correction for temperature would not lead to a difference in ODSL and, besides, does
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Figure 4.10: Time series of the CMIP ensemble (purple) and the AR6 ensemble (green) based on Model III.
Results are shown for both CMIP5 and CMIP6, for different scenarios. The median and 17 - 83 percentile
are shown. The black dashed line represents the median of the CMIP models.
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not really have a purpose. In order to be able to use Model III for the ODSL correction, we propose the
following solution. Instead of using only the CMIP output from models that have ODSL, GSAT, and AMOC
available, we also use the GSAT output from models that have data available for only ODSL and GSAT to
compute the distributions. Thereby, we assume that the relation between ODSL, GSAT, and AMOC also
holds for the other models that have no AMOC data available. The resulting distributions are then used as
the input for the Monte Carlo sampling method for the CMIP ensemble.

Figure 4.10 shows the time series of the medians from the probabilistic ensembles using this method. For
CMIP5, the AR6 ensemble shows slightly more ODSL rise at the end of the century for the lower and inter-
mediate emission scenarios. For the higher emission scenario, the difference between the two ensembles is
very small. For CMIP6, the AR6 ensemble shows slightly less rise in ODSL for all three scenarios. Figure
4.11 visualises the differences between the ensembles more clear. For both ensembles, we see little difference
in the historical period. For CMIP5, we see that the difference increases from 2050 on, especially for the in-
termediate emission scenario. For CMIP6, we see that the difference increases from 2000 on. The difference
at the end of the century is largest (1 cm) for the higher emission scenario.
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Figure 4.11: The difference between the CMIP emsemble and AR6 ensemble for different scenarios based on
Model III.

From the above plots, we see that the most pronounced differences are at the end of the 21st century. Figure
4.12 compares the percentiles for the average end-of-the-century ODSL change from the CMIP and AR6
ensembles. Again, we see that the difference between the green and purple bars is small. This is due to the
relatively low importance of the GSAT term in the regression model. Since we do not correct for AMOC,
the correction is only minimal. The AR6 ensembles for CMIP5 show slightly more spread than the CMIP
ensembles, but there is little difference between the medians. The latter is also the case for CMIP6. The
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Figure 4.12: Average ODSL change for the CMIP ensemble (purple) and the AR6 ensemble (green) for
CMIP5 (a) and CMIP6 (b), computed using Model III.
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intermediate and higher emission scenarios show a 0.7 cm and 0.8 cm reduction, respectively. For the lower
emission scenario, the results of the CMIP ensemble and the AR6 ensemble are very similar. This difference
between the scenarios can be explained by the change in relative importance of the AMOC in the regression
model in 4.5. For the lower emission scenario, the relative contribution of GSAT is smaller than for the inter-
mediate and higher emission scenarios. Again, we see that the uncertainty’s lower end is larger compared
to the upper end. For CMIP6, the bar even extends to a decrease in ODSL at the end of the century. This
is probably due to a few CMIP6 models having positive values for β2, which then leads to a drop in ODSL
when combined with a strong weakening of the AMOC.

To summarise, we find that the correction for the AR6 assessed temperatures based on Model III is small.
This is partly due to the little importance of GSAT in the CMIP6 regression model, and partly due to the fact
that we can not correct for the AMOC.
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5 Discussion

5.1 Regression Analysis and Projections

In this study, we used linear regression to investigate different possible drivers of ODSL along the Dutch
coast. Thus, we assumed a linear relation between ODSL and the predictor variables. This is in agreement
with earlier pattern scaling studies (Bilbao et al., 2015; Palmer et al., 2018; Yuan and Kopp, 2021). More
complicated regression models could also be considered. However, we found that a quadratic dependence
of ODSL on GSAT did not improve the regression model. An advantage of using simple linear regression
models is that it is easier to give physical meaning to the model, and it reduces the problem of overfitting.
Additionally, they are computationally fast because of their simplicity.

The physical interpretation of Model I is more straightforward than the other models. For Model I, we can
generally say that an increase in GSAT relates to an increase in ODSL. For Model II and III, however, we
considered two predictor variables that are to some extent correlated with each other. This so-called ’multi-
collinearity’ does not affect the predictive power of the regression model, but we do have to be careful with
interpreting the results. For example, we know that an increase in GSAT leads to an increase in GMTSL via
the process of thermal expansion, thus indicating a positive correlation between the two variables. Nonethe-
less, for Model II, we found some individual models with a negative dependence on GSAT and a positive
dependence on GMTSL or the other way around. Hence, this does not make any physical sense and is just
an effect of the optimisation of the linear regression model. For most models, however, we found a positive
dependence on both GSAT and GMTSL. Still, we have to be careful with the interpretation of the results.
Due to multicollinearity, the regression coefficients are sensitive to minor changes in the data. Therefore,
we should be careful with interpreting the importance of the different variables. For both Model II and
Model III, we saw that the relative importance of the additional predictor (GMTSL or AMOC) increased
in the CMIP6 ensemble. For Model III however, we find that reducing the size of the smoothing window
reduces the relative importance of the AMOC in the regression model (see Appendix D). This indicates that
the short-term variability in ODSL seems to be influenced more by GSAT, and the longer-term variability
by the AMOC. We are aware that the sensitivity of the relative importance of the different variables also
influences the probabilistic ensembles because these are based on the regression coefficients. If these would
slightly change, the correction would also depend more or less on either of the variables. Nonetheless, we
choose to base our reconstructions on the multiple linear models Model II and Model III, because Model I,
which only includes GSAT, does not perform well for CMIP6. Also, Model II enables us to make the ODSL
projections consistent with both AR6 assessed ranges for GSAT and GMTSL.

The regression analysis showed that Model III performed best at predicting ODSL for both ensembles. How-
ever, we should keep in mind that these results are based on relatively few models (9 for CMIP5, and 15
for CMIP6) due to the limited availability of AMOC data. Since some of these models are developed by
the same modeling group, this is a problem for the robustness of our conclusion. To check the robustness
of Model III, we would like to include more data from different models. Including more models would
also improve the probabilistic ensembles based on this regression model. Then we can compute the relation
between ODSL, GSAT, and AMOC for each model, instead of assuming that the same relation holds for
other models currently not providing the AMOC data. Another comment on the regression analysis is that
we did not measure the uncertainties in the coefficients. Different methods to include this are discussed in
Jevrejeva et al., 2019. For instance, a bootstrapping method could be used to compare the CMIP5 and CMIP6
sensitivity. This would make the conclusions on the difference between CMIP5 and CMIP6 more robust.

Lastly, reflecting on the correction method, we can make two remarks. First, an assumption is made in
the construction of the distributions by fitting normal distributions to the CMIP data even though the data
is not necessarily normally distributed, especially not for GMTSL and AMOC (Appendix A). Fitting more
complex distributions to the CMIP data led to substantial overestimation of the skewness and did not give
proper results. The normal distribution is thus the best approximation and it is also in agreement with AR5,
where they fit normal distributions to GSAT data from the CMIP models to obtain the projected ranges.
A second remark on the correction method is that we only have assessed ranges of GSAT and GMTSL,
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and not of AMOC. For Model III, we thus only correct for GSAT and use the CMIP output for AMOC for
both the CMIP and AR6 ensemble. However, these distributions have a large spread and this uncertainty
then propagates to the probabilistic ensembles. Constraining the input of the AMOC could lead to lower
uncertainty in the reconstructions, and a more accurate correction factor.

5.2 Mixed Layer Depth

The aim of the correction method was to make the ODSL projections from CMIP5 and CMIP6 consistent
with the AR6 ranges. However, the correction factors that we find for both Model II and Model III are very
small; therefore, the difference between the two ensembles remains. This raises the question what other pro-
cesses could influence ODSL along the Dutch coast, and whether these processes change between CMIP5
and CMIP6.

One factor that could possibly influence local sea level is the location of deep convection. In this process,
layers of water are mixed by mesoscale ocean circulation and strong winds. It plays an important role in
the formation of bottom and intermediate water, and in the large-scale thermohaline circulation (Killworth,
1983). To investigate whether the location of open ocean convection influences ODSL along the Dutch coast,
we analyse the mixed layer depth (MLD) data for the historic period from different models.
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Figure 5.1: Multi-model mean mixed layer depth (MLD) computed as the average over 1975 - 2004. Three
regions showing large values of MLD are indicated by the boxes.

Figure 5.1 shows the 1975 - 2004 ensemble mean MLD in the CMIP5 and CMIP6 models. The MLD for
individual models can be found in Appendix E. The general pattern is similar for CMIP5 and CMIP6. Three
regions are characterised by large values for the MLD: the Labrador Sea (black), the Irminger Sea (blue),
and the Greenland Sea (red). The individual models are categorised based on in which of these regions
their maximum MLD exceeds the threshold of 170 m. The models are then labelled with LS (Labrador Sea),
IS (Irminger Sea), or GS (Greenland Sea). We allow the models to have multiple labels if they exceed the
threshold for more than one region. By categorising the models, we can compare the ODSL projections from
models showing deep convection in different regions. An interesting result is shown in Figure 5.2, where
we compare the ODSL time series of the GS models with that of models that are not labelled with GS, so
not showing a deep mixed layer. For all scenarios, and for both CMIP5 and CMIP6, we see that the GS
models predict larger ODSL change than the other models. Looking at the end of the century, we see that
the difference between the means of the two groups is around 10 cm for CMIP6, no matter the scenario. For
CMIP5, the difference increases from around 4 cm for the lower emission scenario to 15 cm for the higher
emission scenario. However, we must be careful with interpreting the CMIP5 results since only 8 to 10
models are included in this analysis due to the limited availability of MLD data. For CMIP6, more than half
of the models exceed the threshold. For CMIP5, this fraction is smaller, although we must be careful with
the limited amount of models.

These results suggest that the location of deep convection, characterised by a deep mixed layer, influences
ODSL along the Dutch coast. More specifically, we find that models showing a deep mixed layer in the
Greenland Sea during the period 1975 - 2004 project a larger rise of ODSL than other models. Since the
difference between the GS models and the others is substantially large, it would be interesting to explore
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this further. If more models in CMIP6 show a deep mixed layer in the Greenland Sea, this might also explain
part of the difference between CMIP5 and CMIP6. However, we would have to obtain data for more CMIP5
models to make this statement conclusive. Furthermore, the location of deep convection might be used to
constrain ODSL projections by only selecting models that show enhanced MLD at locations that agree with
observations. Finally, it is important to point out that several studies find that MLD is overestimated in
global climate models from CMIP5 and CMIP6 (Heuzé, 2021; Sohail et al., 2020). It will be interesting to
further investigate whether this also leads to an overestimation of ODSL.
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Figure 5.2: ODSL time series for two groups of models: GS models (red) and other models (grey). For the GS
models, the maximum MLD in the Greenland Sea exceeds 170 m, whereas the maximum MLD in that same
region is 170 m or shallower for the other models. The thin lines represent the time series of the individual
models. The thick lines represent the mean of the two groups. The reference period 1900 - 1949 is marked
by grey shading.



6 CONCLUSIONS AND SUGGESTIONS 26

6 Conclusions and Suggestions

6.1 Conclusions

Now that the results and discussion points have been presented, we can answer the research questions
formulated in Section 1.

1. What processes can be related to ocean dynamic sea level change along the Dutch coast?
We found that most individual models from CMIP5 and CMIP6 show a positive correlation between
GSAT and ODSL along the Dutch coast. For the CMIP5 ensemble, the linear scaling with GSAT enables
us to predict the long-term variations in ODSL well. For CMIP6, however, we found that the regression
model does not capture all variations in ODSL. This motivated us to look into other processes as
well. The predictive power of the regression model improved by including GMTSL as an additional
predictor, although it was still not able to capture all long-term changes in CMIP6. We found that
most individual models show a positive relation between GMTSL and ODSL. For our third model,
we included AMOC as an additional predictor variable besides GSAT. This model performed well for
both ensembles. It captures the drop in ODSL between 1960 and 2000 seen in the CMIP6 ensemble,
while the other regression models could not do so. Generally, we find a negative relation between
AMOC and ODSL, indicating that a weakening of the AMOC is related to a rise of ODSL along the
Dutch coast. Finally, we find that the location of deep convection is important for the ODSL projections
along the Dutch coast. Models that show a deep mixed layer in the Greenland Sea for the period 1980
- 2000 project larger rise in ODSL along the Dutch coast than other models.

2. Can the difference in predicted temperature increase between CMIP5 and CMIP6 models
explain the difference in ocean dynamic sea level change?
Based on the method proposed in this work, the effect of GSAT is too small to explain the difference in
ODSL between CMIP5 and CMIP6. Interestingly, Model II and Model III both point to the increased
sensitivity of ODSL to processes in the ocean in CMIP6. This difference between the importance of the
predictor variables in CMIP5 and CMIP6 is remarkable and might point to different model dynamics.

3. Can we provide ocean dynamic sea level projections that are consistent with the AR6 assessed
ranges of temperature and global mean thermosteric sea level?
We used the results from the multiple linear regression models to generate probabilistic ensembles
either consistent with CMIP output of the predictor variables (CMIP ensemble), or with AR6 assessed
ranges (AR6 ensemble). By subtracting the two ensembles, we found a correction factor which could
then be subtracted from the original ODSL time series to obtain projections that are consistent with
the AR6 assessed ranges of GSAT and, in the case of Model II, also GMTSL. Our results show that the
correction is very small. On the one side, this can be attributed to the relatively little importance of
GSAT in the regression models. On the other side, it is due to the difference between GMTSL from the
CMIP models and the assessed range being small, and no correction being performed for the AMOC.
Given the small correction that we found, it might not be worth the trouble of using a much more
complex method to construct projections consistent with the AR6.

6.2 Suggestions for Future Research

The analysis of Model III is based on a smaller ensemble due to the limited availability of AMOC data. For
this model’s robustness, obtaining AMOC data for more models would be useful. We could compute this
using the velocity fields. Additionally, other processes could be further investigated. For instance, the in-
fluence of the location of deep convection on ODSL, as we commented on in Section 5.2, showed interesting
results. Furthermore, it would be useful to investigate whether models with the same ocean component also
show similar changes in ODSL. Also, the resolution of the different ocean models is different (Hewitt et al.,
2022). It would be good to explore whether this resolution influences local scale ocean dynamics. Lastly, the
focus of this study is primarily on the Dutch coast. Nonetheless, the framework of the method can easily
be applied to other regions as well. It might be of interest to see whether the importance of the predictor
variables is different for other regions.
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A Projections of Predictor Variables: GSAT, GMTSL, and AMOC

Figure A.1 the CMIP5 and CMIP6 projections of GSAT, GMTSL, and AMOC for each scenario. The median
and 5 – 95 percentile is plotted. For GSAT and GMTSL, the observations and AR6 ranges are plotted on
top of the CMIP projections to compare. We see that the AR6 range of GSAT is lower than CMIP6, and
higher than CMIP5 for the low and intermediate emission scenario. For the high emission scenario, the
CMIP5 models agree with the AR6 assessed range. The CMIP6 models overestimate the range however. For
GMTSL, we see that the CMIP5 and CMIP6 models show similar results, apart from the uncertainty band
being wider for CMIP6. The AR6 assessed ranges are slightly larger than the model projections from CMIP5
and CMIP6, especially for the lower and intermediate scenario. For AMOC, we see that both ensembles
project a weakening at the end of the 21st century. For the lower and intermediate emission scenario we see
that the spread increased between CMIP5 and CMIP6.
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Figure A.1: Projections of GSAT, GMTSL, and AMOC from CMIP5 and CMIP6 models for different scenar-
ios. The median and 5 - 95 percentile is shown. For GSAT and GMTSL, the concatenated time series of the
observations with the AR6 assessed ranges are plotted in black.
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B CMIP Models

The CMIP5 and CMIP6 climate models used in this study are listed in Tabel B.1 and B.2.

Model I Model II Model III MLD analysis

GSAT GSAT + GMTSL GSAT + AMOC

ACCESS1-0 X X X

CCSM4 X X X

CMCC-CM X X

CMCC-CMS X X

CNRM-CM5 X X X X

CSIRO-Mk3-6-0 X X X

CanESM2 X X

EC-EARTH X

GFDL-ESM2G X

GFDL-ESM2M X X

GISS-E2-R X X X

HadGEM2-CC X X

HadGEM2-ES X X

IPSL-CM5A-LR X X

IPSL-CM5A-MR X X

IPSL-CM5B-LR X

MIROC-ESM X X

MIROC-ESM-CHEM X X

MIROC5 X X X

MPI-ESM-LR X X X X

MPI-ESM-MR X X X X

MRI-CGCM3 X X X X

NorESM1-M X X X X

NorESM1-ME X X X X

bcc-csm1-1 X X

bcc-csm1-1-m X X

inmcm4 X X

Table B.1: Selection of 27 CMIP5 models used in this study. The X denotes for which analysis they were
included.
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Model I Model II Model III MLD analysis

GSAT GSAT + GMTSL GSAT + AMOC

ACCESS-CM2 X X X X

ACCESS-ESM1-5 X X X X

BCC-CSM2-MR X X

CAMS-CSM1-0 X X

CESM2 X X

CESM2-WACCM X X X

CIESM X

CMCC-CM2-SR5 X X X X

CNRM-CM6-1 X X X

CNRM-ESM2-1 X X X

CanESM5 X X X X

CanESM5-CanOE X X X

EC-Earth3 X X X

EC-Earth3-Veg X X X

FGOALS-g3 X X X

GFDL-ESM4 X X X

GISS-E2-1-G X X

HadGEM3-GC31-LL X X X

HadGEM3-GC31-MM X X

INM-CM4-8 X X X

INM-CM5-0 X X X

IPSL-CM6A-LR X X X X

MIROC-ES2L X

MIROC6 X X X X

MPI-ESM1-2-HR X X X X

MPI-ESM1-2-LR X X X X

MRI-ESM2-0 X X X X

NESM3 X X

NorESM2-LM X X X X

NorESM2-MM X X X

UKESM1-0-LL X X X

Table B.2: Selection of 31 CMIP6 models used in this study. The X denotes for which analysis they were
included.
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C Linear Regression for Individual Models

The figures included in this Appendix show the regression results for the individual CMIP models. The
RMSE and the coefficient of determination, R2, is shown in the title. The regression coefficients are given for
all single models. Overall, we see that R2 is large for most models showing a substantial change in ODSL.
For models that show little change, the R2 score is small. Figures C.1, and C.2 show the results for Model
I, Figures C.3, and C.4 show the results for Model II, and Figures C.5, and C.6 show the results for Model
III. For Model II, we see that some models show a positive contribution from one of the predictor variables
and a negative contribution from the other. As was discussed in Section 5, physically this does not make
sense since GSAT and GMTSL are positively correlated. However, for some models the error is minimised,
thus the shape of the CMIP data is best resembled, when a positive contribution of one predictor variable is
taken and a negative for the other. This is thus due to optimisation of the regression model.
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Figure C.1: CMIP5 individual model results for the regression analysis using regression Model I with GSAT
as predictor variable.
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Figure C.2: CMIP6 individual model results for the regression analysis using regression Model I with GSAT
as predictor variable.
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Figure C.3: CMIP5 individual model results for the regression analysis using regression Model II with GSAT
and GMTSL as predictor variables.
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Figure C.4: CMIP6 individual model results for the regression analysis using regression Model II with GSAT
and GMTSL as predictor variables.
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Figure C.5: CMIP5 individual model results for the regression analysis using regression Model III with
GSAT and AMOC as predictor variables.
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Figure C.6: CMIP6 individual model results for the regression analysis using regression Model III with
GSAT and AMOC as predictor variables.
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D Influence of the Smoothing Window

In this study, we used a 25-year smoothing window to focus on on long term changes in the different climate
variables. We repeated the analysis with the original unsmoothed data, and data with a 10-year smoothing
filter applied. Figure D.1 shows the results of the the analysis for Model III. with predictor variables GSAT
and AMOC. Here, we see that the relative importance of AMOC increases when increasing the smoothing
window for CMIP6. This might indicate that the AMOC is more important on longer time scales. The effect
is less apparent for CMIP5.
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Figure D.1: Ensemble averaged regression for Model III. Results are shown for CMIP5 (left) and CMIP6
(right) with different smoothing filters applied.
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E Mixed Layer Depth for Individual Models

Figure E.1 shows the MLD for the models that we include in our study. This is the selection of models that
also has data available for ODSL and GSAT. Some models show a deeper mixed layer in multiple regions.
The NorESM2 models show a relatively shallow mixed layer in CMIP5, however in CMIP6 the models show
a deep mixed layer in all three defined regions.

(a) CMIP5

(b) CMIP6

Figure E.1: Mixed layer depth (MLD) averaged over 1975 – 2004 for individual CMIP5 (a) and CMIP6 (b)
models included in our analysis.
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F Python Code

The code that was used for the data analysis and figures in this thesis can be accessed via:
https://github.com/FrankaJes/Thesis_KNMI

https://github.com/FrankaJes/Thesis_KNMI
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