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Abstract

Prediction models play a crucial role in the clinical decision-making
process, as they help physicians to estimate the risk of disease presence
(diagnosis) or occurrence of a future event (prognosis). It is of utmost im-
portance that prediction models are validated prior to clinical implemen-
tation. Because the data used for developing (and validating) prediction
models are often replete with missing entries, the multiple imputation pro-
cedure (MI) can be used to account for missing data. However, interpreta-
tion of the discriminatory performance (c-statistic) of a prediction model
built on multiply imputed data is complicated, as the c-statistic exhibits
non-normality. This model-based simulation study explores transforma-
tion methods for c-statistic estimates prior to pooling across imputed data
sets, and assesses methods for their ability to generate accurate pooled
estimates in terms of bias and coverage. Candidate methods include stan-
dard pooling (using Rubin’s rules), logit transformation prior to pooling,
and arcsine square-root transformation prior to pooling. The findings
show that when missing data are present and when θs is < 0.9, none of the
investigated methods attained nominal coverage. However, both regular
pooling and logit transforming estimates prior to pooling yield similarly
satisfactory results in terms of coverage and bias if the true value for the
c-statistic is >= 0.9. As a tentative recommendation, the logit method
should be used due to the method’s higher efficiency in terms of coverage.

1 Background

Prediction models play a crucial role in the clinical decision-making process,
as they aid physicians with estimating a risk of disease presence (diagnosis)
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or occurrence of a future event (prognosis) based on a combination of patient
characteristics (Vergouwe et al., 2010). Prediction models are constructed using
data from subjects from a development set and ought to be validated to assess
generalizability to novel groups of similar subjects.

Missing data is ubiquitous in clinical data sets and it impinges on the quality
of the data needed to build prediction models. If unaccounted for, underlying
systemic causes for missingness may distort statistical relationships (van Bu-
uren, 2018), which may impact the performance of a prediction model. As such,
improper handling of missing data in model development or validation can sub-
stantially undermine clinical decision-making, as it may culminate in biased
inferences pertaining to the likelihood of the presence of a particular disease or
other health status and/or its prognosis.

An often used technique for accommodating missing data is multiple imputa-
tion (MI), which involves generating multiply imputed data sets. The imputed
values are calculated in such a manner that they vary slightly across data sets,
as this emulates noise and reflects the uncertainty inherent in estimating an
imputation value (van Buuren, 2018). Miles (2016) demonstrates how predic-
tions can be obtained from models fit to multiply imputed data sets by first
being estimated separately in each imputed data set, and then combined using
Rubin’s rules. However, Rubin’s rules are based on asymptotic theory (Rubin,
2004), implying that inferences of about a population parameter (Q) are based
on the normal approximation of Q − Q̂ ∼ N(0, U), where Q̂ is the estimate of
Q and U the variance for Q.

Although the normality condition is usually met for model coefficients (En-
ders, 2010; 220-221), it may be problematic for combining model performance
measures such as the concordance (c-) statistic (AUC), which quantifies a model’s
discriminatory power (Hanley McNeil, 1982). It’s distribution exhibits non-
normality and asymmetry, with values bound between 0-1 and 0.5-1 in valida-
tion and development, respectively. Given these characteristics, undue credence
to the normality assumption through the use of Rubin’s rules for combining the
c-statistic estimates may yield an inaccurate overall estimate of the performance
of a prediction model developed using multiply imputed data.

While there is limited research on pooling methods for performance mea-
sures specifically, several studies on the distribution of the c-statistic provide
grounds to suggest that specific transformations can countervail non-normality.
Conceivably, such transformations may thus be useful prior to pooling. Snell et
al. (2018) recommend logit transforming the c-statistic as an approximation of
the normal distribution in the context of meta-analysis. Furthermore, Trikalinos
et al. (2013) propose using “variance stabilizing transformations” such as the
arcsine square-root transformations when meta-analyzing proportions and rates,
respectively. On the other hand, in circumstances where transformations cannot
be identified, alternative robust summary measures such as medians and ranges
are proposed (Marshall et al., 2009). Yet, there appears to be little progress in
the matter as current practice for combining performance measures is to pool
without applying any transformations (Marshall et al., 2009).

Deploying the practical guideline of Vergouwe et al. (2010) for developing
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and validating a prediction model with missing data, this model-based simula-
tion study explores transformation methods for the c-statistic prior to pooling. I
appraise the methods for their ability to generate accurate estimates in terms of
bias and coverage. Importantly, findings could ultimately help improve clinical
decision-making because physicians can decide whether the estimated discrim-
inatory performance of a model is sufficient in light of the context of clinical
application. As such, the research question constitutes:

Which transformation method of the c-statistic supports unbiased inference of
the discriminatory power of a prediction model developed using multiply imputed
data sets?

In addition, this study aims to gain insight in how the transformations affect
the distribution of the c-statistic estimates as well as the pooled standard errors,
leading to the following exploratory research question:

How do the transformations compare with respect to the distribution of the
c-statistic estimates and corresponding pooled standard errors?

This study is designed as follows. First, the methods section discusses the
simulation set-up and provides an outline of the execution of the study (section
2). Thereafter, the results are presented (section 3), interpreted, and implica-
tions are discussed (section 4). Finally, concluding remarks as well as recom-
mendations for further research are made (section 5).

2 Methods

2.1 Transformation methods for the c-statistic

Following Snell et al. (2018) and Marshall et al. (2009) I evaluate the logit
and arcsine square-root transformations. As evident from figure 1, both trans-
formations are essentially linear over the range of 0.3–0.7, with more curvature
near the ends. However, the curvature of the logit transformation is much more
pronounced compared to the arcsine transformation, implying that small differ-
ences on extreme c-statistics are more amplified on the logit scale.

2.2 Data-generating mechanism and simulation study

I use a parametric model for data generation, as it provides the researcher more
control (Morris, White & Crowther, 2019): data can be generated based on spe-
cific variance-covariance matrices and data can be carefully amputed according
to specific systematic causes for missingness. Given the disparate effects of both
transformations near the ends of the distribution (Figure 1), I explore transfor-
mations supporting the application of Rubin’s rules for pooling for 3 different
”true” c-statistic values. This methodological choice inherently reflects 3 dif-
ferent sub-studies (s), each of which comprises R = 1000 simulation rounds.
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Figure 1: Logit and arcsine transformations of a proportion

Depending on s, the “true” c-statistic (θs) is approximately equal to 0.7, 0.8,
or 0.9, respectively.

The following outlines the procedural steps of a single simulation round r
within a single sub-study s, which is composed of 5 stages. Consider figure 2
for a schematic overview of this simulation study.

2.2.1 Stage 1. A multivariate, complete data set with a binary out-
come variable is simulated

A multivariate, complete data set of n = 5,000 subjects is simulated. Let i,
i = 1, . . . , n, denote subject i. The complete data set contains two normally
distributed variables X1 ∼ N(10, 12) and X2 ∼ N(6, 5), and a binary outcome
variable Y = (y1, y2, ..., yn). The binary outcome is created by inverse logit
transforming a linear combination of an intercept (β0) and coefficients (β1 and
β2):

pi =
e(β0+β1X1i+β2X2i)

1 + e(β0+β1X1i+β2X2i)
(1)

where Xi is the predictor value for subject i, β0 = 5, β1 = -1, and β2 = -1. pi
is the probability of having a positive outcome (= 1) for subject i. Outcomes
are assigned using a Bernoulli trial (Yi ∼ B(pi)).

Additionally, a noise parameter (ψ) is used to introduce noise during data
simulation. ψ constitutes a randomly sampled fraction of positively labeled
observations that are transmuted into negative cases and vice versa. The us-
age of ψ allows for alternating θs depending on the the sub-study, with ψ =
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(0.25, 0.125, 0.05) corresponding to θs ≈ 0.70, 0.80 and 0.90, respectively to the
third decimal place. To retrieve θs, the complete set is split into equal parts,
Z1 and Z2. Data set Z1 is used to develop a logistic regression model, which is
validated on set Z2.

2.2.2 Stage 2. The complete data set is amputed and split into
incomplete versions of Z1 and Z2

Vergouwe et al. (2010) provide a practical guideline for developing and val-
idating a prediction model with missing data. They recommend splitting the
incomplete data into equally sized parts (a development and validation set), and
performing imputation separately on both sets. This keeps the validation set
blind to the outcome-covariate relationship in the development set (Wahl et al.,
2016). This approach is reproduced here, meaning that the original complete
data set generated in stage 1 is first made incomplete (amputated) and split
again into incomplete ”versions” of Z1 and Z2, rather than amputing Z1 and
Z2 separately after calculating θs.

Approximately 30% of the covariate values are deleted conforming to an
Missing At Random (MAR) mechanism using the mice R package. With MAR
missingness, the missing values are random conditional on available information,
meaning that the information about the missing data is in the observed data
(Janssen, et al., 2010). Two following missingness patterns are implemented
(simultaneously) to instantiate a situation of MAR. To exemplify, consider again
variables X1 and X2 and outcome Y :

• X1 is missing, conditional on X2

• Y is missing, conditional on X1

This particular combination of missingness patterns is ubiquitous in the clinical
domain. The former presupposes a situation in which patients who are relatively
healthier (as evidenced from X2) might be less likely to undergo invasive tests,
thus leading to missing values on those predictors (Groenwold et al., 2012). The
latter implies a common clinical situation in which missing values on the out-
come arise due to a loss to follow-up, which may be attributable to a patient
characteristic. For instance, older people may be more likely to remain a partic-
ipant in a cohort study than adolescents, culminating in more missing outcome
values for adolescents. Within mice, the missingness patterns are specified as a
pattern matrix, in which a pattern (k) is represented as a row and the variable
on which k exerts influence as a column v (0 = missing, 1 = non-missing).

After defining k, values are deleted using a weight matrix. In order to
appropriately implement a MAR mechanism, the weights of the variables that
are made incomplete are set to zero, whereas variables causing missingness have
a non-zero value (Van Buuren & Groothuis-Oudshoorn, 2011). Essentially, the
values of the weight matrix are the coefficients of a linear regression equation of
which the outcome is a weighted sum score. Suppose, subject i is a candidate
for pattern k. Then, the weighted sum score (wss) is:
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wssi = wk,1 ∗X1,i + wk,2 ∗X2,i + ...+ wk,v ∗Xv,i, (2)

where {X1,i, X2,i, ..., Xv,i} is the set of variable values for subject i and
{wk,1, wk,2, ..., wk,v} are the values on row (pattern) k of the weights matrix.
Because I simulate 3 variables and 2 missing data patterns, v = 3 and k ∈ {1, 2},
respectively. I use matrix

(
0 5 0
5 0 0

)
to assign weights to k. Furthermore, the

proportion of missingness caused by the 2 missingness patterns is equal (i.e.
50-50%).

To verify that amputation has occurred correctly (i.e. according to MAR),
the indicator method is applied once before execution of the full simulation
study. The indicator method involves creating indicator variables for each vari-
able with missing entries (e.g., 1 = missing, 0 = not missing). Logistic regression
models are fit with the indicator variables as outcome and all the original vari-
ables as predictors. A statistically significant effect on the indicator variable
presupposes that missingness is explained by the corresponding variable. Based
on this, it was established that the amputation procedure occurred correctly.

2.2.3 Stage 3. The incomplete data sets are imputed by means of
Bayesian linear regression and logistic regression imputation
models

Several simulation studies have demonstrated that repeated imputations (J) can
be as low as three for data with 20% missing entries (Van Buuren, Boshuizen
& Knook, 1999). According to Vergouwe at al. (2010), there is little benefit in
increasing J beyond 10 imputations. In view of this, the choice is made to set
J to 10, thus giving 10 imputed development and validation sets.

Multiple imputation is implemented with the Multivariate Imputation by
Chained Equations (MICE) procedure in R (Van Buuren & Groothuis-Oudshoorn,
2011). The general methodology suggested for imputation is to impute using the
posterior predictive distribution of the missing data given the observed data and
some estimate of the parameters (Liu, 2016). In light of this, MICE was done
with Bayesian linear regression imputation for the missing predictors. With
this, imputation uncertainty is accounted for by adding extra error variance to
the predicted values from the linear regression model (Van Buuren, 2018). In
addition, the uncertainty in estimating the regression coefficients of the imputa-
tion model is taken into account (Van Buuren, 2018). Missing outcome values
were imputed using a logistic regression imputation model.

Appropriate imputation necessitates convergence of the MICE algorithm. A
novel approach for diagnosis of (non-)convergence proposed by Oberman, van
Buuren & Vink (2021) is to evaluate the potential scale reduction factor per
iteration of the MICE algorithm. Convergence is achieved if this parameter
does not improve over iterations. According to Oberman, van Buuren & Vink
(2021), inferential validity is already achieved after 5 to 10 iterations. Adhering
to this approach, a check for convergence is performed prior to the execution of
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the full simulation study. There were no cases of non-convergence of the MICE
algorithm.

2.2.4 Stage 4. Develop models on the imputed data sets, pool the
models using Rubin’s rules

Following the imputation procedure, a logistic regression model is developed
in each of the imputed development sets, thus yielding 10 models. The fitted
models can be written as:

p̂i,j =
e(β̂0,j+β̂1,jX1i,j+β̂2,jX2i,j)

1 + e(β̂0,j+β̂1,jX1i,j+β̂2,jX2i,j)
, (3)

where p̂i,j is the probability of a positive outcome for subject i by a prediction
model built on the jth (j = 1, . . . , J) imputed development set. Xi,j is the

predictor value for subject i in imputed development set j, and β̂0,j , β̂1,j , β̂2,j
are the estimates of β0, β1, β2 in a prediction model built on the the jth imputed
development set. To derive a single prediction model, the coefficient vectors and
standard error vectors of the models need to be combined.

The computation of multiple imputation estimates and variances follows
Rubin’s rules (Rubin, 1987). Let Q̂j andWj denote an estimate (of a parameter)
and it’s variance, respectively, from a model developed on the jth imputed
development set. The multiple imputation estimate (Q̄) is calculated as:

Q̄ =
1

J

J∑
j=1

Q̂j (4)

The total error variance T of Q̄ is obtained by a components-of-variance argu-
ment, giving:

T =W + (1 +
1

J
)B, (5)

where W = within-imputation variance:

1

J

J∑
j=1

=Wj , (6)

and where B = between-imputation variance:

1

J − 1

J∑
j=1

= (Q̂j − Q̄)2 (7)
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2.2.5 Stage 5. Estimate θs on j imputed validation sets. Apply
transformations and pool θ̂s

After deriving the pooled model, predictions are made on each of the imputed
validation sets. Subsequently, 10 c-statistic estimates are calculated, which are
computed as defined by DeLong et al. (1988) using the algorithm by Sun and Xu
(2014), which is implemented in the pROC R package (Robin et al., 2021). The
corresponding standard errors are computed by using the auctestr R package,
which leverages the property that the c-statistic is equivalent to the Wilcoxon
or Mann-Whitney U test statistic (Mason & Graham, 2002). The between-

imputation variance simply constitutes the variance of θ̂s across the imputed
validation sets.

The estimates and corresponding variances are pooled with three methods.
The first method is to pool using Rubin’s rules, without applying any trans-
formation to the estimates and variances beforehand. The second approach is
to logit transform the estimates using the metamsic R package (Debray & De
Jong, 2021) prior to pooling. The third method uses an arcsine square-root
transformation before pooling.

The 95% CIs for the transformed estimates are calculated on the respec-
tive pooled scale and then back-transformed. The 95% CIs of the pooled esti-
mates are obtained using the total error variance (pooled SE) and a reference
t-distribution with degrees of freedom:

ν = (J − 1) ∗ (1 + 1

r
)2, (8)

where r = ( b+b/J
w ) denotes the relative increase in variance due to the missing

values, with w and b denoting the within and between-variance of the estimates
pooled into θ̂s at simulation round r, respectively. The CI of θ̂s is then of the
form:

θ̂s ± tv ∗ se(θ̂s), (9)

where se(θ̂s) denotes the pooled SE of θ̂s and tν is the α/2 quantile of the
t-distribution with ν degrees of freedom.

2.2.6 Evaluate bias and coverage of the pooling methods

To juxtapose transformations prior to pooling with the standard method, I
utilize two performance measures based on all R simulation rounds (remember,
R = 1000). First, performance is determined by quantifying bias, indicating
the amount by which the estimates exceed θs on average as quantified by the
positive or negative mean difference:

Bias =
1

R

R∑
r=1

(θ̂s,r − θs), (10)
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where θ̂s,r denotes the pooled and back-transformed estimate of θs for simula-
tion round r. The corresponding error of the bias is quantified by computing
the Monte Carlo standard error (SE). The Monte Carlo SE quantifies simulation
uncertainty as it provides an estimate of the SE of (estimated) performance due
to using a finite simulated sample size (Morris, White & Crowther, 2019). It is
calculated as:

MonteCarloSE(Bias) =

√√√√ 1

R(R− 1)

R∑
r=1

(θ̂s,r − θ̄s)2, (11)

where θ̄s = 1
R

∑R
r=1(θ̂s,r). Furthermore, the performance of the methods are

assessed in terms of coverage, which is determined by estimating the percentage
of the 95% CIs that include θs over all simulation runs. The corresponding
Monte Carlo SE of the coverage is calculated for every pooling method as:

MonteCarloSE(Coverage) =

√ ̂cover. ∗ (1− ̂cover.)
R

, (12)

where ̂cover. denotes the estimated coverage by a pooling method.
Finally, the (relative) impact of transformations may be apparent from the

magnitude of the total error variance and how it compares to the pooled esti-
mate. Therefore, methods are also assessed on how the relationship between
the pooled estimate and the total error variance manifests, by means of a meta-
regression stratified by sub-study and method.

The code implemented for this simulation study can be found on: https://github.com/Cem-
Kalender/Exploringc − statistictransformations
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Figure 2: Schematic overview of the simulation study
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3 Results

All simulation runs completed and there were no convergence issues. The results
(Table 1) show that θ̄s is approximately equal between the methods (0.73, 0.82,
0.88 for θs = 0.7, 0.8, 0.9, respectively). Furthermore, the similarly between the

methods is also evident from the distributions of θ̂s (Figure 3).

Performance
measure

Pooling
method

θs = 0.7 θs = 0.8 θs = 0.9

θ̄s (SE) Regular 0.73 (0.00) 0.82 (0.00) 0.88 (0.00)
Logit 0.73 (0.00) 0.82 (0.00) 0.88 (0.00)
Arcsine 0.73 (0.00) 0.82 (0.00) 0.88 (0.00)

Bias (SE) Regular 0.03 (0.01) 0.025 (0.01) -0.01 (0.01)
Logit 0.03 (0.01) 0.025 (0.01) -0.01 (0.01)
Arcsine 0.03 (0.01) 0.025 (0.01) -0.01 (0.01)

Coverage (SE) Regular 80.40%
(1.25%)

82.20%
(1.29%)

96.10%
(0.61%)

Logit 83.60%
(1.72%)

87.10%
(1.06%)

94.30%
(0.73%)

Arcsine 100%
(0.00%)

100%
(0.00%)

100%
(0.00%)

95% CI width Regular 0.12 0.10 0.08
Logit 0.12 0.10 0.08
Arcsine 0.36 0.30 0.24

Skewness Regular -0.23 -0.19 -0.34
Logit -0.23 -0.19 -0.34
Arcsine -0.23 -0.19 -0.34

Kurtosis Regular 3.33 2.90 3.07
Logit 3.27 2.92 3.09
Arcsine 3.33 2.91 3.09

Table 1: The average of the pooled estimates of θs (θ̄s), bias (SE) for pooling
methods per sub-study, Coverage percentage (SE) of the 95% CI, average 95%

CI width, skewness and kurtosis of the distribution of θ̂s.

3.1 Distribution of (transformed and) pooled estimates

The distributions look fairly normal at a quick glance (Figure 3). However,
the skewness and kurtosis (Table 1) indicate that for all methods, the skewness
starts at -0.23 at θs = 0.7, drops slightly to -0.19 at θs = 0.8, only to increase
to -0.34 at θs = 0.9. In contrast, the kurtosis remains relatively constant as
θs increases, only showing a slight drop when θs = 0.8. There are no profound
differences between the distributions with respect to the kurtosis, indicating
relative overall consistency in the ”heaviness” of the tails.
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(a) left to right: regular, logit, and arcsine pooled. θs = 0.7

(b) left to right: regular, logit, and arcsine pooled. θs = 0.8

(c) left to right: regular, logit, and arcsine pooled. θs = 0.9

Figure 3: Histograms showing the distribution of θ̂s for different pooling meth-
ods and values of θs. The yellow lines are the means of θ̂s. The red lines show
θs. The difference indicates the bias.

3.2 Bias of the pooling methods

Inspect table 1 for the bias of the methods as well as the corresponding Monte
Carlo errors. There are practically no differences between the methods as they
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overestimate θs in equal rates when θs is 0.7 and 0.8: the bias is around 0.03
(0.01) for all methods when θs = 0.7 and around 0.025 (0.01) when θs = 0.8.
When θs = 0.9, the bias decreases and becomes practically zero.

Figure 3 visualizes the differences between θ̂s,r and θs per method. As

evident from the narrower spread of points, the differences between θ̂s,r and θs
become smaller as θs increases. This is applicable to all methods, with virtually
no differences in terms of the distance between θ̂s,r and θs.

(a) θs = 0.7 (b) θs = 0.8

(c) θs = 0.9

Figure 4: The difference between θs and θ̂s for different pooling methods. The
red lines indicate the mean difference (bias) per method. The y-axis provides
separation between the points.
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3.3 Coverage of the pooling methods

At a quick glance, the results appear to indicate that the arcsine pooling method
is the optimal approach in terms of coverage of the CI, while the other meth-
ods deliver satisfactory performance (Table 1). However, coverage has to be
appraised in light of the width of the 95% CI per method to determine applica-
bility and utility within a clinical context. Table 1 shows the average width of
the 95% CI per method, by taking the mean difference between the lower and
upper bounds of the 95%CI. When the 95% CI width is viewed in conjunction
with the bias per method, it becomes evident that the arcsine method yields
confidence intervals that could be deemed undesirable within a clinical or sta-
tistical context. For instance, note, that the average width of the 95% CI of the
arcsine method at θs = 0.7 is 0.36. Given that the same method yields a bias of
0.03166 at θs = 0.7, the interval spans 0.55 and 0.91 (0.73166 ±1/2 ∗ 0.36) on
average. With the regular and logit methods, the average width of the 95% CI
is much smaller (0.12), giving a span between 0.676 and 0.79 on average at θs
= 0.7. The coverage of the logit method at a θs of 0.7 and 0.8 is 83.6% (1.72%)
and 87.1% (1.06%), respectively. At the same values for θs, the coverage for
the regular method is 80.4% (1.25%) and 82.2% (1.29%), respectively. Still,
while the logit method outperforms the regular method when θs = 0.7 and θs
= 0.8, it is slightly outperformed by 1.8% when θs = 0.9. Nevertheless, the
logit method appears to be more efficient in a statistical sense, meaning that
the rate at which the SE or CI becomes smaller as R approaches ∞ is higher
for the logit method as compared to the regular method. This is evident from a
lower difference in coverage between the lowest and highest value for θs (10.7%),
whereas this difference is 15.7% for the regular pooling method.

3.4 Relationship between pooled estimates and pooled SEs

The relationship between θ̂s and the total error variance, se(θ̂s), is shown in
figure 5. For different values of θs, both the regular and arcsine transforma-
tion method exhibit a strong negative Pearson’s correlation (ρ), with the latter
method showing the strongest ρ of the two regardless of the value of θs. In ad-
dition, the relationship between arcsine-transformed θ̂s and se(θ̂s) shows clear

signs of heteroskedasticity. Conversely, se(θ̂s) appears to be weakly positively

correlated with logit-transformed θ̂s. As can be seen, when θs increases, ρ be-
comes significantly stronger for every method.

However, it should be noted that, despite these correlations, an increase
in the pooled estimate is still associated with only a fractional decrease (in-
crease in case of the logit method) in the pooled SE. Consider the results of a
meta-regression stratified by sub-study and pooling method (Table 2). Despite a
correlation of -0.37 for the regular pooled estimates at θs = 0.9, the standardized
difference in pooled SEs for θ̂s = 0.82 and θ̂s = 0.88 is a mere 0.02 (0.88*-0.37
- 0.82*-0.37). The standardized difference in arcsine-pooled SEs for the same
pooled estimates constitutes a mere 0.047 (0.88*0.798 - 0.82*0.798), whereas
for the logit-pooled SEs this difference is even more negligible (0.88*0.202 -
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0.82*0.202 = 0.012). Furthermore, the meta-regression reveals that the vari-
ability observed in logit-pooled SE’s are not well explained by the stratified
regression model regardless of the value of θs (with R2 = 0.016, 0.027, 0.033 for
θs = 0.7, 0.8, 0.9, respectively). On the other hand, the explained variance is
noticeably high for the arcsine method and even increases as θs increases (with
R2 = 0.394, 0.552, 0.681). The regular pooling method sits in between these
extremes with explained variances of 3.2, 9.0 and 18.6%, respectively.

Sub-
study

Method Estimate SE R2

θs = 0.7 Regular -0.169*** 0.031 0.032
Logit 0.098* 0.032 0.016
Arcsine -0.596*** 0.025 0.393

θs = 0.8 Regular -0.285*** 0.030 0.090
Logit 0.152*** 0.031 0.027
Arcsine -0.733*** 0.022 0.552

θs = 0.9 Regular -0.374*** 0.029 0.186
Logit 0.202*** 0.031 0.033
Arcsine -0.798*** 0.019 0.681

Note: ***p<0.001, **p<0.01, *p<0.05.

Table 2: The results of a meta-regression stratified by sub-study and pooling
method, where se(θ̂s) are regressed on θ̂s. Both θ̂s and se(θ̂s) have been stan-
dardized to allow comparison between beta’s
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(a) left to right: regular, logit, and arcsine pooled. θs = 0.7

(b) left to right: regular, logit, and arcsine pooled. θs = 0.8

(c) left to right: regular, logit, and arcsine pooled. θs = 0.9

Figure 5: Scatter plots showing the correlation between pooled estimates (θ̂s)

and errors (se(θ̂s)). The red line is the regression line.
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4 Discussion

4.1 Main findings and implications

Following the recommendations of Vergouwe et al. (2010) for developing and
validating a prediction model built using multiply imputed data, a simulation
study was conducted to evaluate transformation methods for the c-statistic in
terms of bias and coverage. The main differences between the investigated
methods reside in the coverage and the width of the 95% CIs of the c-statistic
estimates, while they are practically identical with respect to bias. The main
finding of this study is that, when missing data are present and when θs is <=
0.9, none of the investigated methods attained nominal coverage. The arcsine
method displays an actual coverage probability that is greater than the nominal
coverage probability, regardless of the value of θs. On the other hand, the
regular and the logit method are able to achieve nominal coverage only when
θs is >= 0.9. In this case, a strong improvement in bias at this value for θs
might be a reason for the attainment of nominal coverage. To increase coverage
at lower values for θs wider confidence intervals are needed. In this simulation
study, the uncertainty inherent in the development sets (i.e. standard errors
of the coefficients of the pooled model) are not propagated to the estimates
made on the validation sets, thus resulting in narrower 95% CIs of the pooled
estimates for lower values of θs. Despite of this drawback, the logit method
clearly outperforms the regular method when θs < 0.9, and is more efficient
in terms of coverage. However, this in itself can hardly be seen as irrevocable
evidence of the superiority of the logit method.

With respect to the average width of the 95% CI, the regular and logit
methods are on par with each other. However, the findings show that cal-
culating the confidence interval using arcsine-transformed pooled estimates is
problematic. This is apparent from the abnormally wide average width of the
95% CI, culminating in a coverage of 100% for all values of θs. This latter
finding must be interpreted in light of the claims made by Wilson et al. (2013)
that arcsine-transformation of proportional data might give rise to nonsensi-
cal values if extrapolated. This problem arises from the fact that an arcsine
square-root transformation essentially normalizes values to fall between 0 and
π (Wilson & Hardy, 2002), whereas extrapolation requires transformed values
to be monotonic to avoid the possibility of nonsensical values (Warton & Hui,
2011). The arcsine transformation does not satisfy this requirement due to the
sine function’s periodicity but the logit transformation does (Warton & Hui,
2011). Conceivably, the non-monotonicity caused by the arcsine transformation
might be the reason that arithmetic operations yield nonsensical results (e.g.
Rubin’s rules for pooling, calculating the 95% CIs). Clearly, this is a highly
undesirable trait of the arcsine transformation as more precision is typically
expected within a clinical context given that lives may be at stake.

As an additional exploratory research question, this study aimed to explore
how transformations affect the distribution of the pooled estimates as well the
pooled standard errors. The findings indicate virtually no differences with re-
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spect to the distribution of the pooled estimates. Rather, the estimates display
normality regardless of the pooling method implemented. Several speculations
are in order as to the cause of this finding. According to Snell et al. (2018), who
conducted a meta-analysis to summarise performance measures, non-normality
of the c-statistic is caused by extreme scenarios of predictor effect heterogeneity
and is best accounted for through logit transforming estimates. This is in line
with Austin & Steyerberg (2012), who showed that the c-statistic depends on
both the log odds ratio and variance of a continuous explanatory variable. In
contrast, in this study, little predictor effect heterogeneity is expected given that
every pooled estimate is essentially derived from the same parametric data, with
differences manifesting mainly as consequence of the implemented imputation
procedure. This could thus be a reason for the apparent normality.

Alternatively, the imputation methods implemented in this study could also
be a reason for the apparent normality of the pooled estimates. This simulation
study used a Bayesian linear regression imputation method for missing continu-
ous values and a logistic regression imputation method for missing outcome val-
ues, both of which are parametric methods. As this study simulated parametric
data, the distributional assumptions of the Bayesian linear regression imputa-
tion method were met. Additionally, the assumption of congenial imputation
models to account for the MAR missingness mechanism was met (Meng, 1994;
van Buuren, 2018). As a result, the parametric imputation methods were well
able to impute the missing data (van Buuren, 2018: Addo, 2018). This may in
turn have yielded c-statistic estimates with minimal variance, thereby possibly
affecting the distribution of the estimates to a degree that logit transformations
are of minimal use. Therefore, I recommend future research to evaluate trans-
formations for the c-statistic while also experimenting with a range of different
imputation methods.

Finally, the findings suggest that the relationship between the pooled es-
timates and pooled standard errors manifest differently for pooling methods.
In case of regular and arcsine pooled estimates, the findings show that the
pooled SE becomes smaller as the pooled estimate gets larger (positively bi-
ased) whereas the opposite is true for the logit-pooled estimates. It is beyond
the scope of this study to go into detail as to how this occurred. At the very
least, it can be suspected that an interaction between the transformations and
Rubin’s rules for pooling is the cause. Regardless, the effect of the correlations
are inconsequential as they do not translate to the performance measures to any
meaningful extent.

4.2 Limitations and future research

The methodological choices of this study limit the generalizability of the findings
to cases in which predictor data is normally distributed and missingness in exclu-
sively MAR. When data is missing based on different systematic causes or when
predictor data is non-normally distributed, results might deviate substantially.
Within clinical settings, a variety of systemic causes of missingness impinge on
data quality. Some data are inherently missing not at random (MNAR) and it
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is by definition not possible to account for systematic differences between the
missing values and the observed values using solely the observed data (Sterne et
al., 2009). While there exist methods that leverage the measured data to correct
for MNAR, these make strong assumptions. In such cases, multiple imputation
on its own is not sufficient nor able to accommodate for missing data appropri-
ately, implying that validation can be subject to substantial bias and therefore
can result in misleading conclusions regarding the performance of a prediction
model built using multiply imputed data. Nonetheless, it may still be better to
use MI with these assumptions than to ignore missing data. Another constraint
shared with Vergouwe et al. (2018), is that this study did not consider internal
validation during model development. Wahl et al. (2016) research several inter-
nal validation strategies and recommend deploying internal validation followed
by MI on the training and test set separately, in order to correct for optimism
when estimating performance. As such, for future research it is recommended
to replicate the approach of Wahl et al. (2016) and appraise the regular and
logit transformations on the same performance measures evaluated here.

5 Conclusion

In conclusion, this simulation study has shown that when missing data are
present and when θs is < 0.9, none of the investigated transformation methods
attained nominal coverage. However, both regular pooling and logit-transforming
estimates prior to pooling yield satisfactory results in terms of coverage and bias
if θs is >= 0.9.

A practical implication of the findings, then, is that additional scrutiny is
warranted when c-statistic estimates (of a clinical prediction model built using
multiply imputed data) fall around 0.7-0.8, whereas estimates around or above
0.9 can be trusted. However, such high values for discriminatory performance
are rare in practice. In light of the findings, a tentative recommendation is to
use the logit method due to the method’s higher efficiency in terms of coverage
as compared to the regular method.

As a scientific contribution, this work lays the groundwork for further re-
search into when and what transformations should be performed on other model
performance measures that are considered non-normal. By sharing the code
implemented in this simulation study, I have demonstrated my commitment
to accountability and transparency, meaning that the conduct of this study is
ethical and in concordance with the tenets of open science.

Acknowledgements

I would like to express my gratitude to my two supervisors, Hanne Oberman
and Dr Valentijn de Jong, who guided me throughout this thesis project and
helped me improve the manuscript.

19



References

Addo, E. D. (2018). Performance comparison of imputation algorithms
on missing at random data (Doctoral dissertation, East Tennessee State
University).

Austin, P. C., & Steyerberg, E. W. (2012). Interpreting the concor-
dance statistic of a logistic regression model: relation to the variance and
odds ratio of a continuous explanatory variable. BMC Medical Research
Methodology, 12(1), 1-8.

Van Buuren, S. (2018). Flexible imputation of missing data. CRC
press.

Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multi-
variate imputation by chained equations in R. Journal of Statistical
Software, 45, 1-67.

Van Buuren, S., Boshuizen, H. C., & Knook, D. L. (1999). Multiple
imputation of missing blood pressure covariates in survival analysis.
Statistics in Medicine, 18(6), 681-694.

Debray T.P.A De Jong V.M.T. (2021). Package ‘metamisc’.

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988).
Comparing the areas under two or more correlated receiver operating
characteristic curves: a nonparametric approach. Biometrics, 837-845.

Enders, C. K. (2010). Applied missing data analysis. Guilford press,
220-221.

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How
many imputations are really needed? Some practical clarifications of
multiple imputation theory. Prevention science, 8(3), 206-213.

Groenwold, R. H., White, I. R., Donders, A. R. T., Carpenter, J.
R., Altman, D. G., Moons, K. G. (2012). Missing covariate data in clinical
research: when and when not to use the missing-indicator method for
analysis. Cmaj, 184(11), 1265-1269.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the
area under a receiver operating characteristic (ROC) curve. Radiology,
143(1), 29-36.

Janssen, K. J., Donders, A. R. T., Harrell Jr, F. E., Vergouwe, Y.,

20



Chen, Q., Grobbee, D. E., & Moons, K. G. (2010). Missing covariate data
in medical research: to impute is better than to ignore. Journal of Clinical
Epidemiology, 63(7), 721-727.

Marshall, A., Altman, D. G., Holder, R. L., & Royston, P. (2009).
Combining estimates of interest in prognostic 498 modelling studies after
multiple imputation: current practice and guidelines. BMC Med Res 499
Methodol), 9(57), 500.

Mason, S. J., & Graham, N. E. (2002). Areas beneath the relative
operating characteristics (ROC) and relative operating levels (ROL)
curves: Statistical significance and interpretation. Quarterly Journal of
the Royal Meteorological Society: A journal of the atmospheric sciences,
applied meteorology and physical oceanography, 128(584), 2145-2166.

Meng, X. L. (1994). “Multiple Imputation with Uncongenial Sources
of Input (with Discusson).” Statistical Science 9 (4): 538–73.

Miles, A. (2016). Obtaining predictions from models fit to multiply
imputed data. Sociological Methods Research, 45(1), 175-185.

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simu-
lation studies to evaluate statistical methods. Statistics in Medicine,
38(11), 2074-2102.

Oberman, H. I., van Buuren, S., & Vink, G. (2021). Missing the
point: Non-convergence in iterative imputation algorithms. arXiv preprint
arXiv:2110.11951.

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez,
J. C., ... & Robin, M. X. (2021). Package ‘pROC’ (Vol. 56, pp. 1-71).
2012-09-10 09: 34.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys
(Vol. 81). John Wiley Sons.

Rubin, D. B. (1987). Multiple imputation for survey nonresponse.

Snell, K. I., Ensor, J., Debray, T. P., Moons, K. G., & Riley, R. D.
(2018). Meta-analysis of prediction model performance across multiple
studies: Which scale helps ensure between-study normality for the
C-statistic and calibration measures?. Statistical Methods in Medical
Research, 27(11), 3505-3522.

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P.,
Kenward, M. G., ... & Carpenter, J. R. (2009). Multiple imputation

21



for missing data in epidemiological and clinical research: potential and
pitfalls. Bmj, 338.

Sun, X., & Xu, W. (2014). Fast implementation of DeLong’s algo-
rithm for comparing the areas under correlated receiver operating
characteristic curves. IEEE Signal Processing Letters, 21(11), 1389-1393.

Trikalinos, T. A., Trow, P., & Schmid, C. H. (2013). Simulation-
based comparison of methods for meta-analysis of proportions and rates.
Agency for Healthcare Research and Quality (US).

Vergouwe, Y., Royston, P., Moons, K. G., & Altman, D. G. (2010).
Development and validation of a prediction model with missing predictor
data: a practical approach. Journal of Clinical Epidemiology, 63(2),
205-214.

Wahl, S., Boulesteix, A. L., Zierer, A., Thorand, B., & van de Wiel,
M. A. (2016). Assessment of predictive performance in incomplete data
by combining internal validation and multiple imputation. BMC Medical
Research Methodology, 16(1), 1-18.

Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: the
analysis of proportions in ecology. Ecology, 92(1), 3-10.

Wilson, K., & Hardy, I. C. (2002). Statistical analysis of sex ratios:
an introduction. Sex ratios: concepts and research methods, 1, 48-92.

Wilson, E., Underwood, M., Puckrin, O., Letto, K., Doyle, R., Car-
avan, H., ... & Bassett, K. (2013). The arcsine transformation: has the
time come for retirement. Unpubl. manuscript, Meml. Univ. Newfound-
land, Newfoundl. Labrador, Canada.

22


