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Abstract

Missing values are common in real-world data sets and represent a challenging problem
in performing most data analytics tasks. For that reason, many data imputation
techniques have been proposed in the past to fill the missing values. However, these
existing techniques may not capture the characteristics of the data and mislead the
data analytics techniques, resulting in inaccurate conclusions. Generative Adversarial
Networks (GANs) proved to be a good technique for generating synthetic data; using
GANs, synthetic examples are generated that preserve the existing values in the record.
Then, these synthetic examples can be utilized to fill the missing values and capture the
data characteristics better than the other data imputation techniques. This project
implements a framework based on Generative Adversarial Networks to impute the
missing values for a given incomplete data set. The performance of the framework is
evaluated using two different methodologies: 1) By determining the prediction error
of the imputed values after introducing missing values in an otherwise complete data
set, and 2) by comparing the performance of a classifier trained on a post-imputed
data set, which has been imputed using our proposed framework and other imputation
frameworks. The proposed framework outperformed other state-of-the-art frameworks
at higher missing rates of 50% and beyond while achieving comparable results at lower
missing rates. In addition, classifiers built using this proposed framework may lead
to higher accuracy- and ROC-AUC scores compared with some of the other baseline
methods.
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Chapter 1

Introduction

The primary goal of data analytics is to uncover patterns and extract valuable insights from
raw data. These insights can then be used to improve decision-making, optimize- and autom-
atize processes, and more. However, the quality of the raw data is of great importance in the
data analytics pipeline since the trait of poor quality data will inevitably carry over through
this pipeline process and lead to a degradation of the results[11]. ”Garbage in, garbage out”
is the common phrase used by computer scientists to emphasize that the output quality of
a program strictly relies on the input quality. Therefore, researchers should aim to raise
the quality of their utilized data to get more sensible end results. One critical factor that
can provide an indication on the quality of the utilized data is the completeness of the data
set. Depending on the missing data mechanism, incomplete data can result in wrong conclu-
sions being drawn due to biased inferences and reduce the quality of models that have been
trained using this data[7][8]. In addition, many predictive models such as neural networks
and support vector machines require complete data during the training phase, in which case
the researcher is required to handle the missing values beforehand. Since the worldwide data
volume is predicted to grow substantially in the upcoming years[15], it can be expected that
this problem will grow alongside the increasing data supply. Hence, it is essential that better
imputation techniques are developed, which can impute the missing values more accurately in
the raw data sets while retaining their statistical properties. Ultimately, this could raise the
quality of the input data, prevent wrong conclusions from being drawn, increase the quality of
the models post-imputation, and generally lead to better results and insights to be obtained
by the researcher.

In detail, missing values can be categorized as either explicit- or implicit missing values. In the
case of explicit missing values, the absence is known and marked in the data set, e.g., ’NA’ or
’NULL’. Whereas in the case of implicit missing values, the absence is unknown and disguised
under a fake value in the data set. For instance, if a person does not want to disclose his/her
salary in a survey but can not leave the question blank, ’0’ could be a typical fake value to
hide the actual salary. Nevertheless, frameworks such as FAHES[10] can be utilized to detect
these explicit missing values and transform them into implicit ones. Before dealing with the
missing data problem, it is essential first to determine the missingness mechanism behind
these missing values since certain imputation techniques might only guarantee unbiasedness
under specific assumptions on the missingness mechanism[12]. Typically, missing data can
be categorized into three different types depending on the connection between missing- and
observed values:

4



1. There is Missing Completely at Random (MCAR) where the values are missing for
reasons unrelated to the observed variables. Thus, for all cases, the probability of
having missing values is constant.

2. Secondly, there is Missing at Random (MAR), where values are missing for reasons
that are related to the observed variables in the data. Hence, the probability of having
missing values depends on the observed variables and may not be constant for all cases.

3. Lastly, there is Missing Not at Random (MNAR), where values are missing for rea-
sons related to both unobserved and observed variables. Hence, this implies that the
probability of missing values also depends on unobserved variables.

Once the missingness mechanism has been determined, an appropriate method can be chosen
to handle the missing values. Of which some shall be mentioned next.

1.1 Motivation

Traditional techniques that handle missing data are often flawed, distort the statistical prop-
erties of the actual underlying data distribution, introduce bias into the data set, or simply do
not provide the most optimal imputations. Straightforward widely-used techniques include
methods such as listwise deletion, mean/mode imputation, and regression. However, each of
these techniques suffers from the problems mentioned above. There are also more sophisti-
cated and well-established imputation techniques, such as Multiple Imputation by Chained
Equations (MICE)[3], and ones that rely on machine learning, such as missForest[14]. Al-
though these techniques provide higher quality imputations that can better mimic the statis-
tical properties of the observed data, more advanced methodologies for data imputations have
been developed in recent years that rely on deep learning. Since deep learning techniques have
shown great potential in other fields, this thesis aims to create a framework that similarly
uses a deep learning approach for missing data imputation of mixed-type tabular data sets.
Ultimately, the proposed framework could provide more accurate imputations in comparison
with existing imputation frameworks and could thus be used to raise the data quality for
researchers even further. Specifically, the proposed framework utilizes generative adversar-
ial networks to solve the missing data problem more efficiently, which is one of those deep
learning techniques. The GAN framework was initially introduced in 2014 by Goodfellow et
al.[6]. This architecture consists of two neural networks, a generator and a discriminator, that
contest against each other since each tries to maximize the opponent’s loss. The generator
is tasked with generating synthetic data that incorporates the characteristics of the training
data. On the other hand, the discriminator is given a set of real and fake data and evaluates
the probability of authenticity of this input data. After each training iteration, these neural
networks indirectly learn from their opponent and aim to be more effective at their tasks.
The end goal of the generator is to create synthetic data that the discriminator can not dis-
tinguish from the real data. In contrast, the discriminator tries to classify as accurately as
possible whether the input data is real or fake. Assuming that the training phase has been
successful, the generator should be able to create diverse, high-quality synthetic data, which
the discriminator often fails to detect as fake data. Thus, any missing value in the row can
be imputed by generating a complete synthetic row conditional on the observed variables.
This ultimately results in a complete data set, which can be used for further analysis and
predictive modeling.
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1.2 Contributions

This thesis aims to provide valuable insights into the potential of using generative adversarial
networks to solve the missing data problem in mixed-type tabular data sets. The following
contributions to the field of missing data imputation are made: Firstly, a simple-to-use frame-
work that utilizes GANs for data imputation has been built for researchers. The proposed
framework has been automatized in several regards such that only the raw data is necessary
as input. As a result, this framework could be more accessible to a larger audience of data
specialists since it does not require researchers to have extensive knowledge of deep learning
in order to be able to use the framework. The second contribution to the field is to provide
insights into the effect of utilizing multiple GAN models on the reliability and quality of
the imputations. In this proposed framework, three underlying GAN models each provide a
candidate imputation for a missing value, and a final imputation is chosen based on a ma-
jority vote. Although this could provide more reliable imputations, the consideration needs
to be made on whether the performance gain justifies the additional computational time.
Lastly, the performance of the proposed framework is compared to various state-of-the-art
imputation frameworks, using two different evaluation metrics. A novel evaluation metric
is introduced where continuous- and categorical variables equally contribute to the overall
prediction error score. The second evaluation metric determines the performance difference
of a machine learning classifier post-imputation using the proposed framework in comparison
with the other imputation frameworks.
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Chapter 2

Related Work

In this chapter, relevant past research on missing data imputation has been dissected in
more detail. Specifically, traditional methods and frameworks for dealing with missing values
are discussed, together with possible shortcomings. Afterward, past research that utilized
GANs in fields other than missing data imputation is mentioned, in addition to situations
where GANs have failed during their training phases. Lastly, existing GAN frameworks for
imputing missing data are mentioned and compared.

2.1 Traditional imputation techniques

In some cases, missing values can be deduced from other observed variables, such as a person’s
age if the date of birth is known. In cases where this is impossible, a commonly-used simplistic
solution is to perform listwise deletion to eliminate missing values in the data set. In listwise
deletion, any row that contains at least one missing value is discarded from the data set,
which results in a smaller but complete data set. However, discarding all incomplete rows
could result in biased results if the missingness mechanism is not MCAR. In addition, valuable
information is wasted. If data is scarce, this could not be a feasible solution to the missing data
problem as too little data might be left over for analysis. Therefore, a more viable solution
to this problem is to impute the missing values with a guessed value. Data imputation
techniques can typically be categorized as single- or multiple imputation. Single imputation
does not account for the uncertainty of the predicted value since its goal is only to generate
one guessed value per missing value. Well-known examples of single imputation techniques
are mean/mode imputation and regression imputation. For mean imputation, the missing
values are imputed with the mean value of the corresponding variable based on the observed
values. Although simple to perform, this can severely underestimate the variance, especially
when the number of missing values in a given variable is significant.

Additionally, utilizing mean imputation can result in biased estimates even when the missing-
ness mechanism is MCAR. For regression imputation, on the other hand, a regression model
is fit on the fully observed rows after listwise deletion and utilized to create a prediction
for the missing values. Even though this may result in unbiased estimates under the MAR
assumption, a disadvantage is that correlations are artificially increased, which consequently
leads to the uncertainty of the predicted values being underestimated. Although these single
imputation techniques are generally less complex, they each have drawbacks such as those
mentioned above, making them impracticable for most use-cases. On the other hand, mul-
tiple imputation methods are more effective in imputing missing values since they account
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for the uncertainty of the guessed values. Multiple complete data sets are generated from an
incomplete data set, with each having (slightly) different imputations for the missing values.
After analyzing these completed data sets, the results can be pooled to get one final estimated
value to impute in the place of the missing value. In more recent years, machine learning ap-
proaches such as MissForest[14] have emerged with the same goal of imputing missing values.
The framework works by first imputing the missing values with the variable’s mean. Then a
random forest model fits on each variable that initially contained missing values. The model
then trains iteratively by considering the predicted values from the previous training itera-
tion to improve the data quality. The MissForest framework has been shown to significantly
outperform widely used imputation techniques by researchers, such as multiple imputation
by chained equations (MICE)[3]. Nevertheless, more recently, deep learning techniques have
shown even greater potential for effectively imputing missing data more accurately. Hence,
the proposed framework of this study shall be compared to existing traditional frameworks
such as MissForest and MICE.

2.2 Application of GANs in other fields

GANs have made compelling advancements in computer vision tasks since their introduction
in 2014. This section discusses some of these frameworks, including their applications in
society. Firstly, there is RenderGAN[13], which can generate labeled realistic images from
unlabeled data. This framework allows researchers to perform supervised learning tasks on
generated labeled images without manually labeling the data themselves or paying for data
labeling services. Secondly, the cycleGAN[19] framework has been shown to be effective for
image-to-image translation. It has been used for various creative purposes, such as photo en-
hancements and animal/object transfiguration. Nevertheless, GANs also form the foundation
of controversial applications such as deepfake imagery and videos. Often, these deepfakes are
used to spread fake news by generating synthetic videos of politicians and celebrities that
are hardly distinguishable from reality. Although GANs have been successful in computer
vision tasks, common problematic situations can occur when training the GAN architecture,
which may ultimately lead to failure. Firstly, GANs can suffer from mode collapse, which
is the case when the generator only learns to produce identical output rather than having
variety in its generated data that mimics the training data distribution. Secondly, GANs
often fail to converge during the training phase. One situation is when the discriminator
becomes too strong to the point that it easily differentiates real data from generated data
and thus dominates over the generator. This situation is problematic since it can result in the
generator being unable to learn any further and generate more authentic data compared with
earlier iterations, which is also known as the vanishing gradient problem[1]. On the other
hand, the quality of the synthetic data might be low in the case where the discriminator is
too weak to the point that the generator dominates. Hence, it is of great importance that the
generator and discriminator converge to an equilibrium rather than dominating each other
during training.

Lastly, we discuss the CTGAN[16] framework in more detail, which, similarly to this thesis,
focuses on tabular data with a mix of continuous- and discrete variables but for a different
purpose than missing data imputation. Instead, CTGAN is used for data augmentation tasks
for situations where class imbalances are present in the data set. By generating synthetic
data conditioned on the minority class, the class imbalance can be mitigated, which results in
a data set that is more suitable as training data for statistical- and machine learning models.
The authors elaborate on the difficulties of using traditional GAN frameworks to create syn-
thetic data on mixed-type tabular data and propose solutions to these problems. Firstly, the
authors propose an alternative approach to normalize continuous variables in the data set.
Namely, a mode-specific normalization technique is introduced in place of traditional min-
max normalization to transform continuous variables. The authors elaborate that continuous
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variables often have complex multi-model non-Gaussian distributions and that min-max nor-
malization of these complex distributions can result in a vanishing gradient, which can be
evaded by utilizing this novel normalization technique. The second issue is that training the
generator using highly imbalanced discrete variables often leads to mode collapse since using
random sampling during training will not adequately represent rows of the minority class. For
this reason, a more efficient sampling technique during the training phase is implemented to
sample all the distinct values of categorical variables evenly. The authors first generate syn-
thetic data using CTGAN and then use various existing GAN models to compare the quality
of the synthetically generated data. Afterward, machine learning classifiers are trained using
the synthetic training data, and the accuracy/F1 scores are compared. Classifiers trained on
the CTGAN synthetic data achieved higher performance than other GAN models; hence the
conclusion is made that the quality of the synthetic data of CTGAN is higher than these
other frameworks. Although CTGAN has been designed for data augmentation tasks rather
than data imputation, by generating a complete synthetic row that has been conditioned on
the observed variables, the synthetic row can be utilized to impute the missing values. Since
CTGAN is robust and capable of learning complex distributions, it has been utilized in the
novel framework proposed in this thesis for data imputation tasks.

2.3 Earlier developed GAN frameworks for missing
data imputation

Numerous frameworks for missing data imputation have been introduced that utilize the GAN
architecture. In this subsection, well-known frameworks in this field shall be discussed. First,
there is the GAIN framework[17], which the authors have shown to significantly outperform
other modern data imputation methods under the missing completely at random (MCAR)
assumption. Similar to the original GAN framework, the GAIN architecture consists of only
one generator and one discriminator. A noteworthy difference is that the discriminator in
the GAIN framework also takes a hint vector as input, which provides additional information
on the likelihood that a data point is synthetically generated. Thus, the discriminator’s
ability to distinguish real data from imputed data increases due to this hint mechanism. As
a result, the generator is forced to generate synthetic data which is even more accurate to
the underlying data distribution. Based on experiments on various data sets, utilizing the
hint vector boosted performance on average by 10%. Furthermore, the authors illustrated
that the performance of a logistic regression classifier increased up to 79.2% after imputation
with their framework instead of other imputation methods. A clinical study[5] also verified
this performance boost, which showed that the GAIN framework significantly outperforms
an ensemble machine learning algorithm at higher missing rates. In addition, the authors of
the clinical study show that the imputation time is remarkably shorter than other imputation
methods for large sample sizes and that this framework was also usable under the data missing
at random (MAR) assumption. However, one of the disadvantages of the GAIN model is
that training can be computationally intensive. Hence, another variation named slim GAIN
(SGAIN)[9] has been proposed to create a more efficient framework. Some straightforward
alterations in SGAIN are reducing the number of layers in the generator and discriminator,
utilizing a different activation function, and discarding the hint vector as proposed in GAIN.
A noteworthy difference is that the discriminator outputs two matrices since it is invoked
twice, once for the real data (including missing values) and once for the imputed data matrix.
As a result of these changes, SGAIN reduces computation time up to 30% compared to the
standard GAIN framework while providing comparable model performance post-imputation.
Another potential problem is that the GAIN framework does not account for individual class
distributions but instead models one distribution for the whole data. This neglection for
individual class distributions may negatively impact the performance when a class imbalance
is present. For this reason, the CGAIN[2] was proposed. By providing the generator a label
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encoding as additional input, class characteristics can be learned and used for imputations.
The authors show that as the data set becomes more imbalanced, CGAIN tends to outperform
the GAIN framework more stably. However, the CGAIN model increases the computational
load compared to the original GAIN model.

A more sophisticated framework is the MisGAN imputer from S. Cheng-Xian Li et al.[4], which
consists of up to three generators and three discriminators, with each having a specialized task.
Firstly, a mask-generator and mask-discriminator models the missing data process. Secondly,
there is the data-generator, its output is masked similarly to the actual data (with missing
values), and both are used to train the data-discriminator. Lastly, there is the imputer-
generator which takes as input the incomplete data cases, the mask vectors to indicate what
data is missing, and a random noise vector. It then outputs completed samples, conditional
on the actual observed data. These completed samples are used together with the output of
the data-generator to train the imputer-discriminator. When testing the MisGAN imputer on
various data sets for different missing rates, the MisGAN imputer outperforms state-of-the-
art imputation methods and significantly outperforms the GAIN framework. Furthermore,
according to their quantitative evaluation, the MisGAN imputer is more stable during the
training phase compared to the GAIN framework. Thus, the MisGAN framework shows
promising results when utilizing multiple generators and discriminators for imputation tasks.
Next is the GAMIN framework[18], which has outperformed both the GAIN and MisGAN
imputer at high missing rates (80% through 95%). The most notable difference compared to
earlier works is that this architecture first imputes missing data with a candidate imputation,
using an unconditional generator. Then, this candidate imputation is transformed by the
next conditional generator into a more fitting imputation. The authors designed a confidence
prediction based on how significant the difference is between the imputation proposed by
the conditional generator and the proposed candidate imputation. If this difference is small,
the confidence prediction shall be high. On the other hand, if the conditional generator
has changed the imputation to a great extent, the confidence prediction shall be low. The
authors use this confidence prediction to create a novel loss function that incorporates this
confidence prediction in order to optimize the networks during training. However, the GAMIN
framework underperforms compared to the previous frameworks at missing rates of 50% and
below. Thus, this framework is only truly beneficial in cases of highly missing data rates.
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Chapter 3

Theoretical Analysis

In the following subsections, the theory behind the constructed framework and its goals is
elaborated to a greater extent. In addition, limitations of imputing missing values using GANs
are discussed, and brief explanations are provided on how these limitations can be mitigated.

3.1 Problem Statement

The imputation framework aims to solve the missing data problem for a given incomplete table
Traw, with Variables V {V1, ..., Vn} and rows R {R1, ..., R2}. The set of variables V can contain
a mixture of categorical- and numerical variables, making imputation more sophisticated since
these different variable types need to be modeled concurrently. Firstly, the assumption is made
that for any two given variables Va, Vb ⊆ V , Va ⊥⊥ Vb. In the case where variables do depend
on each other, this can lead to insensible imputations. For instance, if Va is a start date
column and Vb is an end date column, and for a given row Ri ⊂ R where Va is observed but
Vb is missing, the situation can occur that the Vb is imputed with a value that lies before start
date Va. The same principle applies for the rows R in table Traw, where rows are expected to
be independent of each other. Hence, if the position of a row in table T holds predictive power,
such as in a time series structure, this framework will not provide high-quality imputations
as it does not take past- and future values into account.

The end goal is to create a complete table Timputed from a given incomplete table Traw,
where the imputed values are of high quality such that imputed rows are as indistinguishable
as possible from fully observed complete rows. A prerequisite to achieving these goals is that
there must be enough complete rows without missing values in table Traw to train multiple
GAN models. The underlying CTGAN framework[16] was initially implemented for data
augmentation rather than imputation. Nevertheless, the same goal can still be achieved by
viewing the missing data problem as a data-generating problem. For a given row Ri ⊂ R with
values {x1, ..., xn} where xi can be either observed or missing, the goal is to generate a novel
complete synthetic row Rsynthetic that has been conditioned on the observed variables of Ri.
Then, each missing value in Ri is substituted with the corresponding non-missing value in
Rsynthetic. This process is repeated for each row in R that contains at least one missing value
and ultimately results in the table Timputed that contains no missing values and is ready to
be used for further analysis.
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In order to create high-quality imputations, a generator G and discriminator D are trained by
competing against one another in a mini-max competition. G aims to minimize the function
below while D, on the other hand, tries to maximize it.In other words,D andG play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 − D(G(z))) saturates. Rather than training G to minimize
log(1−D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics ofG andD but provides much stronger gradients early in learning.

x

z

X

Z

X

Z

. . .

X

Z

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D∗(x) =

pdata(x)
pdata(x)+pg(x)

. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2
.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ∼ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Where D(x) stands for the probability that x came from the training data instead of the
output of G. Optimally, a global optimum is reached after enough training iterations where
the Generator is able to mimic the distribution of the real data as closely as possible. Thus,
samples from the Generator’s distribution can then be drawn, which are indistinguishable
from samples drawn from the actual trained data.

3.2 Foreseeable Limitations

Although the idea is to generate a complete row Rsynthetic that has been conditioned on all
the observed variables in Ri, this goal is often not achievable in practice. The framework aims
to generate synthetic rows by sampling from a joint conditional distribution, where sampling
has been successful if the synthetic row has the same values for all the observed variables
in Ri. In the case that a row has been sampled that does not meet all the conditions of
the observed variables in Ri, the generated row is rejected. Thus, generating synthetic rows
works through an elimination-based sampling process. If there are many observed variables
to condition on, the model can end up rejecting all synthetic rows because it cannot meet all
the specific conditions. Hence, a solution has been implemented that deals with the situation
where no synthetic row could be generated. The solution works by first sampling multiple
synthetic rows under fewer conditions and then finding out which of these synthetic rows is
most comparable to the observed variables in Ri. A more detailed elaboration of this solution
is given in the next chapter.

The following limitation is that GAN models can have convergence difficulties during the
training phase. If one of the neural networks learns too quickly, the learning capabilities of
the adversarial neural network will suffer. However, the training stability can be improved
by considering the two networks’ learning rates. Furthermore, an often occurring problem
for GANs is mode collapse. Hence, after the training has finished and the missing values
have been imputed, the generated values are analyzed to detect whether mode collapse has
occurred through visual inspection. This framework’s last challenge is the computational
time complexity of fitting multiple GAN models and creating multiple synthetic rows for one
missing value. Nonetheless, The severity of the time-complexity problem depends on the
number of rows that require imputation and the size of table Traw. In addition, the perfor-
mance of having multiple GAN models instead of one is analyzed to determine whether the
possible performance gain justifies the additional computational load. Nevertheless, multiple
interventions have been made to increase the time efficiency of the proposed framework.
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Chapter 4

The Proposed Framework

In this chapter, the proposed framework will be explained in greater detail alongside its
specific components. A high-level overview of the framework has been shown in figure 4.1.
Firstly, the framework takes as input a raw data set with missing values (indicated by ’NA’),
where the variables V can be either categorical or continuous. Note that in the example
matrix shown in the high-level overview, there are three fully observed rows since training
is not possible if no complete rows exist in the original input matrix. As long as the input
matrix is not empty, contains complete rows, and also contains rows with missing values, it
is eligible to continue to the following steps. Once these requirements have been checked,
the data types of each of these variables are determined automatically. Afterward, the input
matrix is normalized and remapped such that all continuous variables (including date times)
fall in the same range of [0,1]. For categorical variables, each distinct value is given a different
integer number. Therefore the range will be between 0 and the number of distinct variables.
After the pre-processing steps have finished, the data format is now suitable for the training
phase since it only contains numerical values at that point. The data set is first divided
into two matrices, one which contains no missing values while the other contains at least
one missing value for each row. The fully observed matrix is used to train each of the three
different CTGAN models. Each trained model is then used to impute the missing values in
the incomplete matrix, and the final imputations are then chosen based on a majority vote.
Lastly, the matrix is denormalized, and categorical variables are remapped again so that the
data format is identical to the input matrix. As an end product, the researcher obtains a
complete matrix where each missing value has been imputed, and all the observed variables
remain exactly the same. In the following subsections, each component is elaborated on in
more detail.
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Figure 4.1: High level workflow of the steps taken in the proposed framework

4.1 Data pre-processing

Firstly, the data types of the variables in the input matrix need to be determined so that they
can appropriately be transformed to suit the required data format when training the CTGAN
models. In total, there are three different data types that the framework differentiates from
each other: Continuous variables, categorical variables, and date-time variables. Notable is
that date-time variables require an additional pre-processing transformation, hence are not
given the same data type as other continuous variables. In the first step, the value formats for
all variables are checked to see whether they fit a date-time format such as ’year-month-day.’
If all the values in the variable have this same date-time format, then the date-time data
type is chosen for this variable. Another simple situation is when the values of a variable
contain alphabetical characters, in which case the variable is categorical. More problematic
is that variables that contain numerical values can not always be classified as continuous
variables. For instance, take a binary variable where values can either be 0 or 1; this should
be classified as a categorical variable. However, if the number of distinct values is greater
while the number of rows in the matrix is small, this might indicate that the variable type
is continuous. While on the other hand, if the number of distinct values is larger while the
number of rows in the matrix is significant as well, this could indicate that the variable type
is categorical. Thus, some threshold is necessary to determine the cut-off point based on
a proportional measurement that considers the variable’s distinct values and the number of
rows in the input matrix. This threshold can simply be calculated as:
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distinct ratio threshold = #distinct values÷#rows (4.1)

where:

#distinct values = number of unique values for a given variable
#rows = number of rows in the input matrix

Since the number of distinct values can never surpass the number of rows, the threshold shall
lie between 0 and 1. To set the distinct ratio threshold, the researcher can pass a fraction in
this range as a hyperparameter in the proposed framework. Take the following illustration of
the effect that the distinct ratio threshold can have on the definitive chosen data type: For
a given variable, the number of distinct values is 20, and the number of rows in the matrix
is 1000, then the distinct ratio of that variable is 0.02. Assuming that the threshold is set to
0.01, the variable will be classified as a continuous variable. However, if the number of rows
in the matrix is greater than 5.000 and the number of distinct values remains 20, then the
distinct ratio is smaller than 0.01. Therefore, the variable will be classified as a categorical
variable.

Once the data types have been detected for all variables in the input matrix, the next step
is to transform the matrix. Each variable is transformed, so the continuous variable falls
in a range of [0,1], and categorical variables are mapped to an integer number. Date-time
variables first have to be recast into a long integer and afterward similarly transformed to fall
in the same range of [0,1]. It is necessary that continuous variables have the same range since
comparing variables to each other would otherwise yield unfair results. Take for instance the
situation where variable V1 has a range of [0,10] and variable V2 has a range of [0,10.000]. A
small prediction error in V2 will likely be bigger than the whole range of variable V1; therefore,
V2 would dominate the evaluation metrics unless they are both transformed into the same
range. This transformation can simple be performed by applying the following formula to
each value in the continuous variable:

new value = (current value−min)÷ (max−min) (4.2)

where:

min = lowest value in the variable
max = largest value in the variable

This assumes that the number of distinct values in the continuous variable is ≥ 2, such that
max ̸= min. Which ultimately results in a new set of values that fall in the range of [0,1].
Next, the categorical variables need to be remapped to numerical values. Otherwise, the data
format does not meet the requirements to train a neural network. One standard method to
transform categorical data into numerical variables is to perform one-hot encoding. For a
given categorical variable V with n distinct categorical values, n new binary variables are
created to indicate the categorical value. However, this can drastically increase the input
matrix size with a tremendous amount of redundant information, especially if the number of
distinct values is significant. This size increase will make the training phase of the CTGAN
models significantly slower; hence, a simple alternative method has been chosen. Each distinct
value in the categorical variable V is remapped to an integer number. Thus, the range of the
variable will be between 0 and the number of distinct values. These mappings are saved such
that they can be reverted to the original values after imputation. This remapping strategy is
a suitable solution since the model does not yield fractional imputations for these variables,
which would be insensible since the categorical values have no order. After the normalization
and remapping have finished, this should result in a data set with numerical- and missing
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values. The complete rows are then split from rows that contain missing values such that
they can be used for the training phase, which shall be discussed in the next section.

4.2 CTGAN training

The training aspect of the GAN model is of vital importance for successful high-quality data
imputations. Figure 4.2 illustrates the training of the generator and discriminator for one
training iteration.

Generator

Discriminator

noise z

Sample

Synthetic
Rows

observed data

Real 
 Rows

Sample

Real Fake

Backpropagation

Loss

Figure 4.2: Overview of the GAN learning methodology, for one training iteration
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A sample is taken from the real data and from the generator’s distribution; both samples are
then forwarded to the discriminator. The discriminator does not know which rows originate
from the observed data or the generator. Its goal is to calculate the probability of the row
originating from the real observed data for each sampled row. The discriminator uses the
probability to classify rows as fake or real, from which the loss is calculated. At the beginning
of training, the samples produced by the generator are likely not of high quality. Nevertheless,
using backpropagation of error, the weights of the neural networks are updated after each
training iteration. As a result, after several training iterations, the samples produced by the
generator will more closely resemble samples from the observed data. Although, this assumes
that the training phase has been successful, which often is not the case. For instance, the
generator can get too strong compared to the discriminator, resulting in the generation of
low-quality data. On the other hand, if the discriminator overpowers the generator, then the
generator might eventually fail to learn how to produce more realistic outputs. Even though
the networks compete against one another by maximizing the loss of the other, it is still
essential that both networks converge to a balance.

Parameter tuning can help to achieve a more stable training phase. However, many param-
eters can be tweaked, such as the batch size and the number of discriminator updates in
relation to the generator. Though, the number of training iterations and the learning rates
of the generator and discriminator are more influential for the overall training stability of the
two neural networks. In figure 4.3 a failure case of GAN training is illustrated and afterward
explained.
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Figure 4.3: Generator and discriminator loss per epoch on COMPAS data set. The
learning rate of the Generator has been set to 2e-4, and the discriminator to 2e-5.

In the training example above, the discriminator learning rate has been reduced by tenfold
compared to the generator. As a result, the generator loss decreases steadily after each
epoch while the discriminator loss remains relatively stable around 0. Thus, the generator is
increasing in strength, which results in an overall strength imbalance between the generator
and discriminator. Since the discriminator is too weak due to the lower learning rate, the data
quality of the synthetic data created by the generator will likely be of poor quality. Hence, it
is necessary that a balance is reached between the two networks. The goal is to prevent the
two networks from diverging and instead have them converge to each other such that they are
roughly equal in strength. In figure 4.4, multiple combinations of learning rates are shown
and how they affect the training stability of the GAN model.
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Figure 4.4: Generator and discriminator loss per training epoch for the COMPAS data
set, using various combinations of learning rates.

Each model has been trained for 300 epochs in the six illustrations above. Also, note that the
range loss is the same for all six plots since this makes them easier to compare. By default, the
learning rates of the generator and discriminator are set to 2e-4. Interestingly, the generator
diverges for the first 50 epochs before converging into a balance with the discriminator.
Therefore, emphasizing the necessity that the networks are trained for a sufficient amount of
training iterations. In this case, the default learning rates were sufficient since the generator
and discriminator stabilized on their own in the second half of the training. Increasing the
learning rate of the generator while leaving the learning rate as the default value resulted in
contradicting results. In the top-right, the generator’s learning rate is tenfold higher than the
generator’s, while in the top-bottom plot, the generator’s learning rate is threefold higher.
Noteworthy is that convergence was achieved with a tenfold increase but not a threefold
increase. In the middle two plots, the learning rate of the discriminator has been increased
tenfold. However, increasing the discriminator’s learning rate does not seem to benefit the
overall learning stability. As the plots show, the loss of both networks becomes too volatile
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during training. Lastly, both learning rates are drastically reduced on the bottom left plot.
Nevertheless, this resulted in failure since the generator overpowered the discriminator in the
second half of training. Thus, the learning rates can drastically affect the training stability
and might need to be slightly altered based on the training data. Hence researchers should
pay close attention to the loss during training and might need to experiment with various
settings to achieve a balance between the networks.

4.3 Imputation method

Once all three models have been correctly trained, it is time to perform the last step of
imputing the missing values. Optimally, the goal would be to condition on all observed
variables for an incomplete row when generating a synthetic row. This optimal scenario has
also been illustrated in figure 4.5, where the variable V2 is missing and synthetic rows are
generated conditional on {V1, V3, V4}. Unfortunately, this might not always be achievable
if there are many conditions or when the conditions contain precise numerical values. The
reason for this is that conditional sampling works through a rejection-based process. The
trained generator is asked to create a synthetic row, and only if the synthetic row has the
same values for all specified conditions then this synthetic row shall be accepted. However, if
the sampled synthetic row does not meet all specific conditions, it will be rejected. The process
is repeated multiple times until a row has been sampled that meets all the requirements or
a maximum number of tries has been reached. This may be problematic because if a sample
could not be generated that meets all the conditions before the maximum number of tries has
been reached, the missing values in that row can not be imputed. Therefore, defeating the
proposed model’s purpose, which would take an incomplete data set as input and needs to
return a completed data set. A solution has been implemented in the proposed framework to
ensure that a complete data set is always returned. This solution is elaborated on in detail
later in this section.
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Figure 4.5: high level imputation overview for imputing one missing value

When diving back into figure 4.5, we can see that the proposed framework creates three
candidate imputations for each missing value. These candidate imputations are indicated
by the Greek letters α, β, and γ. The framework determines a final imputation based on a
majority vote. In the case that all three candidate imputations have the exact same value, any
of the three can simply be imputed. If on the other hand, α = β ∧ α ̸= γ or α = γ ∧ α ̸= β,
then α can be chosen as the final imputation. If β = γ ∧ α ̸= β, then β is chosen as

19



the final imputation. More difficult is when α ̸= β ̸= γ, because in this case the best
candidate imputation needs to be determined. One possible way is to evaluate how closely
the imputed row resembles the complete rows used to train the GAN models. The evaluation
function yields a number between 0 and 1, based on how closely the synthetic row resembles
the statistical properties of the original data. The candidate imputation that achieves the
highest score can then be used as a final imputation. However, this can be a computationally
expensive task, while the proposed framework already has a high computational load. Hence,
it is more practical to randomly choose any of the three candidate imputations as the final
imputation.

Next, the implemented solution shall be discussed, which deals with situations where a syn-
thetic row could not be generated when conditioned on the observed variables. See Algorithm
1 for the pseudo-code of the implementation in the proposed framework for one incomplete
row. As stated earlier, optimally, we would generate a synthetic row conditional on all ob-
served variables. However, this can often not be achieved when there are many variables
to condition on or when the variable is continuous and thus has many distinct values. The
proposed solution is to generate multiple synthetic rows that have only been conditioned
on the observed categorical variables. Then, the synthetic rows that most closely resemble
the observed continuous variables in the original row are established. This resemblance is
determined using the euclidean distance metric, where a shorter distance implies a closer re-
semblance to the continuous variables in the original row. For two continuous column vectors
α, β ∈ Rn, the euclidean distance can simply be calculated as:

Euclidean distance =

√√√√ n∑
i=1

(αi − βi)2 (4.3)

As an illustration, take a set of continuous column vectors [V1, V2, V3]. α = [1,5,3] and β =
[0,4,3], then the Euclidean distance between these vectors is

√
(1− 0)2 + (5− 4)2 + (3− 3)2

which equals 1.414. Since up to 50 synthetic rows are sampled conditional on the categorical
variables, this Euclidean distance is likewise calculated up to 50 times between the original
row’s numerical variables and each synthetic row’s numerical variables. Then, the top three
synthetic rows with the shortest distance are used for a majority vote to pick the final impu-
tation from this one model. If all three synthetic rows have different candidate imputations,
the row with the shortest distance is chosen as the final imputation. In the other cases, the
majority vote applies similarly to figure 4.5. Nevertheless, conditioning on all categorical
variables might still fail when no synthetic row was sampled with the same values. Hence, the
following process is applied to ensure that a complete data set can still be provided. Firstly,
we try to condition on all categorical variables. However, if sampling was unsuccessful, then
one of the conditions is removed randomly, and sampling is retried. This process is repeated
until sampling is successful and the missing values have been imputed, or until no conditions
are left, after which no samples are rejected.
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Algorithm 1 Missing row imputation algorithm

1: Input:
2: row \\row with missing values to impute
3: observed variables: Save all non-missing variables of input row in a dict
4: cont vars: Save all observed continuous variables of the input row
5: conditions: From observed variables save categorical variables
6: while #conditions ≥ 0 do \\’#’ implies ’number of’
7: try:
8: new data = model.sample(conditions, nrows=50) \\Sample up to 50 rows
9: distances = [ ] \\List to save distances from real row to synthetic rows

10: for fake row in new data do
11: dist = euclidean(fake row[cont vars], real row[cont vars]))
12: distances.append(dist)
13: \\save euclidean distance between the rows
14: end
15: sort(distances) \\sort distances list in ascending order
16: first place fake row = distances[0]
17: second place fake row = distances[1]
18: third place fake row = distances[2]
19: for variable in row do
20: if row[variable] = NaN do \\’NaN’ implies a missing value
21: \\Only the missing values are imputed in the original row
22: α = first place fake row[variable]
23: β = second place fake row[variable]
24: γ = third place fake row[variable]
25: if α ̸= β and β = γ then
26: row[variable] = β \\impute missing value with β
27: else \\Impute based on majority vote.
28: row[variable] = α \\impute missing value with α
29: end \\Imputations done, thus while breaks in line 36
30: except: ValueError \\Thrown if in line 8 no samples are generated
31: if #conditions ≥ 1 do
32: conditions.pop(random)) \\remove one random condition & retry
33: continue \\We keep trying with one less condition until successful
34: else
35: break
36: break \\Break from while loop & redo process for every incomplete row

37: end
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The imputation process can be computationally costly, depending on the number of missing
values and conditions. Additionally, there is a higher chance of rejection for a sampled row if
the condition is based on a categorical variable with many distinct values. On the other hand,
if the categorical variable only contains two groups and is not highly imbalanced in the data
set, then the generator easily meets this condition. Figure 4.6 illustrated the computation
time in seconds for 100 imputations with a growing amount of conditions.
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Figure 4.6: Computation time of imputing 100 missing values for one underlying GAN
model on the Adult Income data set.

As can be deduced from the figure, imputation was finished within one minute when less than
five conditions were used. However, the imputation time increased to almost an hour when
the number of utilized conditions was equal to fourteen. Note that this does not mean that
synthetic rows always managed to condition on these fourteen variables. Instead, sampling
often had to be re-tried with fewer and fewer conditions until successful. The researcher can
indirectly affect the number of conditions by fine-tuning the distinct ratio threshold during
training. Unfortunately, there is not a one-size-fits-all for the best number of conditions to
use since this heavily relies on the actual input data. Hence, researchers should consider the
number of missing values to impute and the difficulty of their conditions before imputation.
Nevertheless, if the time constraint is not an issue, a high number of conditions could still be
used without having to take into account the above-mentioned considerations.
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Chapter 5

Experimental Evaluation

In this section, the proposed framework will be evaluated in two different ways for three
different non-simulated data sets. Firstly, a novel evaluation metric is constructed that yields
an overall prediction error while considering mixed data type variables for fair comparisons.
Secondly, the performance of a machine learning classifier is evaluated post-imputation and
compared to other imputation frameworks. However, a brief overview of the utilized data sets
is first given, and their missing value patterns are analyzed. Afterward, the two evaluation
metrics shall be discussed in greater detail and then applied to the proposed framework and
various other widely-used imputation frameworks.

5.1 Utilized data sets

The performance of various imputation frameworks has been evaluated on three different real-
world data sets. In this section, the data sets are described, and the missing values patterns
are analyzed to check whether they are suitable for data imputation or instead need to be
slightly altered pre-imputation.

raw data set summary
Dataset #rows #Attributes Target-Class #Incomplete-

(Contin., Categ.) Proportions rows
German 999 21(3,18) Good credit(70%), 567

Bad credit(30%)
Compas 7214 52(22,30) Recidivist(45%), 7214

non-recidivist(55%)
Adult 48842 15(5,10) high-income(24%), 3620

low-income(76%)

Table 5.1: Brief overview of the characteristics of each utilized data set

As can be deduced from table 5.1, the three data sets have a significant size difference com-
pared to each other. This difference can be beneficial, as this allows for better insights into
the effect of the training sizes on the data imputation quality from the proposed framework.
All three data sets contain both continuous- and categorical attributes. However, the Compas
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data set stands out because of its many features. Furthermore, large class imbalances can
be identified from the German credit- and Adult income data sets. This imbalance can be
problematic when evaluating the performance gain of a classification model post-imputation
compared to other frameworks, which is what the second evaluation metric is based upon.
Hence, the class imbalance needs to be mitigated to ensure reliable results. Lastly, a note-
worthy takeaway from the data set characteristics overview is that the number of rows for
the Compas data set equals its number of incomplete rows. Thus, this data set contains not
one complete row while this is a prerequisite, as stated in the theoretical analysis chapter.
In the following subsections, the missingness patterns shall be further analyzed for each data
set, and a solution to the aforementioned issue shall be elaborated.

5.1.1 German Credit Data set

In this data set, the rows represent people that applied for a credit loan and, based on multiple
features, are classified as good (low-risk) or bad (high-risk). As mentioned earlier in table
5.1, there is a class balance of 70% for the low-risk class and 30% for the high-risk class.
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Figure 5.1: Missing data patterns of German Credit data set, where the light-blue cell
indicates observed data, and red cell indicates a missing value.
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In figure 5.7 an overview is provided of all the unique missing patterns in the data set. On
the right, the proportions indicate the commonness of the corresponding missing pattern.
Each column indicates a variable in the data set; a cell is colored red if the value is missing
for that variable or blue if observed. On the top, a histogram of the proportion of missing
values is provided per feature. Although, without a y-axis from which the specific proportions
can be deduced. The most important takeaway from the figure is that there are 432 fully-
observed rows. A fully-observed data set could also be obtained by removing the three columns
containing missing values. Nevertheless, for the first evaluation metric, 432 rows are used,
of which 50 are reserved for the test set. The small training set of this data set allows for
possible insights into the performance of the proposed framework when the generator and
discriminator are trained using a variety of training set sizes.

5.1.2 COMPAS Recidivism Data set

The compas data set originates from the popular compas algorithm, which has been used in
the American judicial system to determine the risk of a defendant re-offending a crime within
two years. The data set contains information such as criminal history, jail time, ethnicity,
and other sensitive information. Based on these features, a risk score is calculated by this
algorithm, with the end goal of mitigating human bias in the judicial system. However,
the algorithm had the opposite effect since it instead increased bias by assigning higher risk
scores based on specific ethnic groups. In figure 5.2 the unique missing patterns are illustrated
alongside the proportion of their presence in the data set.
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Figure 5.2: Missing data patterns of Compas Recidivism data set, where the light-blue
cell indicates observed data, and red cell indicates a missing value.
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Although the data set contains 7214 rows, there are no complete rows when examining the
missing patterns. This is the consequence of a subset of variables with a high proportion
of missing values. There is even one column that has no observations at all. Hence, these
columns are removed so there are enough complete rows to perform the analysis. After
removing these variables, there are 6951 complete rows which are then divided into a training
set and a test set.

5.1.3 Adult Income Data set

Lastly, the adult income data set contains 48842 rows, of which 45222 are completely ob-
served. Each row represents a person and contains sensitive information such as their ethnic
background, gender, and education level. The target outcome is a binary variable that de-
scribes the person’s income, specifically whether the income is greater than or equal to 50.000
or lower than 50.000. In Figure 5.9, it is clear that a large proportion of the rows in this data
set is completely observed (92.58%), which is more than sufficient to split into a train- and
test set for both evaluation metrics. However, as becomes clear from table 5.1, the target
variable has a very large class imbalance that must be dealt with for the second evaluation
metric. Nevertheless, the large amount of fully-observed rows should not pose a problem
when under-sampling from the majority class.
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Figure 5.3: Missing data patterns of Adult Income data set, where the light-blue cell
indicates observed data, and red cell indicates a missing value.
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5.2 Evaluation metrics description

5.2.1 Custom prediction error formula

The first evaluation metric has been designed to reflect the imputed values’ overall prediction
error. Traditional evaluation metrics such as (root) mean squared error or mean absolute
error are, in most cases, inapplicable since the provided table Traw can contain a mixture
of categorical- and numerical variables. If numerical variables in Traw have large range dif-
ferences, this could result in unfair comparisons between these variables. To clarify, a small
prediction error on a variable with a large range will likely dominate over a big prediction
error on a variable with a small range. It is for this reason that all numerical variables are
normalized to fall in the range of [0,1]. The prediction error of an imputed value for these
variables can then simply be calculated as | xpredicted − xobserved |.

For categorical variables, the prediction error of a missing categorical value xi is either 0 if
xi,predicted = xi,observed, or 1 if xi,predicted ̸= xi,observed. Thus, the assumption is made that
for any categorical variable that differs from the observed variable, the imputed variable is not
worse than any other imputed categorical variable. This assumption might not always be true,
but implementing a different system to determine different weights if xi,predicted ̸= xi,observed

depending on the imputed value might not be feasible without additional information about
the variable from the user. Hence, the trivial solution has been chosen to regard all imputed
categorical variables as equally wrong if not the same as the observed value. Furthermore,
combining the categorical- and numerical prediction errors into one score can be problematic,
even though both fall in the same range of [0,1]. Namely, the imputations of the categorical
variables are seen as either right or wrong. In contrast, the imputations of the numerical vari-
ables are evaluated based on the distance from the observed variable. As a result, the average
prediction error of the categorical variables will likely be higher than that of the numerical
variables. In order to prevent the average categorical prediction error from dominating the
overall prediction error score, an α constant is calculated to scale the average prediction error
such that both categorical- and continuous variables equally contribute to the overall predic-
tion error. The α constant is determined by first calculating the average of average-pairwise
distances for all numerical variables, dividing that by the average of average-pairwise distances
for all categorical variables. Thus, if these distances for all numerical variables are smaller
than the distance for the categorical variables, α shall be less than one such that both equally
contribute to the prediction error. Formally, the overall prediction error can be described as:

PredictionError =
#numeric

#total
×

nnum∑
i=1

(|xi,observed − xi,predicted|)

+
#categoric

#total
× α×

ncat∑
i=1

({
0, if xi,observed = xi,predicted

1, if xi,observed ̸= xi,predicted

)

where:

#numeric = number of numerical variables in Traw

#total = total number of variables Traw

#categoric = number of categorical variables in Traw

nnum = number of missing numerical values in Traw

ncat = number of missing categorical values in Traw
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This prediction error is calculated under an increasing missing rate for different imputation
frameworks. A lower prediction error would imply that, on average, the imputations are more
accurate compared to the observed variables. The results are specified and further elaborated
in subsection 5.3.

5.2.2 Classifier performance post-imputation

The second methodology to evaluate the imputation quality of the proposed framework is to
determine the performance difference of a classification model post-imputation when imputed
with different frameworks. In this case, a random forest classification model will be used,
and the performance is based on the accuracy- and ROC-AUC scores. For a given data set,
80% of the data will be used for training data and the remainder 20% for the test set. No
validation set is reserved since hyperparameter tuning is not essential for a random forest
model, unlike other classification models, such as k-nearest neighbors. Firstly, imputation
models will be trained on the complete rows of the 80% training set and afterward used to
impute all the missing values such that the training set contains no missing values. Then,
the random forest model shall be trained on this complete training set and used to classify
the binary target variable for all the rows in the test set. After the classification has been
performed, the accuracy- and ROC-AUC score can be calculated for the random forest model
and compared to the other frameworks. In order to handle class imbalances in the utilized
data sets, rows from the majority class shall be undersampled to create a balanced training
set. The accuracy score of a classification model can formally be described as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

The ROC-AUC score indicates the class separability capacity of the binary classification
model. When the AUC is 1, this will imply that the model perfectly distinguishes between
both classes. On the other hand, if the AUC score equals 0.5, the model has comparable
performance as a random classifier. The proposed framework will be compared to the same
imputation frameworks as in the first evaluation metric. After imputation of the missing data
in the training set, for each imputation framework, the random forest model accuracy- and
ROC-AUC scores will be calculated. The framework with the highest impact on the random
forest performance is chosen as the better imputation framework in this setting.
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5.3 Evaluation results

5.3.1 Results of custom prediction error

Missing rates in German Credit Data
Framework 10% 30% 50% 70% 90%
TGAIN (1 model) 0.2487 0.2543 0.2557 0.3176 0.3197
TGAIN (3 models) 0.2416 0.2605 0.2685 0.2941 0.2948
MissForest 0.3250 0.3187 0.3140 0.3527 0.3980
MICE 0.2840 0.3140 0.3054 0.3084 0.3002
KNNImputer 0.2525 0.2941 0.2941 0.3290 0.3155
IterativeImputer 0.3335 0.3368 0.3581 0.3572 0.3412

Table 5.2: Results are based on 382 training rows and 50 test rows, a lower prediction
error implies better overall imputations

Missing rates in Compas Recidivsm Data
Framework 10% 30% 50% 70% 90%
TGAIN (1 model) 0.1521 0.1532 0.1537 0.1558 0.1690
TGAIN (3 models) 0.1492 0.1582 0.1403 0.1446 0.1604
MissForest 0.1455 0.1569 0.1583 0.1662 0.1981
MICE 0.1618 0.1672 0.1600 0.1881 0.2007
KNNImputer 0.1535 0.1536 0.1821 0.1665 0.1821
IterativeImputer 0.1692 0.2148 0.1841 0.1841 0.3197

Table 5.3: Results are based on 6801 training rows and 150 test rows, a lower prediction
error implies better overall imputations

Missing rates in Adult Income Data
Framework 10% 30% 50% 70% 90%
TGAIN (1 model) 0.1279 0.1236 0.1197 0.1263 0.1585
TGAIN (3 models) 0.1208 0.1225 0.1215 0.1247 0.1557
MissForest 0.1297 0.1191 0.1289 0.1328 0.1610
MICE 0.1148 0.1276 0.1315 0.1303 0.1591
KNNImputer 0.1310 0.1313 0.1375 0.1536 0.1639
IterativeImputer 0.1317 0.1437 0.1436 0.1613 0.1620

Table 5.4: Results are based on 45722 training rows and 500 test rows, a lower
prediction error implies better overall imputations
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Figure 5.4: Prediction error progression of the different imputation frameworks for the
German Credit data set, a lower score implies better overall imputations.
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Figure 5.6: Prediction error progression of the different imputation frameworks for the
Adult Income data set, a lower score implies better overall imputations.

The proposed framework (TGAIN) has been compared to four other state-of-the-art imputa-
tion frameworks and also a less computational expensive variation that uses one GAN model
instead of three. In addition, the evaluation has been performed on three data sets ranging
from a low amount of training data (382 rows) to a high amount of training data (45722
rows). When examining the results of the German Credit data set, the proposed framework
achieved the lowest prediction error scores across the whole missing rate spectrum from 10%
up to 90%. Also, when utilizing three GAN models, the prediction error increased stably
as the missing rate increased. This stable increase was not the case when only one GAN
model was used or for any of the other imputation frameworks. Nevertheless, the proposed
framework with one underlying GAN model achieved better scores at missing rates of 30%
and 50%. Secondly, on the Compas recidivism data, the MissForest framework achieved a
better score at a 10% missing rate. Although, at higher missing rates of 50% and onward,
the proposed framework achieved the best scores. Lastly, for the Adult Income data set, the
TGAIN framework did not achieve the lowest overall prediction error on lower missing rates
of 10% and 30%. However, similarly to the other data sets, it achieved the best scores at
higher missing rates of 50% and beyond.

Thus, the proposed framework with three underlying GAN models tends to reliably achieve
lower overall prediction errors at higher missing rates, even at different training set sizes.
Although, at lower missing rates, TGAIN could not reliably achieve the best scores for all
utilized data sets. The performance gain generally tends to be rather small when comparing
the proposed framework to the other variation containing one underlying GANmodel. Despite
the computational load being three times as much compared to this other variation.
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5.3.2 Results post-imputation classifier performance

Model Accuracy scores (in %)
Framework German Compas Adult
TGAIN (1 model) 71.26 76.0 80.8
TGAIN (3 models) 70.1 76.6 83.9
MissForest 68.9 76.2 79.5
MICE 70.1 76.8 82.3
KNNImputer 65.5 75.2 76.5
IterativeImputer 67.8 74.8 78.4

Table 5.5: Accuracy scores of the random forest model on the test set post-imputation
using the different imputation frameworks, a higher accuracy score implies better over-
all imputations
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Figure 5.8: ROC-AUC scores for the different imputation frameworks trained on the
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As can be concluded from the results, the utilized imputation framework can have a signif-
icant effect on the resulting model performance. For instance, the TGAIN framework with
one GAN model achieved an accuracy score of 71.26 compared to 65.5 when using KNNIm-
puter for the German data set. This performance difference is again confirmed by these two
frameworks’ differences in AUC scores. Notable is that the MICE framework achieved the
same accuracy score as the proposed framework with three GAN models and even achieved
a slightly higher AUC score. Similarly, MICE achieved a slightly higher accuracy- and AUC
score in comparison with the TGAIN framework in the Compas data set. Nevertheless, the
performance difference between TGAIN, MICE, and MissForest was not significant for this
data set. The highest difference in performance was visible in the adult income data set; the
large number of missing values that needed to be imputed might be a possible explanation for
this. The proposed framework achieved the highest accuracy score of 83.9 and an AUC score
of 0.8605. Although MICE achieved a higher accuracy score than the alternative TGAIN
version, it did not receive a higher AUC score.

Based on the results of this evaluation metric and the previous one, it can be concluded that
the alternative TGAIN framework with one model might be better suited in many cases. To
clarify, the proposed framework only reliably achieved better scores at higher missing rates,
but the performance difference is not proportional to the additional computation time that
comes with it. In some cases, the proposed framework could not achieve higher scores than
MICE or MissForest. Nevertheless, for the situations where TGAIN achieves the best scores,
it does so with a larger difference compared to the situations where MICE/MissForest achieves
the best score. Moreover, TGAIN tends to outperform the KNNImputer and IterativeImputer
for both evaluation metrics reliably. MissForest, on the other hand, has shown to be less
consistent than the proposed framework since it achieved the second-worst performance on
the German data set. Lastly, the MICE imputation framework has shown to be very effective
for missing data imputation and has been more consistent in its results than MissForest.
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Chapter 6

Conclusion and Future Work
Directions

This last chapter shall provide a summary of the thesis. Afterward, the limitations of the
proposed framework will be discussed, including ethical considerations that researchers might
need to consider. Lastly, ideas for future works are provided with the aim of improving the
proposed framework even further.

6.1 Summary

Missing data forms a very common problem for researchers, and incorrectly handling these
missing values can degrade the quality of the results, reduce model performance, and may
even lead to wrong conclusions being drawn from the data due to biased inferences. Hence, it
is essential that these missing values are handled with the utmost care to prevent the problems
mentioned above. In this project, a framework is proposed for missing data imputation of
mixed-type tabular data using GANs. There have been many imputation models, but most
fail to catch the statistical properties of the underlying data, and the imputations might
distort the real data distribution. Thus, the proposed framework has been built with the idea
of creating high-quality imputations that mimic the underlying statistical data properties
more closely than other state-of-the-art imputation frameworks. The framework uses three
independently trained GAN models, each providing a candidate imputation for a missing
value. A final imputation is afterward chosen based on a majority vote. Optimally, we would
have conditioned on all observed variables for a given row to impute the missing values.
Nevertheless, as elaborated in chapter 4, this is often not achievable since a synthetic row
can not always be provided due to the rejection-based sampling process. Therefore, if there
are many conditions or conditions with a large number of distinct values, such as numerical
variables, all synthetic rows will likely be rejected since no row that meets the requirements of
all the observed variables could be sampled. For this reason, a solution has been implemented
which aims to generate up to 50 synthetic rows conditioned only on the categorical variables.
Then, using the euclidean distance metric, the top three rows with the most similar values
compared to the row that needs to be imputed are found. Three candidates are chosen from
the three synthetic rows, and a final imputation is likewise chosen based on a majority vote.
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The proposed framework has been compared to other state-of-the-art imputation methods,
using two evaluation metrics and three different data sets. First, missing values have been
introduced in these data sets for a growing number of missing rates. Then, these values are
imputed, and the prediction error is calculated between the imputed values and the actual
observed values. However, common-used error metrics such as the root mean square error
can not be used since there is a mix of continuous- and categorical variables in the data.
Hence, a novel prediction error formula is presented, which can be applied to mixed-type
variables and ensures that both variable types equally contribute to the overall prediction
error. The proposed framework has shown to reliably outperform the baseline methods on
high missing rates of 50% and beyond. In addition, the framework was competitive for lower
missing rates but could not reliably achieve the best scores for all three data sets. The second
evaluation metric is based on the performance of a random-forest classifier post-imputation
using different imputation frameworks. Missing data have been introduced in the data set
and are afterward imputed using these various imputation frameworks. Once a complete data
set has been achieved, the data is used as a training set to fit the random-forest classifier.
The random-forest model is then used to classify a 20% test set that was previously reserved.
Accuracy- and ROC-AUC scores are calculated to determine the best model, from which
afterward the best imputation model can be deduced. From the results, the conclusion can be
made that the utilized imputation framework can greatly affect the model performance. Both
the proposed framework and the MICE algorithm provided the best classifier models, and are
therefore seen as the better imputation frameworks. In the next section, the limitations of
the proposed framework shall be discussed.

6.2 Limitations

The proposed framework has several limitations that might pose a problem for researchers.
Firstly, as elaborated in section 4.2, training the GAN models might be unstable depending on
the utilized data set. It is essential that the generator and discriminator converge to each other
such that one neural network does not dominate in strength over the other. If the generator
overpowers the discriminator, this might ultimately result in low-quality data imputations.
Likewise, if the discriminator becomes too strong too quickly, the generator might fail to
learn from the discriminator. Researchers should therefore examine the discriminator- and
generator loss throughout the training iterations and adjust the learning rates accordingly
to ensure that the networks converge to an equilibrium. The next limitation is the possible
time complexity of imputing the missing values. In figure 4.6, it becomes clear that when
the number of conditions is high, the imputation time can increase tremendously. Hence,
researchers need to take into account the number of missing values in their data set, the
number of conditions to use, and the complexity of these conditions. The number of conditions
can indirectly be effected by adjusting the distinct ratio threshold when using the proposed
framework.

6.3 Ethical considerations

The proposed framework does not lead to ethical concerns, since missing values are imputed
with already existing values in the data set. Noteworthy is that this framework aims to
impute all missing values in the data set, thus it does not differentiate sensitive attributes
from non-sensitive attributes. Hence, researchers may opt to remove sensitive attributes such
as gender and race from their data sets before utilizing the framework. The same principle
applies to specific existing sensitive values in the data set. Researchers can simply remove
these instances from the data set such that they are not used for imputation at a later stage.
Nevertheless, utilizing imputation frameworks in general might not be a suitable solution
for all scenarios where missing values need to be handled. Suppose the post-imputed data
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set is used to raise the performance of a classification model, like in the second evaluation
method. In that case, it might be important to consider the classification model’s impact
on society. To illustrate, take a classification model used to evaluate whether people qualify
for a loan, and an individual is denied that loan due to the values that have been imputed.
This may be problematic because an individual might be denied the loan as an indirect result
of the imputation framework, since the loan might have been accepted if the missing values
were imputed with other values. Therefore, a more vigilant approach might be necessary for
situations where the end-use case of the data set is to build a model which may have a high
impact on people’s lives. One appropriate method, which may be feasible in certain cases, is
to simply acquire additional observed data for instances where the model’s output is highly
affected due to the imputations.

6.4 Future work

Several directions can be investigated to improve the proposed imputation framework further.
As mentioned in theoretical analysis, the assumption is made that variables are independent
of each other. Take, for example, the two variables ’start date’ and ’end date’, where only one
has been observed and the other needs to be imputed. In the current proposed framework, the
situation can occur where the missing value is imputed with a date that lies before the start
date or after the end date. Since these imputations would be insensible, the researchers could
improve the overall quality of the imputations by implementing a method that automatically
finds sets of arguments for each variable, which the imputed value needs to satisfy before
being accepted. Nevertheless, this shall likely increase the computational load of the proposed
framework even further since more samples might be rejected. Hence, another direction would
be to reduce the computational complexity of the framework. More efficient imputation
algorithms could be implemented, and other time-reducing methods such as investigating
the effect of utilizing fewer layers in the neural networks on the results could be assessed.
Lastly, only implicit missing values have been imputed using the proposed framework in
this research. However, researchers could focus on automatically identifying explicit missing
values (disguised under a fake value) and impute those too. Namely, it might be interesting
to determine whether imputing explicit missing values in the data set could lead to a better
classification model than not imputing these disguised missing values.
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