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Layman’s summary 

The Circle of Willis (CoW) is a structure of arteries that supply blood to the brain. Abnormalities in 

this system can cause a series of cerebrovascular diseases, including unruptured intracranial 

aneurysms (UIAs). UIAs are caused by the weakening of a wall of an artery, which expands in volume. 

This can lead to rupture (subarachnoid hemorrhage, SAH), which causes death in over 35% of cases 

and leaves most of the survivors with long-term disability.  

 

In cases of aneurysms with a diameter above 5 mm, the abnormality can be surgically treated. This 

risky procedure, however, is linked with poor neurological outcomes in 6-10% of cases. Frequently, 

smaller aneurysms are left untreated because the risk of preventive repair does not outweigh the 

risk of spontaneous rupture, and are monitored through imaging (e.g. TOF-MRA or CTA). Diagnosis 

is possible through imaging, but its accuracy might depend on many factors including quality of the 

MRA, level of experience, size and position of the aneurysm. In fact, in up to 10% of cases, UIAs are 

missed during screening, especially for small aneurysms. For this reason, an automatic atlas-based 

method of at-risk-areas and aneurysm detection is proposed. 

 

The atlases, based on the TOF-MRAs of 544 healthy adults, can address the high variability in the 

anatomy of the CoW, differences in age and types of scanner.  This pipeline uses 4 statistical atlases 

and a TOF-MRA from a patient. The patient image gets preprocessed, its CoW is segmented, and the 

radius of the resulting vessels is calculated (radius map). Then, the preprocessed atlases are 

registered to the preprocessed TOF-MRA. Lastly, the registered atlases and radius map are used to 

calculate the Z-score map. The Z-score maps are represented as 3D colour-coded maps superimposed 

on the TOF MRA image. They are used as a way to highlight areas on the CoW that significantly 

diverge from the healthy anatomy.  

 

In this study, Z-score maps from 19 patients and 18 healthy subjects are compared. Moreover, two 

types of binary masks are evaluated: the manually segmented aneurysm mask provided with the 

patient data and a binary 3D sphere of fixed radius. From the analysis of the two binary masks, we 

concluded that the sphere, with its larger volume, performs better in terms of aneurysm detection. 

This finding could prove useful because it would be a quicker solution compared to labor-intensive 

and time-consuming manual segmentation. From the comparison between patients and healthy 

images, we see that this method is able to detect the difference between an image containing an 

abnormality and one that does not. This could serve as a quick way to sort through large amounts of 

unlabeled images. More importantly, this pipeline is able to correctly detect the aneurysm in the 

image in 16 cases out of 19 (sensitivity 84%) using the aneurysm binary mask, and 17 cases out of 

19 (sensitivity 89%) using the sphere. 

 

In conclusion, this color-coded map can be used to assist clinicians in focusing their attention on areas 

that are at risk of developing an aneurysm or the aneurysm itself. It could also be useful in research, 

being able to quickly sort large amounts of unlabeled data, or in concomitance or support of 

segmentation techniques.  
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ABSTRACT  

Abnormalities in the arterial system can lead to a series of cerebrovascular diseases including 

unruptured intracranial aneurysms (UIAs). UIAs are present in around 3% of the population, and 

upon rupture, 35% of cases result in death and most of the survivors are left with long-term 

disabilities. Aneurysms are usually small in size and vary greatly in shape and position in the vessel 

configuration. It is one of the reasons why up to 10% of UIAs are missed during screening. For this 

reason, in this study, an automatic atlas-based method of at-risk-areas and aneurysm detection is 

presented. The pipeline outputs a color-coded map that can be superimposed on the TOF-MRA image, 

indicating areas that diverge from the average healthy anatomy in the form of Z-scores. High Z-scores 

are potentially linked to the presence of abnormalities. This method was tested on 19 TOF-MRA 

containing one aneurysm above 5 mm in radius and 18 images with healthy anatomy. After 

preprocessing, the TOF-MRA underwent vessel segmentation and vessel radius calculation. The 

resulting image, as well as the preprocessed atlases registered to the patient’s space, are then used 

to calculate the Z-score maps. Using two different types of segmentation for evaluation, aneurysms 

were detected in up to 17 images out of 19.  An analysis of the Z-scores in areas outside the 

segmentations showed no statistical differences compared to the Z-score map from healthy subjects. 

This method has the potential to be useful in a clinical setting, as well as research, as part of larger 

projects.  

Keywords: Unruptured Intracranial Aneurysm (UIA); Aneurysm detection; Z-score; TOF-MRA; Atlas; 

Vessel abnormalities  
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1. Introduction 

When the wall of an artery is weakened it can 

expand creating an aneurysm, commonly found in 

the Circle of Willis (CoW). Up 3% of the population 
presents unruptured intracranial aneurysms (UIAs), 

with a strong prevalence of cases in first- and second-

degree relatives of patients (around 20%).1,2 This 

type of degenerative disorder can be influenced by a 

combination of genetic, idiopathic and 

environmental risk factors, yet it is still unclear how 

those factors contribute to the development of 

aneurysms.3,1,4  

The rupture of an aneurysm leads to subarachnoid 

hemorrhage (SAH), which results in death in 35% of 

cases, and leaves most of the survivors with long-

term disability.5 An accurate and early diagnosis is 

important since preventive therapy has been 

associated with more favorable clinical outcomes, 

lowering the risk of death and disability caused by 

rupture.6 

Surgical clipping or endovascular treatments can 

be used to preventively repair the aneurysm. These 

procedures, however, are linked with poor 

neurological outcomes in 6-10% of cases, which in 

many cases is higher than the risk of rupture itself. 

Frequently, small aneurysms (<5 mm in diameter) 

are left untreated because the risk of preventive 

repair does not outweigh the risk of spontaneous 

rupture. In this case, imaging (e.g. TOF-MRA or CTA) 

is used to monitor the dimension of the aneurysm 

over time.3 To this end, three-dimensional time-of-

flight magnetic resonance angiography (3D TOF-

MRA) is often used, being a non-invasive method to 

image the blood flow within the vessels in the brain.6 

Often aneurysms are incidentally detected while 

investigating other non-specific symptoms (e.g. 

headache and vertigo) since aneurysms rarely 

present symptoms before rupture.3 Radiologists can 

diagnose aneurysms from TOF-MRAs, however, their 

diagnostic accuracy depends on many factors, 

including quality of the MRA, level of experience, size 

and position of the aneurysm.7 In fact, in up to 10% of 

cases UIAs are missed during screening, especially 

small aneurysms.8  

Furthermore, abnormalities in the arterial system 

are the cause of many cerebrovascular diseases, such 

as stroke (ischemic and hemorrhagic), arteriovenous 

malformations, white matter hyper-intensities and 

atherosclerosis. 9–12 

For this reason, an automatic or semi-automatic 

tool to detect cerebrovascular abnormalities and 

aneurysms could prove diagnostically useful. 

Moreover, typically research screening studies for 

patients with a high risk of UIAs involve a large 

volume of TOF-MRA images, and an automatic tool 

would allow researchers to analyze the data faster 

and more accurately.  

Due to the high complexity of this issue, many 

different types of (semi-) automatic UIA detection 

methods have been developed.  Some semi-automatic 

methods are mostly based on the shape of the 

aneurysm, other automatic techniques rely on deep 

learning.  These types of detection can be voxel-based 

or surface-based, for example using vessel surface 
meshes.8,13  

 

In this report, an automatic atlas-based method of 

at-risk-areas and aneurysm detection is described. As 

a way to address the high variability in the anatomy 

of the Circle of Willis11 (CoW), age and different 

protocols and scanners used, four types of statistical 

cerebroarterial atlases based on healthy patients are 

employed.9 These statistical cerebroarterial atlases 

are based on the TOF-MRA of 544 healthy adults, and 

they represent morphology and distribution of the 

artery system in the form of mean intensity in the 

TOF-MRA, artery radius and its standard deviation 

and artery probability. From the combination of the 

atlases and the TOF-MRA images from patients, a 3D 

map of coefficients (Z-score) has been calculated and 

used as a way to highlight areas on the CoW that 

significantly diverge from the healthy anatomy. The 

output is shown as a colour map overlaid on the TOF 

MRA image, and it is evaluated through visual 

examination and statistical analyses.  
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2. Materials and Methods 

2.1 Data 

2.1.1 Statistical Atlases 

The statistical atlases of cerebral arteries used 

have been created by Mouches and Forkert9. They are 

based on 544 TOF-MRA and T1-weighted images 

from healthy subjects. The images are acquired at 

different centres and scanners, from individuals with 

an age range of 19-86 years (mean: 47 years), with a 

slight prevalence of males (54%). The atlases have an 

isotropic voxel dimension of 0.5 mm3. A brief 

description of the atlases is presented below, more 

details can be found in the original paper9. 

1. TOF MRA average atlas (intensity atlas). Each 

voxel represents the mean of the intensity of 

the corresponding voxel in all the 3D images.  

2. Artery probability atlas (probability atlas). It 

is the average of the artery segmentations from 

all patients. Each voxel represents the 

probability between 0 and 100 for a voxel to be 

part of an artery.  

3. Mean artery radius map (radius atlas). 

Represents the mean radius in each voxel. 

4. Standard deviation map (STD atlas). 

Represents the standard deviation of the artery 

radius for each voxel. 

2.1.2 Dataset 

The dataset used in this study is a subset of the 

data released as part of the ADAM challenge for 

MICCAI 20208. From the 113 cases in the released 

training dataset, a subset was made of patients 

presenting one aneurysm of at least 5 mm of radius 

(n= 20, patient dataset) and 18 images without 

aneurysms were used as controls for comparison 

(healthy dataset). A patient case consisted of a bias-

corrected TOF-MRA image, a binary mask of the 

aneurysm, and a file containing the voxel coordinate 

of the center of mass of the aneurysm and the radius 

for all unruptured and untreated aneurysms. Other 

files available were not used in this study.  

2.2 Methods 

A schematic description of the pipeline can be 

found in Figure 1. 

2.2.1 Preprocessing  

The TOF-MRAs and the four atlases (as described 

in sections 2.1.1 and 2.1.2) were resampled to the 

mean voxel size of the images in the dataset (0.357, 

0.357, 0.500) mm. The intensity values of the TOF-

MRA and intensity atlas were normalized between 

the 5th and 95th percentile (histogram correction). 

Before resampling, the aneurysm segmentation was 

thresholded, keeping only values of 1 (untreated 

aneurysm) (Figure 1.a).  

Firstly, an existing, trained CNN model with 3D U-

Net architecture10 was used to perform cerebral 

vessel segmentation from the pre-processed TOF-

MRA images. The main vessels (including the Circle 

of Willis), were then selected from the extracted 

vessels segmentation using connected component 

analysis (3D-26 neighborhood, minimum cluster size 

1000 voxel) using MeVisLab (MeVis Medical 

Solutions AG, Bremen, Germany). The performance of 

the segmentation CNN was already evaluated in 

previous studies10,13 and each segmentation was 

visually checked. Due to the large anatomical 

Figure 1. Representation of the pipeline used to calculate the Z-score maps for both the patient and healthy dataset.  
(*) not used for healthy dataset. 
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variability of the CoW, a more conservative approach 

regarding the inclusion of vessels allowed a larger 

amount of branches to be included (Figure 1.b).  

Secondly, after vessel segmentation and removal 

of small unconnected components, the Danielsson14 

radius of the vessels was determined. This algorithm 

was chosen as it was the same as was performed by 

Mouches9 to create the radius atlas. In order to do 

that, from the segmented image two images were 

created with opposite values of background and 

foreground (0,1). From the image with a positive 

foreground, skeletonisation was used to extract the 

centerline and added to the image with a positive 

background. The resulting image was used to 

calculate the Danielsson radius map (Figure 1.c).  

Lastly, to generate a Z-score of the patient radius 

map relative to the atlas, it was important that all 

images were registered to each other (Figure 1.d). 

Firstly, for each TOF-MRA, the intensity atlas was 

registered to the image using affine and B-spline (see 
appendix for parameter files). Using the resulting 

registration parameters, the other three atlases 

(radius, standard deviation and probability) were 

then transformed to the same space as the patient 

TOF-MRA (with final B-spline value = 1), and the 

Jacobian map was calculated.  

The registration of the atlases to the patient’s 

space was evaluated ensuring that the resulting 

atlases maintained intensity values in the correct 

range (intensity atlas: [0-1], mean radius atlas: [0-4], 

probability atlas: [0-100], standard deviation atlas: 

[0-1.3]). The Jacobian map was carefully examined to 

ensure the absence of foldings of large dimensions, 

especially if those areas would overlap with the CoW 

in the registered image. In that case, the registration 

was assumed inadequate and the TOF-MRA was 

excluded from further analysis (excluded n =1). For 

further information about the Jacobian, we refer to 

the Elastix Manual15.  

2.2.2 Z-score Map Generation 

The Z-score is a standardized parameter that 

quantifies how much a new observation diverges 

from the normative average. If the Z-score is 0, the 

observation is identical to the mean score, if it is 1 

indicates that that observation is greater than the 

mean value and diverges from it by 1 standard 

deviation and so on.  

The Z-score of the radius map 𝑥 was determined 

relative to the registered radius atlas 𝜇 and standard 

deviation atlas 𝜎 to generate a patient Z-score map.9 

In the patient radius image, the Z-score was 

calculated for each voxel, 𝑖 (Eq. 1, Figure 1.e). 

                                 𝑍𝑖      =
𝑥𝑖 − 𝜇𝑖

𝜎𝑖
                           (𝐸𝑞. 1) 

The resulting patient z-score map was masked 

using the registered probability atlas (threshold 0.1) 

to reduce noise and remove detections outside the 

vessels. For future steps, we only focus on positive Z-

scores due to the nature of the abnormalities that we 

want to detect. 

2.3 Evaluation 

In the development of the pipeline, a visual 

evaluation was performed at each step. Color Z-score 

maps were made of the vessels, where higher Z-

scores could indicate abnormalities and aid 

radiologists in cerebrovascular assessment (Figure 

3.a). 

Figure 2 summarizes the experiments performed 

to evaluate the Z-score map and its ability to detect 

abnormalities (especially aneurysms). For each 

image within a certain category, mean, standard 

deviation and percentiles (25th, 50th, 75th, 95th, 99th, 

and 100th) have been calculated for non-zeros values 

Figure 2. Schematic representation of the evaluation strategy 
used to assess the aneurysm detection performance in the Circle 
of Willis. 
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in the Z-score maps. These types of information have 

then been represented graphically.  

2.3.1 Patient and healthy dataset 

Firstly, an overall analysis of the patient and the 

healthy dataset was provided (Figure 2, 2.3.1). For 

each full Z-score map in both datasets, the mean, 

standard deviation and percentiles of Z-scores were 

determined. Then the two sets of percentiles in the 

healthy and patient groups were compared using 

one-way ANOVA to test for statistically significant 

differences (p < 0.05).  

2.3.2 Binary mask: Aneurysm and Sphere  

For the analysis of the Z-score maps on the patient 

images, two types of aneurysm segmentation have 

been used. The first is a binary mask of the aneurysm, 

a voxel-wise segmentation provided with the dataset. 

The second aneurysm segmentation is a binary 3D 

sphere centered in the center of mass of the 

aneurysm, with the radius of the largest radius (in 

mm) found in the text file provided in the dataset. 

An analysis of the two types of masks has been 

conducted, comparing volumes and amount of non-

zero Z-scores found within their boundaries (Figure 

2, 2.3.2). 

2.3.3 Segmented Aneurysm and Sphere  

In this section, the Z-scores contained in the 

binary segmentations are evaluated (Figure 2, 2.3.3). 

For each image, a comparison (one-way ANOVA, p < 

0.05), between the segmented aneurysm and sphere 

is performed. The aim is to detect which 

segmentation type performs better in aneurysm 

detection. 

2.3.4 Segmentations and Backgrounds 

We define as background the Z-scores maps with 

the segmentation aneurysm or sphere removed. To 

assess aneurysm detection performance, an analysis 

comparing the Z-scores within the segmented areas 

and their background is performed (Figure 2, 2.3.4). 

If the area within the segmentation had a statistically 

different value from the background (p < 0.05, one-

way ANOVA test), it was considered true positive 

detection of an aneurysm. Sensitivity was calculated 

as the total number of true positives divided by the 

total number of aneurysms (number of images) in the 

patient dataset. This analysis was performed for both 

the aneurysm and the sphere segmentation.  

Figure 3.a Example of Z-score map for a successful detection.  
In this case, the aneurysm binary mask is shown (light blue).  
The green color indicates a low value Z-score, the red a higher one. 
We can see how other potential abnormalities are detected in the 
background.  
Figure 3.b Example of an unsuccessful detection. The Z-scores 
detected have low values, not significantly different to the 
background. 
Figure 3.c  For the same patient, we see on the left a representation 
of an unsuccessful detection of the aneurysm using the aneurysm 
binary mask; on the right, its successful detection using the sphere. 

a. 

b. 

0                       0.5                        1                        1.5                    >2 

c. 
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 2.3.5 Backgrounds and healthy dataset 

With the backgrounds defined in section 2.3.4 for 

both aneurysm and sphere segmentation, two types 

of analysis have been performed (Figure 2, 2.3.5). 

The first comparison was between Z-scores from 

the backgrounds of the aneurysm and sphere for each 

image. The second was made between the percentiles 

of the two types of backgrounds and the healthy 

database (p 0,05, one-way ANOVA in both cases). The 

aim is to understand if the Z-scores in the background 

of images from patients have substantial differences 

from the ones in healthy subjects.  

3. Results 

3.1 Patient and healthy dataset  

The 19 images from the patient dataset had one 

aneurysm with a mean radius of 6.1 ± 0.6 mm (range: 

5.12 and 7.12 mm). From these, the Z-score maps 

produced had Z-scores in the range 0.00 - 4.84 (mean 

maximum value 2.6 ± 0.85), whereas the healthy 

dataset varied within the range of 0.00 - 3.09 with a 

mean maximum value of 2.03 ± 0.66. 

Figure 4 illustrates the percentiles of Z-scores 

from the patient and healthy dataset. The differences 

between every Z-score percentile from the two 

groups found to be was statistically significant (p < 

0.05, ANOVA one-way test).  

 

3.2 Binary mask: Aneurysm and Sphere 

As described in section 2.3.2, two types of 

segmentation have been used to evaluate this 

pipeline (Figure 2, 2.3.2). The sphere had a radius of 

7.12 mm for all images.  Its volume was between 2 

and 10 times the volume of the aneurysm 

segmentation (mean value 4.4 ± 2.4) and 

incorporated it entirely. As expected, the sphere 

contained more voxels with positive Z-scores 

compared to the aneurysm, more specifically 

between 1.02 and 23.50 times (3.62 ± 6.53), 

representing 4.3 ± 2.4% and 18.8 ± 9.4% of the 

volume of the sphere and segmented aneurysm. An 

example can be visualized in Figure 3.c. 

3.3 Segmented Aneurysm and Sphere 

In this section, the Z-scores in the segmented 

aneurysm and sphere were compared for each image 

(Figure 2, 2.3.3).  As previously mentioned, the two 

segmentations contained a different amount of 

positive Z-scores. Nonetheless, significant 

differences (p < 0.05, ANOVA) have been found only 

in 4 images out of 19. By visual inspection of the 

images, a cluster of higher Z-scores was usually found 

mostly in the sphere, and only partially in the 

aneurysm segmentation (Figure 3.c). As we can see in 

Figure 5, the segmented aneurysms (A) tend to have 

a slightly lower mean Z-score but a higher standard 

deviation compared to the sphere (S).  

3.4 Segmentations and Backgrounds 

In this section, as described in section 2.3.4, the Z-

score map of the segmented areas has been 

compared to their relative background (Figure 2, 

2.3.4). Only 2 images did not present statistically 

significant differences (p <0.05, ANOVA test) for both 

pairs of segmentation and background. This means 

that the aneurysm was not detected, therefore we 

consider this a false negative detection (Figure 3.b). 

In one case, however, a significant difference was 

found for the sphere segmentation, but not for the 

Figure 4. Comparison between the percentiles of the non-zero Z-
scores from each image between the patient dataset (P) and the 
healthy dataset (H). 
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aneurysm. The aneurysm detection sensitivity for 

each type of segmentation is 84% for the aneurysm 

and 89% for the sphere.  

3.5 Backgrounds and healthy dataset 

From the comparison image by image between the 

background of the sphere and the background of the 

aneurysm, only in 2 images a significant different (p 

< 0.05, ANOVA test) was found. 

The calculation of statistical differences between 

the Z-scores percentiles of healthy group, aneurysm 

backgrounds and sphere backgrounds did not show 

any statistical difference for each combination of the 

three groups (Figure 2, 2.3.5)  

  4. Discussion 

In this paper, an automatic atlas-based method of 

at-risk-areas and aneurysm detection is presented. 

This method, based on the use of atlases from healthy 

subjects, can output a colour-coded Z-score map in a 

few minutes, requiring minimal interaction from the 

operator. This study showed that images containing 

an abnormality result in Z-score maps that are 

significantly different compared to the ones that do 

not. This characteristic could prove useful as a way to 

flag in advance images that might present some sort 

of abnormalities, especially in a large dataset of 

images. The presence of aneurysms is linked with 

higher Z-scores, and this pipeline was able to 

correctly identify their presence in 84% and 89% of 

images, depending on the type of segmentation used.  

 

In their study, Mouches and Forkert9 indicated 

how even healthy individuals could present high Z-

scores (absolute values above 2) due to different 

anatomy and, for this reason, a number of healthy 

subjects have been included in this study for 

comparison. It is important to highlight that instead 

of absolute values, only positive Z-scores have been 

analyzed due to the origin of the abnormality that we 

are trying to detect (vessels whose radius exceeds the 

population average). 
This study proved that Z-score maps from healthy 

subjects present significant differences compared to 

the ones from patients, and that these differences are 

Figure 5. Visual comparison of the percentiles of the Z-scores of each image in each category:  aneurysm segmentations (A), 
sphere segmentations (B), backgrounds of aneurysm (BA), backgrounds of sphere (BS), as defined in section 2.3.4, and images 
from the healthy database.  



9 

due to the presence of the aneurysm. This indicates 

that even if small abnormalities are found in the 

background of the segmented images, their 

magnitude is not high enough to be flagged as an 

aneurysm.  

Only in two images the segmented areas and the 

backgrounds did not present a significant difference, 

and we can consider that as a false negative detection. 

A possible reason could be some registration or 

segmentation issue (Figure 3.b). 

 

Due to the need for an experienced professional to 

perform aneurysm segmentation and the time-

consuming nature of this process, we demonstrate 

the use of a sphere segmentation. The sphere proved 

to work slightly better compared to the binary 

segmentation provided, being able to better include 

abnormalities found in the proximity of the 

aneurysm segmentations, but not entirely within it. 

This could be caused by a slight misalign between the 
TOF-MRA image and binary mask due to resampling 

and registration, or issues during segmentation or 

registrations.  

4.1 Limitation to the study 

In this study, only 19 images from the patient 

database and 18 from the healthy database have been 

compared, and a larger sample size would bring a 

stronger statistical power. Moreover, relatively large 

aneurysms have been analysed, in which the Z-score 

maps reached higher values. For smaller 

abnormalities or aneurysms, smaller Z-scores have to 

be expected. This could make the detection of 

aneurysms of small size more difficult. It is to be 

questioned, however, if the use of atlases can 

represent well all degrees of anatomical variability of 

the CoW. Lastly, including a clinician’s expertise in 

the analysis of the background of the images would 

have been beneficial. In this way, it would have been 

possible to discern if high Z-scores clusters in the 

images are indeed linked to abnormalities, areas at 

risk of developing aneurysms, or just noise.  

4.2 Future work 

The current pipeline is only able to detect the 

presence of the aneurysm in the image, but not its 

coordinates. A way to automatically detect significant 

clusters of high Z-scores and define their position 

could be a useful addition to the pipeline. 

Furthermore, once the algorithm is developed, it 

would be possible to rank abnormalities by risk 

category, adding more information to the color-

coded map. Additionally, it would be interesting to 

see how the pipeline performs with smaller 

aneurysms and with the presence of more than one 

aneurysm.   

5. Conclusion 

This pipeline is able to create a color-coded map 

indicating areas in the brain that diverge from the 

average healthy anatomy. This only requires a TOF-

MRA image and the 4 statistical atlases, and minimal 

interaction from the operator. This color-coded map, 

which can be superimposed on the TOF-MRA image, 

could be used to assist clinicians in focusing their 

attention on small areas at risk of developing an 

aneurysm, or the presence of the aneurysm itself. 

Moreover, it can be useful for the researcher to sort 

large amounts of data, or in concomitance to other 

segmentation or detection techniques.  

In conclusion, this pipeline can be used to discern 

between healthy and patient data, and accurately 

detect the presence of aneurysms in up to 89% of 

images.  
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APPENDIX 

Parameter files for the registration of the pre-processed intensity atlas and TOF-MRA. The resulting transformation 

parameters are used to transform the radius, STD and probability atlas (changing final B-spline =1) (Section 2.2.1).  

 

I) Affine transformation 

 
(NumberOfResolutions 4) 

(HowToCombineTransforms "Compose") 

(AutomaticTransformInitialization "true") 

(AutomaticScalesEstimation "true") 

(AutomaticTransformInitializationMethod 

"CenterOfGravity" ) 

 

(WriteTransformParametersEachIteration 

"false") 

(WriteResultImage "false") 

(ResultImagePixelType "float") 

(ResultImageFormat "nii.gz") 

(CompressResultImage "true") 

(WriteResultImageAfterEachResolution 

"false")  

(ShowExactMetricValue "false") 

 

//Maximum number of iterations in each 

resolution level: 

(MaximumNumberOfIterations 1000)  

 

//Number of grey level bins in each 

resolution level: 

(NumberOfHistogramBins 32 ) 

(FixedLimitRangeRatio 0.0) 

(MovingLimitRangeRatio 0.0) 

(FixedKernelBSplineOrder 3) 

(MovingKernelBSplineOrder 3) 

 

//Nr of spatial samples used to compute 

the MI in each resolution level: 

(ImageSampler "Random") 

(NumberOfSpatialSamples 2000 ) 

(NewSamplesEveryIteration "true") 

(CheckNumberOfSamples "true") 

(MaximumNumberOfSamplingAttempts 

10) 

 

//Order of B-Spline interpolation in each 

resolution level: 

(BSplineInterpolationOrder 1) 

 

//Order of B-Spline interpolation used for 

applying the final deformation: 

(FinalBSplineInterpolationOrder 0) 

//Default pixel value for pixels that come 

from outside the picture: 

(DefaultPixelValue 0) 

 

(MaximumStepLength 4.0) 

II) B-spline 
 

//______ImageTypes___________________________ 

(FixedInternalImagePixelType "float") 

(FixedImageDimension 3) 

(MovingInternalImagePixelType "float") 

(MovingImageDimension 3) 

 

(ErodeMask "false" ) 

(FinalGridSpacingInPhysicalUnits 5.0 5.0 

5.0) 

(HowToCombineTransforms "Compose") 

 

(WriteTransformParametersEachIteration 

"false") 

(WriteResultImage "true") 

(ResultImagePixelType "float") 

(ResultImageFormat "nii.gz") 

(CompressResultImage "true") 

(WriteResultImageAfterEachResolution 

"false")  

(ShowExactMetricValue "false") 

 

(UseFastAndLowMemoryVersion "true") 

(DefaultPixelValue 0)   

 

//______Similarity Metric______________________ 

(Metric 

"AdvancedMattesMutualInformation") 

 

//______ Image Sampler _______________________ 

(ImageSampler "RandomCoordinate") 

(UseRandomSampleRegion "true") 

(SampleRegionSize 50.0 50.0 50.0) 

(NumberOfSpatialSamples 2000 ) 

(NewSamplesEveryIteration "true") 

(CheckNumberOfSamples "true") 

(MaximumNumberOfSamplingAttempts 

10) 

 

(Resampler "DefaultResampler") 

(ResampleInterpolator 

"FinalBSplineInterpolator") 

(FixedImageBSplineInterpolationOrder 1 ) 

 

//______ Interpolator (each resolut. level)___ 

(Interpolator "BSplineInterpolator") 

(BSplineInterpolationOrder 5) 

 

 

 

 

 

 

//______ Final Interpolator ___________________ 

(FinalBSplineInterpolationOrder 1) 

 

//______  Transform __________________________ 

(Transform "BSplineTransform") 

 

//______  Optimiser ___________________________ 

(Optimizer "StandardGradientDescent") 

 

//______  Multi resolution______________________ 

(NumberOfResolutions 5) 

(MaximumNumberOfIterations 2000 )  

(Registration 

"MultiResolutionRegistration") 

(FixedImagePyramid 

"FixedSmoothingImagePyramid") 

(MovingImagePyramid 

"MovingSmoothingImagePyramid") 

 

//Nr of grey level bins in each resolution 

level: 

(NumberOfHistogramBins 32 ) 

(FixedLimitRangeRatio 0.0) 

(MovingLimitRangeRatio 0.0) 

(FixedKernelBSplineOrder 3) 

(MovingKernelBSplineOrder 3) 

 

//SP: Param_a in each resolution level. a_k 

= a/(A+k+1)^alpha 

(SP_a 10000.0 ) 

 

//SP: Param_A in each resolution level. a_k 

= a/(A+k+1)^alpha 

(SP_A 100.0 ) 

 

//SP: Param_alpha in each resolution level. 

a_k = a/(A+k+1)^alpha 

(SP_alpha 0.6 ) 
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